1
|
Polańska O, Szulc N, Stottko R, Olek M, Nadwodna J, Gąsior-Głogowska M, Szefczyk M. Challenges in Peptide Solubilization - Amyloids Case Study. CHEM REC 2024; 24:e202400053. [PMID: 39023378 DOI: 10.1002/tcr.202400053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/23/2024] [Indexed: 07/20/2024]
Abstract
Peptide science has been a rapidly growing research field because of the enormous potential application of these biocompatible and bioactive molecules. However, many factors limit the widespread use of peptides in medicine, and low solubility is among the most common problems that hamper drug development in the early stages of research. Solubility is a crucial, albeit poorly understood, feature that determines peptide behavior. Several different solubility predictors have been proposed, and many strategies and protocols have been reported to dissolve peptides, but none of them is a one-size-fits-all method for solubilization of even the same peptide. In this review, we look for the reasons behind the difficulties in dissolving peptides, analyze the factors influencing peptide aggregation, conduct a critical analysis of solubilization strategies and protocols available in the literature, and give some tips on how to deal with the so-called difficult sequences. We focus on amyloids, which are particularly difficult to dissolve and handle such as amyloid beta (Aβ), insulin, and phenol-soluble modulins (PSMs).
Collapse
Affiliation(s)
- Oliwia Polańska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Natalia Szulc
- Department of Physics and Biophysics, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375, Wrocław, Poland
| | - Rafał Stottko
- Faculty of Chemistry, Wrocław University of Science and Technology, Gdanska 7/9, 50-344, Wrocław, Poland
| | - Mateusz Olek
- Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Traugutta 2, 41-800 Zabrze, Poland
| | - Julita Nadwodna
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Marlena Gąsior-Głogowska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Monika Szefczyk
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370, Wroclaw, Poland
| |
Collapse
|
2
|
Mitra A, Naik L, Dhiman R, Sarkar N. Protonation-State Dependent Modulation of Hen Egg-White Lysozyme Fibrillation under the Influence of a Short Synthetic Peptide. J Phys Chem B 2024; 128:5995-6013. [PMID: 38875472 DOI: 10.1021/acs.jpcb.4c01578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Under the influence of various conditions, misfolding of soluble proteins occurs, leading to the formation of toxic insoluble amyloids. The formation and deposition of such amyloids within the body are associated with detrimental biological consequences such as the onset of several amyloid-related diseases. Previously, we established a strategy for the rational design of peptide inhibitors against amyloid formation based on the amyloidogenic-prone region of the protein. In the current study, we have designed and identified an Asp-containing rationally designed hexapeptide (SqP4) as an excellent inhibitor of hen egg-white lysozyme (HEWL) amyloid progression in vitro. First, SqP4 showed strong affinity toward the native monomeric HEWL leading to the stabilization of the native form and restriction in the unfolding process of monomeric HEWL. Second, SqP4 was found to arrest the amyloidogenic misfolded structure of HEWL in a nonfibrillar monomer-like stage. We also observed the differential effect of the protonation state of the charged amino acid (Asp) within the peptide inhibitor on the amyloid formation of HEWL and explored the reason behind the observations. The findings of this study can be implemented in future strategies for the development of potent therapeutics against other amyloid-related diseases.
Collapse
Affiliation(s)
- Amit Mitra
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Lincoln Naik
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Nandini Sarkar
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| |
Collapse
|
3
|
Hasan I, Guo B, Zhang J, Chang C. Advances in Antioxidant Nanomedicines for Imaging and Therapy of Alzheimer's Disease. Antioxid Redox Signal 2024; 40:863-888. [PMID: 36070437 DOI: 10.1089/ars.2022.0107] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Significance: Reactive oxygen species (ROS) are crucial signaling molecules in the regulation of numerous physiological activities including the formation and function of the central nervous system (CNS). So far, many functional antioxidant nanomedicines with ROS scavenging capability to reduce oxidative stress in Alzheimer's disease (AD) have been developed for both imaging and therapy of AD. Recent Advances: This review focuses on the most recent advances in antioxidant nanomedicines such as ROS-scavenging nanoparticles (NPs), NPs with intrinsic antioxidant activity, and drug-loaded antioxidant NPs for AD theranostics. In addition to antioxidant nanomedicines, the emerging phototherapy treatment paradigms and the promising preclinic drug carriers, such as exosomes and liposomes, are also introduced. Critical Issues: In general, excessive generation of ROS can cause lipid peroxidation, oxidative DNA, as well as protein damage, aggravating pathogenic alterations, accumulation of amyloid-beta plaques and neurofibrillary tangles in the brain. These negative factors further cause cell death, which is the beginning of AD. Future Directions: We anticipate that this review will help researchers in the area of preclinical research and clinical translation of antioxidant nanomedicines for AD imaging and therapy.
