1
|
Alvarez-Arguedas S, Mazhar K, Wangzhou A, Sankaranarayanan I, Gaona G, Lafin JT, Mitchell RB, Price TJ, Shiloh MU. Single cell transcriptional analysis of human adenoids identifies molecular features of airway microfold cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.19.619143. [PMID: 39484391 PMCID: PMC11526898 DOI: 10.1101/2024.10.19.619143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The nasal, oropharyngeal, and bronchial mucosa are primary contact points for airborne pathogens like Mycobacterium tuberculosis (Mtb), SARS-CoV-2, and influenza virus. While mucosal surfaces can function as both entry points and barriers to infection, mucosa-associated lymphoid tissues (MALT) facilitate early immune responses to mucosal antigens. MALT contains a variety of specialized epithelial cells, including a rare cell type called a microfold cell (M cell) that functions to transport apical antigens to basolateral antigen-presenting cells, a crucial step in the initiation of mucosal immunity. M cells have been extensively characterized in the gastrointestinal (GI) tract in murine and human models. However, the precise development and functions of human airway M cells is unknown. Here, using single-nucleus RNA sequencing (snRNA-seq), we generated an atlas of cells from the human adenoid and identified 16 unique cell types representing basal, club, hillock, and hematopoietic lineages, defined their developmental trajectories, and determined cell-cell relationships. Using trajectory analysis, we found that human airway M cells develop from progenitor club cells and express a gene signature distinct from intestinal M cells. Surprisingly, we also identified a heretofore unknown epithelial cell type demonstrating a robust interferon-stimulated gene signature. Our analysis of human adenoid cells enhances our understanding of mucosal immune responses and the role of M cells in airway immunity. This work also provides a resource for understanding early interactions of pathogens with airway mucosa and a platform for development of mucosal vaccines.
Collapse
|
2
|
Kain BN, Tran BT, Luna PN, Cao R, Le DT, Florez MA, Maneix L, Toups JD, Morales-Mantilla DE, Koh S, Han H, Jaksik R, Huang Y, Catic A, Shaw CA, King KY. Hematopoietic stem and progenitor cells confer cross-protective trained immunity in mouse models. iScience 2023; 26:107596. [PMID: 37664586 PMCID: PMC10470378 DOI: 10.1016/j.isci.2023.107596] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/24/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023] Open
Abstract
Recent studies suggest that infection reprograms hematopoietic stem and progenitor cells (HSPCs) to enhance innate immune responses upon secondary infectious challenge, a process called "trained immunity." However, the specificity and cell types responsible for this response remain poorly defined. We established a model of trained immunity in mice in response to Mycobacterium avium infection. scRNA-seq analysis revealed that HSPCs activate interferon gamma-response genes heterogeneously upon primary challenge, while rare cell populations expand. Macrophages derived from trained HSPCs demonstrated enhanced bacterial killing and metabolism, and a single dose of recombinant interferon gamma exposure was sufficient to induce similar training. Mice transplanted with influenza-trained HSPCs displayed enhanced immunity against M. avium challenge and vice versa, demonstrating cross protection against antigenically distinct pathogens. Together, these results indicate that heterogeneous responses to infection by HSPCs can lead to long-term production of bone marrow derived macrophages with enhanced function and confer cross-protection against alternative pathogens.
