1
|
Gollapalli S, Sooram B, Sugandh H, Saudagar P. The landscape of intrinsically disordered proteins in Leishmania parasite: Implications for drug discovery. Int J Biol Macromol 2024; 283:137290. [PMID: 39537071 DOI: 10.1016/j.ijbiomac.2024.137290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Proteins that lack three-dimensional structures are known as Intrinsically disordered proteins (IDPs). In this study, we aimed to identify intrinsically disordered proteins in the Leishmania donovani proteome using various predictors that can identify IDPs based on amino acid residues and charge hydropathy. Top identified IDPs are analyzed using STRING, PSP-Hunter, Deep Loc-2.0, and Alpha fold to understand the protein-protein interaction, phase separation, localization, and structural assessment of those proteins. From this study, we found that >50 % of Leishmania donovani proteome has proteins or regions of proteins that are intrinsically disordered with VSL2 score >0.5; most proteins interact with many other proteins with PPI enrichment p-value <1.0e-16. Few proteins, such as Protein phosphatase inhibitor, UMSBP, and Zinc knuckle, have redox-sensitive regions. Functional disorder profiles of identified IDPs showed MoRFs and predicted protein domains. HASPB, UTP11, Nucleolar protein 12, and UMSBP have a high probability of undergoing phase separation. Localization studies showed that most of these proteins are in the cytoplasm and nucleus. Our present study of identifying IDPs in Leishmania proteome yields significant information on druggable targets and can serve as a basis for further studies to identify unexplored pathways.
Collapse
Affiliation(s)
- Seshaveena Gollapalli
- Department of Biotechnology, National Institute of Technology-Warangal, Warangal 506004, Telangana, India
| | - Banesh Sooram
- Division of Neurogeriatrics, Karolinska Institutet, Solna, 17 165, Solnavagen, Sweden
| | - Hitesh Sugandh
- Department of Biotechnology, National Institute of Technology-Warangal, Warangal 506004, Telangana, India
| | - Prakash Saudagar
- Department of Biotechnology, National Institute of Technology-Warangal, Warangal 506004, Telangana, India.
| |
Collapse
|
2
|
Moreira POL, Nogueira PM, Monte-Neto RL. Next-Generation Leishmanization: Revisiting Molecular Targets for Selecting Genetically Engineered Live-Attenuated Leishmania. Microorganisms 2023; 11:microorganisms11041043. [PMID: 37110466 PMCID: PMC10145799 DOI: 10.3390/microorganisms11041043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/07/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Despite decades of research devoted to finding a vaccine against leishmaniasis, we are still lacking a safe and effective vaccine for humans. Given this scenario, the search for a new prophylaxis alternative for controlling leishmaniasis should be a global priority. Inspired by leishmanization-a first generation vaccine strategy where live L. major parasites are inoculated in the skin to protect against reinfection-live-attenuated Leishmania vaccine candidates are promising alternatives due to their robust elicited protective immune response. In addition, they do not cause disease and could provide long-term protection upon challenge with a virulent strain. The discovery of a precise and easy way to perform CRISPR/Cas-based gene editing allowed the selection of safer null mutant live-attenuated Leishmania parasites obtained by gene disruption. Here, we revisited molecular targets associated with the selection of live-attenuated vaccinal strains, discussing their function, their limiting factors and the ideal candidate for the next generation of genetically engineered live-attenuated Leishmania vaccines to control leishmaniasis.
Collapse
Affiliation(s)
- Paulo O L Moreira
- Biotechnology Applied to Pathogens (BAP), Instituto René Rachou, Fundação Oswaldo Cruz, Fiocruz Minas, Belo Horizonte 30190-009, Brazil
| | - Paula M Nogueira
- Biotechnology Applied to Pathogens (BAP), Instituto René Rachou, Fundação Oswaldo Cruz, Fiocruz Minas, Belo Horizonte 30190-009, Brazil
| | - Rubens L Monte-Neto
- Biotechnology Applied to Pathogens (BAP), Instituto René Rachou, Fundação Oswaldo Cruz, Fiocruz Minas, Belo Horizonte 30190-009, Brazil
| |
Collapse
|
3
|
Boy RL, Hong A, Aoki JI, Floeter-Winter LM, Laranjeira-Silva MF. Reporter gene systems: a powerful tool for Leishmania studies. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100165. [DOI: 10.1016/j.crmicr.2022.100165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
4
|
Geoghegan V, Mottram JC, Jones NG. Tag Thy Neighbour: Nanometre-Scale Insights Into Kinetoplastid Parasites With Proximity Dependent Biotinylation. Front Cell Infect Microbiol 2022; 12:894213. [PMID: 35601102 PMCID: PMC9120650 DOI: 10.3389/fcimb.2022.894213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Proximity labelling is a powerful and rapidly developing technology for exploring the interaction space and molecular environment of a protein of interest at the nanometre scale. In proximity labelling, a promiscuous biotinylating enzyme is genetically fused to the protein of interest, initiation of labelling then results in the biotinylating enzyme generating reactive biotin which covalently 'tags' nearby molecules. Importantly, this labelling takes place in vivo whilst the protein of interest continues to perform its normal functions in the cell. Due to its unique advantageous characteristics, proximity labelling is driving discoveries in an ever increasing range of organisms. Here, we highlight the applications of proximity labelling to the study of kinetoplastids, a group of eukaryotic protozoa that includes trypanosomes and Leishmania which can cause serious disease in humans and livestock. We first provide a general overview of the proximity labelling experimental workflow including key labelling enzymes used, proper experimental design with appropriate controls and robust statistical analysis to maximise the amount of reliable spatial information that is generated. We discuss studies employing proximity labelling in kinetoplastid parasites to illustrate how these key principles of experimental design are applied. Finally, we highlight emerging trends in the development of proximity labelling methodology.