Collapse
Affiliation(s)
- Ikram Hasan
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Bing Guo
- School of Science and Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen, China
| | - Jian Zhang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Chunqi Chang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| |
Collapse
|
4
|
White AR. The firestorm within: A narrative review of extreme heat and wildfire smoke effects on brain health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171239. [PMID: 38417511 DOI: 10.1016/j.scitotenv.2024.171239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/01/2024]
Abstract
Climate change is generating increased heatwaves and wildfires across much of the world. With these escalating environmental changes comes greater impacts on human health leading to increased numbers of people suffering from heat- and wildfire smoke-associated respiratory and cardiovascular impairment. One area of health impact of climate change that has received far less attention is the effects of extreme heat and wildfire smoke exposure on human brain health. As elevated temperatures, and wildfire-associated smoke, are increasingly experienced simultaneously over summer periods, understanding this combined impact is critical to management of human health especially in the elderly, and people with dementia, and other neurological disorders. Both extreme heat and wildfire smoke air pollution (especially particulate matter, PM) induce neuroinflammatory and cerebrovascular effects, oxidative stress, and cognitive impairment, however the combined effect of these impacts are not well understood. In this narrative review, a comprehensive examination of extreme heat and wildfire smoke impact on human brain health is presented, with a focus on how these factors contribute to cognitive impairment, and dementia, one of the leading health issues today. Also discussed is the potential impact of combined heat and wildfire smoke on brain health, and where future efforts should be applied to help advance knowledge in this rapidly growing and critical field of health research.
Collapse
Affiliation(s)
- Anthony R White
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia; A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland; School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia; School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, QLD, Australia.
| |
Collapse
|
5
|
Tworek P, Rakowski K, Szota M, Lekka M, Jachimska B. Changes in Secondary Structure and Properties of Bovine Serum Albumin as a Result of Interactions with Gold Surface. Chemphyschem 2024; 25:e202300505. [PMID: 38009440 DOI: 10.1002/cphc.202300505] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/17/2023] [Accepted: 11/19/2023] [Indexed: 11/28/2023]
Abstract
Proteins can alter their shape when interacting with a surface. This study explores how bovine serum albumin (BSA) modifies structurally when it adheres to a gold surface, depending on the protein concentration and pH. We verified that the gold surface induces significant structural modifications to the BSA molecule using circular dichroism, infrared spectroscopy, and atomic force microscopy. Specifically, adsorbed molecules displayed increased levels of disordered structures and β-turns, with fewer α-helices than the native structure. MP-SPR spectroscopy demonstrated that the protein molecules preferred a planar orientation during adsorption. Molecular dynamics simulations revealed that the interaction between cysteines exposed to the outside of the molecule and the gold surface was vital, especially at pH=3.5. The macroscopic properties of the protein film observed by AFM and contact angles confirm the flexible nature of the protein itself. Notably, structural transformation is joined with the degree of hydration of protein layers.
Collapse
Affiliation(s)
- Paulina Tworek
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Niezapominajek 8, 30-239, Krakow, Poland
| | - Kamil Rakowski
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Niezapominajek 8, 30-239, Krakow, Poland
| | - Magdalena Szota
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Niezapominajek 8, 30-239, Krakow, Poland
| | - Małgorzata Lekka
- Department of Biophysical Microstructures, Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, 31-342, Krakow, Poland
| | - Barbara Jachimska
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Niezapominajek 8, 30-239, Krakow, Poland
| |
Collapse
|
6
|
Iqbal M, Lewis SL, Padhye S, Jinwal UK. Updates on Aβ Processing by Hsp90, BRICHOS, and Newly Reported Distinctive Chaperones. Biomolecules 2023; 14:16. [PMID: 38254616 PMCID: PMC10812967 DOI: 10.3390/biom14010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Alzheimer's disease (AD) is an extremely devastating neurodegenerative disease, and there is no cure for it. AD is specified as the misfolding and aggregation of amyloid-β protein (Aβ) and abnormalities in hyperphosphorylated tau protein. Current approaches to treat Alzheimer's disease have had some success in slowing down the disease's progression. However, attempts to find a cure have been largely unsuccessful, most likely due to the complexity associated with AD pathogenesis. Hence, a shift in focus to better understand the molecular mechanism of Aβ processing and to consider alternative options such as chaperone proteins seems promising. Chaperone proteins act as molecular caretakers to facilitate cellular homeostasis under standard conditions. Chaperone proteins like heat shock proteins (Hsps) serve a pivotal role in correctly folding amyloid peptides, inhibiting mitochondrial dysfunction, and peptide aggregation. For instance, Hsp90 plays a significant role in maintaining cellular homeostasis through its protein folding mechanisms. In this review, we analyze the most recent studies from 2020 to 2023 and provide updates on Aβ regulation by Hsp90, BRICHOS domain chaperone, and distinctive newly reported chaperones.