Collapse
Affiliation(s)
- Bailee N. Kain
- Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics – Division of Infectious Disease, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
| | - Brandon T. Tran
- Department of Pediatrics – Division of Infectious Disease, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Graduate Program in Cancer and Cell Biology, Baylor College of Medicine, Houston, TX, USA
| | - Pamela N. Luna
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Ruoqiong Cao
- Department of Pediatrics – Division of Infectious Disease, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX, USA
- Graduate Program in Immunology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Duy T. Le
- Department of Pediatrics – Division of Infectious Disease, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX, USA
- Graduate Program in Immunology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
| | - Marcus A. Florez
- Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics – Division of Infectious Disease, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
| | - Laure Maneix
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Jack D. Toups
- Department of Pediatrics – Division of Infectious Disease, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
| | - Daniel E. Morales-Mantilla
- Department of Pediatrics – Division of Infectious Disease, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX, USA
- Graduate Program in Immunology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
| | - Scott Koh
- Department of Pediatrics – Division of Infectious Disease, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Hyojeong Han
- Department of Pediatrics – Division of Hematology Oncology, Baylor College of Medicine, Houston, TX, USA
| | - Roman Jaksik
- Department of Systems Biology and Engineering and Biotechnology Centre, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Yun Huang
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M Health, Houston, TX, USA
| | - Andre Catic
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Chad A. Shaw
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Katherine Y. King
- Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics – Division of Infectious Disease, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX, USA
- Graduate Program in Immunology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
3
|
Lingamgunta LK, Aloor BP, Dasari S, Ramakrishnan R, Botlagunta M, Madikonda AK, Gopal S, Sade A. Identification of prognostic hub genes and therapeutic targets for selenium deficiency in chicks model through transcriptome profiling. Sci Rep 2023; 13:8695. [PMID: 37248251 DOI: 10.1038/s41598-023-34955-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/10/2023] [Indexed: 05/31/2023] Open
Abstract
Selenium deficiency is a prevalent micronutrient deficiency that poses a major health concern worldwide. This study aimed to shed light on the molecular mechanisms underlying selenium deficiency using a chick model. Chickens were divided into control and selenium deficient groups. Plasma samples were collected to measure selenium concentration and transcriptome analyse were performed on oviduct samples. The results showed that selenium deficiency led to a significant reduction in plasma selenium levels and altered the expression of 10,266 differentially expressed genes (DEGs). These DEGs primarily regulated signal transduction and cell motility. The molecular function includes GTPase regulatory activity, and KEGG pathway analysis showed that they were mainly involved in the signal transduction. By using Cytoscape and CancerGeneNet tool, we identified 8 modules and 10 hub genes (FRK, JUN, PTPRC, ACTA2, MST1R, SDC4, SDC1, CXCL12, MX1 and EZR) associated with receptor tyrosine kinase pathway, Wnt and mTOR signaling pathways that may be closely related to cancer. These hub genes could be served as precise diagnostic and prognostic candidate biomarkers of selenium deficiency and potential targets for treatment strategies in both animals and humans. This study sheds light on the molecular basis of selenium deficiency and its potential impact on public health.
Collapse
Affiliation(s)
| | - Bindu Prasuna Aloor
- Department of Botany, Rayalaseema University, Kurnool, 518002, Andhra Pradesh, India
| | - Sreenivasulu Dasari
- Department of Biochemistry, Sri Venkateswara University, Tirupati, 517502, Andhra Pradesh, India
| | - Ranjani Ramakrishnan
- Department of Virology, Sri Venkateswara University, Tirupati, 517502, Andhra Pradesh, India
| | - Mahendran Botlagunta
- School of Biosciences, Engineering and Technology, Vellore Institute of Technology (VIT), Bhopal, 466114, Madhya Pradesh, India
| | - Ashok Kumar Madikonda
- Department of Biochemistry & Molecular Biology, Central University of Kerala, Periye, 671316, Kerala, India
| | - Shankar Gopal
- Department of Biochemistry, Sri Venkateswara University, Tirupati, 517502, Andhra Pradesh, India
| | - Ankanna Sade
- Department of Botany, Sri Venkateswara University, Tirupati, 517502, Andhra Pradesh, India
| |
Collapse
|
4
|
Del Amo EM, Griffiths JR, Klaska IP, Hoke J, White A, Aarons L, Cooper GJS, Bainbridge JWB, Bishop PN, Unwin RD. Intravitreal Pharmacokinetic Study of the Antiangiogenic Glycoprotein Opticin. Mol Pharm 2020; 17:2390-2397. [PMID: 32437164 PMCID: PMC7341526 DOI: 10.1021/acs.molpharmaceut.0c00151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Opticin is an endogenous vitreous
glycoprotein that may have therapeutic
potential as it has been shown that supranormal concentrations suppress
preretinal neovascularization. Herein we investigated the pharmacokinetics
of opticin following intravitreal injection in rabbits. To measure
simultaneously concentrations of human and rabbit opticin, a selected
reaction monitoring mass spectrometry assay was developed. The mean
concentration of endogenous rabbit opticin in 7 uninjected eyes was
measured and found to be 19.2 nM or 0.62 μg/mL. When the vitreous
was separated by centrifugation into a supernatant and collagen-containing
pellet, 94% of the rabbit opticin was in the supernatant. Intravitreal
injection of human opticin (40 μg) into both eyes of rabbits
was followed by enucleation at 5, 24, and 72 h and 7, 14, and 28 days
postinjection (n = 6 at each time point) and measurement
of vitreous human and rabbit opticin concentrations in the supernatant
and collagen-containing pellet following centrifugation. The volume
of distribution of human opticin was calculated to be 3.31 mL, and
the vitreous half-life was 4.2 days. Assuming that rabbit and human
opticin are cleared from rabbit vitreous at the same rate, opticin
is secreted into the vitreous at a rate of 0.14 μg/day. We conclude
that intravitreally injected opticin has a vitreous half-life that
is similar to currently available antiangiogenic therapeutics. While
opticin was first identified bound to vitreous collagen fibrils, here
we demonstrate that >90% of endogenous opticin is not bound to
collagen.
