1
|
Zeng J, Ma F, Zhai L, Du C, Zhao J, Li Z, Wang J. Recent advance in sesame allergens: Influence of food processing and their detection methods. Food Chem 2024; 448:139058. [PMID: 38531299 DOI: 10.1016/j.foodchem.2024.139058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 03/28/2024]
Abstract
Sesame (Sesamum indicum L.) is a valuable oilseed crop with numerous nutritional benefits containing a diverse range of bioactive compounds. However, sesame is also considered an allergenic food that triggers various mild to severe adverse reactions (e.g., anaphylaxis). Strict dietary avoidance of sesame components is the best option to protect the sensitized consumers. Sesame or sesame-derived foods are always consumed after certain food processing operations, which would cause a considerable impact on the structure of sesame proteins, changing their sensitization capacity and detectability. In the review, the molecular structure properties, and immunological characteristics of the sesame allergens were described. Meanwhile, the influence of food processing techniques on sesame proteins and the relevant detection techniques used for the sesame allergens quantification are also emphasized critically. Hopefully, this review could provide valuable insight into the development and management for the new "Big Eight" sesame allergen in food industry.
Collapse
Affiliation(s)
- Jianhua Zeng
- School of Food Engineering, Anhui Provincial Key Laboratory of Functional Agriculture and Functional Foods, Associated Discipline Key Laboratory of Whole Grain Nutrition and High-Value Utilization, Anhui Science and Technology University, No.9, Donghua Road, Fengyang, Anhui Province 233100, China; College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, China
| | - Feifei Ma
- School of Food Engineering, Anhui Provincial Key Laboratory of Functional Agriculture and Functional Foods, Associated Discipline Key Laboratory of Whole Grain Nutrition and High-Value Utilization, Anhui Science and Technology University, No.9, Donghua Road, Fengyang, Anhui Province 233100, China; Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences, University of Vigo, Ourense 32004, Spain
| | - Ligong Zhai
- School of Food Engineering, Anhui Provincial Key Laboratory of Functional Agriculture and Functional Foods, Associated Discipline Key Laboratory of Whole Grain Nutrition and High-Value Utilization, Anhui Science and Technology University, No.9, Donghua Road, Fengyang, Anhui Province 233100, China
| | - Chuanlai Du
- School of Food Engineering, Anhui Provincial Key Laboratory of Functional Agriculture and Functional Foods, Associated Discipline Key Laboratory of Whole Grain Nutrition and High-Value Utilization, Anhui Science and Technology University, No.9, Donghua Road, Fengyang, Anhui Province 233100, China
| | - Jinlong Zhao
- School of Food Engineering, Anhui Provincial Key Laboratory of Functional Agriculture and Functional Foods, Associated Discipline Key Laboratory of Whole Grain Nutrition and High-Value Utilization, Anhui Science and Technology University, No.9, Donghua Road, Fengyang, Anhui Province 233100, China.
| | - Zhenxing Li
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, China
| | - Jin Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, No. 87 Dingjiaqiao Rd., Nanjing, Jiangsu Province 210009, China
| |
Collapse
|
2
|
Song LB, Jiao YX, Xu ZQ, Zhu DX, Yang YS, Wei JF, Sun JL, Lu Y. Identification of Pla a 7 as a novel pollen allergen group in Platanus acerifolia pollen. Int Immunopharmacol 2023; 125:111160. [PMID: 37948987 DOI: 10.1016/j.intimp.2023.111160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/21/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND Platanus acerifolia is recognized as a source of allergenic pollen worldwide. Currently, five Platanus acerifolia pollen allergens belonging to different protein families have been identified, in which profilin and enolase were characterized by our group recently. Besides, we also screened and identified a novel allergen candidate as triosephosphate isomerase, which was different from already known types of pollen allergens. However, the role of this novel allergen group in Platanus acerifolia pollen allergy was unclear. Therefore, we further investigated the allergenicity and clarify its clinical relevance in this study. METHODS The natural triosephosphate isomerase from Platanus acerifolia pollen was purified by three steps of chromatography and identified by mass spectrometry. The cDNA sequence of this protein was matched from in-house transcripts based on internal peptide sequences, which was further confirmed by PCR cloning. The recombinant triosephosphate isomerase was expressed and purified from E. coli. Allergenicity analysis of this protein was carried out by enzyme linked immunosorbent assay, immunoblot, and basophil activation test. RESULTS A novel allergen group belonging to triosephosphate isomerase was firstly identified in Platanus acerifolia pollen and named as Pla a 7. The cDNA of Pla a 7 contained an open reading frame of 762 bp encoding 253 amino acids. The natural Pla a 7 displayed 41.4% IgE reactivity with the patients' sera by ELISA, in which the absorbance value showed correlation to the serum sIgE against Platanus acerifolia pollen extract. Inhibition of IgE-binding to pollen extracts reached 26%-94% in different Pla a 7-positive sera. The recombinant Pla a 7 exhibited weaker IgE-reactivity in ELISA than its natural form, but showed comparable activity in immunoblot. The allergenicity was further confirmed by basophil activation test. CONCLUSIONS Triosephosphate isomerase (Pla a 7) was first recognized as pollen allergen in Platanus acerifolia pollen, which is a completely different type of pollen allergen from those previously reported. This finding is essential to enrich information on allergen components and pave the way for molecular diagnosis or treatment strategies for Platanus acerifolia pollen allergy.
Collapse
Affiliation(s)
- Le-Bin Song
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yong-Xin Jiao
- Department of Pharmacy, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Zhi-Qiang Xu
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Dan-Xuan Zhu
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yong-Shi Yang
- Department of Allergy, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ji-Fu Wei
- Department of Pharmacy, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China; Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Jin-Lyu Sun
- Department of Allergy, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Yan Lu
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
3
|
Ran S, Shu Q, Gao X. Dermatophagoides Pteronyssinus 1 (DerP1) May Trigger NLRP3-Mediated Corneal Epithelial Cell Pyroptosis by Elevating Interleukin-33 Expression Levels. Curr Eye Res 2023; 48:1100-1111. [PMID: 37615401 DOI: 10.1080/02713683.2023.2250583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/10/2023] [Accepted: 08/17/2023] [Indexed: 08/25/2023]
Abstract
PURPOSE To characterize the in vivo effects of Dermatophagoides pteronyssinus 1 (DerP1) in mice and determine the underlying NLRP3 inflammasome-mediated pyroptosis signaling mechanisms in the human corneal epithelial cells (HCECs). METHODS DerP1 was used to induce allergic conjunctivitis in C57 mice. HCECs were sensitized with DerP1 in vitro to mimic their condition observed in allergic conjunctivitis in vivo. Transmission electron microscopy was used to evaluate pyroptosis in the HCECs, enzyme-linked immunosorbent assays to assess interleukin (IL)-33, IL-1β and IL-4 levels, flow cytometry to detect the proportion of Th2 cells, MTT assays to assess cell metabolic activity, immunofluorescence to evaluate the effects of DerP1 on functional HCEC phenotypes, and Western blot assays to detect the expression of NOD-like receptor family pyrin domain-containing 3 (NLRP3), gasdermin D (GSDMD), N-terminal fragment of GSDMD (GSDMD-N), pro-caspase-1, cleaved caspase-1, IL-1β, and IL-33. IL-33 expression in the HCECs was knocked down via lentivirus transfection. RESULTS In vivo, DerP1 promotes pyroptosis, production of Th2 inflammatory cytokines and IL-33, and NLRP3 activation in mouse corneas. In vitro, pyroptotic bodies were found in the HCECs after sensitization with DerP1. Various concentrations of DerP1 increased the expression levels of NLRP3, GSDMD, GSDMD-N, pro-caspase-1, cleaved caspase-1, and IL-1β in the HCECs, with the largest increase observed after exposure to 20 µM DerP1. In vitro, recombinant human IL-33 mediated the expression of pyroptotic biomarkers in the HCECs, whereas IL-33 silencing diminished 20 µM DerP1-induced increase in their expression levels. CONCLUSIONS DerP1 induces pyroptosis and allergic conjunctivitis, the expression of Th2 inflammatory cytokines, NLRP3 activation, and IL-33 in mouse corneas in our model. These effects would attribute to its activating NLRP3-GSDMD signaling pathway axis via enhancing IL-33 expression in HCECs.
