1
|
Li C, Meng Y, Zhou B, Zhang Y, Xia Q, Huang Y, Meng L, Shan C, Xia J, Zhang X, Wang Q, Lv M, Long W. ITGB3 is reduced in pregnancies with preeclampsia and its influence on biological behavior of trophoblast cells. Mol Med 2024; 30:275. [PMID: 39721996 DOI: 10.1186/s10020-024-01050-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 12/17/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Preeclampsia (PE) is a serious pregnancy complication associated with impaired trophoblast function. Integrin β3 (ITGB3) is a cell adhesion molecule that plays a role in cell movement. The objective of this study was to identify the biological function and expression level of ITGB3 in PE. METHODS Cell proliferation, migration, invasion, adhesion, and apoptosis were estimated by CCK8 assay, transwell, scratch assays, and flow cytometry, respectively. The expression levels of ITGB3 were determined by qRT-PCR, western blot, and immunohistochemistry (IHC). Co-immunoprecipitation and Alphafold-Multimer protein complex structure prediction software were employed to identify the molecules that interact with ITGB3. RESULTS Cell functional experiments conducted on HTR8/SVneo cells demonstrated that ITGB3 significantly enhanced proliferation, migration, invasion, and adhesion, while simultaneously inhibiting apoptosis. Relative ITGB3 expression levels were observed to be lower in PE placental tissue than in normal tissue and similarly reduced in hypoxic HTR8/SVneo cells. RNA-sequencing data from PE placental samples in the GEO database were analyzed to identify differentially expressed genes associated with the disease. We identified a total of 1460 mRNAs that were significantly differentially expressed in PE patients. Specifically, 798 mRNAs were significantly upregulated, and 662 mRNAs were significantly downregulated. Notably, the ITGB3 exhibited a pronounced down-regulation among the differential expression mRNA. CONCLUSIONS This study suggested that ITGB3 plays an important role in promoting the proliferative, migratory, invasive, and adhesive capabilities of trophoblast cells. These findings may facilitate a more in-depth understanding of the molecular mechanisms that promote PE progression.
Collapse
Affiliation(s)
- Chunyan Li
- Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, No.123, Tianfeixiang, Mochou Rd, Nanjing, 210004, China
| | - Yanan Meng
- Center for High Performance Computing and System Simulation, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Beibei Zhou
- Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, No.123, Tianfeixiang, Mochou Rd, Nanjing, 210004, China
| | - Yanrong Zhang
- Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, No.123, Tianfeixiang, Mochou Rd, Nanjing, 210004, China
| | - Qing Xia
- Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, No.123, Tianfeixiang, Mochou Rd, Nanjing, 210004, China
| | - Yu Huang
- Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, No.123, Tianfeixiang, Mochou Rd, Nanjing, 210004, China
| | - Li Meng
- Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, No.123, Tianfeixiang, Mochou Rd, Nanjing, 210004, China
| | - Chunjian Shan
- Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, No.123, Tianfeixiang, Mochou Rd, Nanjing, 210004, China
| | - Jiaai Xia
- Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, No.123, Tianfeixiang, Mochou Rd, Nanjing, 210004, China
| | - Xiangdi Zhang
- Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, No.123, Tianfeixiang, Mochou Rd, Nanjing, 210004, China
| | - Qiuhong Wang
- Department of Clinical Laboratory, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, 226018, China
| | - Mingming Lv
- Department of Breast, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, No.123, Tianfeixiang, Mochou Rd, Nanjing, 210004, China.
| | - Wei Long
- Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, No.123, Tianfeixiang, Mochou Rd, Nanjing, 210004, China.
| |
Collapse
|
2
|
Pan R, Zhang Y, Cheng Y, Wu Z, Liu J, Chen Z, Wang J, Zhang X, Wang H, Feng S, Zheng X. Identification of UNC5B as a novel aggressive biomarker for osteosarcoma based on basement membrane genes. Gene 2024; 930:148871. [PMID: 39154972 DOI: 10.1016/j.gene.2024.148871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/27/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND The prognosis of patients with metastatic osteosarcoma is poor, and the variation of basement membrane genes (BMGs) is associated with cancer metastasis. However, the role of BMGs in osteosarcoma has been poorly studied. METHODS BMGs were collected and differentially expressed BMGs (DE-BMGs) were found through difference analysis. DE-BMGs were further screened by univariate Cox regression and Lasso regression analyses, and six key BMGs were identified and defined as basement membrane genes signatures (BMGS). Then, BMGS was used to construct the osteosarcoma BMGS risk score system, and the osteosarcoma patients were divided into high- and low-risk groups based on the median risk score. Single-sample gene set enrichment analysis (ssGSEA) and ESTIMATE scores were used to investigate the differences in immune infiltration between the two scoring groups. Additionally, we investigated whether UNC5B affects various features in tumors by bioinformatic analysis and whether UNC5B was involved in multiple biological functions of osteosarcoma cells by wound healing assay, transwell assay, and western blot. RESULTS The osteosarcoma BMGS risk score reliably predicts the risk of metastasis, patient prognosis, and immunity. UNC5B expression was elevated in osteosarcoma, and correlated with various characteristics such as immune infiltration, prognosis, and drug sensitivity. In vitro assays showed that UNC5B knockdown reduced osteosarcoma cells' capacity for migration and invasion, and EMT process. CONCLUSION A novel BMGS risk score system that can effectively predict the prognosis of osteosarcoma was developed and validated. The UNC5B gene in this system is one of the key aggressive biomarkers of osteosarcoma.
Collapse
Affiliation(s)
- Ruilin Pan
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou, China
| | - Yiming Zhang
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou, China
| | - Yanmei Cheng
- Department of Cardiothoracic Surgery ICU, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zelin Wu
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou, China
| | - Jin Liu
- Key Laboratory of Regenerative Medicine of Ministry of Education, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, China
| | - Zihang Chen
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou, China; Department of Psychology, Li Ka Shing Faculty of Medicine, State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
| | - Jinghao Wang
- Department of Pharmacy, The First Affiliated Hospital, State Key Laboratory of Frigid Zone Cardiovascular Diseases, Science and Technology Planning Project of Guangzhou, Jinan University, Guangzhou, China
| | - Xiaofang Zhang
- Department of Pharmacy, The First Affiliated Hospital, State Key Laboratory of Frigid Zone Cardiovascular Diseases, Science and Technology Planning Project of Guangzhou, Jinan University, Guangzhou, China
| | - Huajun Wang
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou, China.
| | - Shanshan Feng
- Key Laboratory of Regenerative Medicine, Ministry of Education, The Ministry of Science and Technology & Guangdong Province, Department of Developmental and Regenerative Biology, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, International Base of Collaboration for Science and Technology (JNU), institute of Aging and Regenerative Medicine, School of Life Science & Technology, Jinan University, Guangzhou 510632, China.
| | - Xiaofei Zheng
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou, China.
| |
Collapse
|
3
|
Akhlaghipour I, Moghbeli M. MicroRNA-98 as a novel diagnostic marker and therapeutic target in cancer patients. Discov Oncol 2024; 15:385. [PMID: 39210158 PMCID: PMC11362465 DOI: 10.1007/s12672-024-01270-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
The progress of cancer treatment methods in the last decade has significantly reduced mortality rate among these patients. Nevertheless, cancer is still recognized as one of the main causes of human deaths. One of the main reasons for the high death rate in cancer patients is the late diagnosis in the advanced tumor stages. Therefore, it is necessary to investigate the molecular biology of tumor progressions in order to introduce early diagnostic markers. MicroRNAs (miRNAs) have an important role in regulating cellular processes associated with tumor progression. Due to the high stability of miRNAs in body fluids, they are widely used as non-invasive markers in the early tumor diagnosis. Since, deregulation of miR-98 has been reported in a wide range of cancers, we investigated the molecular mechanisms of miR-98 during tumor progression. It has been reported that miR-98 mainly inhibits the tumor growth by the modulation of transcription factors and signaling pathways. Therefore, miR-98 can be introduced as a tumor marker and therapeutic target among cancer patients.
Collapse
Affiliation(s)
- Iman Akhlaghipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Han J, Lyu L. Identification of the biological functions and chemo-therapeutic responses of ITGB superfamily in ovarian cancer. Discov Oncol 2024; 15:198. [PMID: 38814534 PMCID: PMC11139846 DOI: 10.1007/s12672-024-01047-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND Patients with ovarian cancer (OC) tend to face a poor prognosis due to a lack of typical symptoms and a high rate of recurrence and chemo-resistance. Therefore, identifying representative and reliable biomarkers for early diagnosis and prediction of chemo-therapeutic responses is vital for improving the prognosis of OC. METHODS Expression levels, IHC staining, and subcellular distribution of eight ITGBs were analyzed using The Cancer Genome Atlas (TCGA)-Ovarian Serous Cystadenocarcinoma (OV) database, GEO DataSets, and the HPA website. PrognoScan and Univariate Cox were used for prognostic analysis. TIDE database, TIMER database, and GSCA database were used to analyze the correlation between immune functions and ITGBs. Consensus clustering analysis was performed to subtype OC patients in the TCGA database. LASSO regression was used to construct the predictive model. The Cytoscape software was used for identifying hub genes. The 'pRRophetic' R package was applied to predict chemo-therapeutic responses of ITGBs. RESULTS ITGBs were upregulated in OC tissues except ITGB1 and ITGB3. High expression of ITGBs correlated with an unfavorable prognosis of OC except ITGB2. In OC, there was a strong correlation between immune responses and ITGB2, 6, and 7. In addition, the expression matrix of eight ITGBs divided the TCGA-OV database into two subgroups. Subgroup A showed upregulation of eight ITGBs. The predictive model distinguishes OC patients from favorable prognosis to poor prognosis. Chemo-therapeutic responses showed that ITGBs were able to predict responses of common chemo-therapeutic drugs for patients with OC. CONCLUSIONS This article provides evidence for predicting prognosis, immuno-, and chemo-therapeutic responses of ITGBs in OC and reveals related biological functions of ITGBs in OC.
Collapse
Affiliation(s)
- Jiawen Han
- Department of Nutrition, Jinshan Hospital, Fudan University, 1508 Longhang Road, Jinshan District, Shanghai, 201508, China
| | - Lin Lyu
- Department of Nutrition, Jinshan Hospital, Fudan University, 1508 Longhang Road, Jinshan District, Shanghai, 201508, China.
| |
Collapse
|
5
|
Wang C, Liu Y, Yang Y, Teng M, Wan X, Wu Z, Zhang Z. Splenic proteome profiling in response to Marek's disease virus strain GX0101 infection. BMC Vet Res 2024; 20:10. [PMID: 38183097 PMCID: PMC10768084 DOI: 10.1186/s12917-023-03852-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 12/13/2023] [Indexed: 01/07/2024] Open
Abstract
Marek's disease virus (MDV) strain GX0101 was the first reported field strain of recombinant gallid herpesvirus type 2 (GaHV-2). However, the splenic proteome of MDV-infected chickens remains unclear. In this study, a total of 28 1-day-old SPF chickens were intraperitoneally injected with chicken embryo fibroblast (CEF) containing 2000 PFU GX0101. Additionally, a control group, consisting of four one-day-old SPF chickens, received intraperitoneal equal doses of CEF. Blood and various tissue samples were collected at different intervals (7, 14, 21, 30, 45, 60, and 90 days post-infection; dpi) for histopathological, real-time PCR, and label-free quantitative analyses. The results showed that the serum expressions of MDV-related genes, meq and gB, peaked at 45 dpi. The heart, liver, and spleen were dissected at 30 and 45 dpi, and their hematoxylin-eosin staining indicated that virus infection compromised the normal organizational structure at 45 dpi. Particularly, the spleen structure was severely damaged, and the lymphocytes in the white medulla were significantly reduced. Furthermore, liquid chromatography-mass spectrometry (LC-MS) and label-free techniques were used to analyze the difference in splenic proteome profiles of the experimental and control groups at 30 and 45 dpi. Proteomic analysis identified 1660 and 1244 differentially expressed proteins (DEPs) at 30 and 40 dpi, respectively, compared with the uninfected spleen tissues. According to GO analysis, these DEPs were involved in processes such as organelle organization, cellular component biogenesis, cellular component assembly, anion binding, small molecule binding, metal ion binding, cation binding, cytosol, nuclear part, etc. Additionally, KEGG analysis indicated that the following pathways were linked to MDV-induced inflammation, apoptosis, and tumor: Wnt, Hippo, AMPK, cAMP, Notch, TGF-β, PI3K-Akt, Rap1, Ras, Calcium, NF-κB, PPAR, cGMP-PKG, Apoptosis, VEGF, mTOR, FoxO, TNF, JAK-STAT, MAPK, Prion disease, T cell receptor, and B cell receptor. We finally screened 674 DEPs that were linked to MDV infection in spleen tissue. This study improves our understanding of the MDV response mechanism in the spleen.
Collapse
Affiliation(s)
- Chuan Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, PR China.
| | - Yuanzi Liu
- Shaanxi Meili-OH Animal Health Co., Ltd, Xi'an, 712034, PR China
| | - Yuze Yang
- Beijing Animal Husbandry Station, Beijing, 100107, PR China
| | - Man Teng
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, PR China
| | - Xuerui Wan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Zixiang Wu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Zhao Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, PR China.
| |
Collapse
|
6
|
Di Giorgio E, Ferino A, Huang W, Simonetti S, Xodo L, De Marco R. Dual-targeting peptides@PMO, a mimetic to the pro-apoptotic protein Smac/DIABLO for selective activation of apoptosis in cancer cells. Front Pharmacol 2023; 14:1237478. [PMID: 37711175 PMCID: PMC10497945 DOI: 10.3389/fphar.2023.1237478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/07/2023] [Indexed: 09/16/2023] Open
Abstract
The refractoriness of tumor cells to apoptosis represents the main mechanism of resistance to chemotherapy. Smac/DIABLO mimetics proved to be effective in overcoming cancer-acquired resistance to apoptosis as a consequence of overexpression of the anti-apoptotic proteins XIAP, cIAP1, and cIAP2. In this work, we describe a dual-targeting peptide capable of selectively activating apoptosis in cancer cells. The complex consists of a fluorescent periodic mesoporous organosilica nanoparticle that carries the short sequences of Smac/DIABLO bound to the αvβ3-integrin ligand. The dual-targeting peptide @PMO shows significantly higher toxicity in αvβ3-positive HeLa cells with respect to αvβ3-negative Ht29 cells. @PMO exhibited synergistic effects in combination with oxaliplatin in a panel of αvβ3-positive cancer cells, while its toxicity is overcome by XIAP overexpression or integrin β3 silencing. The successful uptake of the molecule by αvβ3-positive cells makes @PMO promising for the re-sensitization to apoptosis of many cancer types.