Endogenous opticin is secreted by the nonpigmented ciliary epithelium
into the rabbit vitreous at a remarkably high rate, and the turnover
in vitreous is approximately 15% per day.
Collapse
Affiliation(s)
- Eva M Del Amo
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine & Health (FBMH), University of Manchester, Manchester M13 9PT, United Kingdom
| | - John R Griffiths
- Division of Cardiovascular Sciences, School of Medical Sciences, FBMH, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Izabela P Klaska
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, United Kingdom
| | - Justin Hoke
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, United Kingdom
| | - Anne White
- Division of Evolution & Genomic Sciences, School of Biological Sciences, FBMH, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Leon Aarons
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine & Health (FBMH), University of Manchester, Manchester M13 9PT, United Kingdom
| | - Garth J S Cooper
- Division of Cardiovascular Sciences, School of Medical Sciences, FBMH, University of Manchester, Manchester M13 9PT, United Kingdom
| | - James W B Bainbridge
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, United Kingdom
| | - Paul N Bishop
- Division of Evolution & Genomic Sciences, School of Biological Sciences, FBMH, University of Manchester, Manchester M13 9PL, United Kingdom.,Manchester Royal Eye Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, United Kingdom
| | - Richard D Unwin
- Division of Cardiovascular Sciences, School of Medical Sciences, FBMH, University of Manchester, Manchester M13 9PT, United Kingdom.,Stoller Biomarker Discovery Centre and Division of Cancer Sciences, School of Medical Sciences, FBMH, University of Manchester, Manchester M13 9PL, United Kingdom
| |
Collapse
|
5
|
Huang X, Zuo Y, Wang X, Wu X, Tan H, Fan Q, Dong B, Xue W, Chen GQ, Cheng J. SUMO-Specific Protease 1 Is Critical for Myeloid-Derived Suppressor Cell Development and Function. Cancer Res 2019; 79:3891-3902. [PMID: 31186231 DOI: 10.1158/0008-5472.can-18-3497] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 04/07/2019] [Accepted: 06/04/2019] [Indexed: 11/16/2022]
Abstract
Myeloid-derived suppressor cells (MDSC) can suppress immunity and promote tumorigenesis, and their abundance is associated with poor prognosis. In this study, we show that SUMO1/sentrin-specific peptidase 1 (SENP1) regulates the development and function of MDSC. SENP1 deficiency in myeloid cells promoted MDSC expansion in bone marrow, spleen, and other organs. Senp1-/- MDSC showed stronger immunosuppressive activity than Senp1+/+ MDSC; we observed no defects in the differentiation of myeloid precursor cell in Senp1-/- mice. Mechanistically, SENP1-mediated regulation of MDSC was dependent on STAT3 signaling. We identified CD45 as a specific STAT3 phosphatase in MDSC. CD45 was SUMOylated in MDSC and SENP1 could deconjugate SUMOylated CD45. In Senp1-/- MDSC, CD45 was highly SUMOylated, which reduced its phosphatase activity toward STAT3, leading to STAT3-mediated MDSC development and function. These results reveal a suppressive function of SENP1 in modulating MDSC expansion and function via CD45-STAT3 signaling axis. SIGNIFICANCE: These findings show that increased SUMOylation of CD45 via loss of SENP1 suppresses CD45-mediated dephosphorylation of STAT3, which promotes MDSC development and function, leading to tumorigenesis.