Collapse
Affiliation(s)
- Shengming Ran
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qinxin Shu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xu Gao
- Department of Ophthalmology, Bishan Hospital of Chongqing Medical University, Bishan Hospital of Chongqing, Chongqing, China
| |
Collapse
|
4
|
Li S, Chu KH, Wai CYY. Genomics of Shrimp Allergens and Beyond. Genes (Basel) 2023; 14:2145. [PMID: 38136967 PMCID: PMC10742822 DOI: 10.3390/genes14122145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Allergy to shellfishes, including mollusks and crustaceans, is a growing health concern worldwide. Crustacean shellfish is one of the "Big Eight" allergens designated by the U.S. Food and Drug Administration and is the major cause of food-induced anaphylaxis. Shrimp is one of the most consumed crustaceans triggering immunoglobulin E (IgE)-mediated allergic reactions. Over the past decades, the allergen repertoire of shrimp has been unveiled based on conventional immunodetection methods. With the availability of genomic data for penaeid shrimp and other technological advancements like transcriptomic approaches, new shrimp allergens have been identified and directed new insights into their expression levels, cross-reactivity, and functional impact. In this review paper, we summarize the current knowledge on shrimp allergens, as well as allergens from other crustaceans and mollusks. Specific emphasis is put on the genomic information of the shrimp allergens, their protein characteristics, and cross-reactivity among shrimp and other organisms.
Collapse
Affiliation(s)
- Shanshan Li
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (S.L.); (K.H.C.)
| | - Ka Hou Chu
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (S.L.); (K.H.C.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510000, China
| | - Christine Yee Yan Wai
- Department of Paediatrics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
5
|
Hubert J, Vrtala S, Sopko B, Dowd SE, He Q, Klimov PB, Harant K, Talacko P, Erban T. Predicting Blomia tropicalis allergens using a multiomics approach. Clin Transl Allergy 2023; 13:e12302. [PMID: 37876035 PMCID: PMC10542617 DOI: 10.1002/clt2.12302] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/01/2023] [Accepted: 09/07/2023] [Indexed: 10/26/2023] Open
Abstract
BACKGROUND The domestic mite Blomia tropicalis is a major source of allergens in tropical and subtropical regions. Despite its great medical importance, the allergome of this mite has not been sufficiently studied. Only 14 allergen groups have been identified in B. tropicalis thus far, even though early radioimmunoelectrophoresis techniques (27 uncharacterized allergen complexes) and comparative data based on 40 allergen groups officially recognized by the World Health Organization (WHO)/IUIS in domestic astigmatid mites suggest the presence of a large set of additional allergens. METHODS Here, we employ a multiomics approach to assess the allergome of B. tropicalis using genomic and transcriptomic sequence data and perform highly sensitive protein abundance quantification. FINDINGS Among the 14 known allergen groups, we confirmed 13 (one WHO/IUIS allergen, Blo t 19, was not found) and identified 16 potentially novel allergens based on sequence similarity. These data indicate that B. tropicalis shares 27 known/deduced allergen groups with pyroglyphid house dust mites (genus Dermatophagoides). Among these groups, five allergen-encoding genes are highly expressed at the transcript level: Blo t 1, Blo t 5, Blo t 21 (known), Blo t 15, and Blo t 18 (predicted). However, at the protein level, a different set of most abundant allergens was found: Blo t 2, 10, 11, 20 and 21 (mite bodies) or Blo t 3, 4, 6 and predicted Blo t 13, 14 and 36 (mite feces). INTERPRETATION We report the use of an integrated omics method to identify and predict an array of mite allergens and advanced, label-free proteomics to determine allergen protein abundance. Our research identifies a large set of novel putative allergens and shows that the expression levels of allergen-encoding genes may not be strictly correlated with the actual allergenic protein abundance in mite bodies.
Collapse
Affiliation(s)
- Jan Hubert
- Crop Research InstitutePragueCzechia
- Department of Microbiology, Nutrition and DieteticsFaculty of Agrobiology, Food and Natural ResourcesCzech University of Life Sciences PraguePragueCzechia
| | - Susanne Vrtala
- Department of Pathophysiology and Allergy ResearchCenter for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
| | | | - Scot E. Dowd
- MR DNA (Molecular Research LP)ShallowaterTexasUSA
| | - Qixin He
- Purdue UniversityLilly Hall of Life SciencesWest LafayetteIndianaUSA
| | - Pavel B. Klimov
- Purdue UniversityLilly Hall of Life SciencesWest LafayetteIndianaUSA
| | - Karel Harant
- Proteomics Core FacilityFaculty of ScienceCharles UniversityBIOCEVVestecCzechia
- Institute for Environmental StudiesFaculty of ScienceCharles UniversityPragueCzechia
| | - Pavel Talacko
- Proteomics Core FacilityFaculty of ScienceCharles UniversityBIOCEVVestecCzechia
| | | |
Collapse
|
6
|
Cai ZL, Liu S, Li WY, Zhou ZW, Hu WZ, Chen JJ, Ji K. Identification of an immunodominant IgE epitope of Der f 40, a novel allergen of Dermatophagoides farinae. World Allergy Organ J 2023; 16:100804. [PMID: 37577028 PMCID: PMC10415791 DOI: 10.1016/j.waojou.2023.100804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 06/02/2023] [Accepted: 07/19/2023] [Indexed: 08/15/2023] Open
Abstract
Background House dust mites (HDMs), including Dermatophagoides pteronyssinus (Der p) and Dermatophagoides farinae (Der f) species, represent a major source of inhalant allergens that induce IgE-mediated anaphylactic reactions. HDM allergen identification is important to the diagnosis and treatment of allergic diseases. Here, we report the identification of a novel HDM allergen, which we suggest naming Der f 40, and its immunodominant IgE epitopes. Methods The recombinant protein Der f 40 was expressed using a pET prokaryotic expression system and purified with Ni-NTA resins. IgE binding activity was evaluated by IgE-western blot, dot-blot, and ELISA. Mast cell activation testing was performed to assess the cellular effects of IgE binding in mouse bone marrow derived mast cells (BMMCs) expressing human FcεRI. IgE binding assays were performed with truncated and hybrid Der f 40 protein molecules to find immunodominant IgE epitopes. Results A 106-amino acid (aa) recombinant Der f Group 40 protein (rDer f 40) was obtained (GenBank accession No. XP_046915420.1) as thiredoxin-like protein. Der f 40 was shown to bind IgE from HDM allergic serum in vitro (9.68%; 12/124 in IgE-ELISA), and shown to promote the release of β-hexosaminidase from BMMCs dose-dependently when administered with HDM allergic sera. The Der f Group 40 protein was named Der f 40 and listed in the World Health Organization and International Union of Immunological Societies (WHO/IUIS) Allergen Nomenclature Sub-committee. IgE binding assays with Der f 40-based truncated and hybrid proteins indicated that IgE binding epitopes are likely located in the C-terminal region and dependent on conformational structure. The 76-106-aa region of C-terminus was identified as an immunodominant IgE epitope of Der f 40. Conclusion A novel HDM allergen with robust IgE binding activity was identified and named Der f 40. An immunodominant IgE epitope of Der f 40 with conformational dependency was identified in the C-terminus (aa 76-106). These findings provide new information that may be useful in the development of diagnostic and therapeutic agents for HDM allergy.
