1
|
Shen C, Zhu X, Chang H, Li C, Hou M, Chen L, Lu Chen, Zhou Z, Ji M, Xu Z. The rebalancing of the immune system at the maternal-fetal interface ameliorates autism-like behavior in adult offspring. Cell Rep 2024; 43:114787. [PMID: 39321022 DOI: 10.1016/j.celrep.2024.114787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/04/2024] [Accepted: 09/06/2024] [Indexed: 09/27/2024] Open
Abstract
Maternal immune activation (MIA) is critical for imparting neuropathology and altered behaviors in offspring; however, maternal-fetal immune cell populations have not been thoroughly investigated in MIA-induced autism spectrum disorders (ASDs). Here, we report the single-cell transcriptional landscape of placental cells in both PBS- and poly(I:C)-induced MIA dams. We observed a decrease in regulatory T (Treg) cells but an increase in the M1 macrophage population at the maternal-fetal interface in MIA dams. Based on the Treg-targeting approach, we investigate an immunoregulatory protein, the helminth-derived heat shock protein 90α (Sjp90α), that induces maternal Treg cells and subsequently rescues the autism-like behaviors in adult offspring. Furthermore, in vivo depletion of maternal macrophages attenuates placental inflammatory reaction and reverses behavioral abnormalities in adult offspring. Notably, Sjp90α induces CD4+ T cell differentiation via scavenger receptor A (SR-A) on the macrophage in vitro. Our findings suggest a maternal Treg-targeted approach to alleviate MIA-induced autism-like behavior in adult offspring.
Collapse
Affiliation(s)
- Chunxiang Shen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Xinyi Zhu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Hao Chang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Chen Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Min Hou
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China; Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing, Jiangsu 211166, P.R. China
| | - Lin Chen
- Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing, Jiangsu 211166, P.R. China
| | - Lu Chen
- Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing, Jiangsu 211166, P.R. China
| | - Zikai Zhou
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong 528400, P.R. China.
| | - Minjun Ji
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China; Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing, Jiangsu 211166, P.R. China; NHC Key Laboratory of Antibody Technique, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China.
| | - Zhipeng Xu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China; Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing, Jiangsu 211166, P.R. China; NHC Key Laboratory of Antibody Technique, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China.
| |
Collapse
|
2
|
Rinaldi G, Loukas A, Sotillo J. Trematode Genomics and Proteomics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1454:507-539. [PMID: 39008274 DOI: 10.1007/978-3-031-60121-7_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Trematode infections stand out as one of the frequently overlooked tropical diseases, despite their wide global prevalence and remarkable capacity to parasitize diverse host species and tissues. Furthermore, these parasites hold significant socio-economic, medical, veterinary and agricultural implications. Over the past decades, substantial strides have been taken to bridge the information gap concerning various "omic" tools, such as proteomics and genomics, in this field. In this edition of the book, we highlight recent progress in genomics and proteomics concerning trematodes with a particular focus on the advances made in the past 5 years. Additionally, we present insights into cutting-edge technologies employed in studying trematode biology and shed light on the available resources for exploring the molecular facets of this particular group of parasitic helminths.
Collapse
Affiliation(s)
- Gabriel Rinaldi
- Department of Life Sciences, Aberystwyth University, Aberystwyth, UK
| | - Alex Loukas
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Javier Sotillo
- Laboratorio de Referencia e Investigación en Parasitología, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain.
| |
Collapse
|
3
|
Zhong H, Qin F, Ren Y, Li X, Hou L, Gu S, Jin Y. Functional characterization of differentially expressed proteins coming from unisexual and bisexual infected Schistosoma japonicum female worms. Exp Parasitol 2023; 248:108504. [PMID: 36914063 DOI: 10.1016/j.exppara.2023.108504] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023]
Abstract
Schistosomiasis is an important zoonotic disease affecting up to 40 kinds of animals and is responsible for ∼250 million human cases per year. Due to the extensive use of praziquantel for the treatment of parasitic diseases, drug resistance has been reported. Consequently, novel drugs and effective vaccines are urgently needed for sustained control of schistosomiasis. Targeting reproductive development of Schistosoma japonicum could contribute to the control of schistosomiasis. In this study, five highly expressed proteins (S. japonicum large subunit ribosomal protein L7e, S. japonicum glutathione S-transferase class-mu 26 kDa isozyme, S. japonicum UDP-galactose-4-epimerase and two hypothetical proteins SjCAX70849 and SjCAX72486) in 18, 21, 23, and 25-day mature female worms compared to single-sex infected female worms were selected based on our previous proteomic analysis. Quantitative real-time polymerase chain reaction analysis and long-term interference with small interfering RNA were performed to identify the biological functions of these five proteins. The transcriptional profiles suggested that all five proteins participated in the maturation of S. japonicum. RNA interference against these proteins resulted in morphological changes to S. japonicum. The results of an immunoprotection assay revealed that immunization of mice with recombinant SjUL-30 and SjCAX72486 upregulated production of immunoglobulin G-specific antibodies. Collectively, the results demonstrated that these five differentially expressed proteins were vital to reproduction of S. japonicum and, thus, are potential candidate antigens for immune protection against schistosomiasis.
Collapse
Affiliation(s)
- Haoran Zhong
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China; Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China
| | - Fanglin Qin
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China; Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China; College of Life Sciences, Shanghai Normal University, Shanghai, PR China
| | - Yuqi Ren
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China; Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China
| | - Xiaochun Li
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China; Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China; College of Life Sciences, Shanghai Normal University, Shanghai, PR China
| | - Ling Hou
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China; Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China; College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Shanxi, PR China
| | - Shaopeng Gu
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Shanxi, PR China
| | - Yamei Jin
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China; Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China.
| |
Collapse
|
4
|
Liu G, Miao F, Wang Y, Kou J, Yang K, Li W, Xiong C, Zhang F, Wang X, Yan H, Wei C, Zhao C, Yan G. Comparative proteomics analysis of Schistosoma japonicum developed in different Oncomelania snails as intermediate hosts. Front Cell Infect Microbiol 2022; 12:959766. [PMID: 36710964 PMCID: PMC9875565 DOI: 10.3389/fcimb.2022.959766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/26/2022] [Indexed: 12/23/2022] Open
Abstract
Schistosomiasis is a tropical parasitic disease that seriously endangers humans and animals. In this study, two Oncomelania snails, Oncomelania hupensis (O. hupensis) and Oncomelania weishan (O. weishan), were infected with Schistosoma japonicum (S. japonicum) cercariae during the early period, and ICR mice were subsequently infected with two kinds of miracidia that developed in male and female adult worms. In this study, isobaric tags for relative and absolute quantification (iTRAQ) were used to identify four channels: 113, 115, 117, and 119. A total of 2364 adult schistosome proteins were identified, and 1901 proteins were quantitative. Our results revealed 68 differentially expressed proteins (DEPs) in female adult worms, including 24 upregulated proteins and 44 downregulated proteins, and 55 DEPs in male adult worms, including 25 upregulated proteins and 30 downregulated proteins. LC-MS/MS and bioinformatics analysis indicated that these DEPs are mainly concentrated in cellular composition, molecular function, biological function and catabolism pathways. In summary, this proteomics analysis of adult schistosomes that hatched in two intermediate hosts helps to improve our understanding of the growth and developmental mechanisms of S. japonicum.
