1
|
Olianas A, Guadalupi G, Cabras T, Contini C, Serrao S, Iavarone F, Castagnola M, Messana I, Onali S, Chessa L, Diaz G, Manconi B. Top-Down Proteomics Detection of Potential Salivary Biomarkers for Autoimmune Liver Diseases Classification. Int J Mol Sci 2023; 24:959. [PMID: 36674470 PMCID: PMC9866740 DOI: 10.3390/ijms24020959] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/06/2023] Open
Abstract
(1) Autoimmune hepatitis (AIH) and primary biliary cholangitis (PBC) are autoimmune liver diseases characterized by chronic hepatic inflammation and progressive liver fibrosis. The possible use of saliva as a diagnostic tool has been explored in several oral and systemic diseases. The use of proteomics for personalized medicine is a rapidly emerging field. (2) Salivary proteomic data of 36 healthy controls (HCs), 36 AIH and 36 PBC patients, obtained by liquid chromatography/mass spectrometry top-down pipeline, were analyzed by multiple Mann-Whitney test, Kendall correlation, Random Forest (RF) analysis and Linear Discriminant Analysis (LDA); (3) Mann-Whitney tests provided indications on the panel of differentially expressed salivary proteins and peptides, namely cystatin A, statherin, histatin 3, histatin 5 and histatin 6, which were elevated in AIH patients with respect to both HCs and PBC patients, while S100A12, S100A9 short, cystatin S1, S2, SN and C showed varied levels in PBC with respect to HCs and/or AIH patients. RF analysis evidenced a panel of salivary proteins/peptides able to classify with good accuracy PBC vs. HCs (83.3%), AIH vs. HCs (79.9%) and PBC vs. AIH (80.2%); (4) RF appears to be an attractive machine-learning tool suited for classification of AIH and PBC based on their different salivary proteomic profiles.
Collapse
Affiliation(s)
- Alessandra Olianas
- Dipartimento di Scienze della Vita e dell’Ambiente, Università di Cagliari, 09042 Cagliari, Italy
| | - Giulia Guadalupi
- Dipartimento di Scienze della Vita e dell’Ambiente, Università di Cagliari, 09042 Cagliari, Italy
| | - Tiziana Cabras
- Dipartimento di Scienze della Vita e dell’Ambiente, Università di Cagliari, 09042 Cagliari, Italy
| | - Cristina Contini
- Dipartimento di Scienze della Vita e dell’Ambiente, Università di Cagliari, 09042 Cagliari, Italy
| | - Simone Serrao
- Dipartimento di Scienze della Vita e dell’Ambiente, Università di Cagliari, 09042 Cagliari, Italy
| | - Federica Iavarone
- Fondazione Policlinico Universitario “A. Gemelli”—IRCCS, 00168 Rome, Italy
| | - Massimo Castagnola
- Laboratorio di Proteomica, Centro Europeo di Ricerca sul Cervello, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Irene Messana
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, Consiglio Nazionale delle Ricerche, 00168 Rome, Italy
| | - Simona Onali
- Liver Unit, University Hospital of Cagliari, 09042 Cagliari, Italy
| | - Luchino Chessa
- Liver Unit, University Hospital of Cagliari, 09042 Cagliari, Italy
- Dipartimento di Scienze Mediche e Sanità Pubblica, Università di Cagliari, 09042 Cagliari, Italy
| | - Giacomo Diaz
- Dipartimento di Scienze Biomediche, Università di Cagliari, 09042 Cagliari, Italy
| | - Barbara Manconi
- Dipartimento di Scienze della Vita e dell’Ambiente, Università di Cagliari, 09042 Cagliari, Italy
| |
Collapse
|
2
|
Panagaki T, Pecze L, Randi EB, Nieminen AI, Szabo C. Role of the cystathionine β-synthase / H 2S pathway in the development of cellular metabolic dysfunction and pseudohypoxia in down syndrome. Redox Biol 2022; 55:102416. [PMID: 35921774 PMCID: PMC9356176 DOI: 10.1016/j.redox.2022.102416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/10/2022] [Accepted: 07/17/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Overexpression of the transsulfuration enzyme cystathionine-β-synthase (CBS), and overproduction of its product, hydrogen sulfide (H2S) are recognized as potential pathogenetic factors in Down syndrome (DS). The purpose of the study was to determine how the mitochondrial function and core metabolic pathways are affected by DS and how pharmacological inhibition of CBS affects these parameters. METHODS 8 human control and 8 human DS fibroblast cell lines have been subjected to bioenergetic and fluxomic and proteomic analysis with and without treatment with a pharmacological inhibitor of CBS. RESULTS DS cells exhibited a significantly higher CBS expression than control cells, and produced more H2S. They also exhibited suppressed mitochondrial electron transport and oxygen consumption and suppressed Complex IV activity, impaired cell proliferation and increased ROS generation. Inhibition of H2S biosynthesis with aminooxyacetic acid reduced cellular H2S, improved cellular bioenergetics, attenuated ROS and improved proliferation. 13C glucose fluxomic analysis revealed that DS cells exhibit a suppression of the Krebs cycle activity with a compensatory increase in glycolysis. CBS inhibition restored the flux from glycolysis to the Krebs cycle and reactivated oxidative phosphorylation. Proteomic analysis revealed no CBS-dependent alterations in the expression level of the enzymes involved in glycolysis, oxidative phosphorylation and the pentose phosphate pathway. DS was associated with the dysregulation of several components of the autophagy network; CBS inhibition normalized several of these parameters. CONCLUSIONS Increased H2S generation in DS promotes pseudohypoxia and contributes to cellular metabolic dysfunction by causing a shift from oxidative phosphorylation to glycolysis.
Collapse
Affiliation(s)
- Theodora Panagaki
- Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Laszlo Pecze
- Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Elisa B Randi
- Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Anni I Nieminen
- Metabolomics Unit, Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Csaba Szabo
- Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
3
|
Singh LK, Pandey M, Baithalu RK, Fernandes A, Ali SA, Jaiswal L, Pannu S, Neeraj, Mohanty TK, Kumaresan A, Datta TK, Kumar S, Mohanty AK. Comparative Proteome Profiling of Saliva Between Estrus and Non-Estrus Stages by Employing Label-Free Quantitation (LFQ) and Tandem Mass Tag (TMT)-LC-MS/MS Analysis: An Approach for Estrus Biomarker Identification in Bubalus bubalis. Front Genet 2022; 13:867909. [PMID: 35754844 PMCID: PMC9217162 DOI: 10.3389/fgene.2022.867909] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/05/2022] [Indexed: 02/05/2023] Open
Abstract
Accurate determination of estrus is essentially required for efficient reproduction management of farm animals. Buffalo is a shy breeder and does not manifest overt signs of estrus that make estrus detection difficult resulting in a poor conception rate. Therefore, identifying estrus biomarkers in easily accessible biofluid such as saliva is of utmost interest. In the current study, we generated saliva proteome profiles during proestrus (PE), estrus (E), metestrus (ME), and diestrus (DE) stages of the buffalo estrous cycle using both label-free quantitation (LFQ) and labeled (TMT) quantitation and mass spectrometry analysis. A total of 520 proteins were identified as DEPs in LFQ; among these, 59 and four proteins were upregulated (FC ≥ 1.5) and downregulated (FC ≤ 0.5) during E vs. PE, ME, and DE comparisons, respectively. Similarly, TMT-LC-MS/MS analysis identified 369 DEPs; among these, 74 and 73 proteins were upregulated and downregulated during E vs. PE, ME, and DE stages, respectively. Functional annotations of GO terms showed enrichment of glycolysis, pyruvate metabolism, endopeptidase inhibitor activity, salivary secretion, innate immune response, calcium ion binding, oocyte meiosis, and estrogen signaling. Over-expression of SERPINB1, HSPA1A, VMO1, SDF4, LCN1, OBP, and ENO3 proteins during estrus was further confirmed by Western blotting. This is the first comprehensive report on differential proteome analysis of buffalo saliva between estrus and non-estrus stages. This study generated an important panel of candidate proteins that may be considered buffalo estrus biomarkers which can be applied in the development of a diagnostic kit for estrus detection in buffalo.
Collapse
|
4
|
Potential protein markers in children with Autistic Spectrum Disorder (ASD) revealed by salivary proteomics. Int J Biol Macromol 2022; 199:243-251. [PMID: 35016969 DOI: 10.1016/j.ijbiomac.2022.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/22/2021] [Accepted: 01/03/2022] [Indexed: 12/26/2022]
Abstract
The lack of specific pharmacological therapy for Autistic Spectrum Disorder (ASD) and its clinical heterogeneity demand efforts directed toward the identification of biomarkers to aid in diagnosis. Proteomics offers a new perspective for studying the altered proteins associated with autism spectrum disorders (ASD) and we have saliva as an easy-to-collect biological fluid with important biomolecules for investigating biomarkers in various diseases. In this sense, saliva could be used to identify potential biomarkers of ASD. In the current work, saliva samples were collected from children with different degrees of ASD and healthy children and proteomics approaches were applied to generate data on differentially expressed proteins between groups which will serve as a basis for future validation studies as protein markers. Data are available via ProteomeXchange with identifier PXD030065. As results, 132 proteins were present in 80% of the saliva pools of all analyzed groups. Twenty-five proteins were identified as overexpressed in the group of severe and mild/moderate ASD carriers, among which, eight were identified as potential biomarkers for ASD.