Collapse
Affiliation(s)
- Ze-Lang Cai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen 518060, China
| | - Shan Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen 518060, China
| | - Wei-Yong Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen 518060, China
| | - Zi-Wen Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen 518060, China
| | - Wan-Zhen Hu
- Shenzhen University General Hospital, Shenzhen 518060, China
| | - Jia-Jie Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen 518060, China
| | - Kunmei Ji
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen 518060, China
| |
Collapse
|
7
|
Vidal-Quist JC, Declercq J, Vanhee S, Lambrecht BN, Gómez-Rial J, Vidal C, Aydogdu E, Rombauts S, Hernández-Crespo P. RNA viruses alter house dust mite physiology and allergen production with no detected consequences for allergenicity. INSECT MOLECULAR BIOLOGY 2023; 32:173-186. [PMID: 36511188 DOI: 10.1111/imb.12822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
RNA viruses have recently been detected in association with house dust mites, including laboratory cultures, dust samples, and mite-derived pharmaceuticals used for allergy diagnosis. This study aimed to assess the incidence of viral infection on Dermatophagoides pteronyssinus physiology and on the allergenic performance of extracts derived from its culture. Transcriptional changes between genetically identical control and virus-infected mite colonies were analysed by RNAseq with the support of a new D. pteronyssinus high-quality annotated genome (56.8 Mb, 108 scaffolds, N50 = 2.73 Mb, 96.7% BUSCO-completeness). Extracts of cultures and bodies from both colonies were compared by inspecting major allergen accumulation by enzyme-linked immunosorbent assay (ELISA), allergen-related enzymatic activities by specific assays, airway inflammation in a mouse model of allergic asthma, and binding to allergic patient's sera IgE by ImmunoCAP. Viral infection induced a significant transcriptional response, including several immunity and stress-response genes, and affected the expression of seven allergens, putative isoallergens and allergen orthologs. Major allergens were unaffected except for Der p 23 that was upregulated, increasing ELISA titers up to 29% in infected-mite extracts. By contrast, serine protease allergens Der p 3, 6 and 9 were downregulated, being trypsin and chymotrypsin enzymatic activities reduced up to 21% in extracts. None of the parameters analysed in our mouse model, nor binding to human IgE were significantly different when comparing control and infected-mite extracts. Despite the described physiological impact of viral infection on the mites, no significant consequences for the allergenicity of derived extracts or their practical use in allergy diagnosis have been detected.
Collapse
Affiliation(s)
- José Cristian Vidal-Quist
- Entomología Aplicada a la Agricultura y la Salud, Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Madrid, Spain
| | - Jozefien Declercq
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Stijn Vanhee
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Bart N Lambrecht
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - José Gómez-Rial
- Laboratorio de Inmunogenética, Unidad de Inmunología, Complejo Hospitalario Universitario de Santiago (CHUS), Santiago de Compostela, Spain
| | - Carmen Vidal
- Servicio de Alergología, Complejo Hospitalario Universitario de Santiago (CHUS), Santiago de Compostela, Spain
| | - Eylem Aydogdu
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Stephane Rombauts
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Pedro Hernández-Crespo
- Entomología Aplicada a la Agricultura y la Salud, Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Madrid, Spain
| |
Collapse
|
8
|
Zhang Z, Li XM, Wang H, Lin H, Xiao H, Li Z. Seafood allergy: Allergen, epitope mapping and immunotherapy strategy. Crit Rev Food Sci Nutr 2023; 63:1314-1338. [PMID: 36825451 DOI: 10.1080/10408398.2023.2181755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Seafoods are fashionable delicacies with high nutritional values and culinary properties, while seafood belongs to worldwide common food allergens. In recent years, many seafood allergens have been identified, while the diversity of various seafood species give a great challenge in identifying and characterizing seafood allergens, mapping IgE-binding epitopes and allergen immunotherapy development, which are critical for allergy diagnostics and immunotherapy treatments. This paper reviewed the recent progress on seafood (fish, crustacean, and mollusk) allergens, IgE-binding epitopes and allergen immunotherapy for seafood allergy. In recent years, many newly identified seafood allergens were reported, this work concluded the current situation of seafood allergen identification and designation by the World Health Organization (WHO)/International Union of Immunological Societies (IUIS) Allergen Nomenclature Sub-Committee. Moreover, this review represented the recent advances in identifying the IgE-binding epitopes of seafood allergens, which were helpful to the diagnosis, prevention and treatment for seafood allergy. Furthermore, the allergen immunotherapy could alleviate seafood allergy and provide promising approaches for seafood allergy treatment. This review represents the recent advances and future outlook on seafood allergen identification, IgE-binding epitope mapping and allergen immunotherapy strategies for seafood allergy prevention and treatment.
Collapse
Affiliation(s)
- Ziye Zhang
- Laboratory of Food Safety, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Xiu-Min Li
- Department of Pathology, Microbiology and Immunology and Department of Otolaryngology, School of Medicine, New York Medical College, Valhalla, New York, USA
| | - Hao Wang
- Laboratory of Food Safety, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Hong Lin
- Laboratory of Food Safety, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Zhenxing Li
- Laboratory of Food Safety, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
9
|
Bianco M, Ventura G, Calvano CD, Losito I, Cataldi TRI. A new paradigm to search for allergenic proteins in novel foods by integrating proteomics analysis and in silico sequence homology prediction: Focus on spirulina and chlorella microalgae. Talanta 2022; 240:123188. [PMID: 34990986 DOI: 10.1016/j.talanta.2021.123188] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 10/19/2022]
Abstract
Since novel nutrient sources with high protein content, such as yeast, fungi, bacteria, algae, and insects, are increasingly introduced in the consumer market, safety evaluation studies on their potentially allergenic proteins are required. A pipeline for in silico establishing the sequence-based homology between proteins of spirulina (Arthrospira platensis) and chlorella (Chlorella vulgaris) micro-algae and those included in the AllergenOnline (AO) database (AllergenOnline.org) is described. The extracted proteins were first identified through tryptic peptides analysis by reversed-phase liquid chromatography and high resolution/accuracy Fourier-transform tandem mass spectrometry (RPLC-ESI-FTMS/MS), followed by a quest on the UniProt database. The AO database was subsequently interrogated to assess sequence similarity between identified microalgal proteins and known allergens, based on criteria established by the World Health Organization (WHO) and Food and Agriculture Organization (FAO). A direct search for microalgal proteins already included in allergen databases was also performed using the Allergome database. Six proteins exhibiting a significant homology with food allergens were identified in spirulina extracts. Five of them, i.e., two thioredoxins (D4ZSU6, K1VP15), a superoxide dismutase (C3V3P3), a glyceraldehyde-3-phosphate dehydrogenase (K1W168), and a triosephosphate isomerase (D5A635), resulted from the search on AO. The sixth protein, C-phycocyanin beta subunit (P72508), was directly obtained after examining the Allergome database. Two proteins exhibiting significant sequence homology with food allergens were retrieved in chlorella extracts, viz. calmodulin (A0A2P6TFR8), which is related to troponin c (D7F1Q2), and fructose-bisphosphate aldolase (A0A2P6TDD0). Specific serum screenings based on immunochemical tests should be undertaken to confirm or rule out the allergenicity of the identified proteins.