Collapse
Affiliation(s)
- Xian Huang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Renji Hospital Affiliated, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong Zuo
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Department of Urology, Renji Hospital Affiliated, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiuzhi Wang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuefeng Wu
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital Affiliated, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongsheng Tan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qiuju Fan
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Renji Hospital Affiliated, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Baijun Dong
- Department of Urology, Renji Hospital Affiliated, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Xue
- Department of Urology, Renji Hospital Affiliated, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guo-Qiang Chen
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital Affiliated, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinke Cheng
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,State Key Laboratory of Oncogenes and Related Genes, Renji Hospital Affiliated, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Urology, Renji Hospital Affiliated, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Gong J, Lang BJ, Weng D, Eguchi T, Murshid A, Borges TJ, Doshi S, Song B, Stevenson MA, Calderwood SK. Genotoxic stress induces Sca-1-expressing metastatic mammary cancer cells. Mol Oncol 2018; 12:1249-1263. [PMID: 29738110 PMCID: PMC6068352 DOI: 10.1002/1878-0261.12321] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/28/2018] [Accepted: 03/21/2018] [Indexed: 12/20/2022] Open
Abstract
We describe a cell damage-induced phenotype in mammary carcinoma cells involving acquisition of enhanced migratory and metastatic properties. Induction of this state by radiation required increased activity of the Ptgs2 gene product cyclooxygenase 2 (Cox2), secretion of its bioactive lipid product prostaglandin E2 (PGE2), and the activity of the PGE2 receptor EP4. Although largely transient, decaying to low levels in a few days to a week, this phenotype was cumulative with damage and levels of cell markers Sca-1 and ALDH1 increased with treatment dose. The Sca-1+ , metastatic phenotype was inhibited by both Cox2 inhibitors and PGE2 receptor antagonists, suggesting novel approaches to radiosensitization.
Collapse
Affiliation(s)
- Jianlin Gong
- Department of MedicineBoston University Medical CenterMAUSA
| | - Benjamin J. Lang
- Department of Radiation OncologyBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMAUSA
| | - Desheng Weng
- Department of MedicineBoston University Medical CenterMAUSA
| | - Takanori Eguchi
- Department of Radiation OncologyBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMAUSA
| | - Ayesha Murshid
- Department of Radiation OncologyBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMAUSA
| | - Thiago J. Borges
- Department of Radiation OncologyBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMAUSA
| | - Sachin Doshi
- Department of Radiation OncologyBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMAUSA
| | - Baizheng Song
- Department of MedicineBoston University Medical CenterMAUSA
| | - Mary A. Stevenson
- Department of Radiation OncologyBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMAUSA
| | - Stuart K. Calderwood
- Department of Radiation OncologyBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMAUSA
| |
Collapse
|
7
|
Wang J, Yuan L, Liu X, Wang G, Zhu Y, Qian K, Xiao Y, Wang X. Bioinformatics and functional analyses of key genes and pathways in human clear cell renal cell carcinoma. Oncol Lett 2018; 15:9133-9141. [PMID: 29805645 PMCID: PMC5958663 DOI: 10.3892/ol.2018.8473] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 12/11/2017] [Indexed: 02/06/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common type of kidney cancer. The present study was conducted to explore the mechanisms and identify the potential target genes for ccRCC using bioinformatics analysis. The microarray data of GSE15641 were screened on Gene-Cloud of Biotechnology Information (GCBI). A total of 32 ccRCC samples and 23 normal kidney samples were used to identify differentially expressed genes (DEGs) between them. Subsequently, the clustering analysis and functional enrichment analysis of these DEGs were performed, followed by protein-protein interaction (PPI) network, and pathway relation network. Additionally, the most significant module based on PPI network was selected, and the genes in the module were identified as hub genes. Furthermore, transcriptional level, translational level and survival analyses of hub genes were performed to verify the results. A total of 805 genes, 403 upregulated and 402 downregulated, were differentially expressed in ccRCC samples compared with normal controls. The subsequent bioinformatics analysis indicated that the small molecule metabolic process and the metabolic pathway were significantly enriched. A total of 7 genes, including membrane metallo-endopeptidase (MME), albumin (ALB), cadherin 1 (CDH1), prominin 1 (ROM1), chemokine (C-X-C motif) ligand 12 (CXCL12), protein tyrosine phosphatase receptor type C (PTPRC) and intercellular adhesion molecule 1 (ICAM1) were identified as hub genes. In brief, the present study indicated that these candidate genes and pathways may aid in deciphering the molecular mechanisms underlying the development of ccRCC, and may be used as therapeutic targets and diagnostic biomarkers of ccRCC.