Collapse
|
5
|
Boroumand M, Olianas A, Cabras T, Manconi B, Fanni D, Faa G, Desiderio C, Messana I, Castagnola M. Saliva, a bodily fluid with recognized and potential diagnostic applications. J Sep Sci 2021; 44:3677-3690. [PMID: 34350708 PMCID: PMC9290823 DOI: 10.1002/jssc.202100384] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 12/12/2022]
Abstract
Human whole saliva is a bodily fluid that can be obtained easily by noninvasive techniques. Specimens can be collected by the patient also at home in order to monitor health status and variations of several analytes of clinical interest. The contributions to whole saliva include secretions from salivary glands and, among others, from the gingival crevicular fluid that derives from the epithelial mucosa. Therefore, saliva is currently a relevant diagnostic fluid for many substances, including steroids, nonpeptide hormones, therapeutic drugs, and drugs of abuse. This review at first briefly describes the different contributions to whole saliva. A section illustrates the procedures for the collection, handling, and storage of salivary specimens. Another section describes the present use of whole saliva for diagnostic purposes and its specific utilization for the diagnosis of several local and systemic diseases. The final sections illustrate the future opportunities offered by various not conventional techniques with a focus on the most recent –omic investigations. It describes the various issues that have to be taken into account to avoid false positives and negatives, such as the strength of the experimental plan, the adequacy of the number of samples under study, and the proper choice of controls.
Collapse
Affiliation(s)
- Mozhgan Boroumand
- Laboratorio di Proteomica, Centro Europeo di Ricerca sul Cervello, IRCCS Fondazione Santa Lucia, Roma, Italy
| | - Alessandra Olianas
- Dipartimento di Scienze Della Vita e Dell'Ambiente, Università di Cagliari, Cagliari, Italy
| | - Tiziana Cabras
- Dipartimento di Scienze Della Vita e Dell'Ambiente, Università di Cagliari, Cagliari, Italy
| | - Barbara Manconi
- Dipartimento di Scienze Della Vita e Dell'Ambiente, Università di Cagliari, Cagliari, Italy
| | - Daniela Fanni
- Dipartimento di Scienze Mediche e Sanità Pubblica, Sezione di Patologia, Università di Cagliari, AOU of Cagliari, Cagliari, Italy.,Department of Biology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, USA
| | - Gavino Faa
- Dipartimento di Scienze Mediche e Sanità Pubblica, Sezione di Patologia, Università di Cagliari, AOU of Cagliari, Cagliari, Italy.,Department of Biology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, USA
| | - Claudia Desiderio
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" (SCITEC), Consiglio Nazionale Delle Ricerche, Roma, Italy
| | - Irene Messana
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" (SCITEC), Consiglio Nazionale Delle Ricerche, Roma, Italy
| | - Massimo Castagnola
- Laboratorio di Proteomica, Centro Europeo di Ricerca sul Cervello, IRCCS Fondazione Santa Lucia, Roma, Italy
| |
Collapse
|
6
|
Association between Antimicrobial Peptide Histatin 5 Levels and Prevalence of Candida in Saliva of Patients with Down Syndrome. Antibiotics (Basel) 2021; 10:antibiotics10050494. [PMID: 33925785 PMCID: PMC8145106 DOI: 10.3390/antibiotics10050494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 11/30/2022] Open
Abstract
There are no studies on Candida colonization and micropeptides of saliva in any patient. Therefore, we studied the effects of the salivary antimicrobial peptide histatin 5 on oral fungal colonization; subjects were subdivided into Down syndrome (D) and normal (N) groups by age: N-1 and D-1, age <20 years; N-2 and D-2, age >40 years. Histatin 5 concentration in saliva was measured by enzyme-linked immunosorbent assay. Oral Candida species were identified using CHROMagar Candida. Candida colonization was significantly enhanced in the D-1 and D-2 groups compared to the N-1 and N-2 groups. There was no predominant difference in salivary histatin 5 concentration between the D-1 and N-1 groups, but it was significantly lower in the D-2 group than in the N-2 group. Only in the N-2 group was there a correlation between the concentration of histatin 5 and total protein, while no correlation was found in the other groups. In elderly patients with Down syndrome, the decrease in histatin 5 shown in this study may lead to oral Candida colony formation. Therefore, the results of this study suggest that a deficiency of the antimicrobial peptide histatin 5 could possibly induce oral Candida infection in DS.
Collapse
|
7
|
Xu T, Shen X, Yang Z, Chen D, Lubeckyj RA, McCool EN, Sun L. Automated Capillary Isoelectric Focusing-Tandem Mass Spectrometry for Qualitative and Quantitative Top-Down Proteomics. Anal Chem 2020; 92:15890-15898. [PMID: 33263984 PMCID: PMC8564864 DOI: 10.1021/acs.analchem.0c03266] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Top-down proteomics (TDP) aims to delineate proteomes in a proteoform-specific manner, which is vital for accurately understanding protein function in cellular processes. It requires high-capacity separation of proteoforms before mass spectrometry (MS) and tandem MS (MS/MS). Capillary isoelectric focusing (cIEF)-MS has been recognized as a useful tool for TDP in the 1990s because cIEF is capable of high-resolution separation of proteoforms. Previous cIEF-MS studies concentrated on measuring the protein's mass without MS/MS, impeding the confident proteoform identification in complex samples and the accurate localization of post-translational modifications on proteoforms. Herein, for the first time, we present automated cIEF-MS/MS-based TDP for large-scale delineation of proteoforms in complex proteomes. Single-shot cIEF-MS/MS identified 711 proteoforms from an Escherichia coli (E. coli) proteome consuming only nanograms of proteins. Coupling two-dimensional size-exclusion chromatography (SEC)-cIEF to ESI-MS/MS enabled the identification of nearly 2000 proteoforms from the E. coli proteome. Label-free quantitative TDP of zebrafish male and female brains using SEC-cIEF-MS/MS quantified thousands of proteoforms and revealed sex-dependent proteoform profiles in brains. Particularly, we discovered several proteolytic proteoforms of pro-opiomelanocortin and prodynorphin with significantly higher abundance in male zebrafish brains as potential endogenous hormone proteoforms. Multilevel quantitative proteomics (TDP and bottom-up proteomics) of the brains revealed that the majority of proteoforms having statistically significant difference in abundance between genders showed no abundance difference at the protein group level. This work represents the first multilevel quantitative proteomics study of sexual dimorphism of the brain.
Collapse
Affiliation(s)
- Tian Xu
- Department of Chemistry, Michigan State University, 578 S Shaw Ln, East Lansing, Michigan 48824, United States
| | - Xiaojing Shen
- Department of Chemistry, Michigan State University, 578 S Shaw Ln, East Lansing, Michigan 48824, United States
| | - Zhichang Yang
- Department of Chemistry, Michigan State University, 578 S Shaw Ln, East Lansing, Michigan 48824, United States
| | - Daoyang Chen
- Department of Chemistry, Michigan State University, 578 S Shaw Ln, East Lansing, Michigan 48824, United States
| | - Rachele A Lubeckyj
- Department of Chemistry, Michigan State University, 578 S Shaw Ln, East Lansing, Michigan 48824, United States
| | - Elijah N McCool
- Department of Chemistry, Michigan State University, 578 S Shaw Ln, East Lansing, Michigan 48824, United States
| | - Liangliang Sun
- Department of Chemistry, Michigan State University, 578 S Shaw Ln, East Lansing, Michigan 48824, United States
| |
Collapse
|
8
|
Serrao S, Firinu D, Olianas A, Deidda M, Contini C, Iavarone F, Sanna MT, Boroumand M, Amado F, Castagnola M, Messana I, Del Giacco S, Manconi B, Cabras T. Top-Down Proteomics of Human Saliva Discloses Significant Variations of the Protein Profile in Patients with Mastocytosis. J Proteome Res 2020. [PMID: 32575983 DOI: 10.1021/acs.jproteome.0c00207.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mastocytosis is a myeloproliferative neoplasm causing abnormal clonal mast cell accumulation in different tissues, such as skin and bone marrow. A cutaneous subtype (CM) is distinguished from a systemic one (SM); SM patients can be grouped into SM with (SM+C) or without (SM-C) additional cutaneous lesions, and their classification is often challenging. This study was purposed to highlight variations in the salivary proteome of patients with different mastocytosis subtypes and compared to healthy controls. A top-down proteomics approach coupled to a label-free quantitation revealed salivary profiles in patients different from those of controls and a down-regulation of peptides/proteins involved in the mouth homeostasis and defense, such as statherin, histatins, and acidic proline-rich proteins (aPRPs), and in innate immunity and inflammation, such as the cathepsin inhibitors, suggesting a systemic condition associated with an exacerbated inflammatory state. The up-regulation of antileukoproteinase and S100A8 suggested a protective role against the disease status. The two SM forms were distinguished by the lower levels of truncated forms of aPRPs, statherin, P-B peptide, and cystatin D and the higher levels of thymosin β4 and α-defensins 1 and 4 in SM-C patients with respect to SM+C. Data are available via ProteomeXchange with identifier PXD017759.