Collapse
Affiliation(s)
| | | | - Weizhe Huang
- Department of Agricultural, Food, Environmental and Animal Sciences (Di4A), University of Udine, Udine, Italy
| | - Sigrid Simonetti
- Department of Agricultural, Food, Environmental and Animal Sciences (Di4A), University of Udine, Udine, Italy
| | - Luigi Xodo
- Department of Medicine, University of Udine, Udine, Italy
| | - Rossella De Marco
- Department of Agricultural, Food, Environmental and Animal Sciences (Di4A), University of Udine, Udine, Italy
| |
Collapse
|
7
|
Bartolomé RA, Casal JI. Proteomic profiling and network biology of colorectal cancer liver metastasis. Expert Rev Proteomics 2023; 20:357-370. [PMID: 37874121 DOI: 10.1080/14789450.2023.2275681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/23/2023] [Indexed: 10/25/2023]
Abstract
INTRODUCTION Tissue-based proteomic studies of colorectal cancer (CRC) metastasis have delivered fragmented results, with very few therapeutic targets and prognostic biomarkers moving beyond the discovery phase. This situation is likely due to the difficulties in obtaining and analyzing large numbers of patient-derived metastatic samples, the own heterogeneity of CRC, and technical limitations in proteomics discovery. As an alternative, metastatic CRC cell lines provide a flexible framework to investigate the underlying mechanisms and network biology of metastasis for target discovery. AREAS COVERED In this perspective, we comment on different in-depth proteomic studies of metastatic versus non-metastatic CRC cell lines. Identified metastasis-related proteins are introduced and discussed according to the spatial location in different cellular fractions, with special emphasis on membrane/adhesion proteins, secreted proteins, and nuclear factors, including miRNAs associated with liver metastasis. Moreover, we analyze the biological significance and potential therapeutic applications of the identified liver metastasis-related proteins. EXPERT OPINION The combination of protein discovery and functional analysis is the only way to accelerate the progress to clinical translation of the proteomic-derived findings in a relatively fast pace. Patient-derived organoids represent a promising alternative to patient tissues and cell lines, but further optimizations are still required for achieving solid and reproducible results.
Collapse
Affiliation(s)
- Rubén A Bartolomé
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas, Madrid, Spain
| | - J Ignacio Casal
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas, Madrid, Spain
| |
Collapse
|
8
|
Soloveva N, Novikova S, Farafonova T, Tikhonova O, Zgoda V. Proteomic Signature of Extracellular Vesicles Associated with Colorectal Cancer. Molecules 2023; 28:molecules28104227. [PMID: 37241967 DOI: 10.3390/molecules28104227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
The proteins of extracellular vesicles (EVs) provide proteomic signatures that reflect molecular features of EV-producing cells, including cancer cells. Detection of cancer cell EV proteins is of great interest due to the development of novel predictive diagnostic approaches. Using targeted mass spectrometry with stable-isotope-labeled peptide standards (SIS), we measured in this study the levels of 34 EV-associated proteins in vesicles and whole lysate derived from the colorectal cancer (CRC) cell lines Caco-2, HT29 and HCT116. We also evaluated the abundance of 13 EV-associated proteins (FN1, TLN1, ITGB3, HSPA8, TUBA4A, CD9, CD63, HSPG2, ITGB1, GNAI2, TSG101, PACSIN2, and CDC42) in EVs isolated from blood plasma samples from 11 CRC patients and 20 healthy volunteers. Downregulation of TLN1, ITGB3, and TUBA4A with simultaneous upregulation of HSPG2 protein were observed in cancer samples compared to healthy controls. The proteomic cargo of the EVs associated with CRC represents a promising source of potential prognostic markers.
Collapse
Affiliation(s)
- Natalia Soloveva
- Orekhovich Institute of Biomedical Chemistry, Pogodinskaya 10, 119121 Moscow, Russia
| | - Svetlana Novikova
- Orekhovich Institute of Biomedical Chemistry, Pogodinskaya 10, 119121 Moscow, Russia
| | - Tatiana Farafonova
- Orekhovich Institute of Biomedical Chemistry, Pogodinskaya 10, 119121 Moscow, Russia
| | - Olga Tikhonova
- Orekhovich Institute of Biomedical Chemistry, Pogodinskaya 10, 119121 Moscow, Russia
| | - Victor Zgoda
- Orekhovich Institute of Biomedical Chemistry, Pogodinskaya 10, 119121 Moscow, Russia
| |
Collapse
|
9
|
Zhang L, Qian Y. An epithelial-mesenchymal transition-related prognostic model for colorectal cancer based on weighted gene co-expression network analysis. J Int Med Res 2022; 50:3000605221140683. [PMID: 36510452 DOI: 10.1177/03000605221140683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE To identify susceptibility modules and genes for colorectal cancer (CRC) using weighted gene co-expression network analysis (WGCNA). METHODS Four microarray datasets were downloaded from the Gene Expression Omnibus database. We divided the tumor samples into three subgroups based on consensus clustering of gene expression, and analyzed the correlations between the subgroups and clinical features. The genetic features of the subgroups were investigated by gene set enrichment analysis (GSEA). A gene expression network was constructed using WGCNA, and a protein-protein interaction (PPI) network was used to identify the key genes. Gene modules were annotated by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses. RESULTS We divided the cancer cases into three subgroups based on consensus clustering (subgroups I, II, III). The green module identified by WGCNA was correlated with clinical characteristics. Ten key genes were identified according to their degree of connectivity in the protein-protein interaction network: FYN, SEMA3A, AP2M1, L1CAM, NRP1, TLN1, VWF, ITGB3, ILK, and ACTN1. CONCLUSION We identified 10 hub genes as candidate biomarkers for CRC. These key genes may provide a theoretical basis for targeted therapy against CRC.
Collapse
Affiliation(s)
- Lina Zhang
- Department of General Surgery, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, Ningbo, Zhejiang, China
| | - Yucheng Qian
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
10
|
Mechanism of acteoside-activated let-7g-5P attenuating Aβ-induced increased permeability and apoptosis of brain microvascular endothelial cells based on experimental and network pharmacology. Neuroreport 2022; 33:714-722. [PMID: 36165002 DOI: 10.1097/wnr.0000000000001837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVES Amyloid β-protein (Aβ)-induced apoptosis and oxidative stress of human brain microvascular endothelial cells(BMECs) are contributors to the development of Alzheimer's disease (AD). Acteoside has shown its therapeutic potential for AD treatment. Therefore, this study investigated the effect of acteoside on Aβ-induced blood-brain barrier damage, oxidative stress and apoptosis as well as to explore the underlying mechanisms through network pharmacology. METHODS The study used Aβ to induce human BMECs to construct an in-vitro injury model. Following treatment with acteoside, transendothelial electrical resistance (TEER), RT-qPCR and Western blot were used to evaluate the permeability of BMECs. The apoptosis level was detected by TUNEL and Western blot, ROS assay kit was used for the detection of reactive oxygen species (ROS) expression. The let-7g-5p expression level was detected by RT-qPCR. After additional treatment with let-7g-5p inhibitor, corresponding assays were performed again. Finally, network pharmacology was used to verify the mechanism. RESULTS Acteoside decreased the permeability, oxidative stress and cell apoptosis of Aβ-stimulated cells. More importantly, acteoside-activated let-7g-5p and additional treatment with let-7g-5p inhibitor abated the effects of acteoside on Aβ-induced permeability, oxidative stress and apoptosis of Aβ-stimulated BMECs. According to network pharmacology, 233 targeted genes of acteoside and 122 potential targets of let-7g-5p were determined by screening several databases, and two targets called Casp-3 and ITGB3 were obtained after taking the intersection. CONCLUSION In conclusion, these results reveal that acteoside-activated let-7g-5p attenuating Aβ-induced increased permeability and apoptosis of human BMECs.
Collapse
|
11
|
Tan C, Shi C, Li Y, Teng W, Li Y, Fu H, Ren L, Yu H, Li Q, Liu S. Comparative Methylome Analysis Reveals Epigenetic Signatures Associated with Growth and Shell Color in the Pacific Oyster, Crassostrea gigas. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:911-926. [PMID: 36087152 DOI: 10.1007/s10126-022-10154-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Fast growth is one of the most important breeding goals for all economic species such as the Pacific oyster (Crassostrea gigas), an aquaculture mollusk with top global production. Although the genetic basis and molecular mechanisms of growth-related traits have been widely investigated in the oyster, the role of DNA methylation involved in growth regulation remains largely unexplored. In this study, we performed a comparative DNA methylome analysis of two selectively bred C. gigas strains with contrasted phenotypes in growth and shell color based on whole-genome bisulfite sequencing (WGBS). Genome-wide profiling of DNA methylation at the single-base resolution revealed that DNA methylations were widely spread across the genome with obvious hotspots, coinciding with the distribution of genes and repetitive elements. Higher methylation levels were observed within genic regions compared with intergenic and promoter regions. Comparative analysis of DNA methylation allowed the identification of 339,604 differentially methylated CpG sites (DMCs) clustering in 27,600 differentially methylated regions (DMRs). Functional annotation analysis identified 11,033 genes from DMRs which were enriched in biological processes including cytoskeleton system, cell cycle, signal transduction, and protein biosynthesis. Integrative analysis of methylome and transcriptome profiles revealed a positive correlation between gene expression and DNA methylation within gene-body regions. Protein-protein interaction (PPI) analysis of differentially expressed and methylated genes allowed for the identification of integrin beta-6 (homolog of human ITGB3) as a hub modulator of the PI3K/Akt signaling pathway that was involved in various growth-related processes. This work provided insights into epigenetic regulation of growth in oysters and will be valuable resources for studying DNA methylation in invertebrates.
Collapse
Affiliation(s)
- Chao Tan
- Key Laboratory of Mariculture, Ministry of Education College of Fisheries, Ocean University of China, Ocean University of China, 266003, Qingdao, China
| | - Chenyu Shi
- Key Laboratory of Mariculture, Ministry of Education College of Fisheries, Ocean University of China, Ocean University of China, 266003, Qingdao, China
| | - Yin Li
- Key Laboratory of Mariculture, Ministry of Education College of Fisheries, Ocean University of China, Ocean University of China, 266003, Qingdao, China
| | - Wen Teng
- Key Laboratory of Mariculture, Ministry of Education College of Fisheries, Ocean University of China, Ocean University of China, 266003, Qingdao, China
| | - Yongjing Li
- Key Laboratory of Mariculture, Ministry of Education College of Fisheries, Ocean University of China, Ocean University of China, 266003, Qingdao, China
| | - Huiru Fu
- Key Laboratory of Mariculture, Ministry of Education College of Fisheries, Ocean University of China, Ocean University of China, 266003, Qingdao, China
| | - Liting Ren
- Key Laboratory of Mariculture, Ministry of Education College of Fisheries, Ocean University of China, Ocean University of China, 266003, Qingdao, China
| | - Hong Yu
- Key Laboratory of Mariculture, Ministry of Education College of Fisheries, Ocean University of China, Ocean University of China, 266003, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education College of Fisheries, Ocean University of China, Ocean University of China, 266003, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Shikai Liu
- Key Laboratory of Mariculture, Ministry of Education College of Fisheries, Ocean University of China, Ocean University of China, 266003, Qingdao, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
12
|
Zhang K, Tian R, Zhang W, Li Y, Zeng N, Liang Y, Tang S. α-Enolase inhibits apoptosis and promotes cell invasion and proliferation of skin cutaneous melanoma. Mol Biol Rep 2022; 49:8241-8250. [PMID: 35925486 PMCID: PMC9463226 DOI: 10.1007/s11033-022-07540-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 04/28/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND The glycolytic enzyme, α-Enolase (ENO1), catalyzes the production of phosphoenolpyruvate from 2-phosphoglycerate, thereby enhancing glycolysis and contributing to tumor progression. In the present study, we aimed to determine the role of ENO1 in skin cutaneous melanoma (SKCM) and the potential underlying mechanism. METHODS The Sangerbox database was used to analyze the mRNA expression of ENO1 in SKCM. Western blotting was used to assess the levels of ENO1, c-Myc, β-catenin, MMP-9, PGAM1, and MMP-13 in SKCM-derived cell lines or tumor tissues from patients with SKCM. The pCMV-SPORT6-ENO1 and pET-28a-ENO1siRNA plasmids were used to overexpress and knockdown ENO1 in SKCM cells, respectively. To determine the function of ENO1 in the malignant behavior of SKCM cells, we performed a wound-healing assay, cell counting kit 8 assay, and transwell chamber analyses. The production of pyruvate and lactic acid in tumor cells was evaluated using their respective kits. RESULTS Compared with non-tumor tissues, ENO1 was found to be overexpressed in SKCM tissues. In SKCM cells, ENO1 overexpression promoted invasion, migration, and proliferation of tumor cells; increased pyruvate and lactate production; and increased β-catenin, MMP-9, MMP-13, and c-Myc levels. The opposite effects were observed in SKCM cells silenced for ENO1. CONCLUSIONS These results indicate that ENO1 is involved in SKCM progression by enhancing the invasion and proliferation of tumor cells. In addition, ENO1 might have an important function in tumor cell glycolysis. Therefore, ENO1 represents a potential therapeutic target for treatment of SKCM.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Ruoxi Tian
- School of Basic Medicine, Tianjin Medical University, Tianjin, China
| | - Wancong Zhang
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Yishuai Li
- Department of Thoracic Surgery, Hebei Chest Hospital, Shijiazhuang, Hebei, China
| | - Ning Zeng
- Department of Nephrology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Yan Liang
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Shijie Tang
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
13
|
Quercetin-Rich Extracts from Onions ( Allium cepa) Play Potent Cytotoxicity on Adrenocortical Carcinoma Cell Lines, and Quercetin Induces Important Anticancer Properties. Pharmaceuticals (Basel) 2022; 15:ph15060754. [PMID: 35745673 PMCID: PMC9228762 DOI: 10.3390/ph15060754] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 02/07/2023] Open
Abstract
Adrenocortical carcinoma (ACC) is a rare subtype of cancer, with a poor prognosis in children and adults. Mitotane is the only approved adrenolytic drug for the treatment of ACC, which has controversies regarding its efficacy and side effects on patients. Onion (Allium cepa), a worldwide consumed food, is associated with many health benefits. Along with its glycosides, the flavonoid quercetin is abundant in onions. After evaluating the cytotoxicity of A. cepa extracts on adrenocortical carcinoma cell line (H295R), the rich quercetin fractions had better results. Then, we aimed to compare the quercetin vs. mitotane effectiveness, using adrenocortical carcinoma cell lines H295R and SW-13. Quercetin showed a higher cytotoxicity response on both cancerous cell lines after 10 µM concentration, while mitotane only after 30 µM. Cell cycle dynamics were altered upon quercetin treatments, with G2 phase increase with 30 µM of quercetin on H295R cell line and G1 arrest on SW-13 cell line with 15 µM. Early and late apoptosis, alongside intracellular calcium, were increased on SW-13 treated with 30 µM of quercetin, and ROS rates were reduced by quercetin on H295R. Therefore, quercetin-rich onions have the potential to be a natural source of anticancer agents for adrenocortical carcinoma.