Collapse
Affiliation(s)
| | | | | | - Umesh Kumar Jinwal
- Department of Pharmaceutical Sciences, USF-Health Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA; (M.I.)
| |
Collapse
|
7
|
Yin P, Gao Y, Chen R, Liu W, He C, Hao J, Zhou M, Kan H. Temperature-related death burden of various neurodegenerative diseases under climate warming: a nationwide modelling study. Nat Commun 2023; 14:8236. [PMID: 38086884 PMCID: PMC10716387 DOI: 10.1038/s41467-023-44066-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Limited knowledge exists regarding the ramifications of climate warming on death burden from neurodegenerative diseases. Here, we conducted a nationwide, individual-level, case-crossover study between 2013 and 2019 to investigate the effects of non-optimal temperatures on various neurodegenerative diseases and to predict the potential death burden under different climate change scenarios. Our findings reveal that both low and high temperatures are linked to increased risks of neurodegenerative diseases death. We project that heat-related neurodegenerative disease deaths would increase, while cold-related deaths would decrease. This is characterized by a steeper slope in the high-emission scenario, but a less pronounced trend in the scenarios involving mitigation strategies. Furthermore, we predict that the net changes in attributable death would increase after the mid-21st century, especially under the unrestricted-emission scenario. These results highlight the urgent need for effective climate and public health policies to address the growing challenges of neurodegenerative diseases associated with global warming.
Collapse
Affiliation(s)
- Peng Yin
- National Center for Chronic Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ya Gao
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai, China
| | - Wei Liu
- National Center for Chronic Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Cheng He
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai, China
| | - Junwei Hao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.
- National Center for Neurological Disorders, Beijing, China.
| | - Maigeng Zhou
- National Center for Chronic Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai, China.
| |
Collapse
|
8
|
Nozari A, Sharma A, Wang Z, Feng L, Muresanu DF, Tian ZR, Lafuente JV, Buzoianu AD, Wiklund L, Sharma HS. Co-administration of Nanowired Oxiracetam and Neprilysin with Monoclonal Antibodies to Amyloid Beta Peptide and p-Tau Thwarted Exacerbation of Brain Pathology in Concussive Head Injury at Hot Environment. ADVANCES IN NEUROBIOLOGY 2023; 32:271-313. [PMID: 37480464 DOI: 10.1007/978-3-031-32997-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Environmental temperature adversely affects the outcome of concussive head injury (CHI)-induced brain pathology. Studies from our laboratory showed that animals reared at either cold environment or at hot environment exacerbate brain pathology following CHI. Our previous experiments showed that nanowired delivery of oxiracetam significantly attenuated CHI-induced brain pathology and associated neurovascular changes. Military personnel are the most susceptible to CHI caused by explosion, blasts, missile or blunt head trauma leading to lifetime functional and cognitive impairments affecting the quality of life. Severe CHI leads to instant death and/or lifetime paralysis. Military personnel engaged in combat operations are often subjected to extreme high or low environmental temperature zones across the globe. Thus, further exploration of novel therapeutic agents at cold or hot ambient temperatures following CHI are the need of the hour. CHI is also a major risk factor for developing Alzheimer's disease by enhancing amyloid beta peptide deposits in the brain. In this review, effect of hot environment on CHI-induced brain pathology is discussed. In addition, whether nanodelivery of oxiracetam together with neprilysin and monoclonal antibodies (mAb) to amyloid beta peptide and p-tau could lead to superior neuroprotection in CHI is explored. Our results show that co-administration of oxiracetam with neprilysin and mAb to AβP and p-tau significantly induced superior neuroprotection following CHI in hot environment, not reported earlier.