Collapse
Affiliation(s)
- Jinxing Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Lushun Yuan
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Xingnian Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Gang Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Yuan Zhu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China.,Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Kaiyu Qian
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China.,Department of Urology, The Fifth Hospital of Wuhan, Wuhan, Hubei 430071, P.R. China.,Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Yu Xiao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China.,Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China.,Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Xinghuan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
8
|
Pearson S, Williamson AJK, Blance R, Somervaille TCP, Taylor S, Azadbakht N, Whetton AD, Pierce A. Proteomic analysis of JAK2V617F-induced changes identifies potential new combinatorial therapeutic approaches. Leukemia 2017; 31:2717-2725. [PMID: 28533538 PMCID: PMC5729335 DOI: 10.1038/leu.2017.143] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/06/2017] [Accepted: 04/25/2017] [Indexed: 01/02/2023]
Abstract
In excess of 90% of patients with polycythaemia vera (PV) express a mutated form of Janus kinase 2 (JAK2), JAK2V617F. Such aberrant proteins offer great potential for the treatment of these diseases; however, inhibitors to JAK2 have had limited success in the clinic in terms of curing the disease. To understand the effects of this oncogene in haematopoietic cells with the aim of improving treatment strategies, we undertook a systematic evaluation of the effects of JAK2V617F expression using proteomics. The effects of JAK2V617F on over 5000 proteins and 2000 nuclear phosphopeptide sites were relatively quantified using either SILAC or eight-channel iTRAQ mass spectrometry. Pathway analysis of the proteins identified as changing indicated disruption to the p53 and MYC signalling pathways. These changes were confirmed using orthogonal approaches. The insight gained from this proteomic analysis led to the formation of hypothesis-driven analysis on inhibitor-mediated effects on primary cells from patients with a JAK2V617F mutation. Simultaneous inhibition of MYC and upregulation of p53 led to the preferential extinction of JAK2V617F-positive CD34+ cells, illustrating a potential therapeutic benefit from combined targeting of p53 and MYC.
Collapse
Affiliation(s)
- S Pearson
- Stem Cell and Leukaemia Proteomics Laboratory, Manchester Academic Health Science Centre, University of Manchester, Wolfson Molecular Imaging Centre, Manchester, UK
| | - A J K Williamson
- Stem Cell and Leukaemia Proteomics Laboratory, Manchester Academic Health Science Centre, University of Manchester, Wolfson Molecular Imaging Centre, Manchester, UK
| | - R Blance
- Stem Cell and Leukaemia Proteomics Laboratory, Manchester Academic Health Science Centre, University of Manchester, Wolfson Molecular Imaging Centre, Manchester, UK
| | - T C P Somervaille
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| | - S Taylor
- Stem Cell and Leukaemia Proteomics Laboratory, Manchester Academic Health Science Centre, University of Manchester, Wolfson Molecular Imaging Centre, Manchester, UK
| | - N Azadbakht
- Stem Cell and Leukaemia Proteomics Laboratory, Manchester Academic Health Science Centre, University of Manchester, Wolfson Molecular Imaging Centre, Manchester, UK
| | - A D Whetton
- Stem Cell and Leukaemia Proteomics Laboratory, Manchester Academic Health Science Centre, University of Manchester, Wolfson Molecular Imaging Centre, Manchester, UK
- Stoller Biomarker Discovery Centre, University of Manchester, Manchester, UK
| | - A Pierce
- Stem Cell and Leukaemia Proteomics Laboratory, Manchester Academic Health Science Centre, University of Manchester, Wolfson Molecular Imaging Centre, Manchester, UK
| |
Collapse
|
9
|
Jung HJ. Chemical Proteomic Approaches Targeting Cancer Stem Cells: A Review of Current Literature. Cancer Genomics Proteomics 2017; 14:315-327. [PMID: 28870999 PMCID: PMC5611518 DOI: 10.21873/cgp.20042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/18/2017] [Accepted: 07/20/2017] [Indexed: 12/24/2022] Open
Abstract
Cancer stem cells (CSCs) have been proposed as central drivers of tumor initiation, progression, recurrence, and therapeutic resistance. Therefore, identifying stem-like cells within cancers and understanding their properties is crucial for the development of effective anticancer therapies. Recently, chemical proteomics has become a powerful tool to efficiently determine protein networks responsible for CSC pathophysiology and comprehensively elucidate molecular mechanisms of drug action against CSCs. This review provides an overview of major methodologies utilized in chemical proteomic approaches. In addition, recent successful chemical proteomic applications targeting CSCs are highlighted. Future direction of potential CSC research by integrating chemical genomic and proteomic data obtained from a single biological sample of CSCs are also suggested in this review.