Collapse
Affiliation(s)
- Mariachiara Bianco
- Department of Chemistry, University of Bari Aldo Moro, Via Orabona 4, 70126, Bari, Italy
| | - Giovanni Ventura
- Department of Chemistry, University of Bari Aldo Moro, Via Orabona 4, 70126, Bari, Italy.
| | - Cosima Damiana Calvano
- Department of Chemistry, University of Bari Aldo Moro, Via Orabona 4, 70126, Bari, Italy; Interdepartmental Research Center SMART, University of Bari Aldo Moro, Via Orabona 4, 70126, Bari, Italy
| | - Ilario Losito
- Department of Chemistry, University of Bari Aldo Moro, Via Orabona 4, 70126, Bari, Italy; Interdepartmental Research Center SMART, University of Bari Aldo Moro, Via Orabona 4, 70126, Bari, Italy
| | - Tommaso R I Cataldi
- Department of Chemistry, University of Bari Aldo Moro, Via Orabona 4, 70126, Bari, Italy; Interdepartmental Research Center SMART, University of Bari Aldo Moro, Via Orabona 4, 70126, Bari, Italy.
| |
Collapse
|
10
|
Chen J, Cai Z, Fan D, Hu J, Hou Y, He Y, Zhang Z, Zhao Z, Gao P, Hu W, Sun J, Li J, Ji K. Chromosome-level assembly of Dermatophagoides farinae genome and transcriptome reveals two novel allergens Der f 37 and Der f 39. World Allergy Organ J 2021; 14:100590. [PMID: 34659625 PMCID: PMC8487952 DOI: 10.1016/j.waojou.2021.100590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 01/06/2023] Open
Abstract
Accurate house dust mite (HDM) genome and transcriptome data would promote our understanding of HDM allergens. We sought to assemble chromosome-level genome and precise transcriptome profiling of Dermatophagoides farinae and identify novel allergens. In this study, genetic material extracted from HDM bodies and eggs were sequenced. Short-reads from next generation sequencing (NGS) and long-reads from PacBio/Nanopore sequencing were used to construct the D. farinae nuclear genome, transcriptome, and mitochondrial genome. The candidate homologs were screened through aligning our assembled transcriptome data with amino acid sequences in the WHO/IUIS database. Our results showed that compared with the D. farinae draft genome, bacterial DNA content in the presently developed sequencing reads was dramatically reduced (from 22.9888% to 1.5585%), genome size was corrected (from 53.55 Mb to 58.77 Mb), and the contig N50 was increased (from 8.54 kb to 9365.49 kb). The assembled genome has 10 contigs with minimal microbial contamination, 33 canonical allergens and 2 novel allergens. Eight homologs (≥50% homology) were cloned; 2 bound HDM allergic-sera and were identified as allergens (Der f 37 and Der f 39). In conclusion, a chromosome-level genome, transcriptome and mitochondrial genome of D. farinae was generated to support allergen identification and development of diagnostics and immunotherapeutic vaccines.
Collapse
Affiliation(s)
- Jiajie Chen
- Department of Biochemistry and Molecular Biology, Laboratory Department of Pinghu Hospital, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Zelang Cai
- Department of Biochemistry and Molecular Biology, Laboratory Department of Pinghu Hospital, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | | | - Jiayu Hu
- Department of Biochemistry and Molecular Biology, Laboratory Department of Pinghu Hospital, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Yibo Hou
- Department of Biochemistry and Molecular Biology, Laboratory Department of Pinghu Hospital, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Yongsen He
- Department of Biochemistry and Molecular Biology, Laboratory Department of Pinghu Hospital, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Zhen Zhang
- Department of Biochemistry and Molecular Biology, Laboratory Department of Pinghu Hospital, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Zhenfu Zhao
- Department of Biochemistry and Molecular Biology, Laboratory Department of Pinghu Hospital, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Pan Gao
- Shenzhen University General Hospital, Shenzhen, 518060, China
| | - Wanzhen Hu
- Shenzhen University General Hospital, Shenzhen, 518060, China
| | - Jinlyu Sun
- Allergy Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
- Corresponding author.
| | - Jiang Li
- EasyATCG L.L.C, Shenzhen, 518000, China
- Corresponding author.
| | - Kunmei Ji
- Department of Biochemistry and Molecular Biology, Laboratory Department of Pinghu Hospital, Health Science Center, Shenzhen University, Shenzhen, 518060, China
- Corresponding author.
| |
Collapse
|
11
|
Kim G, Hong M, Kashif A, Hong Y, Park BS, Mun JY, Choi H, Lee JS, Yang EJ, Woo RS, Lee SJ, Yang M, Kim IS. Der f 38 Is a Novel TLR4-Binding Allergen Related to Allergy Pathogenesis from Dermatophagoides farinae. Int J Mol Sci 2021; 22:ijms22168440. [PMID: 34445142 PMCID: PMC8395149 DOI: 10.3390/ijms22168440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/03/2021] [Accepted: 08/03/2021] [Indexed: 01/15/2023] Open
Abstract
It is difficult to treat allergic diseases including asthma completely because its pathogenesis remains unclear. House dust mite (HDM) is a critical allergen and Toll-like receptor (TLR) 4 is a member of the toll-like receptor family, which plays an important role in allergic diseases. The purpose of this study was to characterize a novel allergen, Der f 38 binding to TLR4, and unveil its role as an inducer of allergy. Der f 38 expression was detected in the body and feces of Dermatophagoides farinae (DF). Electron microscopy revealed that it was located in the granule layer, the epithelium layer, and microvilli of the posterior midgut. The skin prick test showed that 60% of allergic subjects were Der f 38-positive. Der f 38 enhanced surface 203c expression in basophils of Der f 38-positive allergic subjects. By analysis of the model structure of Der p 38, the expected epitope sites are exposed on the exterior side. In animal experiments, Der f 38 triggered an infiltration of inflammatory cells. Intranasal (IN) administration of Der f 38 increased neutrophils in the lung. Intraperitoneal (IP) and IN injections of Der f 38 induced both eosinophils and neutrophils. Increased total IgE level and histopathological features were found in BALB/c mice treated with Der f 38 by IP and IN injections. TLR4 knockout (KO) BALB/c mice exhibited less inflammation and IgE level in the sera compared to wild type (WT) mice. Der f 38 directly binds to TLR4 using biolayer interferometry. Der f 38 suppressed the apoptosis of neutrophils and eosinophils by downregulating proteins in the proapoptotic pathway including caspase 9, caspase 3, and BAX and upregulating proteins in the anti-apoptotic pathway including BCL-2 and MCL-1. These findings might shed light on the pathogenic mechanisms of allergy to HDM.