Collapse
|
14
|
Khan MZI, Tam MSY, Azam Z, Law HKW. Proteomic profiling of metabolic proteins as potential biomarkers of radioresponsiveness for colorectal cancer. J Proteomics 2022; 262:104600. [DOI: 10.1016/j.jprot.2022.104600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/25/2022] [Accepted: 05/01/2022] [Indexed: 12/24/2022]
|
15
|
Parajuli P, Gokulan K, Khare S. Preclinical In Vitro Model to Assess the Changes in Permeability and Cytotoxicity of Polarized Intestinal Epithelial Cells during Exposure Mimicking Oral or Intravenous Routes: An Example of Arsenite Exposure. Int J Mol Sci 2022; 23:ijms23094851. [PMID: 35563241 PMCID: PMC9101442 DOI: 10.3390/ijms23094851] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 12/04/2022] Open
Abstract
The gastrointestinal tract (GIT) is exposed to xenobiotics, including drugs, through both: local (oral) and systemic routes. Despite the advances in drug discovery and in vitro pre-clinical models, there is a lack of appropriate translational models to distinguish the impact of these routes of exposure. Changes in intestinal permeability has been observed in different gastrointestinal and systemic diseases. This study utilized one such xenobiotic, arsenic, to which more than 200 million people around the globe are exposed via their food, drinking water, work environment, soil, and air. The purpose of this study was to establish an in vitro model to mimic gastrointestinal tract exposure to xenobiotics via oral or intravenous routes. To achieve this, we compared the route (mimicking oral and intravenous exposure to GIT and the dose response (using threshold approach) of trivalent and pentavalent inorganic arsenic species on the permeability of in vitro cultured polarized T84 cells, an example of intestinal epithelial cells. Arsenic treatment to polarized T84 cells via the apical and basolateral compartment of the trans-well system reflected oral or intravenous routes of exposure in vivo, respectively. Sodium arsenite, sodium arsenate, dimethyl arsenic acid sodium salt (DMAV), and disodium methyl arsonate hydrate (MMAV) were assessed for their effects on intestinal permeability by measuring the change in trans-epithelial electrical resistance (TEER) of T-84 cells. Polarized T-84 cells exposed to 12.8 µM of sodium arsenite from the basolateral side showed a marked reduction in TEER. Cytotoxicity of sodium arsenite, as measured by release of lactate dehydrogenase (LDH), was increased when cells were exposed via the basolateral side. The mRNA expression of genes related to cell junctions in T-84 cells was analyzed after exposure with sodium arsenite for 72 h. Changes in TEER correlated with mRNA expression of focal-adhesion-, tight-junction- and gap-junction-related genes (upregulation of Jam2, Itgb3 and Notch4 genes and downregulation of Cldn2, Cldn3, Gjb1, and Gjb2). Overall, exposure to sodium arsenite from the basolateral side was found to have a differential effect on monolayer permeability and on cell-junction-related genes as compared to apical exposure. Most importantly, this study established a preclinical human-relevant in vitro translational model to assess the changes in permeability and cytotoxicity during exposure, mimicking oral or intravenous routes.
Collapse
|
16
|
Solís-Fernández G, Montero-Calle A, Martínez-Useros J, López-Janeiro Á, de los Ríos V, Sanz R, Dziakova J, Milagrosa E, Fernández-Aceñero MJ, Peláez-García A, Casal JI, Hofkens J, Rocha S, Barderas R. Spatial Proteomic Analysis of Isogenic Metastatic Colorectal Cancer Cells Reveals Key Dysregulated Proteins Associated with Lymph Node, Liver, and Lung Metastasis. Cells 2022; 11:cells11030447. [PMID: 35159257 PMCID: PMC8834500 DOI: 10.3390/cells11030447] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 12/18/2022] Open
Abstract
Metastasis is the primary cause of colorectal cancer (CRC) death. The liver and lung, besides adjacent lymph nodes, are the most common sites of metastasis. Here, we aimed to study the lymph nodes, liver, and lung CRC metastasis by quantitative spatial proteomics analysis using CRC cell-based models that recapitulate these metastases. The isogenic KM12 cell system composed of the non-metastatic KM12C cells, liver metastatic KM12SM cells, and liver and lung metastatic KM12L4a cells, and the isogenic non-metastatic SW480 and lymph nodes metastatic SW620 cells, were used. Cells were fractionated to study by proteomics five subcellular fractions corresponding to cytoplasm, membrane, nucleus, chromatin-bound proteins, and cytoskeletal proteins, and the secretome. Trypsin digested extracts were labeled with TMT 11-plex and fractionated prior to proteomics analysis on a Q Exactive. We provide data on protein abundance and localization of 4710 proteins in their different subcellular fractions, depicting dysregulation of proteins in abundance and/or localization in the most common sites of CRC metastasis. After bioinformatics, alterations in abundance and localization for selected proteins from diverse subcellular localizations were validated via WB, IF, IHC, and ELISA using CRC cells, patient tissues, and plasma samples. Results supported the relevance of the proteomics results in an actual CRC scenario. It was particularly relevant that the measurement of GLG1 in plasma showed diagnostic ability of advanced stages of the disease, and that the mislocalization of MUC5AC and BAIAP2 in the nucleus and membrane, respectively, was significantly associated with poor prognosis of CRC patients. Our results demonstrate that the analysis of cell extracts dilutes protein alterations in abundance in specific localizations that might only be observed studying specific subcellular fractions, as here observed for BAIAP2, GLG1, PHYHIPL, TNFRSF10A, or CDKN2AIP, which are interesting proteins that should be further analyzed in CRC metastasis.
Collapse
Affiliation(s)
- Guillermo Solís-Fernández
- Molecular Imaging and Photonics Division, Chemistry Department, Faculty of Sciences, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium; (G.S.-F.); (J.H.); (S.R.)
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, 28220 Madrid, Spain;
| | - Ana Montero-Calle
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, 28220 Madrid, Spain;
| | - Javier Martínez-Useros
- Translational Oncology Division, OncoHealth Institute, Health Research Institute—Fundacion Jimenez Diaz University Hospital, 28040 Madrid, Spain;
| | - Álvaro López-Janeiro
- Molecular Pathology and Therapeutic Targets Group, La Paz University Hospital (IdiPAZ), 28046 Madrid, Spain; (Á.L.-J.); (A.P.-G.)
| | - Vivian de los Ríos
- Proteomics Facility, Centro de Investigaciones Biológicas (CIB-CSIC), 28039 Madrid, Spain;
| | - Rodrigo Sanz
- Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain; (R.S.); (J.D.); (E.M.); (M.J.F.-A.)
| | - Jana Dziakova
- Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain; (R.S.); (J.D.); (E.M.); (M.J.F.-A.)
| | - Elena Milagrosa
- Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain; (R.S.); (J.D.); (E.M.); (M.J.F.-A.)
| | | | - Alberto Peláez-García
- Molecular Pathology and Therapeutic Targets Group, La Paz University Hospital (IdiPAZ), 28046 Madrid, Spain; (Á.L.-J.); (A.P.-G.)
| | - José Ignacio Casal
- Centro de Investigaciones Biológicas (CIB-CSIC), Department of Molecular Biomedicine, 28039 Madrid, Spain;
| | - Johan Hofkens
- Molecular Imaging and Photonics Division, Chemistry Department, Faculty of Sciences, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium; (G.S.-F.); (J.H.); (S.R.)
| | - Susana Rocha
- Molecular Imaging and Photonics Division, Chemistry Department, Faculty of Sciences, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium; (G.S.-F.); (J.H.); (S.R.)
| | - Rodrigo Barderas
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, 28220 Madrid, Spain;
- Correspondence: ; Tel.: +34-918223231
| |
Collapse
|
17
|
Unveiling the tumour-regulatory roles of miR-1275 in cancer. Pathol Res Pract 2021; 230:153745. [PMID: 34953353 DOI: 10.1016/j.prp.2021.153745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 12/10/2021] [Accepted: 12/16/2021] [Indexed: 12/13/2022]
Abstract
The rapid development of small RNA and molecular biology research in the past 20 years has enabled scientists to discover many new miRNAs that are proven to play essential roles in regulating the development of different cancer types. Among these miRNAs, miR-1275 is one of the well-studied miRNAs that has been described to act as a tumour-promoting or tumour-suppressing miRNA in various cancer types. Even though miR-1275 has been widely reported in different original research articles on its roles in modulating the progression of different cancer types, however, there is scarce an in-depth review that could constructively summarize the findings from different studies on the regulatory roles of miR-1275 in different cancer types. To fill up this literature gap, therefore, this review was aimed to provide an overview and summary of the roles of miR-1275 in modulating the development of different cancers and to unravel the mechanism of how miR-1275 regulates cancer progression. Based on the findings summarized from various sources, it was found that miR-1275 plays a vital role in regulating various cellular signaling pathways like the PI3K/AKT, ERK/JNK, MAPK, and Wnt signaling pathways, and the dysregulation of this miRNA has been shown to contribute to the development of multiple cancer types such as cancers of the liver, breast, lung, gastrointestinal tract and genitourinary tract. Therefore, miR-1275 has great potential to be employed as a biomarker to diagnose cancer and to predict the prognosis of cancer patients. In addition, by inhibiting the expression of its unique downstream targets that are involved in regulating the mentioned cellular pathways, this miRNA could also be utilized as a novel therapeutic agent to halt cancer development.
Collapse
|
18
|
Wu Y, Zhu F, Sun W, Shen W, Zhang Q, Chen H. Knockdown of CCL28 inhibits endometriosis stromal cell proliferation and invasion via ERK signaling pathway inactivation. Mol Med Rep 2021; 25:56. [PMID: 34913072 PMCID: PMC8711019 DOI: 10.3892/mmr.2021.12573] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 09/15/2021] [Indexed: 11/28/2022] Open
Abstract
Endometriosis (EM), the presence of functional endometrial glands and stroma outside the uterine cavity, is a common gynecological disorder. At present, the pathogenesis of EM has not been fully elucidated, so there is still a lack of effective therapy. The present study aimed to explore the role of C-C motif chemokine ligand 28 (CCL28) and its underlying mechanism in endometrial stromal cells to propose a novel therapy for EM treatment. The expression of CCL28 and CC chemokine receptor 10 (CCR10) were examined. After CCL28 knockdown or overexpression by lentivirus infection, cell proliferation and invasion were measured. It was revealed that compared with normal, the expression levels of CCL28 and CCR10 were significantly elevated in endometrial tissues of patients with EM. Knockdown of CCL28 in endometrial stromal cells significantly suppressed cell proliferation and invasion, and this was accompanied by significantly reduced expression levels of CCR10, MMP2, MMP9, integrin β1 (ITGB1) and phosphorylated (p)-ERK/ERK ratio. The addition of the CCL28 recombinant protein had an opposite effect to CCL28 downregulation. Furthermore, the ERK inhibitor, PD98059, reduced CCL28-induced cell proliferation and invasion, as well as the expression levels of MMP2, MMP9, ITGB1 and p-ERK. Therefore, the present study indicated that CCL28 may contribute to the progression of EM by regulating MMP2, MMP9 and ITGB1 expression and function via the activation of the ERK signaling pathway.