Collapse
Affiliation(s)
- Simone Serrao
- Dipartimento di Scienze della Vita e dell'Ambiente, Università di Cagliari, 09124 Cagliari, Italy
| | - Davide Firinu
- Dipartimento di Scienze Mediche e Sanità Pubblica, Università di Cagliari, 09124 Cagliari, Italy
| | - Alessandra Olianas
- Dipartimento di Scienze della Vita e dell'Ambiente, Università di Cagliari, 09124 Cagliari, Italy
| | - Margherita Deidda
- Dipartimento di Scienze Mediche e Sanità Pubblica, Università di Cagliari, 09124 Cagliari, Italy
| | - Cristina Contini
- Dipartimento di Scienze della Vita e dell'Ambiente, Università di Cagliari, 09124 Cagliari, Italy
| | - Federica Iavarone
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Roma, Italy.,Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy
| | - M Teresa Sanna
- Dipartimento di Scienze della Vita e dell'Ambiente, Università di Cagliari, 09124 Cagliari, Italy
| | - Mozhgan Boroumand
- Laboratorio di Proteomica e Metabonomica-IRCCS Fondazione Santa Lucia, 100168 Roma, Italy
| | - Francisco Amado
- QOPNA, Mass spectrometry center, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Massimo Castagnola
- Laboratorio di Proteomica e Metabonomica-IRCCS Fondazione Santa Lucia, 100168 Roma, Italy
| | - Irene Messana
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", Consiglio Nazionale delle Ricerche, 00185 Roma, Italy
| | - Stefano Del Giacco
- Dipartimento di Scienze Mediche e Sanità Pubblica, Università di Cagliari, 09124 Cagliari, Italy
| | - Barbara Manconi
- Dipartimento di Scienze della Vita e dell'Ambiente, Università di Cagliari, 09124 Cagliari, Italy
| | - Tiziana Cabras
- Dipartimento di Scienze della Vita e dell'Ambiente, Università di Cagliari, 09124 Cagliari, Italy
| |
Collapse
|
9
|
Serrao S, Firinu D, Olianas A, Deidda M, Contini C, Iavarone F, Sanna MT, Boroumand M, Amado F, Castagnola M, Messana I, Del Giacco S, Manconi B, Cabras T. Top-Down Proteomics of Human Saliva Discloses Significant Variations of the Protein Profile in Patients with Mastocytosis. J Proteome Res 2020; 19:3238-3253. [PMID: 32575983 PMCID: PMC8008451 DOI: 10.1021/acs.jproteome.0c00207] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
![]()
Mastocytosis is a myeloproliferative neoplasm causing abnormal clonal mast cell
accumulation in different tissues, such as skin and bone marrow. A
cutaneous subtype (CM) is distinguished from a systemic one (SM);
SM patients can be grouped into SM with (SM+C) or without (SM-C) additional
cutaneous lesions, and their classification is often challenging.
This study was purposed to highlight variations in the salivary proteome
of patients with different mastocytosis subtypes and compared to healthy
controls. A top-down proteomics approach coupled to a label-free quantitation
revealed salivary profiles in patients different from those of controls
and a down-regulation of peptides/proteins involved in the mouth homeostasis
and defense, such as statherin, histatins, and acidic proline-rich
proteins (aPRPs), and in innate immunity and inflammation, such as
the cathepsin inhibitors, suggesting a systemic condition associated
with an exacerbated inflammatory state. The up-regulation of antileukoproteinase
and S100A8 suggested a protective role against the disease status.
The two SM forms were distinguished by the lower levels of truncated
forms of aPRPs, statherin, P-B peptide, and cystatin D and the higher
levels of thymosin β4 and α-defensins 1 and 4 in SM-C
patients with respect to SM+C. Data are available via ProteomeXchange
with identifier PXD017759.
Collapse
Affiliation(s)
- Simone Serrao
- Dipartimento di Scienze della Vita e dell'Ambiente, Università di Cagliari, 09124 Cagliari, Italy
| | - Davide Firinu
- Dipartimento di Scienze Mediche e Sanità Pubblica, Università di Cagliari, 09124 Cagliari, Italy
| | - Alessandra Olianas
- Dipartimento di Scienze della Vita e dell'Ambiente, Università di Cagliari, 09124 Cagliari, Italy
| | - Margherita Deidda
- Dipartimento di Scienze Mediche e Sanità Pubblica, Università di Cagliari, 09124 Cagliari, Italy
| | - Cristina Contini
- Dipartimento di Scienze della Vita e dell'Ambiente, Università di Cagliari, 09124 Cagliari, Italy
| | - Federica Iavarone
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Roma, Italy.,Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy
| | - M Teresa Sanna
- Dipartimento di Scienze della Vita e dell'Ambiente, Università di Cagliari, 09124 Cagliari, Italy
| | - Mozhgan Boroumand
- Laboratorio di Proteomica e Metabonomica-IRCCS Fondazione Santa Lucia, 100168 Roma, Italy
| | - Francisco Amado
- QOPNA, Mass spectrometry center, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Massimo Castagnola
- Laboratorio di Proteomica e Metabonomica-IRCCS Fondazione Santa Lucia, 100168 Roma, Italy
| | - Irene Messana
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", Consiglio Nazionale delle Ricerche, 00185 Roma, Italy
| | - Stefano Del Giacco
- Dipartimento di Scienze Mediche e Sanità Pubblica, Università di Cagliari, 09124 Cagliari, Italy
| | - Barbara Manconi
- Dipartimento di Scienze della Vita e dell'Ambiente, Università di Cagliari, 09124 Cagliari, Italy
| | - Tiziana Cabras
- Dipartimento di Scienze della Vita e dell'Ambiente, Università di Cagliari, 09124 Cagliari, Italy
| |
Collapse
|
10
|
Bekes K, Mitulović G, Meißner N, Resch U, Gruber R. Saliva proteomic patterns in patients with molar incisor hypomineralization. Sci Rep 2020; 10:7560. [PMID: 32371984 PMCID: PMC7200701 DOI: 10.1038/s41598-020-64614-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 04/16/2020] [Indexed: 12/12/2022] Open
Abstract
Molar incisor hypomineralization (MIH) is an endemic pediatric disease with an unclear pathogenesis. Considering that saliva controls enamel remineralization and that MIH is associated with higher saliva flow rate, we hypothesized that the protein composition of saliva is linked to disease. To test this, we enrolled 5 children aged 6-14 years with MIH showing at least one hypersensitive molar and 5 caries-free children without hypomineralization. Saliva samples were subjected to proteomic analysis followed by protein classification in to biological pathways. Among 618 salivary proteins identified with high confidence, 88 proteins were identified exclusively in MIH patients and 16 proteins in healthy controls only. Biological pathway analysis classified these 88 patient-only proteins to neutrophil-mediated adaptive immunity, the activation of the classical pathway of complement activation, extracellular matrix degradation, heme scavenging as well as glutathione -and drug metabolism. The 16 controls-only proteins were associated with adaptive immunity related to platelet degranulation and the lysosome. This report suggests that the proteaneous composition of saliva is affected in MIH patients, reflecting a catabolic environment which is linked to inflammation.
Collapse
Affiliation(s)
- K Bekes
- Department of Paediatric Dentistry, School of Dentistry, Medical University of Vienna, Vienna, Austria.
| | - G Mitulović
- Proteomics Core Facility, Clinical Institute of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | | | - U Resch
- Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - R Gruber
- Department of Oral Biology, School of Dentistry, Medical University of Vienna, Vienna, Austria
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
11
|
Abstract
PURPOSE Assays of salivary biomarkers for diagnosis are gaining popularity in pediatric diseases due to their non-invasive nature. Our pilot project aims to evaluate the utility of salivary leucine-rich-alpha-2-glycoprotein (LRG) in the diagnosis of pediatric acute appendicitis (AA). METHODS We prospectively recruited 34 patients, aged between 4 and 16 years, admitted with acute abdominal pain suspicious of appendicitis. The patients' demography, clinical characteristics, laboratory investigations, imaging examination results, operative findings, and discharge diagnoses were recorded. We compared the diagnostic performance of the patients' total white counts, neutrophil percentages, C-reactive protein, and saliva LRG levels. Saliva samples were obtained using the SalivaBio Children's Swab and LRG levels were quantified using a commercially available LRG enzyme-linked immunosorbent assay (ELISA) kit. IRB approval was obtained. RESULTS Seventeen patients had a confirmed diagnosis of appendicitis on histology. Another 17 were confirmed not to have appendicitis after a minimum of 24 h of hospitalization, with further verification via telephone interview 2 weeks later. The median levels of saliva LRG were elevated in patients with AA as compared to those without (P = 0.008). At a cutoff of LRG 0.33 ng/μg, we obtained a diagnostic specificity of 100% and sensitivity of 35.3%. CONCLUSION Our proof-of-concept study demonstrated the diagnostic potential of saliva LRG for appendicitis in children. The distinct advantage of saliva LRG assays is that the procedure is simple, pain-free, and requires no specialized skill. Further study with a larger cohort is needed to verify our results.