Collapse
Affiliation(s)
- Gongzhen Liu
- College of Agriculture and Forestry, Linyi University, Linyi, Shandong Province, China,Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, Shandong Province, China
| | - Feng Miao
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, Shandong Province, China,*Correspondence: Feng Miao,
| | - Yongbin Wang
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, Shandong Province, China
| | - Jingxuan Kou
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, Shandong Province, China
| | - Kun Yang
- Jiangsu Institutes of Parasitic Diseases, Wuxi, Jiangsu Province, China
| | - Wei Li
- Jiangsu Institutes of Parasitic Diseases, Wuxi, Jiangsu Province, China
| | - Chunrong Xiong
- Jiangsu Institutes of Parasitic Diseases, Wuxi, Jiangsu Province, China
| | - Fengjian Zhang
- Jiangsu Institutes of Parasitic Diseases, Wuxi, Jiangsu Province, China
| | - Xinyao Wang
- Jiangsu Institutes of Parasitic Diseases, Wuxi, Jiangsu Province, China
| | - Haoyun Yan
- Fourth Hospital of Weishan, Jining, Shandong Province, China
| | - Changyin Wei
- Shandong Weishan Center for Disease Prevention and Control, Jining, Shandong Province, China
| | - Changlei Zhao
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, Shandong Province, China
| | - Ge Yan
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, Shandong Province, China
| |
Collapse
|
5
|
Shen C, Zhu X, Xu X, Chang H, Ni Y, Li C, He K, Chen L, Chen L, Hou M, Ji M, Xu Z. Identification and Characterization of Antigenic Properties of Schistosoma japonicum Heat Shock Protein 90α Derived Peptides. Pathogens 2022; 11:pathogens11111238. [PMID: 36364989 PMCID: PMC9696693 DOI: 10.3390/pathogens11111238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 11/29/2022] Open
Abstract
It is known that schistosome-derived antigens induce innate and adaptive immune responses that are essential for the formation of hepatic immunopathology. Here, we screened and synthesized four peptides derived from Schistosoma japonicum (S. japonicum) heat shock protein 90α (Sjp90α-1, -2, -3, and -4), which is widely expressed in adults and eggs of the genus S. japonicum and induces remarkable immune reactions. To define the antigenicity of these peptides, we stimulated splenocytes with peptides, and the results showed that only the Sjp90α-1 peptide could predominately induce the activation of dendritic cells (DCs) and macrophages as well as alter the proportion of follicular helper T (Tfh) cells. Next, CD4+ T cells were purified and cocultured with mouse bone-marrow-derived DCs (BMDCs) with or without Sjp90α-1 peptide stimulation in vitro, and the results showed that Sjp90α-1-stimulated BMDCs can significantly induce CD4+ T-cell differentiation into Tfh cells, while the direct stimulation of CD4+ T cells with Sjp90α-1 did not induce Tfh cells, indicating that the Sjp90α-1 peptide promotes Tfh cell differentiation depending on the presence of DCs. Furthermore, we selected and prepared an Sjp90α-1-peptide-based antibody and illustrated that it has excellent reactivity with the immunizing peptide and detects a single band of 29 kDa corresponding to the Sjp90α protein. The immunolocalization results showed that the protein recognized by this Sjp90α-1-peptide-based antibody is present in the mature eggs and the tegument of adults, implying that the parasite-derived peptide has a potential interaction with the host immune system. Finally, we evaluated antipeptide IgG antibodies and revealed a significantly higher level of anti-Sjp90α-1 peptide IgG antibodies in mice 3 weeks after S. japonicum infection. In conclusion, we illustrate that these synthetic peptides warrant further investigation by evaluating their antigen-specific immune response and their ability to efficiently induce Tfh cells. Moreover, they may constitute a potentially helpful method for the laboratory diagnosis of schistosomiasis japonica.
Collapse
Affiliation(s)
- Chunxiang Shen
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing 211166, China
| | - Xinyi Zhu
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing 211166, China
| | - Xuejun Xu
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing 211166, China
| | - Hao Chang
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing 211166, China
| | - Yangyue Ni
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing 211166, China
| | - Chen Li
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing 211166, China
| | - Kaiyue He
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing 211166, China
| | - Lin Chen
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing 211166, China
| | - Lu Chen
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing 211166, China
| | - Min Hou
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing 211166, China
- State Key Laboratory of Reproductive Medicine, Nanjing 211166, China
| | - Minjun Ji
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing 211166, China
- State Key Laboratory of Reproductive Medicine, Nanjing 211166, China
- NHC Key Laboratory of Antibody Technique, Nanjing Medical University, Nanjing 211166, China
- Correspondence: (Z.X.); (M.J.)
| | - Zhipeng Xu
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing 211166, China
- State Key Laboratory of Reproductive Medicine, Nanjing 211166, China
- NHC Key Laboratory of Antibody Technique, Nanjing Medical University, Nanjing 211166, China
- Correspondence: (Z.X.); (M.J.)
| |
Collapse
|
6
|
Zawistowska-Deniziak A, Powązka K, Pękacz M, Basałaj K, Klockiewicz M, Wiśniewski M, Młocicki D. Immunoproteomic Analysis of Dirofilaria repens Microfilariae and Adult Parasite Stages. Pathogens 2021; 10:pathogens10020174. [PMID: 33562513 PMCID: PMC7914743 DOI: 10.3390/pathogens10020174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/22/2021] [Accepted: 01/27/2021] [Indexed: 12/19/2022] Open
Abstract
Dirofilariarepens is a parasitic nematode causing a vector-borne zoonotic infection (dirofilariosis), considered an emerging problem in human and veterinary medicine. Currently, diagnosis is based on the detection of the adult parasite and microfilariae in the host tissues. However, the efficacy of tests relying on microfilariae detection is limited by microfilariae periodic occurrence. Therefore, a new reliable and affordable serological diagnostic method is needed. Better characteristic of the parasite biology and its interaction with host immune system should help to achieve this goal. This study analyzes adult and microfilariae proteomes, and the use of one-dimensional electrophoresis (1-DE) and two-dimensional electrophoresis (2-DE) proteomics, immunoproteomics, and LC-MS/MS mass spectrometry allowed us to identify 316 potentially immunogenic proteins (75 belong to adult stage, 183 to microfilariae, and 58 are common for both). Classified by their ontology, the proteins showed important similarities and differences between both parasite stages. The most frequently identified proteins are structural, metabolic, and heat shock proteins. Additionally, real-time PCR analysis of some immunogenic targets revealed significant differences between microfilariae and adult life stages. We indicated molecules involved in parasite-host interactions and discussed their importance in parasite biology, which may help to reveal potential diagnostic antigens or select drug and vaccine targets.
Collapse
Affiliation(s)
- Anna Zawistowska-Deniziak
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, 00-818 Warsaw, Poland; (K.P.); (M.P.); (K.B.); (D.M.)
- Correspondence: ; Tel.: +48-22-697-89-66
| | - Katarzyna Powązka
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, 00-818 Warsaw, Poland; (K.P.); (M.P.); (K.B.); (D.M.)
| | - Mateusz Pękacz
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, 00-818 Warsaw, Poland; (K.P.); (M.P.); (K.B.); (D.M.)
- Division of Parasitology, Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, 02-786 Warsaw, Poland; (M.K.); (M.W.)
| | - Katarzyna Basałaj
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, 00-818 Warsaw, Poland; (K.P.); (M.P.); (K.B.); (D.M.)
| | - Maciej Klockiewicz
- Division of Parasitology, Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, 02-786 Warsaw, Poland; (M.K.); (M.W.)
| | - Marcin Wiśniewski
- Division of Parasitology, Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, 02-786 Warsaw, Poland; (M.K.); (M.W.)
| | - Daniel Młocicki
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, 00-818 Warsaw, Poland; (K.P.); (M.P.); (K.B.); (D.M.)
- Department of General Biology and Parasitology, Medical University of Warsaw, 02-004 Warsaw, Poland
| |
Collapse
|
7
|
A Biological and Immunological Characterization of Schistosoma Japonicum Heat Shock Proteins 40 and 90α. Int J Mol Sci 2020; 21:ijms21114034. [PMID: 32512920 PMCID: PMC7312537 DOI: 10.3390/ijms21114034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/27/2020] [Accepted: 06/03/2020] [Indexed: 12/12/2022] Open
Abstract
We characterized Schistosoma japonicum HSP40 (Sjp40) and HSP90α (Sjp90α) in this study. Western blot analysis revealed both are present in soluble egg antigens and egg secretory proteins, implicating them in triggering the host immune response after secretion from eggs into host tissues. These observations were confirmed by immunolocalization showing both HSPs are located in the Reynolds’ layer within mature eggs, suggesting they are secreted by miracidia and accumulate between the envelope and the eggshell. Both HSPs are present in the musculature and parenchyma of adult males and in the vitelline cells of females; only Sjp90α is present on the tegument of adults. Sjp40 was able to enhance the expression of macrophages, dendritic cells, and eosinophilic cells in mouse liver non-parenchymal cells, whereas rSjp90α only stimulated the expression of dendritic cells. T helper 1 (Th1), Th2, and Th17 responses were increased upon rSjp40 stimulation in vitro, but rSjp90 only stimulated an increased Th17 response. Sjp40 has an important role in reducing the expression of fibrogenic gene markers in hepatic stellate cells in vitro. Overall, these findings provide new information on HSPs in S. japonicum, improving our understanding of the pathological roles they play in their interaction with host immune cells.