Collapse
Affiliation(s)
- Yingting Wu
- Department of Laboratory Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200040, P.R. China
| | - Feilong Zhu
- Department of Laboratory Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200040, P.R. China
| | - Wenqin Sun
- Department of Laboratory Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200040, P.R. China
| | - Weiwei Shen
- Department of Laboratory Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200040, P.R. China
| | - Qin Zhang
- Phase I Clinical Trial Unit, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, P.R. China
| | - Huifen Chen
- Department of Laboratory Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200040, P.R. China
| |
Collapse
|
19
|
Wang Y, Li K, Zhao W, Liu Z, Liu J, Shi A, Chen T, Mu W, Xu Y, Pan C, Zhang Z. Aldehyde dehydrogenase 3B2 promotes the proliferation and invasion of cholangiocarcinoma by increasing Integrin Beta 1 expression. Cell Death Dis 2021; 12:1158. [PMID: 34907179 PMCID: PMC8671409 DOI: 10.1038/s41419-021-04451-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/22/2021] [Accepted: 12/02/2021] [Indexed: 12/13/2022]
Abstract
Aldehyde dehydrogenases (ALDHs) play an essential role in regulating malignant tumor progression; however, their role in cholangiocarcinoma (CCA) has not been elucidated. We analyzed the expression of ALDHs in 8 paired tumor and peritumor perihilar cholangiocarcinoma (pCCA) tissues and found that ALDH3B1 and ALDH3B2 were upregulated in tumor tissues. Further survival analysis in intrahepatic cholangiocarcinoma (iCCA, n = 27), pCCA (n = 87) and distal cholangiocarcinoma (dCCA, n = 80) cohorts have revealed that ALDH3B2 was a prognostic factor of CCA and was an independent prognostic factor of iCCA and pCCA. ALDH3B2 expression was associated with serum CEA in iCCA and dCCA, associated with tumor T stage, M stage, neural invasion and serum CA19-9 in pCCA. In two cholangiocarcinoma cell lines, overexpression of ALDH3B2 promoted cell proliferation and clone formation by promoting the G1/S phase transition. Knockdown of ALDH3B2 inhibited cell migration, invasion, and EMT in vitro, and restrained tumor metastasis in vivo. Patients with high expression of ALDH3B2 also have high expression of ITGB1 in iCCA, pCCA, and dCCA at both mRNA and protein levels. Knockdown of ALDH3B2 downregulated the expression of ITGB1 and inhibited the phosphorylation level of c-Jun, p38, and ERK. Meanwhile, knockdown of ITGB1 inhibited the promoting effect of ALDH3B2 overexpression on cell proliferation, migration, and invasion. ITGB1 is also a prognostic factor of iCCA, pCCA, and dCCA and double-positive expression of ITGB1 and ALDH3B2 exhibits better performance in predicting patient prognosis. In conclusion, ALDH3B2 promotes tumor proliferation and metastasis in CCA by regulating the expression of ITGB1 and upregulating its downstream signaling pathway. The double-positive expression of ITGB1 and ALDH3B2 serves as a better prognostic biomarker of CCA.
Collapse
Affiliation(s)
- Yue Wang
- grid.27255.370000 0004 1761 1174Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, 250012 Jinan, China
| | - Kangshuai Li
- grid.27255.370000 0004 1761 1174Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, 250012 Jinan, China
| | - Wei Zhao
- grid.27255.370000 0004 1761 1174Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, 250012 Jinan, China
| | - Zengli Liu
- grid.27255.370000 0004 1761 1174Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, 250012 Jinan, China
| | - Jialiang Liu
- grid.27255.370000 0004 1761 1174Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, 250012 Jinan, China
| | - Anda Shi
- grid.27255.370000 0004 1761 1174Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, 250012 Jinan, China
| | - Tianli Chen
- grid.27255.370000 0004 1761 1174Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, 250012 Jinan, China
| | - Wentao Mu
- grid.27255.370000 0004 1761 1174Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, 250012 Jinan, China
| | - Yunfei Xu
- grid.27255.370000 0004 1761 1174Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, 250012 Jinan, China
| | - Chang Pan
- Department of Emergency Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, 250012, Jinan, China. .,Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, 250012, Jinan, China. .,Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, 250012, Jinan, China.
| | - Zongli Zhang
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, 250012, Jinan, China.
| |
Collapse
|
20
|
Wang Y, Guo Y, Qiang S, Jin R, Li Z, Tang Y, Leung ELH, Guo H, Yao X. 3D-QSAR, Molecular Docking, and MD Simulations of Anthraquinone Derivatives as PGAM1 Inhibitors. Front Pharmacol 2021; 12:764351. [PMID: 34899321 PMCID: PMC8656170 DOI: 10.3389/fphar.2021.764351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/01/2021] [Indexed: 12/29/2022] Open
Abstract
PGAM1 is overexpressed in a wide range of cancers, thereby promoting cancer cell proliferation and tumor growth, so it is gradually becoming an attractive target. Recently, a series of inhibitors with various structures targeting PGAM1 have been reported, particularly anthraquinone derivatives. In present study, the structure–activity relationships and binding mode of a series of anthraquinone derivatives were probed using three-dimensional quantitative structure–activity relationships (3D-QSAR), molecular docking, and molecular dynamics (MD) simulations. Comparative molecular field analysis (CoMFA, r2 = 0.97, q2 = 0.81) and comparative molecular similarity indices analysis (CoMSIA, r2 = 0.96, q2 = 0.82) techniques were performed to produce 3D-QSAR models, which demonstrated satisfactory results, especially for the good predictive abilities. In addition, molecular dynamics (MD) simulations technology was employed to understand the key residues and the dominated interaction between PGAM1 and inhibitors. The decomposition of binding free energy indicated that the residues of F22, K100, V112, W115, and R116 play a vital role during the ligand binding process. The hydrogen bond analysis showed that R90, W115, and R116 form stable hydrogen bonds with PGAM1 inhibitors. Based on the above results, 7 anthraquinone compounds were designed and exhibited the expected predictive activity. The study explored the structure–activity relationships of anthraquinone compounds through 3D-QSAR and molecular dynamics simulations and provided theoretical guidance for the rational design of new anthraquinone derivatives as PGAM1 inhibitors.
Collapse
Affiliation(s)
- Yuwei Wang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yifan Guo
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Shaojia Qiang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Ruyi Jin
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Zhi Li
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yuping Tang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Elaine Lai Han Leung
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau, China.,State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Hui Guo
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Xiaojun Yao
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau, China.,State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| |
Collapse
|
21
|
Chen CA, Chang JM, Chen HC, Chang EE. Generation of endoplasmic reticulum stress-dependent reactive oxygen species mediates TGF-β1-induced podocyte migration. J Biochem 2021; 171:305-314. [PMID: 34993544 DOI: 10.1093/jb/mvab128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 11/05/2021] [Indexed: 11/13/2022] Open
Abstract
Podocyte migration results in proteinuria and glomerulonephropathy. Transforming growth factor-β1 (TGF-β1), endoplasmic reticulum (ER) stress and reactive oxygen species (ROS) can mediate podocyte migration; however, the crosstalk between them is unclear. ThisGraphical Abstract study determined the relationships between these factors. ER stress biomarkers (GRP78, p-eIF2α or CHOP), intracellular ROS generation, integrin-β3 and cell adhesion and migration were studied in a treatment of experiment using TGF-β1 with and without the ER stress inhibitors: 4-phenylbutyric acid (4-PBA, a chemical chaperone), salubrinal (an eIF2α dephosphorylation inhibitor) and N-acetylcysteine (NAC, an antioxidant). ER stress biomarkers (p-eIF2α/eIF2α and GRP78), ROS generation and intergrin-β3 expression increased after TGF-β1 treatment. NAC down-regulated the expression of GRP78 after TGF-β1 treatment. 4-PBA attenuated TGF-β1-induced p-eIF2α/eIF2α, CHOP, ROS generation and intergrin-β3 expression. However, salubrinal did not inhibit TGF-β1-induced p-eIF2α/eIF2α, CHOP, ROS generation or integrin-β3 expression. NAC abrogated TGF-β1-induced integrin-β3 expression. At 24 h after treatment with TGF-β1, podocyte adhesion and migration increased. Furthermore, NAC, 4-PBA and an anti-interin-β3 antibody attenuated TGF-β1-induced podocyte adhesion and migration. This study demonstrated that TGF-β1-induced ER stress potentiates the generation of intracellular ROS to a high degree through the PERK/eIF2α/CHOP pathway. This intracellular ROS then mediates integrin-β3 expression, which regulates podocyte migration.
Collapse
Affiliation(s)
- Chien-An Chen
- Department of Nephrology, Tainan Sinlau Hospital, Tainan 701, Taiwan.,Department of Health Care Administration, College of Health Discipline, Chang Jung Christian University, Tainan 711, Taiwan
| | - Jer-Ming Chang
- Department of Nephrology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Hung-Chun Chen
- Department of Nephrology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Eddy-Essen Chang
- Department of Nephrology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
22
|
PI3K/AKT/mTOR Signaling Pathway Is Required for JCPyV Infection in Primary Astrocytes. Cells 2021; 10:cells10113218. [PMID: 34831441 PMCID: PMC8624856 DOI: 10.3390/cells10113218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/05/2021] [Accepted: 11/12/2021] [Indexed: 12/13/2022] Open
Abstract
Astrocytes are a main target of JC polyomavirus (JCPyV) in the central nervous system (CNS), where the destruction of these cells, along with oligodendrocytes, leads to the fatal disease progressive multifocal leukoencephalopathy (PML). There is no cure currently available for PML, so it is essential to discover antivirals for this aggressive disease. Additionally, the lack of a tractable in vivo models for studying JCPyV infection makes primary cells an accurate alternative for elucidating mechanisms of viral infection in the CNS. This research to better understand the signaling pathways activated in response to JCPyV infection reveals and establishes the importance of the PI3K/AKT/mTOR signaling pathway in JCPyV infection in primary human astrocytes compared to transformed cell lines. Using RNA sequencing and chemical inhibitors to target PI3K, AKT, and mTOR, we have demonstrated the importance of this signaling pathway in JCPyV infection of primary astrocytes not observed in transformed cells. Collectively, these findings illuminate the potential for repurposing drugs that are involved with inhibition of the PI3K/AKT/mTOR signaling pathway and cancer treatment as potential therapeutics for PML, caused by this neuroinvasive virus.
Collapse
|
23
|
Zeng J, Li M, Xu JY, Xiao H, Yang X, Fan JX, Wu K, Chen S. Aberrant ROS Mediate Cell Cycle and Motility in Colorectal Cancer Cells Through an Oncogenic CXCL14 Signaling Pathway. Front Pharmacol 2021; 12:764015. [PMID: 34744744 PMCID: PMC8563703 DOI: 10.3389/fphar.2021.764015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/04/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Reactive oxygen species (ROS) act as signal mediators to induce tumorigenesis. Objective: This study aims to explore whether chemokine CXCL14 is involved in the proliferation and migration of ROS-induced colorectal cancer (CRC) cells. Methods: The proliferative and migratory capacities of CRC cells treated with or without H2O2 were measured by various methods, including the CKK-8 assay, colony formation assay, flow cytometry, wounding healing assay, and migration assay. Results: The results revealed that H2O2 promoted the proliferation and migration of CRC cells by regulating the cell cycle progression and the epithelial to mesenchymal transition (EMT) process. Furthermore, we noted that the expression level of CXCL14 was elevated in both HCT116 cells and SW620 cells treated with H2O2. An antioxidant N-Acetyl-l-cysteine (NAC) pretreatment could partially suppress the CXCL14 expression in CRC cells treated with H2O2. Next, we constructed CRC cell lines stably expressing CXCL14 (HCT116/CXCL14 and SW620/CXCL14) and CRC cell lines with empty plasmid vectors (HCT116/Control and SW620/Control) separately. We noted that both H2O2 treatment and CXCL14 over-expression could up-regulate the expression levels of cell cycle-related and EMT-related proteins. Moreover, the level of phosphorylated ERK (p-ERK) was markedly higher in HCT116/CXCL14 cells when compared with that in HCT116/Control cells. CXCL14-deficiency significantly inhibited the phosphorylation of ERK compared with control (i.e., scrambled shNCs). H2O2 treatment could partially restore the expression levels of CXCL14 and p-ERK in HCT116/shCXCL14 cells. Conclusion: Our studies thus suggest that aberrant ROS may promote colorectal cancer cell proliferation and migration through an oncogenic CXCL14 signaling pathway.
Collapse
Affiliation(s)
- Jun Zeng
- Department of Genetics and Cell Biology, College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Mei Li
- Department of Genetics and Cell Biology, College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Jun-Yu Xu
- Department of Genetics and Cell Biology, College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Heng Xiao
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xian Yang
- Department of Genetics and Cell Biology, College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Jiao-Xiu Fan
- Department of Genetics and Cell Biology, College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Kang Wu
- Shenzhen Luohu People's Hospital, the Third Affiliated Hospital of Shenzhen University, Shenzhen, China.,South China Hospital, Shenzhen University, Shenzhen, China
| | - Shuang Chen
- Department of Dermatovenereology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
24
|
Bhatiya M, Pathak S, Banerjee A. Oxidative Stress and Cellular Senescence: The Key Tumor-promoting Factors in Colon Cancer and Beneficial Effects of Polyphenols in Colon Cancer Prevention. CURRENT CANCER THERAPY REVIEWS 2021. [DOI: 10.2174/1573394717666210715165127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Background:
Colon cancer is the third leading cause of cancer-related deaths worldwide.
Colon tumorigenesis is a sequential process called “Adenoma-carcinoma sequence”. The alimentary
habits, obesity, heavy alcohol consumption, inflammatory bowel diseases, family history
of colon cancer, oxidative stress, and cellular senescence are the major risk factor influencing
colon cancer development. Senescence contributes to the aging process as well as the development
and progression of colon cancer. However, the precise mechanism underlying the aging-related
progress of colon cancer is yet to be answered. Recent studies proposed that the senescent cell secretes
Senescence-Associated Secretory Phenotype (SASP) includes pro-inflammatory cytokines,
interleukins, growth factors, and proteases actively involved in the creation of pro-tumorigenic microenvironment.
Objective:
This review aims to provide an overview of ROS influence cellular senescence and
colon cancer development as well as summarize the antioxidant and antiaging activity of natural
flavonoids. Many of the studies had reported that pro-aging genes suppress cancer and various
‘markers’ are used to identify senescent cells in vitro and in vivo. The SASP of the cells may act as
a link between senescence and cancer.
Conclusion:
This review facilitates a better understanding and might contribute to diagnostic and
prognostic systems as well as to find out the novel and targeted therapeutic approaches. Additionally,
we focused on the potential role of natural flavonoids in colon cancer therapies and highlighting
the flavonoid-based treatments as innovative immunomodulatory strategies to inhibit the growth of
colon cancer.