Collapse
Affiliation(s)
- Ala Nozari
- Anesthesiology & Intensive Care, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Zhenguo Wang
- Shijiazhuang Pharma Group NBP Pharmaceutical Co., Ltd., Shijiazhuang, Hebei Province, China
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Zhongshan, Hebei Province, China
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania
- "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| |
Collapse
|
9
|
Sun Y, Islam S, Gao Y, Nakamura T, Zou K, Michikawa M. Apolipoprotein E4 inhibits γ-secretase activity via binding to the γ-secretase complex. J Neurochem 2022; 164:858-874. [PMID: 36582176 DOI: 10.1111/jnc.15750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/07/2022] [Accepted: 12/16/2022] [Indexed: 12/31/2022]
Abstract
The mechanisms of amyloid accumulation in familial Alzheimer's disease (FAD) and sporadic AD (SAD) are controversial. In FAD, mutations in presenilin (PSEN) impair γ-secretase activity and lead to abnormal amyloid β-protein (Aβ) production, thereby increasing the Aβ42/40 ratio. SAD is postulated to be caused by decreased Aβ clearance of apolipoprotein E4 (APOE4), the strongest risk factor for SAD. However, whether intracellular APOE4 affects Aβ production is unclear. Using APOE3 and APOE4 knock-in (KI) mouse brain and primary cultured fibroblasts from these mice, in this study, we demonstrated that APOE3 and APOE4 bind to the γ-secretase complex and isoform-dependently regulate its activity and Aβ production. We found that Aβ40 levels and γ-secretase activity were higher in APOE knockout mouse brain than in wild-type mouse brain. APOE4-KI fibroblasts had significant lower Aβ levels and γ-secretase activity but higher Aβ42/40 ratio compared with APOE3-KI cells, indicating that APOE4-KI reduces Aβ production by inhibiting γ-secretase activity. Interestingly, the levels of γ-secretase complex bound to APOE4 are higher than those bound to APOE3, and the levels of γ-secretase complex in the brain and fibroblasts of APOE4-KI mice were higher than those of APOE3-KI mice. Taken together, our findings demonstrate that intracellular APOE4 inhibits Aβ production, more preferentially inhibits Aβ40 production, and thereby induces an increase in the Aβ42/40 ratio via binding to the γ-secretase complex. These results suggest a novel mechanism in which intracellular APOE4 contributes to the pathogenesis of SAD by inhibiting γ-secretase activity.
Collapse
Affiliation(s)
- Yang Sun
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Sadequl Islam
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Yuan Gao
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Tomohisa Nakamura
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Kun Zou
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Makoto Michikawa
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|
10
|
Reichelderfer VT, Chaparro Sosa AF, Kaar JL, Schwartz DK. Tuning the surface charge of phospholipid bilayers inhibits insulin fibrilization. Colloids Surf B Biointerfaces 2022; 220:112904. [PMID: 36265317 PMCID: PMC10164472 DOI: 10.1016/j.colsurfb.2022.112904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/27/2022] [Accepted: 10/02/2022] [Indexed: 11/27/2022]
Abstract
The interactions between proteins and materials, in particular lipid bilayers, have been studied extensively for their relevance in diseases and for the formulation of protein-based therapeutics and vaccines. However, the precise rules by which material properties induce favorable or unfavorable structural states in biomolecules are incompletely understood, and as a result, the rational design of materials remains challenging. Here, we investigated the influence of lipid bilayers (in the form of small unilamellar vesicles) on the formation of insulin amyloid fibrils using a fibril-specific assay (thioflavin T), polyacrylamide gel electrophoresis, and circular dichroism spectroscopy. Lipid bilayers composed of equal mixtures of cationic and anionic lipids effectively inhibited fibril formation and stabilized insulin in its native conformation. However, other lipid bilayer compositions failed to inhibit fibril formation or even destabilized insulin, exacerbating fibrilization and/or non-amyloid aggregation. Our findings suggest that electrostatic interactions with lipid bilayers can play a critical role in stabilizing or destabilizing insulin, and preventing the conversion of insulin to its amyloidogenic, disease-associated state.