Collapse
Affiliation(s)
- Vincent Geoghegan
- Department of Biology, York Biomedical Research Institute, University of York, York, United Kingdom
| | | | | |
Collapse
|
5
|
New Vistas in the Biology of the Flagellum—Leishmania Parasites. Pathogens 2022; 11:pathogens11040447. [PMID: 35456123 PMCID: PMC9024700 DOI: 10.3390/pathogens11040447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 12/04/2022] Open
Abstract
Like other kinetoplastid protozoa, the flagellum in Leishmania parasites plays central roles throughout the life cycle. Discoveries over the past decade have begun to elucidate flagellar functions at the molecular level in both the insect vector stage promastigotes and intra-macrophage amastigotes. This focused review will highlight recent advances that contribute to understanding flagellar function in the various biological contexts encountered by Leishmania parasites.
Collapse
|
6
|
Corrales RM, Vaselek S, Neish R, Berry L, Brunet CD, Crobu L, Kuk N, Mateos-Langerak J, Robinson DR, Volf P, Mottram JC, Sterkers Y, Bastien P. The kinesin of the flagellum attachment zone in Leishmania is required for cell morphogenesis, cell division and virulence in the mammalian host. PLoS Pathog 2021; 17:e1009666. [PMID: 34143858 PMCID: PMC8244899 DOI: 10.1371/journal.ppat.1009666] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/30/2021] [Accepted: 05/24/2021] [Indexed: 11/20/2022] Open
Abstract
Leishmania parasites possess a unique and complex cytoskeletal structure termed flagellum attachment zone (FAZ) connecting the base of the flagellum to one side of the flagellar pocket (FP), an invagination of the cell body membrane and the sole site for endocytosis and exocytosis. This structure is involved in FP architecture and cell morphogenesis, but its precise role and molecular composition remain enigmatic. Here, we characterized Leishmania FAZ7, the only known FAZ protein containing a kinesin motor domain, and part of a clade of trypanosomatid-specific kinesins with unknown functions. The two paralogs of FAZ7, FAZ7A and FAZ7B, display different localizations and functions. FAZ7A localizes at the basal body, while FAZ7B localizes at the distal part of the FP, where the FAZ structure is present in Leishmania. While null mutants of FAZ7A displayed normal growth rates, the deletion of FAZ7B impaired cell growth in both promastigotes and amastigotes of Leishmania. The kinesin activity is crucial for its function. Deletion of FAZ7B resulted in altered cell division, cell morphogenesis (including flagellum length), and FP structure and function. Furthermore, knocking out FAZ7B induced a mis-localization of two of the FAZ proteins, and disrupted the molecular organization of the FP collar, affecting the localization of its components. Loss of the kinesin FAZ7B has important consequences in the insect vector and mammalian host by reducing proliferation in the sand fly and pathogenicity in mice. Our findings reveal the pivotal role of the only FAZ kinesin as part of the factors important for a successful life cycle of Leishmania. Leishmania are flagellated trypanosomatid parasites causing worldwide human and animal diseases. As ’divergent eukaryotes’, their biology presents unique features and structures, of which the specific functions constitute potential drug targets. Among others, they possess a unique cytoskeletal structure termed the flagellum attachment zone (FAZ) attaching the base of their flagellum to one side of the flagellar pocket (FP), which is the sole site for endocytosis and exocytosis. The FP together with other unique flagellum-associated structures are crucial for parasite survival, but the functioning of this whole remains largely enigmatic. Leishmania also possess an expanded repertoire of kinesins (>55), including two trypanosomatid-specific families. Here, we show that the deletion of the sole kinesin among FAZ proteins disrupts cell morphogenesis, FP organisation and cell division. Furthermore, the ability to proliferate in the insect vector and mammalian host is reduced in parasites lacking the kinesin FAZ7B. This study helps elucidate the factors contributing to the successful lifecycle and pathogenicity of the parasite. It also highlights the functional diversification of motor proteins during evolution.