Collapse
Affiliation(s)
- Meenu Bhatiya
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai,India
| | - Surajit Pathak
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai,India
| | - Antara Banerjee
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai,India
| |
Collapse
|
25
|
Bhat S, Adiga D, Shukla V, Guruprasad KP, Kabekkodu SP, Satyamoorthy K. Metastatic suppression by DOC2B is mediated by inhibition of epithelial-mesenchymal transition and induction of senescence. Cell Biol Toxicol 2021; 38:237-258. [PMID: 33758996 PMCID: PMC8986756 DOI: 10.1007/s10565-021-09598-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 02/24/2021] [Indexed: 02/04/2023]
Abstract
Senescence induction and epithelial-mesenchymal transition (EMT) events are the opposite sides of the spectrum of cancer phenotypes. The key molecules involved in these processes may get influenced or altered by genetic and epigenetic changes during tumor progression. Double C2-like domain beta (DOC2B), an intracellular vesicle trafficking protein of the double C2 protein family, plays a critical role in exocytosis, neurotransmitter release, and intracellular vesicle trafficking. DOC2B is repressed by DNA promoter hypermethylation and functions as a tumor growth regulator in cervical cancer. To date, the molecular mechanisms of DOC2B in cervical cancer progression and metastasis is elusive. Herein, the biological functions and molecular mechanisms regulated by DOC2B and its impact on senescence and EMT are described. DOC2B inhibition promotes proliferation, growth, and migration by relieving G0/G1-S arrest, actin remodeling, and anoikis resistance in Cal27 cells. It enhanced tumor growth and liver metastasis in nude mice with the concomitant increase in metastasis-associated CD55 and CD61 expression. Inhibition of EMT and promotion of senescence by DOC2B is a calcium-dependent process and accompanied by calcium-mediated interaction between DOC2B and CDH1. In addition, we have identified several EMT and senescence regulators as targets of DOC2B. We show that DOC2B may act as a metastatic suppressor by inhibiting EMT through induction of senescence via DOC2B-calcium-EMT-senescence axis.
Collapse
Affiliation(s)
- Samatha Bhat
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, 576104, India
| | - Divya Adiga
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, 576104, India
| | - Vaibhav Shukla
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, 576104, India
| | - Kanive Parashiva Guruprasad
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, 576104, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, 576104, India.
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, 576104, India.
| |
Collapse
|
26
|
Chan HC, Chattopadhyay A, Chuang EY, Lu TP. Development of a Gene-Based Prediction Model for Recurrence of Colorectal Cancer Using an Ensemble Learning Algorithm. Front Oncol 2021; 11:631056. [PMID: 33692961 PMCID: PMC7938710 DOI: 10.3389/fonc.2021.631056] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/05/2021] [Indexed: 01/21/2023] Open
Abstract
It is difficult to determine which patients with stage I and II colorectal cancer are at high risk of recurrence, qualifying them to undergo adjuvant chemotherapy. In this study, we aimed to determine a gene signature using gene expression data that could successfully identify high risk of recurrence among stage I and II colorectal cancer patients. First, a synthetic minority oversampling technique was used to address the problem of imbalanced data due to rare recurrence events. We then applied a sequential workflow of three methods (significance analysis of microarrays, logistic regression, and recursive feature elimination) to identify genes differentially expressed between patients with and without recurrence. To stabilize the prediction algorithm, we repeated the above processes on 10 subsets by bagging the training data set and then used support vector machine methods to construct the prediction models. The final predictions were determined by majority voting. The 10 models, using 51 differentially expressed genes, successfully predicted a high risk of recurrence within 3 years in the training data set, with a sensitivity of 91.18%. For the validation data sets, the sensitivity of the prediction with samples from two other countries was 80.00% and 91.67%. These prediction models can potentially function as a tool to decide if adjuvant chemotherapy should be administered after surgery for patients with stage I and II colorectal cancer.
Collapse
Affiliation(s)
- Han-Ching Chan
- Department of Public Health, College of Public Health, National Taiwan University, Institute of Epidemiology and Preventive Medicine, Taipei, Taiwan
| | - Amrita Chattopadhyay
- Bioinformatics and Biostatistics Core, Center of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan
| | - Eric Y Chuang
- Bioinformatics and Biostatistics Core, Center of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan.,Department of Electrical Engineering, Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Tzu-Pin Lu
- Department of Public Health, College of Public Health, National Taiwan University, Institute of Epidemiology and Preventive Medicine, Taipei, Taiwan.,Bioinformatics and Biostatistics Core, Center of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
27
|
Brenet M, Martínez S, Pérez-Nuñez R, Pérez LA, Contreras P, Díaz J, Avalos AM, Schneider P, Quest AFG, Leyton L. Thy-1 (CD90)-Induced Metastatic Cancer Cell Migration and Invasion Are β3 Integrin-Dependent and Involve a Ca 2+/P2X7 Receptor Signaling Axis. Front Cell Dev Biol 2021; 8:592442. [PMID: 33511115 PMCID: PMC7835543 DOI: 10.3389/fcell.2020.592442] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/04/2020] [Indexed: 01/21/2023] Open
Abstract
Cancer cell adhesion to the vascular endothelium is an important step in tumor metastasis. Thy-1 (CD90), a cell adhesion molecule expressed in activated endothelial cells, has been implicated in melanoma metastasis by binding to integrins present in cancer cells. However, the signaling pathway(s) triggered by this Thy-1-Integrin interaction in cancer cells remains to be defined. Our previously reported data indicate that Ca2+-dependent hemichannel opening, as well as the P2X7 receptor, are key players in Thy-1-αVβ3 Integrin-induced migration of reactive astrocytes. Thus, we investigated whether this signaling pathway is activated in MDA-MB-231 breast cancer cells and in B16F10 melanoma cells when stimulated with Thy-1. In both cancer cell types, Thy-1 induced a rapid increase in intracellular Ca2+, ATP release, as well as cell migration and invasion. Connexin and Pannexin inhibitors decreased cell migration, implicating a requirement for hemichannel opening in Thy-1-induced cell migration. In addition, cell migration and invasion were precluded when the P2X7 receptor was pharmacologically blocked. Moreover, the ability of breast cancer and melanoma cells to transmigrate through an activated endothelial monolayer was significantly decreased when the β3 Integrin was silenced in these cancer cells. Importantly, melanoma cells with silenced β3 Integrin were unable to metastasize to the lung in a preclinical mouse model. Thus, our results suggest that the Ca2+/hemichannel/ATP/P2X7 receptor-signaling axis triggered by the Thy-1-αVβ3 Integrin interaction is important for cancer cell migration, invasion and transvasation. These findings open up the possibility of therapeutically targeting the Thy-1-Integrin signaling pathway to prevent metastasis.
Collapse
Affiliation(s)
- Marianne Brenet
- Cellular Communication Laboratory, Program of Cellular & Molecular Biology, Center for Studies of Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Samuel Martínez
- Cellular Communication Laboratory, Program of Cellular & Molecular Biology, Center for Studies of Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Ramón Pérez-Nuñez
- Cellular Communication Laboratory, Program of Cellular & Molecular Biology, Center for Studies of Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Leonardo A Pérez
- Cellular Communication Laboratory, Program of Cellular & Molecular Biology, Center for Studies of Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Pamela Contreras
- Cellular Communication Laboratory, Program of Cellular & Molecular Biology, Center for Studies of Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Jorge Díaz
- Cellular Communication Laboratory, Program of Cellular & Molecular Biology, Center for Studies of Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Ana María Avalos
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Pascal Schneider
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Andrew F G Quest
- Cellular Communication Laboratory, Program of Cellular & Molecular Biology, Center for Studies of Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Lisette Leyton
- Cellular Communication Laboratory, Program of Cellular & Molecular Biology, Center for Studies of Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
28
|
Feng W, Huang W, Chen J, Qiao C, Liu D, Ji X, Xie M, Zhang T, Wang Y, Sun M, Tian D, Fan D, Nie Y, Wu K, Xia L. CXCL12-mediated HOXB5 overexpression facilitates Colorectal Cancer metastasis through transactivating CXCR4 and ITGB3. Theranostics 2021; 11:2612-2633. [PMID: 33456563 PMCID: PMC7806482 DOI: 10.7150/thno.52199] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 12/05/2020] [Indexed: 12/24/2022] Open
Abstract
Background: Metastasis is the major reason for the high mortality of colorectal cancer (CRC). However, the molecular mechanism underlying CRC metastasis remains unclear. Here, we report a novel role of homeobox B5 (HOXB5), a member of the HOX family, in promoting CRC metastasis. Method: The expression of HOXB5 and its target genes were examined by immunohistochemistry in human CRC. Chromatin immunoprecipitation and luciferase reporter assays were performed to measure the transcriptional regulation of target genes by HOXB5. The metastatic capacities of CRC cells were evaluated by in vivo lung and liver metastatic models. Results: The elevated expression of HOXB5 was positively correlated with distant metastasis, higher AJCC stage, and poor prognosis in CRC patients. HOXB5 expression was an independent and significant risk factor for the recurrence and survival in CRC patients. Overexpression of HOXB5 promoted CRC metastasis by transactivating metastatic related genes, C-X-C motif chemokine receptor 4 (CXCR4) and integrin subunit beta 3 (ITGB3). C-X-C motif chemokine ligand 12 (CXCL12), which is the ligand of CXCR4, upregulated HOXB5 expression through the extracellular regulated protein kinase (ERK)/ETS proto-oncogene 1, transcription factor (ETS1) pathway. The knockdown of HOXB5 decreased CXCL12-enhanced CRC metastasis. Furthermore, AMD3100, a specific CXCR4 inhibitor, significantly suppressed HOXB5-mediated CRC metastasis. HOXB5 expression was positively correlated with CXCR4 and ITGB3 expression in human CRC tissues, and patients with positive co-expression of HOXB5/CXCR4, or HOXB5/ITGB3 exhibited the worst prognosis. Conclusion: Our study implicates HOXB5 as a prognostic biomarker in CRC, and defines a CXCL12-HOXB5-CXCR4 positive feedback loop that plays an important role in promoting CRC metastasis.
Collapse
Affiliation(s)
- Weibo Feng
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Wenjie Huang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, 430030, China
| | - Jie Chen
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Chenyang Qiao
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Danfei Liu
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Xiaoyu Ji
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Meng Xie
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Tongyue Zhang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Yijun Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Mengyu Sun
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Dean Tian
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Daiming Fan
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Yongzhan Nie
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Kaichun Wu
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Limin Xia
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| |
Collapse
|
29
|
Basak D, Uddin MN, Hancock J. The Role of Oxidative Stress and Its Counteractive Utility in Colorectal Cancer (CRC). Cancers (Basel) 2020; 12:E3336. [PMID: 33187272 PMCID: PMC7698080 DOI: 10.3390/cancers12113336] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 12/12/2022] Open
Abstract
An altered redox status accompanied by an elevated generation of reactive oxygen/nitrogen species (ROS/RNS) has been implicated in a number of diseases including colorectal cancer (CRC). CRC, being one of the most common cancers worldwide, has been reported to be associated with multiple environmental and lifestyle factors (e.g., dietary habits, obesity, and physical inactivity) and harboring heightened oxidative stress that results in genomic instability. Although under normal condition ROS regulate many signal transduction pathways including cell proliferation and survival, overwhelming of the antioxidant capacity due to metabolic abnormalities and oncogenic signaling leads to a redox adaptation response that imparts drug resistance. Nevertheless, excessive reliance on elevated production of ROS makes the tumor cells increasingly vulnerable to further ROS insults, and the abolition of such drug resistance through redox perturbation could be instrumental to preferentially eliminate them. The goal of this review is to demonstrate the evidence that links redox stress to the development of CRC and assimilate the most up-to-date information that would facilitate future investigation on CRC-associated redox biology. Concomitantly, we argue that the exploitation of this distinct biochemical property of CRC cells might offer a fresh avenue to effectively eradicate these cells.
Collapse
Affiliation(s)
- Debasish Basak
- College of Pharmacy, Larkin University, Miami, FL 33169, USA;
| | | | - Jake Hancock
- College of Pharmacy, Larkin University, Miami, FL 33169, USA;
| |
Collapse
|
30
|
Down syndrome iPSC model: endothelial perspective on tumor development. Oncotarget 2020; 11:3387-3404. [PMID: 32934781 PMCID: PMC7486695 DOI: 10.18632/oncotarget.27712] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 08/01/2020] [Indexed: 12/12/2022] Open
Abstract
Trisomy 21 (T21), known as Down syndrome (DS), is a widely studied chromosomal abnormality. Previous studies have shown that DS individuals have a unique cancer profile. While exhibiting low solid tumor prevalence, DS patients are at risk for hematologic cancers, such as acute megakaryocytic leukemia and acute lymphoblastic leukemia. We speculated that endothelial cells are active players in this clinical background. To this end, we hypothesized that impaired DS endothelial development and functionality, impacted by genome-wide T21 alterations, potentially results in a suboptimal endothelial microenvironment with the capability to prevent solid tumor growth. To test this hypothesis, we assessed molecular and phenotypic differences of endothelial cells differentiated from Down syndrome and euploid iPS cells. Microarray, RNA-Seq, and bioinformatic analyses revealed that most significantly expressed genes belong to angiogenic, cytoskeletal rearrangement, extracellular matrix remodeling, and inflammatory pathways. Interestingly, the majority of these genes are not located on Chromosome 21. To substantiate these findings, we carried out functional assays. The obtained phenotypic results correlated with the molecular data and showed that Down syndrome endothelial cells exhibit decreased proliferation, reduced migration, and a weak TNF-α inflammatory response. Based on this data, we provide a set of genes potentially associated with Down syndrome’s elevated leukemic incidence and its unfavorable solid tumor microenvironment—highlighting the potential use of these genes as therapeutic targets in translational cancer research.