Collapse
Affiliation(s)
- Victoria T Reichelderfer
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309, USA
| | - Andres F Chaparro Sosa
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309, USA
| | - Joel L Kaar
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309, USA.
| | - Daniel K Schwartz
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309, USA.
| |
Collapse
|
11
|
Jung CG, Kato R, Zhou C, Abdelhamid M, Shaaban EIA, Yamashita H, Michikawa M. Sustained high body temperature exacerbates cognitive function and Alzheimer's disease-related pathologies. Sci Rep 2022; 12:12273. [PMID: 35851831 PMCID: PMC9293958 DOI: 10.1038/s41598-022-16626-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 07/13/2022] [Indexed: 12/05/2022] Open
Abstract
Global warming is a serious public health threat to people worldwide. High body temperature is one of the important risk factors for Alzheimer’s disease (AD), and the body temperature of AD patients has been found to be significantly higher than that of elderly control subjects. However, the effects of high body temperature on cognitive function and AD pathologies have not been completely elucidated. We report here that Tg2576 mice housed at a high ambient temperature of 30 °C for 13 months showed an increase in the body temperature, which is accompanied by memory impairment and an enhancement of amyloid-β peptides (Aβ) generation through the upregulation of β-site APP cleaving enzyme 1 (BACE1) level and decrease in the level of an Aβ-degrading enzyme, neprilysin (NEP) in the brain, compared with those of Tg2576 mice at 23 °C. High body temperature also increased the levels of heat shock proteins (HSPs), stress-stimulated kinases such as JNK, and total tau, leading to the enhancement of tau phosphorylation at 30 °C. Taken together, our findings suggest that high body temperature exacerbates cognitive function and AD pathologies, which provides a mechanistic insight for its prevention.
Collapse
Affiliation(s)
- Cha-Gyun Jung
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan.
| | - Reiko Kato
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai, 487-8501, Japan
| | - Chunyu Zhou
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Mona Abdelhamid
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Esraa Ibrahim A Shaaban
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Hitoshi Yamashita
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai, 487-8501, Japan.
| | - Makoto Michikawa
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan.
| |
Collapse
|
12
|
Tournissac M, Leclerc M, Valentin-Escalera J, Vandal M, Bosoi CR, Planel E, Calon F. Metabolic determinants of Alzheimer's disease: A focus on thermoregulation. Ageing Res Rev 2021; 72:101462. [PMID: 34534683 DOI: 10.1016/j.arr.2021.101462] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/09/2021] [Accepted: 09/11/2021] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is a complex age-related neurodegenerative disease, associated with central and peripheral metabolic anomalies, such as impaired glucose utilization and insulin resistance. These observations led to a considerable interest not only in lifestyle-related interventions, but also in repurposing insulin and other anti-diabetic drugs to prevent or treat dementia. Body temperature is the oldest known metabolic readout and mechanisms underlying its maintenance fail in the elderly, when the incidence of AD rises. This raises the possibility that an age-associated thermoregulatory deficit contributes to energy failure underlying AD pathogenesis. Brown adipose tissue (BAT) plays a central role in thermogenesis and maintenance of body temperature. In recent years, the modulation of BAT activity has been increasingly demonstrated to regulate energy expenditure, insulin sensitivity and glucose utilization, which could also provide benefits for AD. Here, we review the evidence linking thermoregulation, BAT and insulin-related metabolic defects with AD, and we propose mechanisms through which correcting thermoregulatory impairments could slow the progression and delay the onset of AD.
Collapse
|
13
|
Lapshina KV, Guzhova IV, Ekimova IV. Preventive Administration of the Heat Shock Protein Hsp70 Relieves Endotoxemia-Induced Febrile Reaction in Pigeons ( Columba livia ) and Rats. J EVOL BIOCHEM PHYS+ 2021; 57:1060-1071. [PMID: 34720177 PMCID: PMC8547305 DOI: 10.1134/s0022093021050082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/17/2021] [Accepted: 06/23/2021] [Indexed: 11/23/2022]
Abstract
The stress-inducible 70 kDa heat shock protein (Hsp70) can
exert a protective effect on endotoxemia and sepsis due to its ability
to interact with immune cells and modulate the immune response.
However, it remains unknown whether Hsp70 is able to relieve endotoxemia-induced fever.
We carried out a comparative study of the effects of preventive
administration of the human recombinant Hsp70 (HSPA1A) on lipopolysaccharide
(LPS)-induced endotoxemia in pigeons and rats with preimplanted
electrodes and thermistors for recording the thermoregulation parameters (brain
temperature, peripheral vasomotor reaction, muscular contractile
activity). Additionally, we analyzed the dynamics of the white blood
cell (WBC) count in rats under the same conditions. It was found
that preventive administration of Hsp70 relieves the LPS-induced
febrile reaction in pigeons and rats and accelerates the restoration
of the WBC count in rats. The data obtained suggest that these warm-blooded
animals share a common physiological mechanism that underlies the
protective effect of Hsp70.
Collapse
Affiliation(s)
- K V Lapshina
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - I V Guzhova
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - I V Ekimova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|