Collapse
|
8
|
Reamtong O, Simanon N, Thiangtrongjit T, Limpanont Y, Chusongsang P, Chusongsang Y, Anuntakarun S, Payungporn S, Phuphisut O, Adisakwattana P. Proteomic analysis of adult Schistosoma mekongi somatic and excretory-secretory proteins. Acta Trop 2020; 202:105247. [PMID: 31672487 DOI: 10.1016/j.actatropica.2019.105247] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/30/2019] [Accepted: 10/25/2019] [Indexed: 12/19/2022]
Abstract
Schistosoma mekongi is a causative agent of human schistosomiasis. There is limited knowledge of the molecular biology of S. mekongi and very few studies have examined drug targets, vaccine candidates and diagnostic biomarkers for S. mekongi. To explore the biology of S. mekongi, computational as well as experimental approaches were performed on S. mekongi males and females to identify excretory-secretory (ES) proteins and proteins that are differentially expressed between genders. According to bioinformatic prediction, the S. mekongi ES product was approximately 4.7% of total annotated transcriptome sequences. The classical secretory pathway was the main process to secrete proteins. Mass spectrometry-based quantification of male and female adult S. mekongi proteins was performed. We identified 174 and 156 differential expression of proteins in male and female worms, respectively. The dominant male-biased proteins were involved in actin filament-based processes, microtubule-based processes, biosynthetic processes and homeostatic processes. The major female-biased proteins were related to biosynthetic processes, organelle organization and signal transduction. An experimental approach identified 88 proteins in the S. mekongi secretome. The S. mekongi ES proteins mainly contributed to nutrient uptake, essential substance supply and host immune evasion. This research identifies proteins in the S. mekongi secretome and provides information on ES proteins that are differentially expressed between S. mekongi genders. These findings will contribute to S. mekongi drug and vaccine development. In addition, the study enhances our understanding of basic S. mekongi biology.
Collapse
|
9
|
Biological and proteomic studies of Schistosoma mansoni with decreased sensitivity to praziquantel. Comp Immunol Microbiol Infect Dis 2019; 66:101341. [DOI: 10.1016/j.cimid.2019.101341] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/12/2019] [Accepted: 07/26/2019] [Indexed: 12/13/2022]
|
10
|
Mao Y, He C, Li H, Lu K, Fu Z, Hong Y, Jin Y, Lin J, Zhang X, Liu J. Comparative analysis of transcriptional profiles of Schistosoma japonicum adult worms derived from primary-infected and re-infected water buffaloes. Parasit Vectors 2019; 12:340. [PMID: 31296252 PMCID: PMC6625002 DOI: 10.1186/s13071-019-3600-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 07/06/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Schistosoma japonicum (S. japonicum) is an important zoonotic parasite that is prevalent in China and parts of Southeast Asia. Water buffaloes are an important reservoir and the main transmission sources of S. japonicum. However, self-curing and resistance to re-infection have been observed in water buffaloes. RESULTS In this study, we compared the morphometry and differences in transcriptional expression of adult S. japonicum worms recovered from primary-infected and re-infected water buffaloes using Illumina RNA-sequencing (RNA-Seq) technology. Results of morphometry analysis revealed that adult S. japonicum worms recovered from re-infected water buffaloes were runtish with smaller organs. The ventral length of male worms was shorter in re-infected buffaloes (328 ± 13 vs 273 ± 8 µm, P < 0.05), and in female worms the oral sucker length (44 ± 3 vs 33 ± 5 µm, P < 0.05), ovary length (578 ± 23 vs 297 ± 27 µm, P < 0.05) and width (150 ± 8 vs 104 ± 9 µm, P < 0.05) were shorter, with fewer eggs in the uteri (41 ± 2 vs 12 ± 1, P < 0.05). Of 13,605 identified genes, 112 were differentially expressed, including 51 upregulated and 61 downregulated genes, in worms from re-infected compared with primary-infected water buffaloes. Gene ontology (GO) enrichment analysis revealed that GO terms such as "oxidation-reduction process", "calcium-dependent phospholipid binding", "lipid binding" and "calcium ion binding" were significantly enriched in downregulated genes, whereas GO terms related to metabolism and biosynthesis were significantly enriched in upregulated genes. The results revealed that the downregulation of some important genes might contribute to a reduction in worm numbers and maldevelopment of surviving worms in re-infected water buffaloes. Furthermore, upregulation of genes related to metabolic processes and biosynthesis might be a compensatory mechanism of worms in disadvantageous environments. CONCLUSIONS To our knowledge, our results present the first large-scale transcriptional expression study identifying the differences between adult S. japonicum worms from primary-infected and re-infected water buffaloes, and particularly emphasize differential expression that may affect the survival and growth of worms in re-infected water buffalo. This will provide new insight into screening for anti-schistosome targets and vaccine candidates.
Collapse
Affiliation(s)
- Yudan Mao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai, 200241, People's Republic of China
| | - Chuanchuan He
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai, 200241, People's Republic of China
| | - Hao Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai, 200241, People's Republic of China
| | - Ke Lu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai, 200241, People's Republic of China
| | - Zhiqiang Fu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai, 200241, People's Republic of China
| | - Yang Hong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai, 200241, People's Republic of China
| | - Yamei Jin
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai, 200241, People's Republic of China
| | - Jiaojiao Lin
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai, 200241, People's Republic of China
| | - Xin Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai, 200241, People's Republic of China
| | - Jinming Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai, 200241, People's Republic of China.
| |
Collapse
|
11
|
Sotillo J, Pearson MS, Loukas A. Trematode Genomics and Proteomics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1154:411-436. [PMID: 31297769 DOI: 10.1007/978-3-030-18616-6_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Trematode infections are among the most neglected tropical diseases despite their worldwide distribution and extraordinary ability to parasitise many different host species and host tissues. Furthermore, these parasites are of great socioeconomic, medical, veterinary and agricultural importance. During the last 10 years, there have been increasing efforts to overcome the lack of information on different "omic" resources such as proteomics and genomics. Herein, we focus on the recent advances in genomics and proteomics from trematodes of human importance, including liver, blood, intestinal and lung flukes. We also provide information on the latest technologies applied to study the biology of trematodes as well as on the resources available for the study of the molecular aspects of this group of helminths.
Collapse
Affiliation(s)
- Javier Sotillo
- Centre for Molecular Therapeutics, Australian Institute for Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia.
| | - Mark S Pearson
- Centre for Molecular Therapeutics, Australian Institute for Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Alex Loukas
- Centre for Molecular Therapeutics, Australian Institute for Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| |
Collapse
|
12
|
de la Ballina NR, Villalba A, Cao A. Proteomic profile of Ostrea edulis haemolymph in response to bonamiosis and identification of candidate proteins as resistance markers. DISEASES OF AQUATIC ORGANISMS 2018; 128:127-145. [PMID: 29733027 DOI: 10.3354/dao03220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
European flat oyster Ostrea edulis populations have suffered extensive mortalities caused by bonamiosis. The protozoan parasite Bonamia ostreae is largely responsible for this disease in Europe, while its congener B. exitiosa has been detected more recently in various European countries. Both of these intracellular parasites are able to survive and proliferate within haemocytes, the main cellular effectors of the immune system in molluscs. Two-dimensional electrophoresis was used to compare the haemolymph protein profile between Bonamia spp.-infected and non-infected oysters within 3 different stocks, a Galician stock of oysters selected for resistance against bonamiosis, a non-selected Galician stock and a selected Irish stock. Thirty-four proteins with a presumably relevant role in the oyster-Bonamia spp. interaction were identified; they were involved in major metabolic pathways, such as energy production, respiratory chain, oxidative stress, signal transduction, transcription, translation, protein degradation and cell defence. Furthermore, the haemolymph proteomic profiles of the non-infected oysters of the 2 Galician stocks were compared. As a result, 7 proteins representative of the non-infected Galician oysters selected for resistance against bonamiosis were identified; these 7 proteins could be considered as candidate markers of resistance to bonamiosis, which should be further assessed.