Collapse
Affiliation(s)
- Geunyeong Kim
- Department of Senior Healthcare, Eulji University, Uijeongbu 11759, Korea; (G.K.); (M.H.); (A.K.); (Y.H.)
| | - Minhwa Hong
- Department of Senior Healthcare, Eulji University, Uijeongbu 11759, Korea; (G.K.); (M.H.); (A.K.); (Y.H.)
| | - Ayesha Kashif
- Department of Senior Healthcare, Eulji University, Uijeongbu 11759, Korea; (G.K.); (M.H.); (A.K.); (Y.H.)
| | - Yujin Hong
- Department of Senior Healthcare, Eulji University, Uijeongbu 11759, Korea; (G.K.); (M.H.); (A.K.); (Y.H.)
| | - Beom-Seok Park
- Department of Biomedical Laboratory Science, College of Health Science, Eulji University, Seongnam 13135, Korea;
| | - Ji-Young Mun
- Neural Circuit Research Group, Korea Brain Research Institute, Daegu 41068, Korea;
| | - Hyosun Choi
- Nanobioimaging Center, National Instrumentation Center for Environmental Management, Seoul National University, Seoul 08826, Korea;
| | - Ji-Sook Lee
- Department of Clinical Laboratory Science, Wonkwang Health Science University, Iksan 54538, Korea;
| | - Eun-Ju Yang
- Department of Clinical Laboratory Science, Daegu Haany University, Gyeongsan 38610, Korea;
| | - Ran-Sook Woo
- Department of Anatomy and Neuroscience, Eulji University School of Medicine, Daejeon 34824, Korea;
| | - Soo-Jin Lee
- Department of Pediatrics, Eulji University School of Medicine, Daejeon 34824, Korea;
| | - Minseo Yang
- Department of Biomedical Laboratory Science, College of Health Science, Eulji University, Uijeongbu 11759, Korea;
| | - In-Sik Kim
- Department of Senior Healthcare, Eulji University, Uijeongbu 11759, Korea; (G.K.); (M.H.); (A.K.); (Y.H.)
- Department of Biomedical Laboratory Science, College of Health Science, Eulji University, Uijeongbu 11759, Korea;
- Correspondence:
| |
Collapse
|
12
|
Cantillo JF, Puerta L. Mosquitoes: Important Sources of Allergens in the Tropics. FRONTIERS IN ALLERGY 2021; 2:690406. [PMID: 35387048 PMCID: PMC8974784 DOI: 10.3389/falgy.2021.690406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/03/2021] [Indexed: 11/13/2022] Open
Abstract
There are more than 3,000 mosquito species. Aedes aegypti, Ae. communis, and C. quinquefasciatus are, among others, three of the most important mosquito allergen sources in the tropics, western, and industrialized countries. Several individuals are sensitized to mosquito allergens, but the epidemiological data indicates that the frequency of sensitization markedly differs depending on the geographical region. Additionally, the geographical localization of mosquito species has been affected by global warming and some mosquito species have invaded areas where they were not previously found, at the same time as other species have been displaced. This phenomenon has repercussions in the pathogenesis and the accuracy of the diagnosis of mosquito allergy. Allergic individuals are sensitized to mosquito allergens from two origins: saliva and body allergens. Exposure to saliva allergens occurs during mosquito bite and induces cutaneous allergic reactions. Experimental and clinical data suggest that body allergens mediate different manifestations of allergic reactions such as asthma and rhinitis. The most studied mosquito species is Ae. aegypti, from which four and five allergens of the saliva and body, respectively, have been reported. Many characterized allergens are homologs to arthropod-derived allergens, which cause strong cross-reactivity at the humoral and cellular level. The generalized use of whole body Ae. communis or C. quinquefasciatus extracts complicates the diagnosis of mosquito allergy because they have low concentration of saliva allergens and may result in poor diagnosis of the affected population when other species are the primary sensitizer. This review article discusses the current knowledge about mosquito allergy, allergens, cross-reactivity, and proposals of component resolved approaches based on mixtures of purified recombinant allergens to replace saliva-based or whole-body extracts, in order to perform an accurate diagnosis of allergy induced by mosquito allergen exposure.
Collapse
Affiliation(s)
- Jose Fernando Cantillo
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
- Inmunotek, S.L., Madrid, Spain
| | - Leonardo Puerta
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
- *Correspondence: Leonardo Puerta
| |
Collapse
|
13
|
Zakzuk J, Lozano A, Caraballo L. Allergological Importance of Invertebrate Glutathione Transferases in Tropical Environments. FRONTIERS IN ALLERGY 2021; 2:695262. [PMID: 35387058 PMCID: PMC8974725 DOI: 10.3389/falgy.2021.695262] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 05/19/2021] [Indexed: 11/19/2022] Open
Abstract
Glutathione-S transferases (GSTs) are part of a ubiquitous family of dimeric proteins that participate in detoxification reactions. It has been demonstrated that various GSTs induce allergic reactions in humans: those originating from house dust mites (HDM), cockroaches, and helminths being the best characterized. Evaluation of their allergenic activity suggests that they have a clinical impact. GST allergens belong to different classes: mu (Blo t 8, Der p 8, Der f 8, and Tyr p 8), sigma (Bla g 5 and Asc s 13), or delta (Per a 5). Also, IgE-binding molecules belonging to the pi-class have been discovered in helminths, but they are not officially recognized as allergens. In this review, we describe some aspects of the biology of GST, analyze their allergenic activity, and explore the structural aspects and clinical impact of their cross-reactivity.
Collapse
|
14
|
He W, Li S, He K, Sun F, Mu L, Li Q, Yi J, He Z, Liu Z, Wu X. Identification of potential allergens in larva, pupa, moth, silk, slough and feces of domestic silkworm (Bombyx mori). Food Chem 2021; 362:130231. [PMID: 34237653 DOI: 10.1016/j.foodchem.2021.130231] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 05/23/2021] [Accepted: 05/26/2021] [Indexed: 11/18/2022]
Abstract
The silkworm (Bombyx mori) is an important economic insect that can be used as food in many countries in Asia. However, silkworms and their metabolites are an important source of allergens, which can induce severe allergic reactions. So far, there are no systematic studies on the potential allergens in silkworm and its metabolites. These studies have important guiding significance for the prevention, diagnosis, and treatment of silkworm allergy. The aim of this study was to identify the potential allergens from larva, pupa, moth, silk, slough and feces of silkworm and analyze the sequence homology of silkworm allergens with other allergens identified in the Allergenonline database. We have found 45 potential allergens in silkworm. The results of the homology comparison suggested that silkworm allergens likely cross-react with those of Dermatophagoides farinae, Aedes aegypti, Tyrophagus putrescentiae, Triticum aestivum and Malassezia furfur.