Collapse
Affiliation(s)
- Hye Jin Jung
- Department of BT-Convergent Pharmaceutical Engineering, Sun Moon University, Asan, Republic of Korea
| |
Collapse
|
10
|
Crosbie PAJ, Crosbie EJ, Aspinall-O'Dea M, Walker M, Harrison R, Pernemalm M, Shah R, Joseph L, Booton R, Pierce A, Whetton AD. ERK and AKT phosphorylation status in lung cancer and emphysema using nanocapillary isoelectric focusing. BMJ Open Respir Res 2016; 3:e000114. [PMID: 26918193 PMCID: PMC4762086 DOI: 10.1136/bmjresp-2015-000114] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 01/02/2016] [Accepted: 01/04/2016] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Emphysema is an independent risk factor for the development of lung cancer in smokers. Activation of oncogenic signalling proteins AKT and ERK by phosphorylation has an established role in the development of lung cancer and has also been implicated in the pathogenesis of emphysema. The aim of this study was to compare the protein level and phosphorylation status of AKT and ERK in paired lung cancer and emphysema tissue using a highly sensitive phosphoprotein analysis approach. METHODS An antibody-based, nanocapillary isoelectric focusing (cIEF) assay was used to determine the relative quantities and phosphorylation status of AKT and ERK in tumour and matched lung tissue from patients, with or without evidence of emphysema, undergoing curative resection for non-small cell lung cancer. RESULTS 20 patients with adenocarcinoma (n=9) or squamous cell carcinoma (n=11) of the lung were included (mean age 67.3 years (SD 7.5, range 47-80 years)), 12 were men and all were current (n=10) or former smokers (n=10). Paired macroscopically normal lung tissue was either histologically normal (n=7) or showed emphysema (n=13). Total and phosphorylated AKT levels were fourfold (p=0.0001) and fivefold (p=0.001) higher in tumour compared with matched lung, respectively. There was no correlation with tumour histology, stage or differentiation; however, total AKT signal in tumour was significantly correlated with fluorodeoxyglucose avidity on positron emission tomography-CT scan (r=0.53, p=0.035). Total ERK was not differentially expressed, but doubly phosphorylated (activated) ERK was threefold higher in emphysema (23.5%, SD 9.2) than either matched tumour (8.8%, SD 8.6) or normal lung tissue (8.3%, SD 9.0) and correlated with the histological severity of emphysema (p=0.005). CONCLUSIONS cIEF offers opportunities for quantifying subtle shifts in the phosphorylation status of oncoproteins in nanogram amounts of lung tissue. ERK activation is a feature of emphysema.