Collapse
Affiliation(s)
- Rosa Milagros Corrales
- Research Unit “MiVEGEC”, University of Montpellier, CNRS, IRD, Academic Hospital (CHU) of Montpellier, Montpellier, France
- * E-mail: (RMC); (PB)
| | - Slavica Vaselek
- Department of Parasitology, Charles University, Prague, Czech Republic
| | - Rachel Neish
- York Biomedical Research Institute and Department of Biology, University of York, York, United Kingdom
| | - Laurence Berry
- Research Unit “LPHI” (Laboratory of Pathogen Host Interactions), University of Montpellier, CNRS, Montpellier, France
| | - Camille D. Brunet
- Research Unit “MiVEGEC”, University of Montpellier, CNRS, IRD, Academic Hospital (CHU) of Montpellier, Montpellier, France
| | - Lucien Crobu
- Research Unit “MiVEGEC”, University of Montpellier, CNRS, IRD, Academic Hospital (CHU) of Montpellier, Montpellier, France
| | - Nada Kuk
- Research Unit “MiVEGEC”, University of Montpellier, CNRS, IRD, Academic Hospital (CHU) of Montpellier, Montpellier, France
| | | | - Derrick R. Robinson
- Research Unit “Fundamental Microbiology and Pathogenicity”, “Protist Parasite Cytoskeleton (ProParaCyto)”, University of Bordeaux, UMR 5234, CNRS, Bordeaux, France
| | - Petr Volf
- Department of Parasitology, Charles University, Prague, Czech Republic
| | - Jeremy C. Mottram
- York Biomedical Research Institute and Department of Biology, University of York, York, United Kingdom
| | - Yvon Sterkers
- Research Unit “MiVEGEC”, University of Montpellier, CNRS, IRD, Academic Hospital (CHU) of Montpellier, Montpellier, France
| | - Patrick Bastien
- Research Unit “MiVEGEC”, University of Montpellier, CNRS, IRD, Academic Hospital (CHU) of Montpellier, Montpellier, France
- * E-mail: (RMC); (PB)
| |
Collapse
|
7
|
Richards AL, Eckhardt M, Krogan NJ. Mass spectrometry-based protein-protein interaction networks for the study of human diseases. Mol Syst Biol 2021; 17:e8792. [PMID: 33434350 PMCID: PMC7803364 DOI: 10.15252/msb.20188792] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/23/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
A better understanding of the molecular mechanisms underlying disease is key for expediting the development of novel therapeutic interventions. Disease mechanisms are often mediated by interactions between proteins. Insights into the physical rewiring of protein-protein interactions in response to mutations, pathological conditions, or pathogen infection can advance our understanding of disease etiology, progression, and pathogenesis and can lead to the identification of potential druggable targets. Advances in quantitative mass spectrometry (MS)-based approaches have allowed unbiased mapping of these disease-mediated changes in protein-protein interactions on a global scale. Here, we review MS techniques that have been instrumental for the identification of protein-protein interactions at a system-level, and we discuss the challenges associated with these methodologies as well as novel MS advancements that aim to address these challenges. An overview of examples from diverse disease contexts illustrates the potential of MS-based protein-protein interaction mapping approaches for revealing disease mechanisms, pinpointing new therapeutic targets, and eventually moving toward personalized applications.
Collapse
Affiliation(s)
- Alicia L Richards
- Quantitative Biosciences Institute (QBI)University of California San FranciscoSan FranciscoCAUSA
- J. David Gladstone InstitutesSan FranciscoCAUSA
- Department of Cellular and Molecular PharmacologyUniversity of California San FranciscoSan FranciscoCAUSA
| | - Manon Eckhardt
- Quantitative Biosciences Institute (QBI)University of California San FranciscoSan FranciscoCAUSA
- J. David Gladstone InstitutesSan FranciscoCAUSA
- Department of Cellular and Molecular PharmacologyUniversity of California San FranciscoSan FranciscoCAUSA
| | - Nevan J Krogan
- Quantitative Biosciences Institute (QBI)University of California San FranciscoSan FranciscoCAUSA
- J. David Gladstone InstitutesSan FranciscoCAUSA
- Department of Cellular and Molecular PharmacologyUniversity of California San FranciscoSan FranciscoCAUSA
| |
Collapse
|
8
|
Kelly FD, Yates PA, Landfear SM. Nutrient sensing in Leishmania: Flagellum and cytosol. Mol Microbiol 2020; 115:849-859. [PMID: 33112443 DOI: 10.1111/mmi.14635] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 12/18/2022]
Abstract
Parasites are by definition organisms that utilize resources from a host to support their existence, thus, promoting their ability to establish long-term infections and disease. Hence, sensing and acquiring nutrients for which the parasite and host compete is central to the parasitic mode of existence. Leishmania are flagellated kinetoplastid parasites that parasitize phagocytic cells, principally macrophages, of vertebrate hosts and the alimentary tract of sand fly vectors. Because nutritional supplies vary over time within both these hosts and are often restricted in availability, these parasites must sense a plethora of nutrients and respond accordingly. The flagellum has been recognized as an "antenna" that plays a core role in sensing environmental conditions, and various flagellar proteins have been implicated in sensing roles. In addition, these parasites exhibit non-flagellar intracellular mechanisms of nutrient sensing, several of which have been explored. Nonetheless, mechanistic details of these sensory pathways are still sparse and represent a challenging frontier for further experimental exploration.
Collapse
Affiliation(s)
- Felice D Kelly
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR, USA
| | - Phillip A Yates
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR, USA
| | - Scott M Landfear
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|