Collapse
|
31
|
Zeng H, Li T, He X, Cai S, Luo H, Chen P, Chen Y. Oxidative stress mediates the apoptosis and epigenetic modification of the Bcl-2 promoter via DNMT1 in a cigarette smoke-induced emphysema model. Respir Res 2020; 21:229. [PMID: 32883320 PMCID: PMC7469342 DOI: 10.1186/s12931-020-01495-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/24/2020] [Indexed: 12/15/2022] Open
Abstract
Background Emphysema is a crucial pathological characteristic of chronic obstructive pulmonary disease (COPD). Oxidative stress, apoptosis and epigenetic mechanisms contribute to the pathogenesis of emphysema. However, an attempt to accurately identify whether these mechanisms interact with each other and how they are triggered has never been conducted. Method The total reactive oxygen species (ROS) level, pulmonary apoptosis and B-cell lymphoma/leukemia-2 (Bcl-2) expression, an apoptosis regulator, were detected in samples from COPD patients. Bisulfite sequencing PCR (BSP) was conducted to observe the alterations in the methylation of the Bcl-2 promoter in specimens. The dysregulation of DNA methyltransferase enzyme 1 (DNMT1), a vital DNA methyltransferase enzyme, in the lungs of patients was confirmed through western blotting. To find out interactions between oxidative stress and DNA methylation in emphysema, mouse models were built with antioxidant treatment and DNMT1 silencing, and were examined with the pulmonary apoptosis, Bcl-2 and DNMT1 levels, and epigenetic alterations of Bcl-2. Results Higher ROS levels and pulmonary apoptosis were observed in COPD patients than in healthy controls. Downregulated Bcl-2 expression with increased promoter methylation and DNMT1 protein expression was found in COPD patients. Antioxidant treatment reduced the level of ROS, DNMT1 protein and emphysematous progression in the smoking models. Following DNMT1 blockade, smoking models showed improved lung function, pulmonary apoptosis, emphysematous progression, and increased Bcl-2 protein level with less promoter methylation than emphysema mice. Conclusion Cigarette-induced oxidative stress mediates pulmonary apoptosis and hypermethylation of the Bcl-2 promoter in emphysema models through DNMT1.
Collapse
Affiliation(s)
- Huihui Zeng
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University, No. 139 Renmin Road, Changsha, 410011, Hunan, China.,Research Unit of Respiratory Diseases, Central South University, No. 139 Renmin Road, Changsha, 410011, Hunan, China.,Hunan Centre for Evidence-based Medicine, No. 139 Renmin Road, Changsha, 410011, Hunan, China
| | - Tiao Li
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University, No. 139 Renmin Road, Changsha, 410011, Hunan, China.,Research Unit of Respiratory Diseases, Central South University, No. 139 Renmin Road, Changsha, 410011, Hunan, China.,Hunan Centre for Evidence-based Medicine, No. 139 Renmin Road, Changsha, 410011, Hunan, China
| | - Xue He
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University, No. 139 Renmin Road, Changsha, 410011, Hunan, China.,Research Unit of Respiratory Diseases, Central South University, No. 139 Renmin Road, Changsha, 410011, Hunan, China.,Hunan Centre for Evidence-based Medicine, No. 139 Renmin Road, Changsha, 410011, Hunan, China
| | - Shan Cai
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University, No. 139 Renmin Road, Changsha, 410011, Hunan, China.,Research Unit of Respiratory Diseases, Central South University, No. 139 Renmin Road, Changsha, 410011, Hunan, China.,Hunan Centre for Evidence-based Medicine, No. 139 Renmin Road, Changsha, 410011, Hunan, China
| | - Hong Luo
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University, No. 139 Renmin Road, Changsha, 410011, Hunan, China.,Research Unit of Respiratory Diseases, Central South University, No. 139 Renmin Road, Changsha, 410011, Hunan, China.,Hunan Centre for Evidence-based Medicine, No. 139 Renmin Road, Changsha, 410011, Hunan, China
| | - Ping Chen
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University, No. 139 Renmin Road, Changsha, 410011, Hunan, China.,Research Unit of Respiratory Diseases, Central South University, No. 139 Renmin Road, Changsha, 410011, Hunan, China.,Hunan Centre for Evidence-based Medicine, No. 139 Renmin Road, Changsha, 410011, Hunan, China
| | - Yan Chen
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University, No. 139 Renmin Road, Changsha, 410011, Hunan, China. .,Research Unit of Respiratory Diseases, Central South University, No. 139 Renmin Road, Changsha, 410011, Hunan, China. .,Hunan Centre for Evidence-based Medicine, No. 139 Renmin Road, Changsha, 410011, Hunan, China.
| |
Collapse
|
32
|
Jin W. Novel Insights into PARK7 (DJ-1), a Potential Anti-Cancer Therapeutic Target, and Implications for Cancer Progression. J Clin Med 2020; 9:jcm9051256. [PMID: 32357493 PMCID: PMC7288009 DOI: 10.3390/jcm9051256] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 12/28/2022] Open
Abstract
The expression of PARK7 is upregulated in various types of cancer, suggesting its potential role as a critical regulator of the pathogenesis of cancer and in the treatment of cancer and neurodegenerative diseases, including Parkinson’s disease, Alzheimer’s disease, and Huntington disease. PARK7 activates various intracellular signaling pathways that have been implicated in the induction of tumor progression, which subsequently enhances tumor initiation, continued proliferation, metastasis, recurrence, and resistance to chemotherapy. Additionally, secreted PARK7 has been identified as a high-risk factor for the pathogenesis and survival of various cancers. This review summarizes the current understanding of the correlation between the expression of PARK7 and tumor progression.
Collapse
Affiliation(s)
- Wook Jin
- Laboratory of Molecular Disease and Cell Regulation, Department of Biochemistry, School of Medicine, Gachon University, Incheon 406-840, Korea
| |
Collapse
|
33
|
Yadav VK, Lee TY, Hsu JBK, Huang HD, Yang WCV, Chang TH. Computational analysis for identification of the extracellular matrix molecules involved in endometrial cancer progression. PLoS One 2020; 15:e0231594. [PMID: 32315343 PMCID: PMC7173926 DOI: 10.1371/journal.pone.0231594] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/26/2020] [Indexed: 12/16/2022] Open
Abstract
Recurrence and poorly differentiated (grade 3 and above) and atypical cell type endometrial cancer (EC) have poor prognosis outcome. The mechanisms and characteristics of recurrence and distal metastasis of EC remain unclear. The extracellular matrix (ECM) of the reproductive tract in women undergoes extensive structural remodelling changes every month. Altered ECMs surrounding cells were believed to play crucial roles in a cancer progression. To decipher the associations between ECM and EC development, we generated a PAN-ECM Data list of 1516 genes including ECM molecules (ECMs), synthetic and degradation enzymes for ECMs, ECM receptors, and soluble molecules that regulate ECM and used RNA-Seq data from The Cancer Genome Atlas (TCGA) for the studies. The alterations of PAN-ECM genes by comparing the RNA-Seq expressions profiles of EC samples which have been grouped as tumorigenesis and metastasis group based on their pathological grading were identified. Differential analyses including functional enrichment, co-expression network, and molecular network analysis were carried out to identify the specific PAN-ECM genes that may involve in the progression of EC. Eight hundred and thirty-one and 241 PAN-ECM genes were significantly involved in tumorigenesis (p-value <1.571e-15) and metastasis (p-value <2.2e-16), respectively, whereas 140 genes were in the intersection of tumorigenesis and metastasis. Interestingly, 92 of the 140 intersecting PAN-ECM genes showed contrasting fold changes between the tumorigenesis and metastasis datasets. Enrichment analysis for the contrast PAN-ECM genes indicated pathways such as GP6 signaling, ILK signaling, and interleukin (IL)-8 signaling pathways were activated in metastasis but inhibited in tumorigenesis. The significantly activated ECM and ECM associated genes in GP6 signaling, ILK signaling, and interleukin (IL)-8 signaling pathways may play crucial roles in metastasis of EC. Our study provides a better understanding of the etiology and the progression of EC.
Collapse
Affiliation(s)
- Vijesh Kumar Yadav
- The Program for Translational Medicine, Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Tzong-Yi Lee
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province, China
- School of Life and Health Science, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province, China
| | - Justin Bo-Kai Hsu
- Department of Medical Research, Taipei Medical University Hospital, Taipei, Taiwan
| | - Hsien-Da Huang
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province, China
- School of Life and Health Science, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province, China
| | - Wei-Chung Vivian Yang
- The Program for Translational Medicine, Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- The PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- * E-mail: (W-CVY); (T-HC)
| | - Tzu-Hao Chang
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Clinical Big Data Research Center, Taipei Medical University Hospital, Taipei, Taiwan
- * E-mail: (W-CVY); (T-HC)
| |
Collapse
|
34
|
Li N, Liu X. Phosphoglycerate Mutase 1: Its Glycolytic and Non-Glycolytic Roles in Tumor Malignant Behaviors and Potential Therapeutic Significance. Onco Targets Ther 2020; 13:1787-1795. [PMID: 32161473 PMCID: PMC7051807 DOI: 10.2147/ott.s238920] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 02/04/2020] [Indexed: 12/11/2022] Open
Abstract
Phosphoglycerate mutase 1 (PGAM1) is an important enzyme that catalyzes the reversible conversion of 3-phosphoglycerate and 2-phosphoglycerate during the process of glycolysis. Increasing evidence suggests that PGAM1 is widely overexpressed in various cancer tissues and plays a significant role in promoting cancer progression and metastasis. Although PGAM1 is a potential target in cancer therapy, the specific mechanisms of action remain unknown. This review introduces the basic structure and functions of PGAM1 and its family members and summarizes recent advances in the role of PGAM1 and various inhibitors of cancer cell proliferation and metastasis from a glycolytic and non-glycolytic perspective. Recent studies have highlighted a correlation between PGAM1 and clinical features and prognosis of cancer as well as the development of target drugs for PGAM1. The integrated information in this review will help better understand the specific roles of PGAM1 in cancer progression. Furthermore, the information highlights the non-glycolytic functions of PGAM1 in tumor metastasis, providing an innovative basis and direction for clinical drug research.
Collapse
Affiliation(s)
- Na Li
- 1st Department of Gastroenterology, First Affiliated Hospital of Dalian Medical University, Dalian 116011, People's Republic of China
| | - Xinlu Liu
- 1st Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian 116011, People's Republic of China
| |
Collapse
|
35
|
Abstract
In the field of molecular imaging, selectivity for target cells is a key determinant of the degree of imaging contrast. Previously, we developed a pre-targeted method by which target cells could be selectively imaged using a labeled N-glycan that was ligated in situ with an integrin-targeted cyclic RGD peptide on the cell surface. Here we demonstrate the power of our method in discriminating various cancerous and non-cancerous cells that cannot be distinguished using conventional RGD ligands. Using four cyclic RGDyK peptides with various linker lengths with five N-glycans, we identify optimal combinations to discriminate six types of αvβ3 integrin-expressing cells on 96-well plates. The optimal combinations of RGD and N-glycan ligands for the target cells are fingerprinted on the plates, and then used to selectively image tumors in xenografted mouse models. Using this method, various N-glycan molecules, even those with millimolar affinities for their cognate lectins, could be used for selective cancer cell differentiation.
Collapse
|
36
|
Cao J, Liu X, Yang Y, Wei B, Li Q, Mao G, He Y, Li Y, Zheng L, Zhang Q, Li J, Wang L, Qi C. Decylubiquinone suppresses breast cancer growth and metastasis by inhibiting angiogenesis via the ROS/p53/ BAI1 signaling pathway. Angiogenesis 2020; 23:325-338. [PMID: 32020421 DOI: 10.1007/s10456-020-09707-z] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 01/22/2020] [Indexed: 02/05/2023]
Abstract
Breast cancer is one of the most common cancers worldwide with a rising incidence, and is the leading cause of cancer-related death among females. Angiogenesis plays an important role in breast cancer growth and metastasis. In this study, we identify decylubiquinone (DUb), a coenzyme Q10 analog, as a promising anti-breast cancer agent through suppressing tumor-induced angiogenesis. We screened a library comprising FDA-approved drugs and found that DUb significantly inhibits blood vessel formation using in vivo chick embryo chorioallantoic membrane (CAM) and yolk sac membrane (YSM) models. DUb was further identified to inhibit angiogenesis in the rat aortic ring and Matrigel plug assay. Moreover, DUb was found to suppress breast cancer growth and metastasis in the MMTV-PyMT transgenic mouse and human xenograft tumor models. To explore whether the anticancer efficacy of DUb was directly corrected with tumor-induced angiogenesis, the MDA-MB-231 breast cancer assay on the CAM was performed. Interestingly, DUb significantly inhibits the angiogenesis of breast cancer on the CAM. Brain angiogenesis inhibitor 1 (BAI1), a member of the G protein-coupled receptor (GPCR) adhesion subfamily, has an important effect on the inhibition of angiogenesis. Further studies demonstrate that DUb suppresses the formation of tubular structures by regulating the reactive oxygen species (ROS)/p53/BAI1 signaling pathway. These results uncover a novel finding that DUb has the potential to be an effective agent for the treatment of breast cancer by inhibiting tumor-induced angiogenesis.
Collapse
Affiliation(s)
- Jinghua Cao
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China
| | - Xiaohua Liu
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China
| | - Yang Yang
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China
| | - Bo Wei
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
| | - Qianming Li
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China
| | - Guanquan Mao
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China
| | - Yajun He
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China
| | - Yuanyuan Li
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China
| | - Lingyun Zheng
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China
| | - Qianqian Zhang
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China
| | - Jiangchao Li
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China
| | - Lijing Wang
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China.
| | - Cuiling Qi
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China.
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
37
|
Zhu C, Kong Z, Wang B, Cheng W, Wu A, Meng X. ITGB3/CD61: a hub modulator and target in the tumor microenvironment. Am J Transl Res 2019; 11:7195-7208. [PMID: 31934272 PMCID: PMC6943458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/24/2019] [Indexed: 06/10/2023]
Abstract
β3 integrin (ITGB3), also known as CD61 or GP3A, is one of the most widely studied components in the integrin family. As an adhesion receptor on the cell surface, ITGB3 participates in reprogramming tumor metabolism, shaping the stromal and immune microenvironment, facilitating epithelial to mesenchymal transition (EMT) and endothelial to mesenchymal transition (End-MT) and maintaining tumor stemness, etc. Recent studies proposed various intervention strategies against ITGB3 and have achieved promising outcomes in several types of tumor. Here, we review the adaption response and cellular crosstalk in the tumor microenvironment mediated by ITGB3, as well as its upstream and downstream signaling pathways. Lastly, we focus on the inhibitors of ITGB3, ultimately indicating that ITGB3 is a promising target in the tumor microenvironment.