Collapse
Affiliation(s)
- Philip A J Crosbie
- North West Lung Centre, University Hospital of South Manchester, Manchester, UK; Stem Cell and Leukaemia Proteomics Laboratory, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Emma J Crosbie
- Institute of Cancer Sciences, University of Manchester, St Mary's Hospital , Manchester , UK
| | - Mark Aspinall-O'Dea
- Stem Cell and Leukaemia Proteomics Laboratory , University of Manchester, Manchester Academic Health Science Centre , Manchester , UK
| | - Michael Walker
- Stem Cell and Leukaemia Proteomics Laboratory , University of Manchester, Manchester Academic Health Science Centre , Manchester , UK
| | - Rebecca Harrison
- Manchester Medical School, University of Manchester , Manchester , UK
| | - Maria Pernemalm
- Department of Oncology and Pathology , Karolinska Institutet, SciLifeLab , Stockholm , Sweden
| | - Rajesh Shah
- Department of Thoracic Surgery , University Hospital of South Manchester , Manchester , UK
| | - Leena Joseph
- Department of Pathology , University Hospital of South Manchester , Manchester , UK
| | - Richard Booton
- North West Lung Centre, University Hospital of South Manchester , Manchester , UK
| | - Andrew Pierce
- Stem Cell and Leukaemia Proteomics Laboratory , University of Manchester, Manchester Academic Health Science Centre , Manchester , UK
| | - Anthony D Whetton
- Stem Cell and Leukaemia Proteomics Laboratory , University of Manchester, Manchester Academic Health Science Centre , Manchester , UK
| |
Collapse
|
11
|
Chen JQ, Wakefield LM, Goldstein DJ. Capillary nano-immunoassays: advancing quantitative proteomics analysis, biomarker assessment, and molecular diagnostics. J Transl Med 2015; 13:182. [PMID: 26048678 PMCID: PMC4467619 DOI: 10.1186/s12967-015-0537-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 05/14/2015] [Indexed: 12/17/2022] Open
Abstract
There is an emerging demand for the use of molecular profiling to facilitate biomarker identification and development, and to stratify patients for more efficient treatment decisions with reduced adverse effects. In the past decade, great strides have been made to advance genomic, transcriptomic and proteomic approaches to address these demands. While there has been much progress with these large scale approaches, profiling at the protein level still faces challenges due to limitations in clinical sample size, poor reproducibility, unreliable quantitation, and lack of assay robustness. A novel automated capillary nano-immunoassay (CNIA) technology has been developed. This technology offers precise and accurate measurement of proteins and their post-translational modifications using either charge-based or size-based separation formats. The system not only uses ultralow nanogram levels of protein but also allows multi-analyte analysis using a parallel single-analyte format for increased sensitivity and specificity. The high sensitivity and excellent reproducibility of this technology make it particularly powerful for analysis of clinical samples. Furthermore, the system can distinguish and detect specific protein post-translational modifications that conventional Western blot and other immunoassays cannot easily capture. This review will summarize and evaluate the latest progress to optimize the CNIA system for comprehensive, quantitative protein and signaling event characterization. It will also discuss how the technology has been successfully applied in both discovery research and clinical studies, for signaling pathway dissection, proteomic biomarker assessment, targeted treatment evaluation and quantitative proteomic analysis. Lastly, a comparison of this novel system with other conventional immuno-assay platforms is performed.
Collapse
Affiliation(s)
- Jin-Qiu Chen
- Collaborative Protein Technology Resource, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Building 37, Room 2140, Bethesda, MD, 20892, USA.
| | - Lalage M Wakefield
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - David J Goldstein
- Office of Science and Technology Resources, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
12
|
Zhang D, Qi J, Liu R, Dai B, Ma W, Zhan Y, Zhang Y. c-Myc plays a key role in TADs-induced apoptosis and cell cycle arrest in human hepatocellular carcinoma cells. Am J Cancer Res 2015; 5:1076-1088. [PMID: 26045987 PMCID: PMC4449436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 12/25/2014] [Indexed: 06/04/2023] Open
Abstract
Cancer cell growth is complicated progression which is regulated and controlled by multiple factors including cell cycle, migration and apoptosis. In present study, we report that TADs, a novel derivative of taspine, has an essential role in resisting hepatocellular carcinoma growth (including arrest cell cycle) and migration, and inducing cell apoptosis. Our findings demonstrated that the TADs showed good inhibition on the hepatoma cell growth and migration, and good action on apoptosis induction. Using genome-wide microarray analysis, we found the down-regulated growth and apoptosis factors, and selected down-regulated genes were confirmed by Western blot. Knockdown of a checkpoint c-Myc by siRNA significantly attenuated tumor inhibition and apoptosis effects of TADs. Moreover, our results indicated TADs could simultaneously increase cyclin D1 protein levels and decrease amount of cyclin E, cyclin B1 and cdc2 of the cycle proteins, and also TADs reduced Bcl-2 expression, and upregulated Bad, Bak and Bax activities. In conclusion, these results illustrated that TADs is a key factor in growth and apoptosis signaling inhibitor, has potential in cancer therapy.