Collapse
Affiliation(s)
- Weiyi He
- Department of Respirology & Allergy. Third Affiliated Hospital of Shenzhen University, Shenzhen 518020, Guangdong Province, PR China; School of Public Health, Health Science Center, Shenzhen University, Shenzhen 518060, Guangdong Province, PR China
| | - Shuiming Li
- College of Life Science, Shenzhen University, Shenzhen 518060, Guangdong Province, PR China
| | - Kan He
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen 518060, Guangdong Province, PR China
| | - Fan Sun
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen 518060, Guangdong Province, PR China
| | - Lixia Mu
- Sericulture and Agro-Processing Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, Guangdong Province, PR China
| | - Qingrong Li
- Sericulture and Agro-Processing Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, Guangdong Province, PR China
| | - Jiang Yi
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen 518060, Guangdong Province, PR China
| | - Zhendan He
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen 518060, Guangdong Province, PR China
| | - Zhigang Liu
- Department of Respirology & Allergy. Third Affiliated Hospital of Shenzhen University, Shenzhen 518020, Guangdong Province, PR China; School of Public Health, Health Science Center, Shenzhen University, Shenzhen 518060, Guangdong Province, PR China.
| | - Xuli Wu
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen 518060, Guangdong Province, PR China.
| |
Collapse
|
15
|
Khantavee N, Reamtong O, Sookrung N, Suradhat S, Prapasarakul N. Allergen components of Dermatophagoides farinae recognised by serum immunoglobulin (Ig)E in Thai dogs with atopic dermatitis. Vet Dermatol 2021; 32:338-e94. [PMID: 33999459 DOI: 10.1111/vde.12967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 11/05/2020] [Accepted: 11/29/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Dermatophagoides farinae (Der f) is a common allergen in dogs with atopic dermatitis (AD). However, the relevant components of Der f require further investigation. OBJECTIVES We aimed to provide data on the immunoglobulin (Ig)E-binding specific components of Der f for further diagnostic and therapeutic applications. ANIMALS Serum samples were collected from five healthy, nine Der f-allergic atopic and seven non-Der f-allergic atopic dogs identified based on an intradermal skin test. METHODS AND MATERIALS We explored the component profiles of Der f extracts through 2D gel electrophoresis and IgE immunoblotting. The IgE-binding components in both groups of atopic dogs were analysed by mass spectrometry. RESULTS The majority of Der f-allergic atopic dogs recognised Der f Alternaria alternata allergen 10 (Der f Alt a 10), elongation factor 1-alpha (EF1-α), gelsolin-like allergen Der f 16, Der f 28 and Der f 2. Der f 3, Der f 10, Der f 20 and Der f 32 were recognised as minor allergens. Alpha-enolase, serine protease, arginine kinase and a few hypothetical proteins were recognised components in both groups of atopic dogs. Unexpectedly, Der f 15 (chitinase) was found to be a minor component. CONCLUSIONS AND CLINICAL IMPORTANCE Multiple IgE-binding allergens of Der f were identified in Thai atopic dogs. We propose that the specific antigen set that is bound by IgE, comprising Der f Alt a 10, EF1-α, gelsolin-like Der f 16, Der f 28 and Der f 2, could be used for future diagnostics and immunotherapy platforms.
Collapse
Affiliation(s)
- Nathrada Khantavee
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, 39 Henri-Dunant Road, Pathumwan, Bangkok, 10330, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Nitat Sookrung
- Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkok-noi, Bangkok, 10700, Thailand
| | - Sanipa Suradhat
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, 39 Henri-Dunant Road, Pathumwan, Bangkok, 10330, Thailand
| | - Nuvee Prapasarakul
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, 39 Henri-Dunant Road, Pathumwan, Bangkok, 10330, Thailand.,Diagnosis and Monitoring of Animal Pathogens Research Unit, Faculty of Veterinary Science, Chulalongkorn University, 39 Henri-Dunant Road, Pathumwan, Bangkok, 10330, Thailand
| |
Collapse
|
16
|
Bartley K, Chen W, Lloyd Mills RI, Nunn F, Price DRG, Rombauts S, Van de Peer Y, Roy L, Nisbet AJ, Burgess STG. Transcriptomic analysis of the poultry red mite, Dermanyssus gallinae, across all stages of the lifecycle. BMC Genomics 2021; 22:248. [PMID: 33827430 PMCID: PMC8028124 DOI: 10.1186/s12864-021-07547-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/17/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The blood feeding poultry red mite (PRM), Dermanyssus gallinae, causes substantial economic damage to the egg laying industry worldwide, and is a serious welfare concern for laying hens and poultry house workers. In this study we have investigated the temporal gene expression across the 6 stages/sexes (egg, larvae, protonymph and deutonymph, adult male and adult female) of this neglected parasite in order to understand the temporal expression associated with development, parasitic lifestyle, reproduction and allergen expression. RESULTS RNA-seq transcript data for the 6 stages were mapped to the PRM genome creating a publicly available gene expression atlas (on the OrcAE platform in conjunction with the PRM genome). Network analysis and clustering of stage-enriched gene expression in PRM resulted in 17 superclusters with stage-specific or multi-stage expression profiles. The 6 stage specific superclusters were clearly demarked from each other and the adult female supercluster contained the most stage specific transcripts (2725), whilst the protonymph supercluster the fewest (165). Fifteen pairwise comparisons performed between the different stages resulted in a total of 6025 Differentially Expressed Genes (DEGs) (P > 0.99). These data were evaluated alongside a Venn/Euler analysis of the top 100 most abundant genes in each stage. An expanded set of cuticle proteins and enzymes (chitinase and metallocarboxypeptidases) were identified in larvae and underpin cuticle formation and ecdysis to the protonymph stage. Two mucin/peritrophic-A salivary proteins (DEGAL6771g00070, DEGAL6824g00220) were highly expressed in the blood-feeding stages, indicating peritrophic membrane formation during feeding. Reproduction-associated vitellogenins were the most abundant transcripts in adult females whilst, in adult males, an expanded set of serine and cysteine proteinases and an epididymal protein (DEGAL6668g00010) were highly abundant. Assessment of the expression patterns of putative homologues of 32 allergen groups from house dust mites indicated a bias in their expression towards the non-feeding larval stage of PRM. CONCLUSIONS This study is the first evaluation of temporal gene expression across all stages of PRM and has provided insight into developmental, feeding, reproduction and survival strategies employed by this mite. The publicly available PRM resource on OrcAE offers a valuable tool for researchers investigating the biology and novel interventions of this parasite.
Collapse
Affiliation(s)
- Kathryn Bartley
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, Midlothian, EH26 0PZ, UK.