Collapse
Affiliation(s)
- Nuria R de la Ballina
- Centro de Investigacións Mariñas (CIMA), Consellería do Mar, Xunta de Galicia, 36620 Vilanova de Arousa, Spain
| | | | | |
Collapse
|
13
|
Zhai Q, Fu Z, Hong Y, Yu X, Han Q, Lu K, Li H, Dou X, Zhu C, Liu J, Lin J, Li G. iTRAQ-Based Comparative Proteomic Analysis of Adult Schistosoma japonicum from Water Buffalo and Yellow Cattle. Front Microbiol 2018; 9:99. [PMID: 29467732 PMCID: PMC5808103 DOI: 10.3389/fmicb.2018.00099] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 01/16/2018] [Indexed: 01/08/2023] Open
Abstract
Schistosomiasis japonicum is one of the most severe zoonotic diseases in China. Water buffalo and yellow cattle are important reservoir hosts and the main transmission sources of Schistosoma japonicum in endemic areas. The susceptibility of these two hosts to schistosome infection is different, as water buffaloes are less susceptible to S. japonicum than yellow cattle. In this study, iTRAQ-coupled LC-MS/MS was applied to compare the protein expression profiles of adult schistosomes recovered from water buffalo with those of yellow cattle. A total of 131 differentially expressed proteins (DEPs) were identified, including 46 upregulated proteins and 85 downregulated proteins. The iTRAQ results were confirmed by Western blotting and quantitative real-time PCR. Further analysis indicated that these DEPs were primarily involved in protein synthesis, transcriptional regulation, protein proteolysis, cytoskeletal structure and oxidative stress response processes. The results revealed that some of the differential expression molecules may affect the development and survival of schistosomes in these two natural hosts. Of note, this study provides useful information for understanding the interplay between schistosomes and their final hosts.
Collapse
Affiliation(s)
- Qi Zhai
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Zhiqiang Fu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yang Hong
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Xingang Yu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Qian Han
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Ke Lu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Hao Li
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Xuefeng Dou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Chuangang Zhu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Jinming Liu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Jiaojiao Lin
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Guoqing Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
14
|
Song H, Dong R, Qiu B, Jing J, Zhu S, Liu C, Jiang Y, Wu L, Wang S, Miao J, Shao Y. Potential Vaccine Targets against Rabbit Coccidiosis by Immunoproteomic Analysis. THE KOREAN JOURNAL OF PARASITOLOGY 2017; 55:15-20. [PMID: 28285502 PMCID: PMC5365254 DOI: 10.3347/kjp.2017.55.1.15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 10/06/2016] [Accepted: 11/29/2016] [Indexed: 11/23/2022]
Abstract
The aim of this study was to identify antigens for a vaccine or drug target to control rabbit coccidiosis. A combination of 2-dimensional electrophoresis, immunoblotting, and mass spectrometric analysis were used to identify novel antigens from the sporozoites of Eimeria stiedae. Protein spots were recognized by the sera of New Zealand rabbits infected artificially with E. stiedae. The proteins were characterized by matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF/TOF-MS) analysis in combination with bioinformatics. Approximately 868 protein spots were detected by silver-staining, and a total of 41 immunoreactive protein spots were recognized by anti-E. stiedae sera. Finally, 23 protein spots were successfully identified. The proteins such as heat shock protein 70 and aspartyl protease may have potential as immunodiagnostic or vaccine antigens. The immunoreactive proteins were found to possess a wide range of biological functions. This study is the first to report the proteins recognized by sera of infected rabbits with E. stiedae, which might be helpful in identifying potential targets for vaccine development to control rabbit coccidiosis.
Collapse
Affiliation(s)
- Hongyan Song
- Laboratory Animal Center of Nantong University, Nantong 226001, China
| | - Ronglian Dong
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 21009, China
| | - Baofeng Qiu
- Nantong Entry-Exit Inspection and Quarantine Bureau, Nantong 226004, China
| | - Jin Jing
- Laboratory Animal Center of Nantong University, Nantong 226001, China
| | - Shunxing Zhu
- Laboratory Animal Center of Nantong University, Nantong 226001, China
| | - Chun Liu
- Laboratory Animal Center of Nantong University, Nantong 226001, China
| | - Yingmei Jiang
- Laboratory Animal Center of Nantong University, Nantong 226001, China
| | - Liucheng Wu
- Laboratory Animal Center of Nantong University, Nantong 226001, China
| | - Shengcun Wang
- Laboratory Animal Center of Nantong University, Nantong 226001, China
| | - Jin Miao
- Laboratory Animal Center of Nantong University, Nantong 226001, China
| | - Yixiang Shao
- Laboratory Animal Center of Nantong University, Nantong 226001, China
| |
Collapse
|
15
|
Han H, Peng J, Hong Y, Fu Z, Lu K, Li H, Zhu C, Zhao Q, Lin J. Comparative analysis of microRNA in schistosomula isolated from non-permissive host and susceptible host. Mol Biochem Parasitol 2016; 204:81-88. [PMID: 26844643 DOI: 10.1016/j.molbiopara.2015.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 11/22/2015] [Accepted: 11/23/2015] [Indexed: 01/27/2023]
Abstract
The reed vole Microtus fortis is the only known mammal in which the schistosome is naturally prevented from maturing and schistosome infection does not cause significant pathogenesis. However, the mechanism behind this phenomenon remains unknown. In the present study, Solexa deep sequencing technology was used to carry out high-throughput sequencing and comparative analysis of microRNA (miRNA) between small RNA libraries isolated from 10 days oldschistosomula of M. fortis and BALB/c mice.In total, 10d schistosomula from M. fortis and BALB/c mice yielded 13.37 and 10.84 million reads, respectively, and nearly 39% and 40% of reads could be mapped to selected miRNAs in miRbase. Based on a bioinformatic analysis, we found that most of the miRNAs identified in Schistosoma japonicum were detected in our study. Further analysis revealed that 24 miRNAs were differentially expressed between the schistosomula from the two rodents, of which 21 were down-regulated and three were up-regulated in schistosomula from M. fortis. Also, six novel miRNAs were predicted and identified in this study. Target genes were mapped and filtered by correlating them with differentially expressed genes obtained from S. japonicum oligonucleotide microarray analyses performed in previous studies. miRNAs such as miR-10-3p, miR-10-5p, and miR-2b-5p may affect the growth, differentiation, and metabolism of worms via regulation of the expression of target genes such as enolase, aquaporin, TGF-beta-inducible nuclear protein, and paramyosin. Gene Ontology analysis of the predicted target genes of these six differentially expressed miRNAs revealed that some important biological pathways, such as metabolic processes,glycolysis, and catalytic activity, were involved. The results of this study highlight the function of miRNAs in the development and survival of the schistosome, and provide valuable information to increase our understanding of the regulatory function of miRNAs in schistosome development and host-parasite interactions in a differentially susceptible host environment.
Collapse
Affiliation(s)
- Hongxiao Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, 518 Ziyue Road, Minhang, Shanghai 200241, China; Minhang Animal Disease Control Center, Shanghai 201109, China.
| | - Jinbiao Peng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, 518 Ziyue Road, Minhang, Shanghai 200241, China.
| | - Yang Hong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, 518 Ziyue Road, Minhang, Shanghai 200241, China.
| | - Zhiqiang Fu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, 518 Ziyue Road, Minhang, Shanghai 200241, China.
| | - Ke Lu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, 518 Ziyue Road, Minhang, Shanghai 200241, China.
| | - Hao Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, 518 Ziyue Road, Minhang, Shanghai 200241, China.
| | - Chuangang Zhu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, 518 Ziyue Road, Minhang, Shanghai 200241, China.
| | - Qiuhua Zhao
- Minhang Animal Disease Control Center, Shanghai 201109, China.
| | - Jiaojiao Lin
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, 518 Ziyue Road, Minhang, Shanghai 200241, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| |
Collapse
|
16
|
Kong Q, Tong Q, Lou D, Ding J, Zheng B, Chen R, Zhu X, Chen X, Dong K, Lu S. Quantitative proteomic analyses of Schistosoma japonicum in response to artesunate. MOLECULAR BIOSYSTEMS 2016; 11:1400-9. [PMID: 25820832 DOI: 10.1039/c5mb00074b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Artesunate (ART) has high prophylactic efficacy against Schistosoma japonicum infections and has been used to treat and prevent schistosomiasis in China since 1995. However, the molecular mechanism of ART's effects on S. japonicum remains unclear. Herein, we applied isobaric tagging reagents for relative and absolute quantification analyses coupled with two-dimensional liquid chromatography and tandem mass spectrometry to investigate the effect of ART on the proteome of S. japonicum in susceptible mice. 4529 proteins were quantified on the basis of 21,825 unique peptides. Comparative proteomic analyses revealed that 145, 228 and 185 proteins were significantly differentially expressed after ART treatment in schistosomula, juvenile and adult worms, respectively. Ninety proteins were differentially expressed between each two treatment groups in response to ART treatment: 67 proteins were associated with S. japonicum development/aging and 23 were specifically associated with ART treatment. Quantitative real-time PCR of selected genes verified the proteomic data. Gene ontology annotation and Kyoto encyclopedia of genes and genomes pathway mapping analysis showed that the majority of differentially expressed proteins were involved in stress/defense/detoxification, signal transduction, carbohydrate metabolism, amino acid metabolism, transcription/translation, and protein synthesis/assembly/degradation. Thirty-four of the proteins differentially expressed under ART treatment encoded hypothetical, uncharacterized proteins with unknown functions. This study obtained the first comprehensive protein expression profile of S. japonicum in response to ART, and provides a basis for a better understanding of the molecular mechanisms of ART effects on S. japonicum.