Collapse
|
12
|
Yim A, Koti P, Bonnard A, Marchiano F, Dürrbaum M, Garcia-Perez C, Villaveces J, Gamal S, Cardone G, Perocchi F, Storchova Z, Habermann BH. mitoXplorer, a visual data mining platform to systematically analyze and visualize mitochondrial expression dynamics and mutations. Nucleic Acids Res 2020; 48:605-632. [PMID: 31799603 PMCID: PMC6954439 DOI: 10.1093/nar/gkz1128] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 10/30/2019] [Accepted: 11/18/2019] [Indexed: 12/12/2022] Open
Abstract
Mitochondria participate in metabolism and signaling. They adapt to the requirements of various cell types. Publicly available expression data permit to study expression dynamics of genes with mitochondrial function (mito-genes) in various cell types, conditions and organisms. Yet, we lack an easy way of extracting these data for mito-genes. Here, we introduce the visual data mining platform mitoXplorer, which integrates expression and mutation data of mito-genes with a manually curated mitochondrial interactome containing ∼1200 genes grouped in 38 mitochondrial processes. User-friendly analysis and visualization tools allow to mine mitochondrial expression dynamics and mutations across various datasets from four model species including human. To test the predictive power of mitoXplorer, we quantify mito-gene expression dynamics in trisomy 21 cells, as mitochondrial defects are frequent in trisomy 21. We uncover remarkable differences in the regulation of the mitochondrial transcriptome and proteome in one of the trisomy 21 cell lines, caused by dysregulation of the mitochondrial ribosome and resulting in severe defects in oxidative phosphorylation. With the newly developed Fiji plugin mitoMorph, we identify mild changes in mitochondrial morphology in trisomy 21. Taken together, mitoXplorer (http://mitoxplorer.ibdm.univ-mrs.fr) is a user-friendly, web-based and freely accessible software, aiding experimental scientists to quantify mitochondrial expression dynamics.
Collapse
Affiliation(s)
- Annie Yim
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Prasanna Koti
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Adrien Bonnard
- Aix-Marseille University, INSERM, TAGC U1090, 13009 Marseille, France
| | - Fabio Marchiano
- Aix-Marseille University, CNRS, IBDM UMR 7288, 13009 Marseille, France
| | - Milena Dürrbaum
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Cecilia Garcia-Perez
- Functional Genomics of Mitochondrial Signaling, Gene Center, Ludwig Maximilian University (LMU), Munich, Germany
| | - Jose Villaveces
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Salma Gamal
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Giovanni Cardone
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Fabiana Perocchi
- Functional Genomics of Mitochondrial Signaling, Gene Center, Ludwig Maximilian University (LMU), Munich, Germany
| | - Zuzana Storchova
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.,Department of Molecular Genetics, TU Kaiserslautern, Paul Ehrlich Strasse 24, 67663 Kaiserslautern, Germany
| | - Bianca H Habermann
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.,Aix-Marseille University, CNRS, IBDM UMR 7288, 13009 Marseille, France
| |
Collapse
|
13
|
Abstract
Top-down mass spectrometry (MS) analyzes intact proteins at the proteoform level, which allows researchers to better understand the functions of protein modifications. Recently, top-down proteomics has increased in popularity due to advancements in high-resolution mass spectrometers, increased efficiency in liquid chromatography (LC) separation, and advances in data analysis software. Some unique protein proteoforms, which have been distinguished using top-down MS, have even been shown to exhibit marked variation in biological function compared to similar proteoforms. However, the qualitative identification of a particular proteoform may not be enough to determine the biological relevance of that proteoform. Quantitative top-down MS methods have been notably applied to the study of the differing biological functions of protein proteoforms and have allowed researchers to explore proteomes at the proteoform, rather than the peptide, level. Here, we review the top-down MS methods that have been used to quantitatively identify intact proteins, discuss current applications of quantitative top-down MS analysis, and present new areas where quantitative top-down MS analysis may be implemented.
Collapse
Affiliation(s)
- Kellye A Cupp-Sutton
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Room 2210, Norman, OK 73019-5251, USA.
| | | |
Collapse
|
14
|
Contini C, Firinu D, Serrao S, Manconi B, Olianas A, Cinetto F, Cossu F, Castagnola M, Messana I, Del Giacco S, Cabras T. RP-HPLC-ESI-IT Mass Spectrometry Reveals Significant Variations of the Human Salivary Protein Profile Associated with Predominantly Antibody Deficiencies. J Clin Immunol 2020. [PMID: 31916122 DOI: 10.1007/s10875-020-00743-4.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
Abstract
PURPOSE Present study is designed to discover potential salivary biomarkers associated with predominantly antibody deficiencies, which include a large spectrum of disorders sharing failure of antibody production, and B cell defects resulting in recurrent infections, autoimmune and inflammatory manifestations, and tumor susceptibility. Understanding and clinical classification of these syndromes is still challenging. METHODS We carried out a study of human saliva based on liquid chromatography-mass spectrometry measurements of intact protein mass values. Salivary protein profiles of patients (n = 23) and healthy controls (n = 30) were compared. RESULTS Patients exhibited lower abundance of α-defensins 1-4, cystatins S1 and S2, and higher abundance of glutathionylated cystatin B and cystatin SN than controls. Patients could be clustered in two groups on the basis of different levels of cystatin SN, S1 and S2, suggesting that these proteins may play different roles in the disease. CONCLUSIONS Quantitative variations of these pro-inflammatory and antimicrobial peptides/proteins may be related to immunodeficiency and infectious condition of the patients. The high incidence of tumors in the group with the highest level of cystatin SN, which is recognized as tumoral marker, appeared an intriguing result deserving of future investigations. Data are available via ProteomeXchange with identifier PXD012688.
Collapse
Affiliation(s)
- Cristina Contini
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Univ. Monserrato, ss 554, 09042, Monserrato, CA, Italy
| | - Davide Firinu
- Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Univ. Monserrato, Monserrato, 09042, CA, Italy
| | - Simone Serrao
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Univ. Monserrato, ss 554, 09042, Monserrato, CA, Italy
| | - Barbara Manconi
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Univ. Monserrato, ss 554, 09042, Monserrato, CA, Italy.
| | - Alessandra Olianas
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Univ. Monserrato, ss 554, 09042, Monserrato, CA, Italy
| | - Francesco Cinetto
- Ca' Foncello Hospital - Treviso, Department of Medicine - DIMED, University of Padova, Padova, Italy
| | - Fausto Cossu
- Pediatric HSCT Unit, Pediatric Clinic of University, Ospedale Microcitemico, Cagliari, Italy
| | - Massimo Castagnola
- Proteomics and Metabolomics Laboratory, IRCCS - Fondazione Santa Lucia, Rome, Italy
| | - Irene Messana
- CNR-SCITEC Istituto di Scienze e Tecnologie Chimiche, c/o Istituto di Biochimica e Biochimica Clinica Università Cattolica, L.go F. Vito, 1, 00168, Rome, Italy
| | - Stefano Del Giacco
- Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Univ. Monserrato, Monserrato, 09042, CA, Italy
| | - Tiziana Cabras
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Univ. Monserrato, ss 554, 09042, Monserrato, CA, Italy
| |
Collapse
|
15
|
RP-HPLC-ESI-IT Mass Spectrometry Reveals Significant Variations of the Human Salivary Protein Profile Associated with Predominantly Antibody Deficiencies. J Clin Immunol 2020; 40:329-339. [PMID: 31916122 DOI: 10.1007/s10875-020-00743-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 01/02/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE Present study is designed to discover potential salivary biomarkers associated with predominantly antibody deficiencies, which include a large spectrum of disorders sharing failure of antibody production, and B cell defects resulting in recurrent infections, autoimmune and inflammatory manifestations, and tumor susceptibility. Understanding and clinical classification of these syndromes is still challenging. METHODS We carried out a study of human saliva based on liquid chromatography-mass spectrometry measurements of intact protein mass values. Salivary protein profiles of patients (n = 23) and healthy controls (n = 30) were compared. RESULTS Patients exhibited lower abundance of α-defensins 1-4, cystatins S1 and S2, and higher abundance of glutathionylated cystatin B and cystatin SN than controls. Patients could be clustered in two groups on the basis of different levels of cystatin SN, S1 and S2, suggesting that these proteins may play different roles in the disease. CONCLUSIONS Quantitative variations of these pro-inflammatory and antimicrobial peptides/proteins may be related to immunodeficiency and infectious condition of the patients. The high incidence of tumors in the group with the highest level of cystatin SN, which is recognized as tumoral marker, appeared an intriguing result deserving of future investigations. Data are available via ProteomeXchange with identifier PXD012688.