| | - Wan Chen
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, Midlothian, EH26 0PZ, UK
- Institute of Biological and Environmental Sciences, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 3FX, UK
| | | | - Francesca Nunn
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, Midlothian, EH26 0PZ, UK
| | - Daniel R G Price
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, Midlothian, EH26 0PZ, UK
| | - Stephane Rombauts
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 927, 9052, Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, 9052, Ghent, Belgium
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 927, 9052, Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, 9052, Ghent, Belgium
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Private bag X20, Pretoria, 0028, South Africa
| | - Lise Roy
- CEFE, CNRS, Univ Montpellier, Univ Paul Valéry Montpellier, EPHE, IRD, Montpellier, France
| | - Alasdair J Nisbet
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, Midlothian, EH26 0PZ, UK
| | - Stewart T G Burgess
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, Midlothian, EH26 0PZ, UK
| |
Collapse
|
17
|
Shevchenko M, Servuli E, Albakova Z, Kanevskiy L, Sapozhnikov A. The Role of Heat Shock Protein 70 kDa in Asthma. J Asthma Allergy 2021; 13:757-772. [PMID: 33447061 PMCID: PMC7801907 DOI: 10.2147/jaa.s288886] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/12/2020] [Indexed: 01/16/2023] Open
Abstract
Asthma is a complex chronic disorder of the airways, affecting immune and structural cells and inducing both protein and tissue remodeling. Heat shock proteins 70 kDa (HSP70s) are highly conserved members of the stress-induced family, possessing precisely described chaperone activity. There is growing evidence of a tight relationship between inflammatory diseases of different origins and the elevation of local HSP70 expression and secretion. Although extracellular HSP70 does not serve as a common marker of asthma, elevated HSP70 levels have been detected in the peripheral blood serum and sputum of patients with asthma, as well as in the bronchoalveolar lavage fluid of mice with induced allergic airway inflammation. Possessing diverse immunomodulating properties, extracellular HSP70 can manifest different activities in airway inflammatory processes and asthma, acting either as a pro-inflammatory trigger, or an anti-inflammatory agent. This review will discuss the effects and possible mechanisms concerning HSP70 implication in airway inflammation regulation in asthma. We examine ATPase and chaperone activities of HSP70 as potential modulators of immune responses in asthma. Given the crucial role of a chronic inflammatory response in asthma, understanding the effects of HSP70 on immune and structural cells may reveal new perspectives for the therapeutic control of inflammation.
Collapse
Affiliation(s)
- Marina Shevchenko
- Department of Immunology, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina Servuli
- Department of Immunology, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Department of Experimental Physiology, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Zarema Albakova
- Department of Immunology, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Department of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Leonid Kanevskiy
- Department of Immunology, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alexander Sapozhnikov
- Department of Immunology, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Department of Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
18
|
Isolation and characterization of the major centipede allergen Sco m 5 from Scolopendra subspinipes mutilans. Allergol Int 2021; 70:121-128. [PMID: 32680616 DOI: 10.1016/j.alit.2020.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 06/02/2020] [Accepted: 06/05/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Allergic reactions have been observed following both direct centipede bites and the clinical use of centipede-containing medicines, such as traditional Chinese medicines utilizing Scolopendra subspinipes mutilans; however, no natural centipede allergen has yet been characterized. METHODS An allergen was purified from S. s. mutilans venom using Superdex 75 gel filtration and RESOURCE S ion chromatography, and its primary structure was determined via a combination of LC-MS-MS, MALDI-TOF/TOF and protein sequencing techniques. Its potential allergenicity was evaluated by immunoblotting, ELISAs, skin prick tests (SPTs) and mast cell activation assays. RESULTS A novel allergen Sco m 5 (210 amino acids long) was successfully purified from crude S. s. mutilans venom. Sco m 5 could promote the degranulation of a human mast cell line, HMC-1. Among centipede-allergic patients, Sco m 5 showed an 83.3% IgE-binding frequency and a 66.7% positive reaction frequency, as detected by immunoblotting and SPTs, respectively. Sco m 5 IgE-binding frequencies of common Chinese population was found to be 9%-16%. Sera positive for Sco m 5 IgE-binding was cross-reactive against venom from the wasp Vespa mandaeinia. CONCLUSIONS The present study isolated and characterized a novel allergen termed as Sco m 5 from the centipede S. s. mutilans. The use of Sco m 5 to identify centipede-allergic individuals could be important, given the high potential allergenicity of Sco m 5 among the general Chinese population, along with the likely possibility of cross-reactivity against wasp venom among centipede-allergic patients.
Collapse
|
19
|
Karnaneedi S, Huerlimann R, Johnston EB, Nugraha R, Ruethers T, Taki AC, Kamath SD, Wade NM, Jerry DR, Lopata AL. Novel Allergen Discovery through Comprehensive De Novo Transcriptomic Analyses of Five Shrimp Species. Int J Mol Sci 2020; 22:E32. [PMID: 33375120 PMCID: PMC7792927 DOI: 10.3390/ijms22010032] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/10/2020] [Accepted: 12/19/2020] [Indexed: 12/19/2022] Open
Abstract
Shellfish allergy affects 2% of the world's population and persists for life in most patients. The diagnosis of shellfish allergy, in particular shrimp, is challenging due to the similarity of allergenic proteins from other invertebrates. Despite the clinical importance of immunological cross-reactivity among shellfish species and between allergenic invertebrates such as dust mites, the underlying molecular basis is not well understood. Here we mine the complete transcriptome of five frequently consumed shrimp species to identify and compare allergens with all known allergen sources. The transcriptomes were assembled de novo, using Trinity, from raw RNA-Seq data of the whiteleg shrimp (Litopenaeus vannamei), black tiger shrimp (Penaeus monodon), banana shrimp (Fenneropenaeus merguiensis), king shrimp (Melicertus latisulcatus), and endeavour shrimp (Metapenaeus endeavouri). BLAST searching using the two major allergen databases, WHO/IUIS Allergen Nomenclature and AllergenOnline, successfully identified all seven known crustacean allergens. The analyses revealed up to 39 unreported allergens in the different shrimp species, including heat shock protein (HSP), alpha-tubulin, chymotrypsin, cyclophilin, beta-enolase, aldolase A, and glyceraldehyde-3-phosphate dehydrogenase (G3PD). Multiple sequence alignment (Clustal Omega) demonstrated high homology with allergens from other invertebrates including mites and cockroaches. This first transcriptomic analyses of allergens in a major food source provides a valuable resource for investigating shellfish allergens, comparing invertebrate allergens and future development of improved diagnostics for food allergy.
Collapse
Affiliation(s)
- Shaymaviswanathan Karnaneedi
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia; (S.K.); (E.B.J.); (R.N.); (T.R.); (A.C.T.); (S.D.K.)
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
- Centre for Food and Allergy Research, Murdoch Children’s Research Institute, The Royal Children’s Hospital, 50 Flemington Road, Parkville, VIC 3052, Australia
- ARC Research Hub for Advanced Prawn Breeding, Townsville, QLD 4811, Australia; (R.H.); (N.M.W.)
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD 4811, Australia
| | - Roger Huerlimann
- ARC Research Hub for Advanced Prawn Breeding, Townsville, QLD 4811, Australia; (R.H.); (N.M.W.)
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD 4811, Australia
| | - Elecia B. Johnston
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia; (S.K.); (E.B.J.); (R.N.); (T.R.); (A.C.T.); (S.D.K.)
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
- Centre for Food and Allergy Research, Murdoch Children’s Research Institute, The Royal Children’s Hospital, 50 Flemington Road, Parkville, VIC 3052, Australia
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - Roni Nugraha
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia; (S.K.); (E.B.J.); (R.N.); (T.R.); (A.C.T.); (S.D.K.)
- Department of Aquatic Product Technology, Bogor Agricultural University, Bogor 16680, Indonesia
| | - Thimo Ruethers
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia; (S.K.); (E.B.J.); (R.N.); (T.R.); (A.C.T.); (S.D.K.)
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
- Centre for Food and Allergy Research, Murdoch Children’s Research Institute, The Royal Children’s Hospital, 50 Flemington Road, Parkville, VIC 3052, Australia
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD 4811, Australia
| | - Aya C. Taki
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia; (S.K.); (E.B.J.); (R.N.); (T.R.); (A.C.T.); (S.D.K.)