Collapse
Affiliation(s)
- QingMing Kong
- Department of Immunity and Biochemistry, Institute of Parasitic Disease, Zhejiang Academy of Medical Sciences, Hangzhou, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Yu Y, Qian Y, Du D, Xu C, Dai C, Li Q, Liu H, Shao J, Wu Z, Zhang W. SBP2 plays an important role in the virulence changes of different artificial mutants of Streptococcus suis. MOLECULAR BIOSYSTEMS 2016; 12:1948-62. [DOI: 10.1039/c6mb00059b] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Comparative proteomics analysis using the proteomes of the two mutants with different virulence found a promising putative virulence factor, SBP2, which can bind fibronectin and laminin.
Collapse
|
18
|
Hong Y, Huang L, Yang J, Cao X, Han Q, Zhang M, Han Y, Fu Z, Zhu C, Lu K, Li X, Lin J. Cloning, expression and enzymatic characterization of 3-phosphoglycerate kinase from Schistosoma japonicum. Exp Parasitol 2015; 159:37-45. [PMID: 26299245 DOI: 10.1016/j.exppara.2015.08.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 07/21/2015] [Accepted: 08/16/2015] [Indexed: 11/19/2022]
Abstract
In the present study, a full-length cDNA encoding the Schistosoma japonicum 3-phosphoglycerate kinase (SjPGK) with an open reading frame of 1251 bp was isolated from 42-day-old (42-d) schistosome cDNAs. Real-time quantitative reverse transcription PCR analysis revealed that SjPGK was expressed in all investigated developmental stages and at a higher transcript levels in 21- and 42-d worms. Moreover, the SjPGK mRNA level was significantly downregulated in 10-d schistosomula from Wistar rats (non-susceptible host). SjPGK was subcloned into pET28a(+) and expressed as both supernatant and inclusion bodies in Escherichia coli BL21 cells. The enzymatic activity of recombinant SjPGK protein (rSjPGK) was 125 U/mg. Kinetic analyses with respect to 3-phosphoglycerate (3-PGA) as substrate gave a Km of 2.69 mmol/L and a Vmax of 748 μmol/min/mg protein. rSjPGK was highly stable over a range of pH 8.0-9.0 and temperature of 30°C-40 °C under physiological conditions. Immunolocalization analysis showed that SjPGK was mainly distributed in the tegument and parenchyma of schistosomes. Western blotting showed that rSjPGK had good immunogenicity. We vaccinated BALB/c mice with rSjPGK combined with Seppic 206 adjuvant. However, there were no significant reductions in the numbers of worms of eggs in the liver, as compared to adjuvant or blank control groups in two independent vaccination tests. This study provides the basis for further investigations into the biological function of SjPGK, although it might not be suitable as a potential vaccine candidate against schistosomiasis.
Collapse
Affiliation(s)
- Yang Hong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai 200241, PR China
| | - Lini Huang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai 200241, PR China
| | - Jianmei Yang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai 200241, PR China
| | - Xiaodan Cao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai 200241, PR China
| | - Qian Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai 200241, PR China
| | - Min Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai 200241, PR China; College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan Province 471023, PR China
| | - Yanhui Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai 200241, PR China; College of Animal Science, Henan Institute of Science and Technology, Xinxiang, Henan Province 453003, PR China
| | - Zhiqiang Fu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai 200241, PR China
| | - Chuangang Zhu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai 200241, PR China
| | - Ke Lu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai 200241, PR China
| | - Xiangrui Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, PR China
| | - Jiaojiao Lin
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai 200241, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu Province 225009, PR China.
| |
Collapse
|
19
|
Liu S, Zhou X, Piao X, Wu C, Hou N, Chen Q. Comparative Analysis of Transcriptional Profiles of Adult Schistosoma japonicum from Different Laboratory Animals and the Natural Host, Water Buffalo. PLoS Negl Trop Dis 2015; 9:e0003993. [PMID: 26285138 PMCID: PMC4540470 DOI: 10.1371/journal.pntd.0003993] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 07/16/2015] [Indexed: 01/22/2023] Open
Abstract
Background Schistosomiasis is one of the most widely distributed parasitic diseases in the world. Schistosoma japonicum, a zoonotic parasite with a wide range of mammalian hosts, is one of the major pathogens of this disease. Although numerous studies on schistosomiasis japonica have been performed using laboratory animal models, systematic comparative analysis of whole-genome expression profiles in parasites from different laboratory animals and nature mammalian hosts is lacking to date. Methodology/Principal Findings Adult schistosomes were obtained from laboratory animals BALB/c mice, C57BL/6 mice, New Zealand white rabbits and the natural host, water buffaloes. The gene expression profiles of schistosomes from these animals were obtained and compared by genome-wide oligonucleotide microarray analysis. The results revealed that the gene expression profiles of schistosomes from different laboratory animals and buffaloes were highly consistent (r>0.98) genome-wide. Meanwhile, a total of 450 genes were identified to be differentially expressed in schistosomes which can be clustered into six groups. Pathway analysis revealed that these genes were mainly involved in multiple signal transduction pathways, amino acid, energy, nucleotide and lipid metabolism. We also identified a group of 1,540 abundantly and stably expressed gene products in adult worms, including a panel of 179 Schistosoma- or Platyhelminthes-specific genes that may be essential for parasitism and may be regarded as novel potential anti-parasite intervention targets for future research. Conclusions/Significance This study provides a comprehensive database of gene expression profiles of schistosomes derived from different laboratory animals and water buffaloes. An expanded number of genes potentially affecting the development of schistosomes in different animals were identified. These findings lay the foundation for schistosomiasis research in different laboratory animals and natural hosts at the transcriptional level and provide a valuable resource for screening anti-schistosomal intervention targets. The zoonotic parasite Schistosoma japonicum is one of the major pathogens of schistosomiasis and can parasitize a wide range of mammals. Although numerous schistosome transcriptional profiling studies have been performed using laboratory animal models, the differences in the global gene expression profiles of worms from different laboratory animals and natural mammalian hosts have not been characterized. Therefore, we studied the gene expression profiles of adult worms from BALB/c mice, C57BL/6 mice, rabbits and buffaloes using a transcriptomics approach. Our results indicate that, although the expression profiles of adult worms from different mammals are generally similar, hundreds of genes are differentially expressed, which were mainly involved in various signal transduction pathways, amino acid, energy, nucleotide and lipid metabolism. Numerous abundantly and stably expressed genes in adults were identified, including some genes that are only found in blood flukes or expanded within the phylum Platyhelminthes and may be important for parasitism. Our data provide a basis for schistosomiasis research in different mammalian hosts at the transcriptional level as well as a valuable resource for the screening of anti-schistosomal intervention targets.
Collapse
Affiliation(s)
- Shuai Liu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaosu Zhou
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xianyu Piao
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chuang Wu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nan Hou
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qijun Chen
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Zoonosis, Jilin University, Changchun, China
- * E-mail:
| |
Collapse
|
20
|
van der Ree AM, Mutapi F. The helminth parasite proteome at the host-parasite interface - Informing diagnosis and control. Exp Parasitol 2015; 157:48-58. [PMID: 26116863 DOI: 10.1016/j.exppara.2015.06.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 05/16/2015] [Accepted: 06/15/2015] [Indexed: 12/27/2022]
Abstract
Helminth parasites are a significant health burden for humans in the developing world and also cause substantial economic losses in livestock production across the world. The combined lack of vaccines for the major human and veterinary helminth parasites in addition to the development of drug resistance to anthelmintics in sheep and cattle mean that controlling helminth infection and pathology remains a challenge. However, recent high throughput technological advances mean that screening for potential drug and vaccine candidates is now easier than in previous decades. A better understanding of the host-parasite interactions occurring during infection and pathology and identifying pathways that can be therapeutically targeted for more effective and 'evolution proof' interventions is now required. This review highlights some of the advances that have been made in understanding the host-parasite interface in helminth infections using studies of the temporal expression of parasite proteins, i.e. the parasite proteome, and discuss areas for potential future research and translation.