Collapse
Affiliation(s)
- Dongdong Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University Xi'an, Shaanxi Province, P.R. China
| | - Junpeng Qi
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University Xi'an, Shaanxi Province, P.R. China
| | - Rui Liu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University Xi'an, Shaanxi Province, P.R. China
| | - Bingling Dai
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University Xi'an, Shaanxi Province, P.R. China
| | - Weina Ma
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University Xi'an, Shaanxi Province, P.R. China
| | - Yingzhuan Zhan
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University Xi'an, Shaanxi Province, P.R. China
| | - Yanmin Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University Xi'an, Shaanxi Province, P.R. China
| |
Collapse
|
13
|
Dubreuil V, Sap J, Harroch S. Protein tyrosine phosphatase regulation of stem and progenitor cell biology. Semin Cell Dev Biol 2015; 37:82-9. [DOI: 10.1016/j.semcdb.2014.09.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 09/11/2014] [Accepted: 09/15/2014] [Indexed: 12/18/2022]
|
14
|
Antibody-based detection of protein phosphorylation status to track the efficacy of novel therapies using nanogram protein quantities from stem cells and cell lines. Nat Protoc 2014; 10:149-68. [PMID: 25521791 DOI: 10.1038/nprot.2015.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
This protocol describes a highly reproducible antibody-based method that provides protein level and phosphorylation status information from nanogram quantities of protein cell lysate. Nanocapillary isoelectric focusing (cIEF) combines with UV-activated linking chemistry to detect changes in phosphorylation status. As an example application, we describe how to detect changes in response to tyrosine kinase inhibitors (TKIs) in the phosphorylation status of the adaptor protein CrkL, a major substrate of the oncogenic tyrosine kinase BCR-ABL in chronic myeloid leukemia (CML), using highly enriched CML stem cells and mature cell populations in vitro. This protocol provides a 2.5 pg/nl limit of protein detection (<0.2% of a stem cell sample containing <10(4) cells). Additional assays are described for phosphorylated tyrosine 207 (pTyr207)-CrkL and the protein tyrosine phosphatase PTPRC/CD45; these assays were developed using this protocol and applied to CML patient samples. This method is of high throughput, and it can act as a screen for in vitro cancer stem cell response to drugs and novel agents.
Collapse
|
15
|
Brown S, Hutchinson CV, Aspinall-O'Dea M, Whetton AD, Johnson SM, Rees-Unwin K, Burthem J. Monocyte-derived dendritic cells from chronic myeloid leukaemia have abnormal maturation and cytoskeletal function that is associated with defective localisation and signalling by normal ABL1 protein. Eur J Haematol 2014; 93:96-102. [DOI: 10.1111/ejh.12306] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2014] [Indexed: 02/01/2023]
Affiliation(s)
- Sarah Brown
- Pharmacy Department; University of Wolverhampton; Wolverhampton UK
| | - Claire V. Hutchinson
- Institute of Cancer Sciences; Haematological Oncology; University of Manchester; Level 5 Research, St. Mary's Hospital; Manchester UK
| | - Mark Aspinall-O'Dea
- Institute of Cancer Sciences; Wolfson Molecular Imaging Centre; The University of Manchester; Manchester UK
| | - Anthony D. Whetton
- Institute of Cancer Sciences; Wolfson Molecular Imaging Centre; The University of Manchester; Manchester UK
| | - Suzanne M. Johnson
- Institute of Cancer Sciences; Manchester Academic Health Science Centre; The Christie NHS Foundation Trust; Manchester UK
| | - Karen Rees-Unwin
- Institute of Cancer Sciences; Haematological Oncology; University of Manchester; Level 5 Research, St. Mary's Hospital; Manchester UK
| | - John Burthem
- Pharmacy Department; University of Wolverhampton; Wolverhampton UK
- Clinical Haematology; Central Manchester University Hospitals; Manchester UK
| |
Collapse
|