Collapse
|
16
|
Saliva, an easily accessible fluid as diagnostic tool and potent stem cell source for Alzheimer's Disease: Present and future applications. Brain Res 2019; 1727:146535. [PMID: 31669827 DOI: 10.1016/j.brainres.2019.146535] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/16/2019] [Accepted: 10/24/2019] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is a progressive and multifactorial disease. Many scientific advances have advanced our understanding of the pathogenesis of AD. However, the clinical diagnosis of AD remains difficult, with only post-mortem assays confirming its definitive diagnosis. There is a crucial need for an early and accurate detection of AD related symptoms. To date, current diagnosis techniques are costly or invasive. Finding a peripheral biomarker that could provide a sensitive, reproducible, and accurate detection prior to the onset of the AD clinical symptoms will allow identification of "at risk" individuals, thereby facilitating early initiation of treatments that may prove more effective. Salivary glands contain stem cells, which are affected by aging, suggesting that tissue samples from these glands may reveal a stem cell biomarker of AD, but also stem cells may be harvested from these glands, with proper timing and isolation technique, for cell-based regenerative medicine. Alternatively, instead of the salivary glands, saliva may represent an attractive source for biomarkers due to minimal discomfort to the patient, non-invasive collection, and the possibility of cost-effective screening large populations, encouraging greater compliance in clinical trials and frequent testing. In addition, salivary glands contain stem cells, which are likely also present in the saliva, making these cells as potentially sensitive cellular biomarker of and a therapeutic agent for AD. The aim of this review is to critically analyze the use of saliva for the identification of circulating biological markers to help the diagnosis of early cognitive impairment associated with AD and to generate insights into the potential application of stem cells derived from salivary glands or saliva as therapeutics (i.e., stem cell transplantation) for the disease.
Collapse
|
17
|
Top-Down Proteomics Applied to Human Cerebrospinal Fluid. Methods Mol Biol 2019. [PMID: 31432414 DOI: 10.1007/978-1-4939-9706-0_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Cerebrospinal fluid (CSF) is the fluid of choice to study pathologies and disorders of the central nervous system (CNS). Its composition, especially its proteins and peptides, holds the promise that it may reflect the pathological state of an individual. Traditionally, proteins and peptides in CSF have been analyzed using bottom-up proteomics technologies in the search of high proteome coverage. However, the limited protein sequence coverage of this technology means that information regarding post-translational modifications (PTMs) and alternative splice variants is lost. As an alternative technology, top-down proteomics offers low to medium proteome coverage, but high protein coverage enabling almost a full characterization of the proteins' primary structure. This allows us to precisely identify distinct molecular forms of proteins (proteoforms) as well as naturally occurring bioactive peptide fragments, which could be of critical biological relevance and would otherwise remain undetected with a classical proteomics approach.Here, we describe various strategies including sample preparation protocols, off-line intact protein prefractionation, and LC-MS/MS methods together with data analysis pipelines to analyze cerebrospinal fluid (CSF) by top-down proteomics. However, there is not a unique or standardized method and the selection of the top-down strategy will depend on the exact goal of the study. Here, we describe various top-down proteomics methods that enable rapid protein characterization and may be an excellent companion analytical workflow in the search for new protein biomarkers in neurodegenerative diseases.
Collapse
|
18
|
Guglielmi F, Staderini E, Iavarone F, Di Tonno L, Gallenzi P. Zimmermann-Laband-1 Syndrome: Clinical, Histological, and Proteomic Findings of a 3-Year-Old Patient with Hereditary Gingival Fibromatosis. Biomedicines 2019; 7:biomedicines7030048. [PMID: 31261938 PMCID: PMC6783959 DOI: 10.3390/biomedicines7030048] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/27/2019] [Accepted: 06/27/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Zimmermann-Laband-1 syndrome (ZLS-1; OMIM# 135500) is a rare genetic disorder whose oral pathognomonic sign is the development of progressive, diffuse, and severe gingival hypertrophy. Most children with abnormally gingival hyperplasia may also present multiple unerupted teeth and skeletal deformities of maxillary arches (i.e., skeletal anterior open bite). Despite phenotypic variability of the clinical spectrum, gingival fibromatosis is the hallmark of ZLS-1. METHOD In this study, we report a 3-year-old male patient with a ZLS-1-related gingival overgrowth and failure of eruption of the deciduous teeth in the molar area. Surgical excision was performed under general anesthesia. RESULTS At three weeks follow-up, esthetics was significantly improved in terms of gingival appearance, and teeth eruption allowed an adequate masticatory function. CONCLUSION In severe cases, surgical removal of the hyperplasic fibrous tissue may be required to expose unerupted teeth and establish a proper gingival contour. Surgical excision under general anesthesia is an elective procedure for patients with special needs, mental disability, as well as young and adult patients with dental anxiety type II and IV associated with poor oral health.
Collapse
Affiliation(s)
- Federica Guglielmi
- Istituto di Odontoiatria, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Edoardo Staderini
- Istituto di Odontoiatria, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Federica Iavarone
- Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Laura Di Tonno
- Istituto di Odontoiatria, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Patrizia Gallenzi
- Istituto di Odontoiatria, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
19
|
Toby TK, Fornelli L, Srzentić K, DeHart CJ, Levitsky J, Friedewald J, Kelleher NL. A comprehensive pipeline for translational top-down proteomics from a single blood draw. Nat Protoc 2019; 14:119-152. [PMID: 30518910 DOI: 10.1038/s41596-018-0085-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Top-down proteomics (TDP) by mass spectrometry (MS) is a technique by which intact proteins are analyzed. It has become increasingly popDesalting and concentrating GELFrEEular in translational research because of the value of characterizing distinct proteoforms of intact proteins. Compared to bottom-up proteomics (BUP) strategies, which measure digested peptide mixtures, TDP provides highly specific molecular information that avoids the bioinformatic challenge of protein inference. However, the technique has been difficult to implement widely because of inherent limitations of existing sample preparation methods and instrumentation. Recent improvements in proteoform pre-fractionation and the availability of high-resolution benchtop mass spectrometers have made it possible to use high-throughput TDP for the analysis of complex clinical samples. Here, we provide a comprehensive protocol for analysis of a common sample type in translational research: human peripheral blood mononuclear cells (PBMCs). The pipeline comprises multiple workflows that can be treated as modular by the reader and used for various applications. First, sample collection and cell preservation are described for two clinical biorepository storage schemes. Cell lysis and proteoform pre-fractionation by gel-eluted liquid fractionation entrapment electrophoresis are then described. Importantly, instrument setup and liquid chromatography-tandem MS are described for TDP analyses, which rely on high-resolution Fourier-transform MS. Finally, data processing and analysis are described using two different, application-dependent software tools: ProSight Lite for targeted analyses of one or a few proteoforms and TDPortal for high-throughput TDP in discovery mode. For a single sample, the minimum completion time of the entire experiment is 72 h.
Collapse
Affiliation(s)
- Timothy K Toby
- Departments of Chemistry and of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Luca Fornelli
- Departments of Chemistry and of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Kristina Srzentić
- Departments of Chemistry and of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Caroline J DeHart
- National Resource for Translational and Developmental Proteomics, Northwestern University, Evanston, IL, USA
| | - Josh Levitsky
- Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - John Friedewald
- Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Neil L Kelleher
- Departments of Chemistry and of Molecular Biosciences, Northwestern University, Evanston, IL, USA. .,National Resource for Translational and Developmental Proteomics, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
20
|
Cabras T, Manconi B, Castagnola M, Sanna MT, Arba M, Acharya S, Ekström J, Carlén A, Messana I. Proteomics of the acid-soluble fraction of whole and major gland saliva in burning mouth syndrome patients. Arch Oral Biol 2018; 98:148-155. [PMID: 30496935 DOI: 10.1016/j.archoralbio.2018.11.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 11/15/2018] [Accepted: 11/19/2018] [Indexed: 12/28/2022]
Abstract
OBJECTIVE In the present study the salivary proteome of burning mouth syndrome patients and healthy subjects was characterized by a top-down proteomic approach and compared to highlight possible qualitative and quantitative differences that may give suggestions about the causes of this pathology which are still unknown. MATERIALS AND METHODS Resting and stimulated whole saliva, stimulated parotid and submandibular/sublingual saliva samples were collected from burning mouth syndrome patients (n = 16) and age- and gender-matched healthy subjects (n = 14). An equal volume of 0.2% trifluoroacetic acid was added to each sample immediately after collection and the supernatants were analysed by liquid chromatography coupled to electrospray-ionisation mass spectrometry. Proteins and peptides were quantified using a label-free approach measuring the extracted ion current peak areas of the main salivary proteins and peptides. RESULTS The quantitation of the main salivary proteins and peptides revealed a higher concentration of cystatin SN in resting saliva of burning mouth syndrome patients with respect to healthy controls and no other conspicuous changes. CONCLUSIONS The reported data showed that the salivary protein profile was not affected, in composition and relative abundance, by the burning mouth syndrome, except for the cystatin SN, a protein up-regulated in several pathological conditions, that might be considered potentially indicative of the disease.