Collapse
Affiliation(s)
- Chen Zhu
- Department of Neurosurgery, The First Hospital of China Medical UniversityShenyang, Liaoning, China
| | - Ziqing Kong
- Department of Biochemistry and Molecular Biology, School of Life Sciences, China Medical UniversityShenyang, Liaoning, China
| | - Biao Wang
- Department of Biochemistry and Molecular Biology, School of Life Sciences, China Medical UniversityShenyang, Liaoning, China
| | - Wen Cheng
- Department of Neurosurgery, The First Hospital of China Medical UniversityShenyang, Liaoning, China
| | - Anhua Wu
- Department of Neurosurgery, The First Hospital of China Medical UniversityShenyang, Liaoning, China
| | - Xin Meng
- Department of Biochemistry and Molecular Biology, School of Life Sciences, China Medical UniversityShenyang, Liaoning, China
| |
Collapse
|
38
|
Lee KM, Seo HW, Kwon MS, Han AR, Lee SK. SIRT1 negatively regulates invasive and angiogenic activities of the extravillous trophoblast. Am J Reprod Immunol 2019; 82:e13167. [PMID: 31295378 DOI: 10.1111/aji.13167] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/08/2019] [Accepted: 06/26/2019] [Indexed: 12/15/2022] Open
Abstract
PROBLEM Dysregulation of extravillous trophoblast (EVT) invasion leads to pregnancy complications, such as pre-eclampsia, fetal growth restriction, and placenta accreta. The aim of this study was to explore the role of SIRT1 in EVT invasion and its underlying mechanism. METHOD OF STUDY SIRT1-specific siRNA was transfected into Swan 71 cells, an immortalized first trimester trophoblast cell line. The Boyden chamber invasion assay, the scratch wound healing assay, and cell proliferation assay were performed. The expression levels of epithelial-to-mesenchymal transition (EMT) markers, matrix metalloproteinase-2 (MMP-2), MMP-9, p-Akt, Akt, p-p38MAPK, p38MAPK, p-ERK, ERK, p-JNK, JNK, Fas, and Fas ligand (FasL) were examined by western blot. Tube formation assay was conducted by using Matrigel. RESULTS SIRT1 knockdown by siRNA significantly enhanced invasion and migration as well as the expression of MMP-2, MMP-9, and EMT markers in Swan 71 cells, but reduced proliferation. The effects of SIRT1 knockdown on invasion, migration, proliferation, and endothelial-like tube formation in Swan 71 cells were reversely regulated by blockade of Akt and p38MAPK signaling. In addition, SIRT1 knockdown markedly promoted colocalization of Swan 71 cells to human umbilical vein endothelial cell (HUVEC) networks and induced reduction in Fas and enhancement of FasL. Conditioned media of SIRT1 knockdown-Swan 71 cells caused reduction in cell proliferation and augmentation of cytotoxicity along with increased Fas expression in HUVECs. CONCLUSION Our results suggest that SIRT1 may be associated with placental development by controlling EVT invasion and spiral artery remodeling via modulation of EMT, MMP-2, MMP-9, Akt/p38MAPK signaling, and Fas/FasL.
Collapse
Affiliation(s)
- Ki Mo Lee
- Department of Obstetrics and Gynecology, College of Medicine, Konyang University Myunggok Medical Research Institute, Daejeon, Korea
| | - Hee Won Seo
- Department of Obstetrics and Gynecology, College of Medicine, Konyang University Myunggok Medical Research Institute, Daejeon, Korea
| | - Myoung-Seung Kwon
- Department of Obstetrics and Gynecology, College of Medicine, Konyang University Myunggok Medical Research Institute, Daejeon, Korea
| | - Ae-Ra Han
- Department of Obstetrics and Gynecology, College of Medicine, Konyang University Myunggok Medical Research Institute, Daejeon, Korea
| | - Sung Ki Lee
- Department of Obstetrics and Gynecology, College of Medicine, Konyang University Myunggok Medical Research Institute, Daejeon, Korea
| |
Collapse
|
39
|
Qiu K, Xie Q, Jiang S, Lin T. Silencing of DJ-1 reduces proliferation, invasion, and migration of papillary thyroid cancer cells in vitro, probably by increase of PTEN expression. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:2046-2055. [PMID: 31934026 PMCID: PMC6949646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 03/28/2019] [Indexed: 06/10/2023]
Abstract
AIMS To explore the function of DJ-1 on cell proliferation, migration, and invasion in human papillary thyroid carcinoma (PTC) cells. MATERIALS AND METHODS DJ-1 was knocked out by siRNA in K1 and TPC-1 cells and the efficiency of siRNA was examined by qRT-PCR and western blot. Cell proliferation, cell cycle, migration, and invasion were measured by CCK-8 assay, flow cytometry, colony formation assay and trans-well assay, respectively. RESULTS K1 and TPC-1 cells that were transfected with siRNA of DJ-1 had significantly lower expression levels of DJ-1 mRNA and protein. Down-regulation of DJ-1 significantly suppressed the cell proliferation, migration, and invasion. siRNA-mediated knock-down of DJ-1 increased the number of cells in the G0/G1 phase but reduced it in the S phase, while the G2/M phase was not affected. Moreover, the expression level of PTEN (Phosphatase and Tensin Homolog, PTEN) was found up-regulated in DJ-1-null cells. CONCLUSIONS This work suggested that DJ-1 implicated in cell proliferation, migration, and invasion of papillary thyroid cancer cells, possibly by the DJ-1/PTEN/PI3K/Akt signal pathway.
Collapse
Affiliation(s)
- Kai Qiu
- Department of Vascular and Thyroid Surgery, Fujian Medical University Union Hospital Fuzhou, Fujian, P. R. China
| | - Qingji Xie
- Department of Vascular and Thyroid Surgery, Fujian Medical University Union Hospital Fuzhou, Fujian, P. R. China
| | - Shan Jiang
- Department of Vascular and Thyroid Surgery, Fujian Medical University Union Hospital Fuzhou, Fujian, P. R. China
| | - Ting Lin
- Department of Vascular and Thyroid Surgery, Fujian Medical University Union Hospital Fuzhou, Fujian, P. R. China
| |
Collapse
|
40
|
Wen YA, Zhou BW, Lv DJ, Shu FP, Song XL, Huang B, Wang C, Zhao SC. Phosphoglycerate mutase 1 knockdown inhibits prostate cancer cell growth, migration, and invasion. Asian J Androl 2019; 20:178-183. [PMID: 29271400 PMCID: PMC5858104 DOI: 10.4103/aja.aja_57_17] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Phosphoglycerate mutase 1 (PGAM1) is upregulated in many cancer types and involved in cell proliferation, migration, invasion, and apoptosis. However, the relationship between PGAM1 and prostate cancer is poorly understood. The present study investigated the changes in PGAM1 expression in prostate cancer tissues compared with normal prostate tissues and examined the cellular function of PGAM1 and its relationship with clinicopathological variables. Immunohistochemistry and Western blotting revealed that PGAM1 expression was upregulated in prostate cancer tissues and cell lines. PGAM1 expression was associated with Gleason score (P = 0.01) and T-stage (P = 0.009). Knockdown of PGAM1 by siRNA in PC-3 and 22Rv1 prostate cancer cell lines inhibited cell proliferation, migration, and invasion and enhanced cancer cell apoptosis. In a nude mouse xenograft model, PGAM1 knockdown markedly suppressed tumor growth. Deletion of PGAM1 resulted in decreased expression of Bcl-2, enhanced expression of Bax, caspases-3 and inhibition of MMP-2 and MMP-9 expression. Our results indicate that PGAM1 may play an important role in prostate cancer progression and aggressiveness, and that it might be a valuable marker of poor prognosis and a potential therapeutic target for prostate cancer.
Collapse
Affiliation(s)
- Yao-An Wen
- Department of Urology, Nanfang Hospital, Southern Medical University/The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Bo-Wei Zhou
- Department of Urology, Nanfang Hospital, Southern Medical University/The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Dao-Jun Lv
- Department of Urology, Nanfang Hospital, Southern Medical University/The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Fang-Peng Shu
- Department of Urology, Nanfang Hospital, Southern Medical University/The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xian-Lu Song
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou 510095, China
| | - Bin Huang
- Department of Urology, Nanfang Hospital, Southern Medical University/The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Chong Wang
- Department of Urology, Nanfang Hospital, Southern Medical University/The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Shan-Chao Zhao
- Department of Urology, Nanfang Hospital, Southern Medical University/The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
41
|
Huang M, Wang Y. Targeted Quantitative Proteomic Approach for Probing Altered Protein Expression of Small GTPases Associated with Colorectal Cancer Metastasis. Anal Chem 2019; 91:6233-6241. [PMID: 30943010 PMCID: PMC6506370 DOI: 10.1021/acs.analchem.9b00938] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Genes encoding the small GTPases of the Ras superfamily are among the most frequently mutated or dysregulated in human cancer. No systematic studies, however, have yet been conducted for assessing the implications of small GTPases in the metastatic transformation of colorectal cancer (CRC). By utilizing a recently established high-throughput multiple-reaction monitoring (MRM)-based workflow together with stable isotope labeling by amino acids in cell culture (SILAC), we investigated comprehensively the relative expression of the small GTPase proteome in a pair of matched primary/metastatic CRC cell lines (SW480/SW620). Among the 83 quantified small GTPases, 25 exhibited at least a 1.5-fold difference in protein expression in SW480 and SW620 cells. In particular, SAR1B protein was found to be substantially down-regulated in SW620 relative to SW480 cells. In addition, bioinformatic analyses revealed that diminished SAR1B mRNA expression is significantly associated with higher CRC stages and unfavorable patient prognosis, in support of a potential role of SAR1B in suppressing CRC metastasis. In addition, diminished SAR1B expression could stimulate epithelial-mesenchymal transition (EMT), thereby promoting motility and in vitro metastasis of SW480 cells. In summary, we profiled systematically, by employing an MRM-based targeted proteomic method, the differential expression of small GTPase proteins in a matched pair of primary/metastatic CRC cell lines. Our results revealed the potential roles of SAR1B in suppressing CRC metastasis and in the prognosis of CRC patients.
Collapse
Affiliation(s)
- Ming Huang
- Environmental Toxicology Graduate Program, University of California at Riverside, Riverside, California 92521-0403, United States
| | - Yinsheng Wang
- Environmental Toxicology Graduate Program, University of California at Riverside, Riverside, California 92521-0403, United States
- Department of Chemistry, University of California at Riverside, Riverside, California 92521-0403, United States
| |
Collapse
|
42
|
Perduns R, Volk J, Schertl P, Leyhausen G, Geurtsen W. HEMA modulates the transcription of genes related to oxidative defense, inflammatory response and organization of the ECM in human oral cells. Dent Mater 2019; 35:501-510. [DOI: 10.1016/j.dental.2019.01.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/19/2018] [Accepted: 01/11/2019] [Indexed: 12/21/2022]
|
43
|
Dong L, Qian J, Chen F, Fan Y, Long J. LINC00461 promotes cell migration and invasion in breast cancer through miR-30a-5p/integrin β3 axis. J Cell Biochem 2019; 120:4851-4862. [PMID: 30623482 DOI: 10.1002/jcb.27435] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 07/12/2018] [Indexed: 12/12/2022]
Abstract
Mounting evidence has demonstrated that long noncoding RNAs (lncRNAs) are dysregulated and implicated in the occurrence and development of a wide range of human malignancies. LINC00461, a novel cancer-related lncRNA, has been reported to be highly expressed and serve as oncogene in glioma; however, its biological role in breast cancer (BC) remains obscure. This study aimed to explore the role of LINC00461 in BC and elucidate the potential molecular mechanisms involved. In the current study, LINC00461 was found to be significantly upregulated in both BC tissues and cell lines. Besides, we found that high LINC00461 expression was associated with TNM stage and differentiation. Furthermore, functional studies demonstrated that LINC00461 expedited BC cell migration and invasion. Notably, LINC00461 was observed to enhance the expression of vimentin and zinc-finger E-box binding homeobox factor 1, suppress the expression of E-cadherin, and promote the activation of extracellular signal-regulated kinase and AKT signaling pathways. Mechanical investigations revealed that LINC00461 positively modulated integrin β3 (ITGB3) expression as miR-30a-5p sponge in BC cells. Taken together, LINC00461 exerts an oncogenic role in BC through miR-30a-5p/ITGB3 axis. Our data indicate that LINC00461 may be used to be a novel candidate therapeutic target and a valuable diagnostic biomarker for BC.
Collapse
Affiliation(s)
- Lifeng Dong
- Department of Breast, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Junbin Qian
- Laboratory of Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Fangfang Chen
- Department of Breast, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yangfan Fan
- Department of Breast, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingpei Long
- Department of Breast, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
44
|
Moradi-Marjaneh R, Hassanian SM, Mehramiz M, Rezayi M, Ferns GA, Khazaei M, Avan A. Reactive oxygen species in colorectal cancer: The therapeutic impact and its potential roles in tumor progression via perturbation of cellular and physiological dysregulated pathways. J Cell Physiol 2018; 234:10072-10079. [PMID: 30515827 DOI: 10.1002/jcp.27881] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 11/15/2018] [Indexed: 01/17/2023]
Abstract
Reactive oxygen species (ROS) are produced by mitochondria during metabolism. In physiological states, the production of ROS and their elimination by antioxidants are kept in balance. However, in pathological states, elevated levels of ROS interact with susceptible cellular target compounds including lipids, proteins, and DNA and deregulate oncogenic signaling pathways that are involved in colorectal cancer (CRC) carcinogenesis. Although antioxidant compounds have been successfully used in the treatment of CRC as prevention approaches, they have also been shown in some cases to promote disease progression. In this review, we focus on the role of ROS in gastrointestinal homeostasis, CRC progression, diagnosis, and therapy with particular emphasis on ROS-stimulated pathways.