Collapse
Affiliation(s)
- Anna M van der Ree
- Institute of Immunology & Infection Research, Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, UK
| | - Francisca Mutapi
- Institute of Immunology & Infection Research, Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
21
|
Zhao JW, Sun ZQ, Zhang XY, Zhang Y, Liu J, Ye J, Chen CC, Samten B, Wang HH, Guo XK, Zhang SL. Mycobacterial 3-hydroxyacyl-l-thioester dehydratase Y derived from Mycobacterium tuberculosis induces COX-2 expression in mouse macrophages through MAPK-NF-κB pathway. Immunol Lett 2014; 161:125-32. [PMID: 24907510 DOI: 10.1016/j.imlet.2014.05.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 05/28/2014] [Accepted: 05/28/2014] [Indexed: 11/17/2022]
Abstract
Tuberculosis (TB) is a leading cause of global mortality due to infectious diseases. Expression of cyclooxygenase-2 (COX-2) acts as an important influencing factor favoring bacillary survival during TB infection. In this study, we investigated the Mycobacterium tuberculosis proteins recognized by sera from TB patient collected before and after anti-TB therapy by dynamic immunoproteomics and identified a novel immune-regulating protein 3-hydroxyacyl-l-thioester dehydratase Y (HtdY), which could induce COX-2 expression in mouse macrophages. Signaling perturbation data showed that the activation of p38, ERK 1/2 and JNK 1/2 MAPK as well as NF-κB played critical role in this immune response. Taken together, our findings indicated that mycobacterial HtdY might contribute to the persistence of the TB infection by inducing COX-2 expression through MAPK-NF-κB signaling pathway.
Collapse
Affiliation(s)
- Jun-Wei Zhao
- Department of Microbiology and Parasitology, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Zhan-Qiang Sun
- Department of Microbiology and Parasitology, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Xiang-Yan Zhang
- Department of Microbiology and Parasitology, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Yue Zhang
- Shanghai Kexin Biotech Co. Ltd., Shanghai 201203, China
| | - Jun Liu
- Clinical Laboratory, Wuxi No. 5 People's Hospital, Wuxi, Jiangsu 214005, China
| | - Juan Ye
- Department of Microbiology and Parasitology, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Cui-Cui Chen
- Department of Microbiology and Parasitology, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Buka Samten
- Center for Pulmonary and Infectious Disease Control, The University of Texas Health Science Center, 75708 Tyler, USA
| | - Hong-Hai Wang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, Fudan University, Shanghai 200043, China
| | - Xiao-Kui Guo
- Department of Microbiology and Parasitology, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China.
| | - Shu-Lin Zhang
- Department of Microbiology and Parasitology, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China.
| |
Collapse
|
22
|
Chen JH, Zhang T, Ju C, Xu B, Lu Y, Mo XJ, Chen SB, Fan YT, Hu W, Zhou XN. An integrated immunoproteomics and bioinformatics approach for the analysis of Schistosoma japonicum tegument proteins. J Proteomics 2014; 98:289-99. [PMID: 24448400 DOI: 10.1016/j.jprot.2014.01.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 12/13/2013] [Accepted: 01/08/2014] [Indexed: 11/29/2022]
Abstract
UNLABELLED Schistosomiasis remains one of the major neglected tropical diseases (NTDs) causing morbidity of humans residing in the tropical countries. Much effort has been devoted to the development of vaccines, since it is recognized that vaccines can be served as an important supplementary component alongside chemotherapy for the future control and elimination of schistosomiasis. To accelerate digging new potential target antigens, it is essential to extensively and intensively search immunogenic proteins in a high-throughput manner using proteomics-microarray techniques. In the present study, an integrated immunoproteomics and bioinformatics approach was used to profile the tegument of the human blood fluke Schistosoma japonicum. Results showed that the full-length tegument proteins were high-throughput cloned and expressed and screened with sera from S. japonicum-infected patients and normal subjects using protein arrays. Here, thirty highly immunoreactive tegument proteins and 10 antigens with an AUC value greater than 0.90 were identified at first time. In particularly, STIP1, the highest immunoreactive tegument protein has been shown good antigenicity and immunogenicity, and thus makes it to be a potential target for designing anti-parasite drug or vaccine. BIOLOGICAL SIGNIFICANCE The schistosome tegument plays a crucial role in host-parasite interactions and there are several tegument proteins that proved to be potential vaccine candidates. However, vaccines are not yet available, thus it is important to identify new target antigens from schistosome tegument proteome. Herein, we demonstrate that the S. japonicum tegument proteins were analyzed by an integrated immunoproteomics and bioinformatics approach. We found that thirty highly immunoreactive tegument proteins and 10 antigens with an AUC value greater than 0.90 were identified for the first time. In particularly, we found 17 of tegument immunoproteomes having putative interaction networks with other proteins of S. japonicum. The results will provide clues of potential target molecules for vaccine development and biomarkers for diagnostics of schistosomiasis.
Collapse
Affiliation(s)
- Jun-Hu Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health, WHO Collaborating Center for Malaria, Schistosomiasis and Filariasis, Shanghai 200025, People's Republic of China.
| | - Ting Zhang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health, WHO Collaborating Center for Malaria, Schistosomiasis and Filariasis, Shanghai 200025, People's Republic of China
| | - Chuan Ju
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health, WHO Collaborating Center for Malaria, Schistosomiasis and Filariasis, Shanghai 200025, People's Republic of China
| | - Bin Xu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health, WHO Collaborating Center for Malaria, Schistosomiasis and Filariasis, Shanghai 200025, People's Republic of China
| | - Yan Lu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health, WHO Collaborating Center for Malaria, Schistosomiasis and Filariasis, Shanghai 200025, People's Republic of China
| | - Xiao-Jin Mo
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health, WHO Collaborating Center for Malaria, Schistosomiasis and Filariasis, Shanghai 200025, People's Republic of China
| | - Shen-Bo Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health, WHO Collaborating Center for Malaria, Schistosomiasis and Filariasis, Shanghai 200025, People's Republic of China
| | - Yan-Ting Fan
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health, WHO Collaborating Center for Malaria, Schistosomiasis and Filariasis, Shanghai 200025, People's Republic of China
| | - Wei Hu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health, WHO Collaborating Center for Malaria, Schistosomiasis and Filariasis, Shanghai 200025, People's Republic of China.
| | - Xiao-Nong Zhou
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health, WHO Collaborating Center for Malaria, Schistosomiasis and Filariasis, Shanghai 200025, People's Republic of China.
| |
Collapse
|
23
|
Han H, Peng J, Han Y, Zhang M, Hong Y, Fu Z, Yang J, Tao J, Lin J. Differential expression of microRNAs in the non-permissive schistosome host Microtus fortis under schistosome infection. PLoS One 2013; 8:e85080. [PMID: 24391986 PMCID: PMC3877346 DOI: 10.1371/journal.pone.0085080] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 11/22/2013] [Indexed: 11/19/2022] Open
Abstract
The reed vole Microtus fortis is the only mammal known in China in which the growth, development and maturation of schistosomes (Schistosoma japonicum) is prevented. It might be that the anti-schistosomiasis mechanisms of M. fortis associate with microRNA-mediated gene expression, given that the latter has been found to be involved in gene regulation in eukaryotes. In the present study, the difference between pathological changes in tissues of M. fortis and of mice (Mus musculus) post-schistosome infection were observed by using hematoxylin-eosin staining. In addition, microarray technique was applied to identify differentially expressed miRNAs in the same tissues before and post-infection to analyze the potential roles of miRNAs in schistosome infection in these two different types of host. Histological analyses showed that S. japonicum infection in M. fortis resulted in a more intensive inflammatory response and pathological change than in mice. The microarray analysis revealed that 162 miRNAs were expressed in both species, with 12 in liver, 32 in spleen and 34 in lung being differentially expressed in M. fortis. The functions of the differentially expressed miRNAs were mainly revolved in nutrient metabolism, immune regulation, etc. Further analysis revealed that important signaling pathways were triggered after infection by S. japonicum in M. fortis but not in the mice. These results provide new insights into the general mechanisms of regulation in the non-permissive schistosome host M. fortis that exploits potential miRNA regulatory networks. Such information will help improve current understanding of schistosome development and host-parasite interactions.