Collapse
Affiliation(s)
- Tiziana Cabras
- Department of Life and Environmental Sciences, Biomedical Section, University of Cagliari, 09042, Monserrato, CA, Italy.
| | - Barbara Manconi
- Department of Life and Environmental Sciences, Biomedical Section, University of Cagliari, 09042, Monserrato, CA, Italy
| | - Massimo Castagnola
- Institute of Chemistry of the Molecular Recognition - CNR, L.go F. Vito 1, 00168, Rome, Italy; Institute of Biochemistry and Clinical Biochemistry, Università Cattolica del Sacro Cuore and/or Department of Laboratory Diagnostic and Infectious Diseases, Fondazione Policlinico Universitario Agostino Gemelli-IRCCS, L.go F. Vito 1, 00168, Rome, Italy
| | - Maria Teresa Sanna
- Department of Life and Environmental Sciences, Biomedical Section, University of Cagliari, 09042, Monserrato, CA, Italy
| | - Morena Arba
- Department of Life and Environmental Sciences, Biomedical Section, University of Cagliari, 09042, Monserrato, CA, Italy
| | - Shikha Acharya
- Department of Oral Microbiology and Immunology, Institute of Odontology, The Sahlgrenska Academy, University of Gothenburg, Box 431, SE-405 30 Göteborg, Sweden
| | - Jörgen Ekström
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Box 431, SE-405 30 Göteborg, Sweden
| | - Anette Carlén
- Department of Oral Microbiology and Immunology, Institute of Odontology, The Sahlgrenska Academy, University of Gothenburg, Box 431, SE-405 30 Göteborg, Sweden
| | - Irene Messana
- Institute of Chemistry of the Molecular Recognition - CNR, L.go F. Vito 1, 00168, Rome, Italy
| |
Collapse
|
21
|
Manconi B, Liori B, Cabras T, Vincenzoni F, Iavarone F, Castagnola M, Messana I, Olianas A. Salivary Cystatins: Exploring New Post-Translational Modifications and Polymorphisms by Top-Down High-Resolution Mass Spectrometry. J Proteome Res 2018; 16:4196-4207. [PMID: 29019242 DOI: 10.1021/acs.jproteome.7b00567] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cystatins are a complex family of cysteine peptidase inhibitors. In the present study, various proteoforms of cystatin A, cystatin B, cystatin S, cystatin SN, and cystatin SA were detected in the acid-soluble fraction of human saliva and characterized by a top-down HPLC-ESI-MS approach. Proteoforms of cystatin D were also detected and characterized by an integrated top-down and bottom-up strategy. The proteoforms derive from coding sequence polymorphisms and post-translational modifications, in particular, phosphorylation, N-terminal processing, and oxidation. This study increases the current knowledge of salivary cystatin proteoforms and provides the basis to evaluate possible qualitative/quantitative variations of these proteoforms in different pathological states and reveal new potential salivary biomarkers of disease. Data are available via ProteomeXchange with identifier PXD007170.
Collapse
Affiliation(s)
- Barbara Manconi
- Department of Life and Environmental Sciences, Biomedical Section, University of Cagliari , Monserrato Campus, 09042 Monserrato, Cagliari, Italy
| | - Barbara Liori
- Department of Life and Environmental Sciences, Biomedical Section, University of Cagliari , Monserrato Campus, 09042 Monserrato, Cagliari, Italy
| | - Tiziana Cabras
- Department of Life and Environmental Sciences, Biomedical Section, University of Cagliari , Monserrato Campus, 09042 Monserrato, Cagliari, Italy
| | - Federica Vincenzoni
- Biochemistry and Clinical Biochemistry Institute, Medicine Faculty, Catholic University of Rome , L.go F. Vito 1, 00168 Rome, Italy
| | - Federica Iavarone
- Biochemistry and Clinical Biochemistry Institute, Medicine Faculty, Catholic University of Rome , L.go F. Vito 1, 00168 Rome, Italy
| | - Massimo Castagnola
- Biochemistry and Clinical Biochemistry Institute, Medicine Faculty, Catholic University of Rome , L.go F. Vito 1, 00168 Rome, Italy.,Institute of Chemistry of the Molecular Recognition CNR , L.go F. Vito 1, 00168 Rome, Italy
| | - Irene Messana
- Biochemistry and Clinical Biochemistry Institute, Medicine Faculty, Catholic University of Rome , L.go F. Vito 1, 00168 Rome, Italy.,Institute of Chemistry of the Molecular Recognition CNR , L.go F. Vito 1, 00168 Rome, Italy
| | - Alessandra Olianas
- Department of Life and Environmental Sciences, Biomedical Section, University of Cagliari , Monserrato Campus, 09042 Monserrato, Cagliari, Italy
| |
Collapse
|
22
|
Castagnola M, Scarano E, Passali GC, Messana I, Cabras T, Iavarone F, Di Cintio G, Fiorita A, De Corso E, Paludetti G. Salivary biomarkers and proteomics: future diagnostic and clinical utilities. ACTA OTORHINOLARYNGOLOGICA ITALICA 2018; 37:94-101. [PMID: 28516971 PMCID: PMC5463528 DOI: 10.14639/0392-100x-1598] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 12/12/2016] [Indexed: 12/16/2022]
Abstract
Saliva testing is a non-invasive and inexpensive test that can serve as a source of information useful for diagnosis of disease. As we enter the era of genomic technologies and -omic research, collection of saliva has increased. Recent proteomic platforms have analysed the human salivary proteome and characterised about 3000 differentially expressed proteins and peptides: in saliva, more than 90% of proteins in weight are derived from the secretion of three couples of "major" glands; all the other components are derived from minor glands, gingival crevicular fluid, mucosal exudates and oral microflora. The most common aim of proteomic analysis is to discriminate between physiological and pathological conditions. A proteomic protocol to analyze the whole saliva proteome is not currently available. It is possible distinguish two type of proteomic platforms: top-down proteomics investigates intact naturally-occurring structure of a protein under examination; bottom-up proteomics analyses peptide fragments after pre-digestion (typically with trypsin). Because of this heterogeneity, many different biomarkers may be proposed for the same pathology. The salivary proteome has been characterised in several diseases: oral squamous cell carcinoma and oral leukoplakia, chronic graft-versus-host disease Sjögren's syndrome and other autoimmune disorders such as SAPHO, schizophrenia and bipolar disorder, and genetic diseases like Down's Syndrome and Wilson disease. The results of research reported herein suggest that in the near future human saliva will be a relevant diagnostic fluid for clinical diagnosis and prognosis.
Collapse
Affiliation(s)
- M Castagnola
- Institute of Biochemistry and Clinical Biochemistry, Catholic University, Rome, Istituto di Chimica del Riconoscimento Molecolare C.N.R. Rome, Italy
| | - E Scarano
- Department of Head and Neck Surgery, "A. Gemelli" Hospital Foundation, Catholic University, Rome, Italy
| | - G C Passali
- Department of Head and Neck Surgery, "A. Gemelli" Hospital Foundation, Catholic University, Rome, Italy
| | - I Messana
- Life and Enviromental Sciences Department, University of Cagliari, and Istituto di Chimica del Riconoscimento Molecolare C.N.R. Rome, Italy
| | - T Cabras
- Life and Enviromental Sciences Department, University of Cagliari, Italy
| | - F Iavarone
- Institute of Biochemistry and Clinical Biochemistry, Catholic University, Rome, Italy
| | - G Di Cintio
- Department of Head and Neck Surgery, "A. Gemelli" Hospital Foundation, Catholic University, Rome, Italy
| | - A Fiorita
- Department of Head and Neck Surgery, "A. Gemelli" Hospital Foundation, Catholic University, Rome, Italy
| | - E De Corso
- Department of Head and Neck Surgery, "A. Gemelli" Hospital Foundation, Catholic University, Rome, Italy
| | - G Paludetti
- Department of Head and Neck Surgery, "A. Gemelli" Hospital Foundation, Catholic University, Rome, Italy
| |
Collapse
|
23
|
Affiliation(s)
- Bifan Chen
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Kyle A. Brown
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Ziqing Lin
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Human Proteomics Program, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Human Proteomics Program, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
24
|
Marsh PD, Do T, Beighton D, Devine DA. Influence of saliva on the oral microbiota. Periodontol 2000 2017; 70:80-92. [PMID: 26662484 DOI: 10.1111/prd.12098] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2015] [Indexed: 11/28/2022]
Abstract
Saliva plays a major role in determining the composition and activity of the oral microbiota, via a variety of mechanisms. Molecules, mainly from saliva, form a conditioning film on oral surfaces, thus providing receptors for bacterial attachment. The attached cells use saliva components, such as glycoproteins, as their main source of nutrients for growth. Oral bacteria work sequentially and in a concerted manner to catabolize these structurally complex molecules. Saliva also buffers the pH in the biofilm to around neutrality, creating an environment which is conducive to the growth of many oral bacteria that provide important benefits to the host. Components of the adaptive and innate host defences are delivered by saliva, and these often function synergistically, and at sublethal concentrations, so a complex relationship develops between the host and the resident microbiota. Dysbiosis can occur rapidly if the flow of saliva is perturbed.