Collapse
Affiliation(s)
- Reyhaneh Moradi-Marjaneh
- Torbat Heydarieh University of Medical Sciences, Torbat Heydarieh, Iran.,Department of Physiology and Neurogenic inflammation research center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehraneh Mehramiz
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Rezayi
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Brighton, UK
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Physiology and Neurogenic inflammation research center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
45
|
Zhou J, Liu H, Zhang L, Liu X, Zhang C, Wang Y, He Q, Zhang Y, Li Y, Chen Q, Zhang L, Wang K, Bu Y, Lei Y. DJ-1 promotes colorectal cancer progression through activating PLAGL2/Wnt/BMP4 axis. Cell Death Dis 2018; 9:865. [PMID: 30158634 PMCID: PMC6115399 DOI: 10.1038/s41419-018-0883-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 07/09/2018] [Accepted: 07/12/2018] [Indexed: 02/05/2023]
Abstract
Metastasis remains a big barrier for the clinical treatment of colorectal cancer (CRC). Our previous proteomics analysis identified DJ-1 as a potential metastasis biomarker of CRC. In this study, we found that DJ-1 was upregulated in CRC. The levels of DJ-1 were closely correlated with the depths of invasion and predicted patient outcome. Enforced expression of DJ-1 could enhance CRC proliferation and metastasis in vitro and in vivo by stimulating Wnt-β-catenin signaling. Specifically, DJ-1-induced β-catenin nuclear translocation stimulated TCF transcription activity, which promoted BMP4 expression for CRC cell migration and invasion, and elevated CCND1 expression for CRC cell proliferation, respectively. Furthermore, DJ-1-induced Wnt signaling activation was dependent on PLAGL2 expression. In conclusion, our study demonstrates that DJ-1 can promote CRC metastasis by activating PLAGL2-Wnt-BMP4 axis, suggesting novel therapeutic opportunities for postoperative adjuvant therapy in CRC patients.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, Chongqing Medical University, 400016, Chongqing, China.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, China
| | - Hao Liu
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, Chongqing Medical University, 400016, Chongqing, China
| | - Lian Zhang
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, Chongqing Medical University, 400016, Chongqing, China
| | - Xin Liu
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, Chongqing Medical University, 400016, Chongqing, China
| | - Chundong Zhang
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, Chongqing Medical University, 400016, Chongqing, China
| | - Yitao Wang
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, Chongqing Medical University, 400016, Chongqing, China
| | - Qing He
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, Chongqing Medical University, 400016, Chongqing, China
| | - Ying Zhang
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, Chongqing Medical University, 400016, Chongqing, China
| | - Yi Li
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, Chongqing Medical University, 400016, Chongqing, China
| | - Quanmei Chen
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, Chongqing Medical University, 400016, Chongqing, China
| | - Lu Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, China
| | - Kui Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, China
| | - Youquan Bu
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, Chongqing Medical University, 400016, Chongqing, China
| | - Yunlong Lei
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, Chongqing Medical University, 400016, Chongqing, China.
| |
Collapse
|
46
|
Xu X, Wang S, Chang Y, Ge C, Li X, Feng Y, Xie S, Wang C, Dai F, Luo W. Synthesis and biological evaluation of novel asymmetric naphthalene diimide derivatives as anticancer agents depending on ROS generation. MEDCHEMCOMM 2018; 9:1377-1385. [PMID: 30151093 PMCID: PMC6097020 DOI: 10.1039/c8md00265g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/05/2018] [Indexed: 12/13/2022]
Abstract
Naphthalenetetracarboxylic diimide (NDI) is widely used as a photoelectric material in the field of medicine. A series of asymmetric naphthalene diimide derivatives were synthesized and evaluated for their anticancer properties by various experimental assays. As the representative compound, 3c exerted significantly greater inhibitory effects on hepatoma cells SMMC-7721 and Hep G2 with an IC50 value of 1.48 ± 0.43 μM and 1.70 ± 0.53 μM, respectively, than normal hepatocytes QSG-7701 with an IC50 value of 7.11 ± 0.08 μM. Treatment with compound 3c (3 μM) for 48 h resulted in apoptosis of SMMC-7721 cells and Hep G2 cells with 52.1% and 67.8% apoptotic cells, respectively. Compound 3c induced autophagy and suppressed the migration of hepatoma cells in a concentration-dependent manner, resulting from the generation of reactive oxygen species (ROS). Based on its biological ability, compound 3c was considered as a potent anticancer agent.
Collapse
Affiliation(s)
- Xiaojuan Xu
- Key Lab of Natural Medicine and Immune Engineering , Henan University , Kaifeng 475004 , China . ;
- Pharmaceutical College , Henan University , Kaifeng 475004 , China
| | - Senzhen Wang
- Key Lab of Natural Medicine and Immune Engineering , Henan University , Kaifeng 475004 , China . ;
| | - Yuan Chang
- Key Lab of Natural Medicine and Immune Engineering , Henan University , Kaifeng 475004 , China . ;
| | - Chaochao Ge
- Key Lab of Natural Medicine and Immune Engineering , Henan University , Kaifeng 475004 , China . ;
| | - Xinna Li
- Key Lab of Natural Medicine and Immune Engineering , Henan University , Kaifeng 475004 , China . ;
| | - Yongli Feng
- Key Lab of Natural Medicine and Immune Engineering , Henan University , Kaifeng 475004 , China . ;
| | - Songqiang Xie
- Institute of Chemical Biology , Henan University , Kaifeng 475004 , China
| | - Chaojie Wang
- Key Lab of Natural Medicine and Immune Engineering , Henan University , Kaifeng 475004 , China . ;
| | - Fujun Dai
- Key Lab of Natural Medicine and Immune Engineering , Henan University , Kaifeng 475004 , China . ;
| | - Wen Luo
- Key Lab of Natural Medicine and Immune Engineering , Henan University , Kaifeng 475004 , China . ;
| |
Collapse
|
47
|
Yu M, Han Y, Zhuo H, Zhang S. Endostar, a Modified Endostatin Induces Vascular Normalization to Improve Chemotherapy Efficacy Through Suppression of Src Signaling Pathway. Cancer Biother Radiopharm 2018; 33:131-138. [PMID: 29694242 DOI: 10.1089/cbr.2017.2399] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Pathological angiogenesis can be a significant barrier to effective cancer therapy. Recent evidence suggests that Endostar may induce vascular normalization, thereby improving tumor perfusion and systemic chemotherapy. However, the molecular mechanism by which Endostar makes chemotherapy more effective remains to be fully elucidated. In this study, established 4T1 breast tumor-bearing animals treated with Endostar were evaluated at serial time points for treatment-associated changes in vascular architecture. As a result, Endostar induced a morphologically and functionally normalized vascular network. Combined Endostar and doxorubicin exhibited significant antitumor (34% of control size) and antimetastatic effects (29% of control metastatic nodules) in vivo. Finally, a two-dimensional gel electrophoresis and MALDIQ-TOF MS/MS-based proteomics approach was used to identify differentially expressed proteins involved in vascular normalization during Endostar administration. SRCIN1 was detected as one of the most significantly increased proteins. SRCIN1 is a novel Src-binding protein that regulates Src activation through C-terminal Src kinase, and attenuated Src activation during Endostar treatment was further confirmed by immunoblotting. Collectively, these data provided a molecular basis for vascular normalization, which were associated with the observed synergistic effect in vivo.
Collapse
Affiliation(s)
- Min Yu
- 1 Department of Thoracic Oncology, West China Hospital, Sichuan University , Chengdu, China
| | - Yao Han
- 2 Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University , Chengdu, China
| | - Hongyu Zhuo
- 3 Department of Oncology, Shang Jin Nan Fu Hospital , Chengdu, China
| | - Shuang Zhang
- 4 Department of Head and Neck Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University , Chengdu, China
| |
Collapse
|
48
|
Irigoyen A, Jimenez-Luna C, Benavides M, Caba O, Gallego J, Ortuño FM, Guillen-Ponce C, Rojas I, Aranda E, Torres C, Prados J. Integrative multi-platform meta-analysis of gene expression profiles in pancreatic ductal adenocarcinoma patients for identifying novel diagnostic biomarkers. PLoS One 2018; 13:e0194844. [PMID: 29617451 PMCID: PMC5884535 DOI: 10.1371/journal.pone.0194844] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 03/09/2018] [Indexed: 01/16/2023] Open
Abstract
Applying differentially expressed genes (DEGs) to identify feasible biomarkers in diseases can be a hard task when working with heterogeneous datasets. Expression data are strongly influenced by technology, sample preparation processes, and/or labeling methods. The proliferation of different microarray platforms for measuring gene expression increases the need to develop models able to compare their results, especially when different technologies can lead to signal values that vary greatly. Integrative meta-analysis can significantly improve the reliability and robustness of DEG detection. The objective of this work was to develop an integrative approach for identifying potential cancer biomarkers by integrating gene expression data from two different platforms. Pancreatic ductal adenocarcinoma (PDAC), where there is an urgent need to find new biomarkers due its late diagnosis, is an ideal candidate for testing this technology. Expression data from two different datasets, namely Affymetrix and Illumina (18 and 36 PDAC patients, respectively), as well as from 18 healthy controls, was used for this study. A meta-analysis based on an empirical Bayesian methodology (ComBat) was then proposed to integrate these datasets. DEGs were finally identified from the integrated data by using the statistical programming language R. After our integrative meta-analysis, 5 genes were commonly identified within the individual analyses of the independent datasets. Also, 28 novel genes that were not reported by the individual analyses (‘gained’ genes) were also discovered. Several of these gained genes have been already related to other gastroenterological tumors. The proposed integrative meta-analysis has revealed novel DEGs that may play an important role in PDAC and could be potential biomarkers for diagnosing the disease.
Collapse
Affiliation(s)
- Antonio Irigoyen
- Department of Medical Oncology, Virgen de la Salud Hospital, Toledo, Spain
| | - Cristina Jimenez-Luna
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Manuel Benavides
- Department of Medical Oncology, Virgen de la Victoria Hospital, Malaga, Spain
| | - Octavio Caba
- Department of Health Sciences, University of Jaen, Jaen, Spain
- * E-mail:
| | - Javier Gallego
- Department of Medical Oncology, University General Hospital of Elche, Alicante, Spain
| | - Francisco Manuel Ortuño
- Department of Computer Architecture and Computer Technology, Research Center for Information and Communications Technologies, University of Granada, Granada, Spain
| | | | - Ignacio Rojas
- Department of Computer Architecture and Computer Technology, Research Center for Information and Communications Technologies, University of Granada, Granada, Spain
| | - Enrique Aranda
- Maimonides Institute of Biomedical Research (IMIBIC), Reina Sofia Hospital, University of Cordoba, Cordoba, Spain
| | - Carolina Torres
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Granada, Spain
| | - Jose Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, Spain
| |
Collapse
|
49
|
Ji Y, Qiu M, Shen Y, Gao L, Wang Y, Sun W, Li X, Lu Y, Kong X. MicroRNA-327 regulates cardiac hypertrophy and fibrosis induced by pressure overload. Int J Mol Med 2018; 41:1909-1916. [PMID: 29393356 PMCID: PMC5810199 DOI: 10.3892/ijmm.2018.3428] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 01/19/2018] [Indexed: 12/24/2022] Open
Abstract
MicroRNA (miRNA/miR) dysregulation has been reported to be fundamental in the development and progression of cardiac hypertrophy and fibrosis. In the present study, miR-327 levels in fibroblasts were increased in response to cardiac hypertrophy induced by transverse aortic constriction with prominent cardiac fibrosis, particularly when compared with the levels in unstressed cardiomyocytes. In neonatal rat cardiac fibroblasts, induced expression of miR-327 upregulated fibrosis-associated gene expression and activated angiotensin II-induced differentiation into myofibroblasts, as assessed via α-smooth muscle actin staining. By contrast, miR-327 knockdown mitigated angiotensin II-induced differentiation. Cardiac fibroblast proliferation was not affected under either condition. In a mouse model subjected to transverse aortic constriction, miR-327 knockdown through tail-vein injection reduced the development of cardiac fibrosis and ventricular dysfunction. miR-327 was demonstrated to target integrin β3 and diminish the activation of cardiac fibroblasts. Thus, the present study supports the use of miR-327 as a therapeutic target in the reduction of cardiac fibrosis.
Collapse
Affiliation(s)
- Yue Ji
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Ming Qiu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yejiao Shen
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Li Gao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yaqing Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Wei Sun
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xinli Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yan Lu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xiangqing Kong
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
50
|
Bokhari Y, Arodz T. QuaDMutEx: quadratic driver mutation explorer. BMC Bioinformatics 2017; 18:458. [PMID: 29065872 PMCID: PMC5655866 DOI: 10.1186/s12859-017-1869-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 10/16/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Somatic mutations accumulate in human cells throughout life. Some may have no adverse consequences, but some of them may lead to cancer. A cancer genome is typically unstable, and thus more mutations can accumulate in the DNA of cancer cells. An ongoing problem is to figure out which mutations are drivers - play a role in oncogenesis, and which are passengers - do not play a role. One way of addressing this question is through inspection of somatic mutations in DNA of cancer samples from a cohort of patients and detection of patterns that differentiate driver from passenger mutations. RESULTS We propose QuaDMutEx, a method that incorporates three novel elements: a new gene set penalty that includes non-linear penalization of multiple mutations in putative sets of driver genes, an ability to adjust the method to handle slow- and fast-evolving tumors, and a computationally efficient method for finding gene sets that minimize the penalty, through a combination of heuristic Monte Carlo optimization and exact binary quadratic programming. Compared to existing methods, the proposed algorithm finds sets of putative driver genes that show higher coverage and lower excess coverage in eight sets of cancer samples coming from brain, ovarian, lung, and breast tumors. CONCLUSIONS Superior ability to improve on both coverage and excess coverage on different types of cancer shows that QuaDMutEx is a tool that should be part of a state-of-the-art toolbox in the driver gene discovery pipeline. It can detect genes harboring rare driver mutations that may be missed by existing methods. QuaDMutEx is available for download from https://github.com/bokhariy/QuaDMutEx under the GNU GPLv3 license.
Collapse
Affiliation(s)
- Yahya Bokhari
- Department of Computer Science, School of Engineering, Virginia Commonwealth University, 401 W. Main St., Richmond, 23284, VA, USA
| | - Tomasz Arodz
- Department of Computer Science, School of Engineering, Virginia Commonwealth University, 401 W. Main St., Richmond, 23284, VA, USA. .,Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, 23284, VA, USA.
| |
Collapse
|