Collapse
Affiliation(s)
- Hongxiao Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Minhang, Shanghai, China
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jinbiao Peng
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yanhui Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Minhang, Shanghai, China
| | - Min Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Minhang, Shanghai, China
| | - Yang Hong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Minhang, Shanghai, China
| | - Zhiqiang Fu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Minhang, Shanghai, China
| | - Jianmei Yang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Minhang, Shanghai, China
| | - Jianping Tao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- * E-mail: (JT); (JL)
| | - Jiaojiao Lin
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Minhang, Shanghai, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- * E-mail: (JT); (JL)
| |
Collapse
|
24
|
Huang HC, Yao LL, Song ZM, Li XP, Hua QQ, Li Q, Pan CW, Xia CM. Development-specific differences in the proteomics of Angiostrongylus cantonensis. PLoS One 2013; 8:e76982. [PMID: 24204717 PMCID: PMC3808366 DOI: 10.1371/journal.pone.0076982] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 08/27/2013] [Indexed: 11/18/2022] Open
Abstract
Angiostrongyliasis is an emerging communicable disease. Several different hosts are required to complete the life cycle of Angiostrongylus cantonensis. However, we lack a complete understanding of variability of proteins across different developmental stages and their contribution to parasite survival and progression. In this study, we extracted soluble proteins from various stages of the A. cantonensis life cycle [female adults, male adults, the fifth-stage female larvae (FL5), the fifth-stage male larvae (ML5) and third-stage larvae (L3)], separated those proteins using two-dimensional difference gel electrophoresis (2D-DIGE) at pH 4-7, and analyzed the gel images using DeCyder 7.0 software. This proteomic analysis produced a total of 183 different dominant protein spots. Thirty-seven protein spots were found to have high confidence scores (>95%) by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Comparative proteomic analyses revealed that 29 spots represented cytoskeleton-associated proteins and functional proteins. Eight spots were unnamed proteins. Twelve protein spots that were matched to the EST of different-stage larvae of A. cantonensis were identified. Two genes and the internal control 18s were chosen for quantitative real-time PCR (qPCR) and the qPCR results were consistent with those of the DIGE studies. These findings will provide a new basis for understanding the characteristics of growth and development of A. cantonensis and the host-parasite relationship. They may also assist searches for candidate proteins suitable for use in diagnostic assays and as drug targets for the control of eosinophilic meningitis caused by A. cantonensis.
Collapse
Affiliation(s)
- Hui-Cong Huang
- Department of Parasitology, Medical College of Soochow University, Suzhou, Jiangsu, P. R. China
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, P. R. China
| | - Li-Li Yao
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, P. R. China
| | - Zeng-Mei Song
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, P. R. China
| | - Xing-Pan Li
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, P. R. China
| | - Qian-Qian Hua
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, P. R. China
| | - Qiang Li
- Department of Laboratory Diagnosis, The Third Affiliated Hospital of Wenzhou Medical University, Ruian, Zhejiang, P. R. China
| | - Chang-Wang Pan
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, P. R. China
| | - Chao-Ming Xia
- Department of Parasitology, Medical College of Soochow University, Suzhou, Jiangsu, P. R. China
- * E-mail:
| |
Collapse
|
25
|
Zhang M, Hong Y, Han Y, Han H, Peng J, Qiu C, Yang J, Lu K, Fu Z, Lin J. Proteomic analysis of tegument-exposed proteins of female and male Schistosoma japonicum worms. J Proteome Res 2013; 12:5260-70. [PMID: 23909873 DOI: 10.1021/pr400476a] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The interplay between sexes is a prerequisite for female growth, reproductive maturation, and egg production, and the basis of schistosome pathopoiesis and propagation. The tegument is in direct contact with the host environment and its surface membranes are particularly crucial for schistosome survival in the definitive host. In this study, a streptavidin-biotin affinity purification technique combined with LC-MS/MS was used to analyze putative tegument-exposed proteins in female and male adult Schistosoma japonicum worms. In total, 179 proteins were identified in females and 300 in males, including 119 proteins common to both sexes, and 60 female biased and 181 male biased proteins. Some (e.g., serpin and CD36-like class B scavenger receptor) were involved in host-schistosome interactions, while some (e.g., gynecophoral canal protein) were important in the interplay between sexes. Gene Ontology analysis revealed that proteins involved in protein glycosylation and lysosome were highly expressed in females, while proteins involved in intracellular signal transduction, regulation of actin filament polymerization, and proteasome core complex were highly expressed in males. These results might elucidate physiological differences between the sexes. Our study provides new insights into schistosome growth and sexual maturity in the final host and permits the screening of vaccine candidates or drug targets for schistosomiasis.
Collapse
Affiliation(s)
- Min Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai 200241, P.R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Yang J, Hong Y, Yuan C, Fu Z, Shi Y, Zhang M, Shen L, Han Y, Zhu C, Li H, Lu K, Liu J, Feng X, Lin J. Microarray analysis of gene expression profiles of Schistosoma japonicum derived from less-susceptible host water buffalo and susceptible host goat. PLoS One 2013; 8:e70367. [PMID: 23940568 PMCID: PMC3734127 DOI: 10.1371/journal.pone.0070367] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 06/18/2013] [Indexed: 01/14/2023] Open
Abstract
Background Water buffalo and goats are natural hosts for S. japonicum in endemic areas of China. The susceptibility of these two hosts to schistosome infection is different, as water buffalo are less conducive to S. japonicum growth and development. To identify genes that may affect schistosome development and survival, we compared gene expression profiles of schistosomes derived from these two natural hosts using high-throughput microarray technology. Results The worm recovery rate was lower and the length and width of worms from water buffalo were smaller compared to those from goats following S. japonicum infection for 7 weeks. Besides obvious morphological difference between the schistosomes derived from the two hosts, differences were also observed by scanning and transmission electron microscopy. Microarray analysis showed differentially expressed gene patterns for parasites from the two hosts, which revealed that genes related to lipid and nucleotide metabolism, as well as protein folding, sorting, and degradation were upregulated, while others associated with signal transduction, endocrine function, development, immune function, endocytosis, and amino acid/carbohydrate/glycan metabolism were downregulated in schistosomes from water buffalo. KEGG pathway analysis deduced that the differentially expressed genes mainly involved lipid metabolism, the MAPK and ErbB signaling pathways, progesterone-mediated oocyte maturation, dorso-ventral axis formation, reproduction, and endocytosis, etc. Conclusion The microarray gene analysis in schistosomes derived from water buffalo and goats provide a useful platform to disclose differences determining S. japonicum host compatibility to better understand the interplay between natural hosts and parasites, and identify schistosome target genes associated with susceptibility to screen vaccine candidates.
Collapse
Affiliation(s)
- Jianmei Yang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai, People's Republic of China
| | - Yang Hong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai, People's Republic of China
| | - Chunxiu Yuan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai, People's Republic of China
| | - Zhiqiang Fu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai, People's Republic of China
| | - Yaojun Shi
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai, People's Republic of China
| | - Min Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai, People's Republic of China
| | - Liuhong Shen
- College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, People's Republic of China
| | - Yanhui Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai, People's Republic of China
| | - Chuangang Zhu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai, People's Republic of China
| | - Hao Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai, People's Republic of China
| | - Ke Lu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai, People's Republic of China
| | - Jinming Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai, People's Republic of China
| | - Xingang Feng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai, People's Republic of China
- * E-mail: (JL); (XF)
| | - Jiaojiao Lin
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai, People's Republic of China
- * E-mail: (JL); (XF)
| |
Collapse
|
27
|
Wu L, Wang S, Chen X, Wang X, Wu L, Zu X, Chen Y. Proteomic and phytohormone analysis of the response of maize (Zea mays L.) seedlings to sugarcane mosaic virus. PLoS One 2013; 8:e70295. [PMID: 23894637 PMCID: PMC3720893 DOI: 10.1371/journal.pone.0070295] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Accepted: 06/22/2013] [Indexed: 12/27/2022] Open
Abstract
Background Sugarcane mosaic virus (SCMV) is an important virus pathogen in crop production, causing serious losses in grain and forage yields in susceptible cultivars. Control strategies have been developed, but only marginal successes have been achieved. For the efficient control of this virus, a better understanding of its interactions and associated resistance mechanisms at the molecular level is required. Methodology/Principal Findings The responses of resistant and susceptible genotypes of maize to SCMV and the molecular basis of the resistance were studied using a proteomic approach based on two-dimensional polyacrylamide gel electrophoresis (2-DE) and matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS/MS) analysis. Ninety-six protein spots showed statistically significant differences in intensity after SCMV inoculation. The classification of differentially expressed proteins showed that SCMV-responsive proteins were mainly involved in energy and metabolism, stress and defense responses, and photosynthesis. Most of the proteins identified were located in chloroplasts, chloroplast membranes, and the cytoplasm. Analysis of changes in phytohormone levels after virus inoculation suggested that salicylic acid, abscisic acid, jasmonic acid, and azelaic acid may played important roles in the maize response to SCMV infection. Conclusions/Significance Among these identified proteins, 19 have not been identified previously as virus-responsive proteins, and seven were new and did not have assigned functions. These proteins may be candidate proteins for future investigation, and they may present new biological functions and play important roles in plant-virus interactions. The behavioural patterns of the identified proteins suggest the existence of defense mechanisms operating during the early stages of infection that differed in two genotypes. In addition, there are overlapping and specific phytohormone responses to SCMV infection between resistant and susceptible maize genotypes. This study may provide important insights into the molecular events during plant responses to virus infection.