Collapse
|
25
|
Miller CF, Kulyk DS, Kim JW, Badu-Tawiah AK. Re-configurable, multi-mode contained-electrospray ionization for protein folding and unfolding on the millisecond time scale. Analyst 2017; 142:2152-2160. [DOI: 10.1039/c7an00362e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Contained-electrospray ionization enables online selection of protein charge states by a direct infusion of reactive vapors and liquids into charged micro-droplets.
Collapse
Affiliation(s)
- Colbert F. Miller
- Department of Chemistry and Biochemistry
- The Ohio State University
- Columbus
- USA
| | - Dmytro S. Kulyk
- Department of Chemistry and Biochemistry
- The Ohio State University
- Columbus
- USA
| | - Jongin W. Kim
- Department of Chemistry and Biochemistry
- The Ohio State University
- Columbus
- USA
| | | |
Collapse
|
26
|
Licier R, Miranda E, Serrano H. A Quantitative Proteomics Approach to Clinical Research with Non-Traditional Samples. Proteomes 2016; 4:proteomes4040031. [PMID: 28248241 PMCID: PMC5260964 DOI: 10.3390/proteomes4040031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 09/19/2016] [Accepted: 09/21/2016] [Indexed: 01/13/2023] Open
Abstract
The proper handling of samples to be analyzed by mass spectrometry (MS) can guarantee excellent results and a greater depth of analysis when working in quantitative proteomics. This is critical when trying to assess non-traditional sources such as ear wax, saliva, vitreous humor, aqueous humor, tears, nipple aspirate fluid, breast milk/colostrum, cervical-vaginal fluid, nasal secretions, bronco-alveolar lavage fluid, and stools. We intend to provide the investigator with relevant aspects of quantitative proteomics and to recognize the most recent clinical research work conducted with atypical samples and analyzed by quantitative proteomics. Having as reference the most recent and different approaches used with non-traditional sources allows us to compare new strategies in the development of novel experimental models. On the other hand, these references help us to contribute significantly to the understanding of the proportions of proteins in different proteomes of clinical interest and may lead to potential advances in the emerging field of precision medicine.
Collapse
Affiliation(s)
- Rígel Licier
- Department of Medicine, San Juan Bautista School of Medicine, Caguas 00727, Puerto Rico.
- Quantitative Proteomics Laboratory, Comprehensive Cancer Center of Puerto Rico, San Juan 00936, Puerto Rico.
| | - Eric Miranda
- Quantitative Proteomics Laboratory, Comprehensive Cancer Center of Puerto Rico, San Juan 00936, Puerto Rico.
- Department of Internal Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan 00936, Puerto Rico.
| | - Horacio Serrano
- Quantitative Proteomics Laboratory, Comprehensive Cancer Center of Puerto Rico, San Juan 00936, Puerto Rico.
- Department of Internal Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan 00936, Puerto Rico.
| |
Collapse
|
27
|
Faa G, Messana I, Fanos V, Cabras T, Manconi B, Vento G, Iavarone F, Martelli C, Desiderio C, Castagnola M. Proteomics applied to pediatric medicine: opportunities and challenges. Expert Rev Proteomics 2016; 13:883-94. [DOI: 10.1080/14789450.2016.1221764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
28
|
Toby TK, Fornelli L, Kelleher NL. Progress in Top-Down Proteomics and the Analysis of Proteoforms. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2016; 9:499-519. [PMID: 27306313 PMCID: PMC5373801 DOI: 10.1146/annurev-anchem-071015-041550] [Citation(s) in RCA: 389] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
From a molecular perspective, enactors of function in biology are intact proteins that can be variably modified at the genetic, transcriptional, or post-translational level. Over the past 30 years, mass spectrometry (MS) has become a powerful method for the analysis of proteomes. Prevailing bottom-up proteomics operates at the level of the peptide, leading to issues with protein inference, connectivity, and incomplete sequence/modification information. Top-down proteomics (TDP), alternatively, applies MS at the proteoform level to analyze intact proteins with diverse sources of intramolecular complexity preserved during analysis. Fortunately, advances in prefractionation workflows, MS instrumentation, and dissociation methods for whole-protein ions have helped TDP emerge as an accessible and potentially disruptive modality with increasingly translational value. In this review, we discuss technical and conceptual advances in TDP, along with the growing power of proteoform-resolved measurements in clinical and translational research.
Collapse
Affiliation(s)
- Timothy K Toby
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208;
| | - Luca Fornelli
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208
| | - Neil L Kelleher
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208;
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208
| |
Collapse
|
29
|
Gregorich ZR, Ge Y. Top-down proteomics in health and disease: challenges and opportunities. Proteomics 2014; 14:1195-210. [PMID: 24723472 DOI: 10.1002/pmic.201300432] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 03/10/2014] [Accepted: 03/24/2014] [Indexed: 01/06/2023]
Abstract
Proteomics is essential for deciphering how molecules interact as a system and for understanding the functions of cellular systems in human disease; however, the unique characteristics of the human proteome, which include a high dynamic range of protein expression and extreme complexity due to a plethora of PTMs and sequence variations, make such analyses challenging. An emerging "top-down" MS-based proteomics approach, which provides a "bird's eye" view of all proteoforms, has unique advantages for the assessment of PTMs and sequence variations. Recently, a number of studies have showcased the potential of top-down proteomics for the unraveling of disease mechanisms and discovery of new biomarkers. Nevertheless, the top-down approach still faces significant challenges in terms of protein solubility, separation, and the detection of large intact proteins, as well as underdeveloped data analysis tools. Consequently, new technological developments are urgently needed to advance the field of top-down proteomics. Herein, we intend to provide an overview of the recent applications of top-down proteomics in biomedical research. Moreover, we will outline the challenges and opportunities facing top-down proteomics strategies aimed at understanding and diagnosing human diseases.
Collapse
Affiliation(s)
- Zachery R Gregorich
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI, USA; Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | | |
Collapse
|
30
|
Camerini S, Mauri P. The role of protein and peptide separation before mass spectrometry analysis in clinical proteomics. J Chromatogr A 2014; 1381:1-12. [PMID: 25618357 DOI: 10.1016/j.chroma.2014.12.035] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 12/09/2014] [Accepted: 12/11/2014] [Indexed: 11/25/2022]
Abstract
The purpose of clinical proteomics is to characterise protein profiles of a plethora of diseases with the aim of finding specific biomarkers. These are particularly valuable for early diagnosis, and represent key molecules suitable to elucidate pathogenic mechanisms. Samples deriving from patients (i.e. blood, urine, cerebrospinal fluid, biopsies) are the sources for clinical proteomics. Due to the complexity of the extracted samples their direct analysis is unachievable. Any analytical clinical proteomics study should start with the choice of the optimal combination of strategies with respect to both sample preparations and MS approaches. Protein or peptide fractionation (off-line or on-line) is essential to reduce complexity of biological samples and to achieve the most complete and reproducible analysis. The aim of this review is to introduce the readers to a functional range of strategies to help scientists in their proteomics set up. In particular, the separation approaches of proteins or peptides (both gel-based and gel-free) are reviewed with special attention paid to their advantages and limitations, and to the different liquid chromatography techniques used to peptide fractionation after protein enzymatic digestion and before their detection. Finally, the role of mass spectrometry (MS) for protein identification and quantification is discussed including emerging MS data acquisition strategies.
Collapse
Affiliation(s)
- Serena Camerini
- Dept of Cell Biology and Neurosciences Higher Institute of Health (ISS), Rome, Italy
| | - Pierluigi Mauri
- Institute for Biomedical Technologies (ITB-CNR), Segrate, and Institute of Life Science - Scuola Superiore Sant'Anna, Pisa, Italy.
| |
Collapse
|
31
|
Top-down analytical platforms for the characterization of the human salivary proteome. Bioanalysis 2014; 6:563-81. [PMID: 24568357 DOI: 10.4155/bio.13.349] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Comprehensive analysis and characterization of the human salivary proteome is an important step towards the possible use of saliva for diagnostic and prognostic purposes. The contribution of the different sources to whole saliva, and the evaluation of individual variability and physiological modifications have been investigated by top-down proteomic approaches, disclosing the faceted and complex profile of the human salivary proteome. All this information is essential to develop saliva protein biomarkers. In this Review the major results obtained in the field by top-down platforms, and the improvements required to allow a more complete picture, will be discussed.
Collapse
|
32
|
Inserra I, Iavarone F, Martelli C, D'Angelo L, Delfino D, Rossetti DV, Tamburrini G, Massimi L, Caldarelli M, Di Rocco C, Messana I, Castagnola M, Desiderio C. Proteomic study of pilocytic astrocytoma pediatric brain tumor intracystic fluid. J Proteome Res 2014; 13:4594-606. [PMID: 25254300 DOI: 10.1021/pr500806k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Liquid chromatography in coupling with high-resolution ESI-LTQ-Orbitrap mass spectrometry was applied for a proteomic study of pediatric pilocytic astrocytoma brain tumor intracystic fluid by an integrated top-down/bottom-up platform. Both of the proteomic strategies resulted complementary and support each other in contributing to a wide characterization of the protein and peptide content of the tumor fluid. Top-down approach allowed to identify several proteins and peptides involved in different biological activities together with the characterization of interesting proteoforms such as fibrinopeptide A and its truncated form, fibrinopeptide B, complement C3f fragments, β-thymosin peptides, ubiquitin, several apolipoproteins belonging to A and C families, apolipoprotein J and D, and cystatin C. Of particular interest resulted the identification of a N-terminal truncated cystatin C proteoform, likely involved in immune response mechanism modulations and the identification of oxidized and glycosylated apolipoproteins including disulfide bridge dimeric forms. The bottom-up approach confirmed some of the experimental data findings together with adding the characterization of high-molecular-mass proteins in the samples. These data could contribute to elucidate the molecular mechanisms involved in onset and progression of the disease and cyst development.
Collapse
Affiliation(s)
- Ilaria Inserra
- Istituto di Biochimica e Biochimica Clinica, Facoltà di Medicina, Università Cattolica del Sacro Cuore , Rome 00168, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Perluigi M, Di Domenico F, Buttterfield DA. Unraveling the complexity of neurodegeneration in brains of subjects with Down syndrome: insights from proteomics. Proteomics Clin Appl 2014; 8:73-85. [PMID: 24259517 DOI: 10.1002/prca.201300066] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 08/27/2013] [Accepted: 09/10/2013] [Indexed: 01/17/2023]
Abstract
Down syndrome (DS) is one of the most common genetic causes of intellectual disability characterized by multiple pathological phenotypes, among which neurodegeneration is a key feature. The neuropathology of DS is complex and likely results from impaired mitochondrial function, increased oxidative stress, and altered proteostasis. After the age of 40 years, many (most) DS individuals develop a type of dementia that closely resembles that of Alzheimer's disease with deposition of senile plaques and neurofibrillary tangles. A number of studies demonstrated that increased oxidative damage, accumulation of damaged/misfolded protein aggregates, and dysfunction of intracellular degradative systems are critical events in the neurodegenerative processes. This review summarizes the current knowledge that demonstrates a “chronic” condition of oxidative stress in DS pointing to the putative molecular pathways that could contribute to accelerate cognition and memory decline. Proteomics and redox proteomics studies are powerful tools to unravel the complexity of DS phenotypes, by allowing to identifying protein expression changes and oxidative PTMs that are proved to be detrimental for protein function. It is reasonable to suggest that changes in the cellular redox status in DS neurons, early from the fetal period, could provide a fertile environment upon which increased aging favors neurodegeneration. Thus, after a critical age, DS neuropathology can be considered a human model of early Alzheimer's disease and could contribute to understanding the overlapping mechanisms that lead from normal aging to development of dementia.
Collapse
|
34
|
Wu S, Brown JN, Tolić N, Meng D, Liu X, Zhang H, Zhao R, Moore RJ, Pevzner P, Smith RD, Paša-Tolić L. Quantitative analysis of human salivary gland-derived intact proteome using top-down mass spectrometry. Proteomics 2014; 14:1211-22. [DOI: 10.1002/pmic.201300378] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 01/10/2014] [Accepted: 02/25/2014] [Indexed: 01/08/2023]
Affiliation(s)
- Si Wu
- Environmental Molecular Sciences Laboratory; Pacific Northwest National Laboratories; Richland WA USA
| | - Joseph N. Brown
- Biological Sciences Division; Pacific Northwest National Laboratories; Richland WA USA
| | - Nikola Tolić
- Environmental Molecular Sciences Laboratory; Pacific Northwest National Laboratories; Richland WA USA
| | - Da Meng
- Computational Mathematics Division; Pacific Northwest National Laboratories; Richland WA USA
| | - Xiaowen Liu
- Department of BioHealth Informatics; Indiana University-Purdue University Indianapolis; Indianapolis IN USA
| | - Haizhen Zhang
- Environmental Molecular Sciences Laboratory; Pacific Northwest National Laboratories; Richland WA USA
| | - Rui Zhao
- Environmental Molecular Sciences Laboratory; Pacific Northwest National Laboratories; Richland WA USA
| | - Ronald J. Moore
- Biological Sciences Division; Pacific Northwest National Laboratories; Richland WA USA
| | - Pavel Pevzner
- Department of Computer Science and Engineering; University of California, San Diego; La Jolla CA USA
| | - Richard D. Smith
- Biological Sciences Division; Pacific Northwest National Laboratories; Richland WA USA
| | - Ljiljana Paša-Tolić
- Environmental Molecular Sciences Laboratory; Pacific Northwest National Laboratories; Richland WA USA
| |
Collapse
|
35
|
Jia C, Yu Q, Wang J, Li L. Qualitative and quantitative top-down mass spectral analysis of crustacean hyperglycemic hormones in response to feeding. Proteomics 2014; 14:1185-94. [PMID: 24532205 DOI: 10.1002/pmic.201300331] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 12/07/2013] [Accepted: 02/10/2014] [Indexed: 12/13/2022]
Abstract
An efficient pipeline for peptide discovery accelerates peptidomic analysis and facilitates a better understanding of the functional roles of neuropeptides. However, qualitative and quantitative analysis of large neuropeptides is challenging due to the bigger molecular sizes, multiple PTMs, and interference by homologous isoforms. Herein, we refined two methodologies in the pipeline for highly confident and efficient MS-based peptide discovery. For the qualitative analysis, the so-called "high resolution/accurate mass" measurement on Orbitrap mass spectrometers was integrated with computer-assisted homology search, which was successfully applied to decipher the substituted amino acid residues in large neuropeptides by referring to homologous sequences. For the quantitative analysis, a new isotopic labeling-assisted top-down MS strategy was developed, which enabled direct monitoring of the abundance changes of endogenous large neuropeptides. By using the refined peptide discovery pipeline, one novel crustacean hyperglycemic hormone (CHH) from the Dungeness crab sinus glands was confidently identified and de novo sequenced, and its relative abundance was quantified. Comparative analysis of CHHs in unfed and fed crabs revealed that the peptide abundance in the sinus glands was significantly increased after food intake, suggesting that the release of CHHs might be altered by feeding behavior.
Collapse
Affiliation(s)
- Chenxi Jia
- School of Pharmacy and Department of Chemistry, University of Wisconsin-Madison, WI, USA
| | | | | | | |
Collapse
|
36
|
Vitorino R, Ferreira R, Caseiro A, Amado F. Salivary Peptidomics Targeting Clinical Applications. COMPREHENSIVE ANALYTICAL CHEMISTRY 2014. [DOI: 10.1016/b978-0-444-62650-9.00009-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
37
|
Zhang Z, Wu S, Stenoien DL, Paša-Tolić L. High-throughput proteomics. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2014; 7:427-454. [PMID: 25014346 DOI: 10.1146/annurev-anchem-071213-020216] [Citation(s) in RCA: 180] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Mass spectrometry (MS)-based high-throughput proteomics is the core technique for large-scale protein characterization. Due to the extreme complexity of proteomes, sophisticated separation techniques and advanced MS instrumentation have been developed to extend coverage and enhance dynamic range and sensitivity. In this review, we discuss the separation and prefractionation techniques applied for large-scale analysis in both bottom-up (i.e., peptide-level) and top-down (i.e., protein-level) proteomics. Different approaches for quantifying peptides or intact proteins, including label-free and stable-isotope-labeling strategies, are also discussed. In addition, we present a brief overview of different types of mass analyzers and fragmentation techniques as well as selected emerging techniques.
Collapse
|