Collapse
Affiliation(s)
- Liuji Wu
- Henan Agricultural University and Synergetic Innovation Center of Henan Grain Crops, Zhengzhou, China
- Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Zhengzhou, China
| | - Shunxi Wang
- Henan Agricultural University and Synergetic Innovation Center of Henan Grain Crops, Zhengzhou, China
| | - Xiao Chen
- Henan Province Seed Control Station, Zhengzhou, China
| | - Xintao Wang
- Henan Agricultural University and Synergetic Innovation Center of Henan Grain Crops, Zhengzhou, China
| | - Liancheng Wu
- Henan Agricultural University and Synergetic Innovation Center of Henan Grain Crops, Zhengzhou, China
- Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Zhengzhou, China
| | - Xiaofeng Zu
- Henan Agricultural University and Synergetic Innovation Center of Henan Grain Crops, Zhengzhou, China
| | - Yanhui Chen
- Henan Agricultural University and Synergetic Innovation Center of Henan Grain Crops, Zhengzhou, China
- Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Zhengzhou, China
- * E-mail:
| |
Collapse
|
28
|
Wu L, Han Z, Wang S, Wang X, Sun A, Zu X, Chen Y. Comparative proteomic analysis of the plant-virus interaction in resistant and susceptible ecotypes of maize infected with sugarcane mosaic virus. J Proteomics 2013; 89:124-40. [PMID: 23770298 DOI: 10.1016/j.jprot.2013.06.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Revised: 05/31/2013] [Accepted: 06/03/2013] [Indexed: 12/26/2022]
Abstract
UNLABELLED Sugarcane mosaic virus (SCMV) is an important viral pathogen and has caused serious losses in grain and forage yield. To identify candidate SCMV resistance proteins and to explore the molecular mechanisms involved in the plant-SCMV interaction, we conducted proteomic analyses of leaf samples from resistant and susceptible ecotypes of maize infected with SCMV. Proteins were analyzed by quantitative two-dimensional differential gel electrophoresis (2D-DIGE), and 93 protein spots showed statistically significant differences after virus inoculation. Functional categorization showed that SCMV-responsive proteins were mainly involved in energy and metabolism, stress and defense responses, photosynthesis, and carbon fixation. The majority of the identified proteins were located in chloroplast and cytoplasm based on bioinformatic analysis. Among these identified proteins, 17 have not been identified previously as virus-responsive proteins, and 7 were new and did not have assigned functions. Western blotting analyses confirmed the expression patterns of proteins of specific interest, and the genes encoding these proteins were further analyzed by real-time PCR. The results of this study showed overlapping and specific proteomic responses to SCMV infection between resistant and susceptible maize ecotypes. This study provides further insight into the molecular events during compatible and incompatible interactions between viruses and host plants. BIOLOGICAL SIGNIFICANCE Sugarcane mosaic virus (SCMV) is an important viral pathogen and has caused serious losses in grain and forage yield. However, little is known about host-SCMV interactions from the proteome perspective. This study analyzed proteomic changes in resistant and susceptible plants that are infected with SCMV using DIGE based proteomics. We identified 17 proteins that have not been identified previously as virus-responsive proteins, and 7 new proteins without assigned functions. These proteins are interesting candidates for future research, as they may be associated with new biological functions and play important roles in plant-virus interactions. Real-time RT-PCR analysis of genes encoding several proteins of interest provided indication on whether the changes in protein abundance were regulated at the mRNA level. The results of this study showed overlapping and specific proteomic responses to SCMV infection between resistant and susceptible ecotypes. After inoculation, the proteins involved in energy and metabolism, stress and defense responses, photosynthesis and other four functional groups showed significant changes in both ecotypes, which suggested that SCMV infection influenced these physiological processes in both the resistant Siyi and the susceptible Mo17. However, the oxidative burst was more pronounced during incompatible plant-SCMV interactions, as compared to those defined as compatible. We also observed an increase of enzymes involved in glycolysis and gluconeogenesis pathways in the resistant maize ecotype Siyi, while decrease in the susceptible maize ecotype Mo17. In addition, there is a marked increase of guanine nucleotide-binding protein beta submit in the resistant Siyi, which suggests a possible involvement of G-protein associated pathways in the resistant responses of maize to SCMV. These observations may possibly reveal protein targets/markers that are useful in the design of future diagnosis or plant protection strategies and provide new insights into the molecular mechanism of plant-virus interactions.
Collapse
Affiliation(s)
- Liuji Wu
- Henan Agricultural University and Synergetic Innovation Center of Henan Grain Crops, Zhengzhou 450002, China
| | | | | | | | | | | | | |
Collapse
|
29
|
Hong Y, Han Y, Fu Z, Han H, Qiu C, Zhang M, Yang J, Shi Y, Li X, Lin J. Characterization and Expression of theSchistosoma japonicumThioredoxin Peroxidase-2 Gene. J Parasitol 2013; 99:68-76. [DOI: 10.1645/ge-3096.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
30
|
Yang J, Feng X, Fu Z, Yuan C, Hong Y, Shi Y, Zhang M, Liu J, Li H, Lu K, Lin J. Ultrastructural observation and gene expression profiling of Schistosoma japonicum derived from two natural reservoir hosts, water buffalo and yellow cattle. PLoS One 2012; 7:e47660. [PMID: 23110087 PMCID: PMC3482235 DOI: 10.1371/journal.pone.0047660] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 09/14/2012] [Indexed: 01/10/2023] Open
Abstract
Water buffalo and yellow cattle are the two of the most important natural reservoir hosts for Schistosoma japonicum in endemic areas of China, although their susceptibility differs, with water buffalo being less conducive to the growth and development of S. japonicum. Results from the current study show that the general morphology and ultrastructure of adult schistosomes derived from the two hosts also differed. Using high-throughput microarray technology, we also compared the gene expression profiles of adult schistosomes derived from the two hosts. We identified genes that were differentially expressed in worms from the two natural hosts. Further analysis revealed that genes associated with protein kinase and phosphatase, the stimulus response, and lipid and nucleotide metabolism were overexpressed, whereas genes associated with reproduction, anatomical structure morphogenesis and multifunctional motif were underexpressed in schistosomes from water buffalo. These differentially expressed genes were mainly involved in nucleotide, energy, lipid metabolism, energy metabolism, transcription, transport and signaling pathway. This suggests that they are key molecules affecting the survival and development of schistosomes in different natural host species. The results of this study add to current understanding of the interplay between parasites and their natural hosts, and provide valuable information for the screening of vaccine candidates or new drug targets against schistosomiasis in the natural reservoir hosts in endemic areas.
Collapse
Affiliation(s)
- Jianmei Yang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, People’s Republic of China
| | - Xingang Feng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, People’s Republic of China
| | - Zhiqiang Fu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, People’s Republic of China
| | - Chunxiu Yuan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, People’s Republic of China
| | - Yang Hong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, People’s Republic of China
| | - Yaojun Shi
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, People’s Republic of China
| | - Min Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, People’s Republic of China
| | - Jinming Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, People’s Republic of China
| | - Hao Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, People’s Republic of China
| | - Ke Lu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, People’s Republic of China
| | - Jiaojiao Lin
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, People’s Republic of China
| |
Collapse
|
31
|
Abstract
Systems biology aims to integrate multiple biological data types such as genomics, transcriptomics and proteomics across different levels of structure and scale; it represents an emerging paradigm in the scientific process which challenges the reductionism that has dominated biomedical research for hundreds of years. Systems biology will nevertheless only be successful if the technologies on which it is based are able to deliver the required type and quality of data. In this review we discuss how well positioned is proteomics to deliver the data necessary to support meaningful systems modelling in parasite biology. We summarise the current state of identification proteomics in parasites, but argue that a new generation of quantitative proteomics data is now needed to underpin effective systems modelling. We discuss the challenges faced to acquire more complete knowledge of protein post-translational modifications, protein turnover and protein-protein interactions in parasites. Finally we highlight the central role of proteome-informatics in ensuring that proteomics data is readily accessible to the user-community and can be translated and integrated with other relevant data types.
Collapse
|