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
- Centre for Food and Allergy Research, Murdoch Children’s Research Institute, The Royal Children’s Hospital, 50 Flemington Road, Parkville, VIC 3052, Australia
| | - Sandip D. Kamath
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia; (S.K.); (E.B.J.); (R.N.); (T.R.); (A.C.T.); (S.D.K.)
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
- Centre for Food and Allergy Research, Murdoch Children’s Research Institute, The Royal Children’s Hospital, 50 Flemington Road, Parkville, VIC 3052, Australia
| | - Nicholas M. Wade
- ARC Research Hub for Advanced Prawn Breeding, Townsville, QLD 4811, Australia; (R.H.); (N.M.W.)
- CSIRO Agriculture and Food, Aquaculture Program, 306 Carmody Road, St Lucia, QLD 4067, Australia
| | - Dean R. Jerry
- ARC Research Hub for Advanced Prawn Breeding, Townsville, QLD 4811, Australia; (R.H.); (N.M.W.)
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
- Tropical Futures Institute, James Cook University, 149 Sims Drive, Singapore 387380, Singapore
| | - Andreas L. Lopata
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia; (S.K.); (E.B.J.); (R.N.); (T.R.); (A.C.T.); (S.D.K.)
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
- Centre for Food and Allergy Research, Murdoch Children’s Research Institute, The Royal Children’s Hospital, 50 Flemington Road, Parkville, VIC 3052, Australia
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|
20
|
Kim US, Park JW, Park ES, Bang JS, Jung TW, Kim DS, Abd El-Aty AM, Lee JH, Jeong JH. The Suppressive Effect of Leucine-Rich Glioma Inactivated 3 (LGI3) Peptide on Impaired Skin Barrier Function in a Murine Model Atopic Dermatitis. Pharmaceutics 2020; 12:pharmaceutics12080750. [PMID: 32785038 PMCID: PMC7463480 DOI: 10.3390/pharmaceutics12080750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/03/2020] [Accepted: 08/08/2020] [Indexed: 11/16/2022] Open
Abstract
This study aimed to restore the skin barrier function from atopic dermatitis (AD) via treatment with leucine-rich glioma inactivated 3 (LGI3) peptide. Male NC/Nga mice (7 weeks, 20 g) were randomly allocated into three groups (control, AD, and LGI3 group). After induction of AD skin lesions with Dermatophagoides farinae ointment, mice were treated with LGI3. The clinical score of AD was the highest and the dorsal skin thickness was the thickest in the AD group. In contrast, LGI3 treatment improved the clinical score and the dorsal skin thickness compared to the AD model. LGI3 treatment suppressed histopathological thickness of the epithelial cell layer of the dorsal skin. LGI3 treatment could indirectly reduce mast cell infiltration through restoring the barrier function of the skin. Additionally, the filaggrin expression was increased in immunohistochemical evaluation. In conclusion, the ameliorating effect and maintaining skin barrier homeostasis in the AD murine model treated with LGI3 could be attributed to complete re-epithelialization of keratinocytes. Hence, LGI3 might be considered as a new potential therapeutic target for restoring skin barrier function in AD.
Collapse
Affiliation(s)
- Ui Seok Kim
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul 06974, Korea; (U.S.K.); (J.W.P.); (T.W.J.)
| | - Jin Woo Park
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul 06974, Korea; (U.S.K.); (J.W.P.); (T.W.J.)
| | - Eon Sub Park
- Department of Pathology, College of Medicine, Chung-Ang University, Seoul 06974, Korea;
| | - Joon Seok Bang
- College of Pharmacy, Sookmyung Women’s University, Seoul 04310, Korea;
| | - Tae Woo Jung
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul 06974, Korea; (U.S.K.); (J.W.P.); (T.W.J.)
| | - Dong-Seok Kim
- Department of Biochemistry, College of Medicine, Chung-Ang University, Seoul 06974, Korea;
| | - A. M. Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt;
| | - Jong Hyuk Lee
- Department of Pharmaceutical Engineering, College of Life and Health Science, Hoseo University, Asan 31499, Korea
- Correspondence: (J.H.L.); (J.H.J.); Tel.: +82-41-540-9814 (J.H.L.); +82-2-820-5688 (J.H.J.)
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul 06974, Korea; (U.S.K.); (J.W.P.); (T.W.J.)
- Correspondence: (J.H.L.); (J.H.J.); Tel.: +82-41-540-9814 (J.H.L.); +82-2-820-5688 (J.H.J.)
| |
Collapse
|
21
|
Zhou Y, Wu M, Zhu H, Shao J, Liu C, Cui Y. Identification of LincRNA from Dermatophagoides farinae (Acari: Pyroglyphidae) for Potential Allergen-Related Targets. Genet Mol Biol 2020; 43:e20190243. [PMID: 32162651 PMCID: PMC7198022 DOI: 10.1590/1678-4685-gmb-2019-0243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/01/2019] [Indexed: 11/22/2022] Open
Abstract
Long noncoding RNAs (lncRNAs), especially their important subclass of long intergenic noncoding RNAs (lincRNAs), have been identified in some insects. They play important roles in the regulation of biological processes, such as immune response or cell differentiation and as possible evolutionary precursors for protein coding genes. House dust mites (HDMs) are recognized as allergenic mites because allergens are found in their feces and bodies. Dermatophagoides farinae is one of the most important pyroglyphid mites because of its abundance in the household. To determine if lincRNAs can regulate allergen presentation in HDMs, we analyzed RNA-seq data for HDMs. We identified 11 lincRNAs that are related to mRNAs coding for allergens in HDMs. Using qRT-PCR, we amplified 10 lincRNAs and their putative target allergen-encoding mRNAs, confirming expression of these lincRNAs and allergen genes. The results suggest that lincRNAs might be involved in the regulation of allergen production in HDMs and might represent potential acaricidal candidates to inhibit mite allergen production.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Pediatrics Laboratory, Wuxi Children's Hospital, Wuxi, China
| | - Meili Wu
- Department of Pediatrics Laboratory, Wuxi Children's Hospital, Wuxi, China
| | - Hanting Zhu
- Department of Clinical Laboratory, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Junjie Shao
- Chinese Academy of Medical Science, Institute of Medicinal Plant Development, Beijing, China
| | - Chang Liu
- Chinese Academy of Medical Science, Institute of Medicinal Plant Development, Beijing, China
| | - Yubao Cui
- Department of Clinical Laboratory, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| |
Collapse
|
22
|
Erban T, Klimov P, Talacko P, Harant K, Hubert J. Proteogenomics of the house dust mite, Dermatophagoides farinae: Allergen repertoire, accurate allergen identification, isoforms, and sex-biased proteome differences. J Proteomics 2020; 210:103535. [DOI: 10.1016/j.jprot.2019.103535] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/28/2019] [Accepted: 09/26/2019] [Indexed: 12/15/2022]
|
23
|
Sircar G, Bhowmik M, Sarkar RK, Najafi N, Dasgupta A, Focke-Tejkl M, Flicker S, Mittermann I, Valenta R, Bhattacharya K, Gupta Bhattacharya S. Molecular characterization of a fungal cyclophilin allergen Rhi o 2 and elucidation of antigenic determinants responsible for IgE-cross-reactivity. J Biol Chem 2019; 295:2736-2748. [PMID: 31882546 DOI: 10.1074/jbc.ra119.011659] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/16/2019] [Indexed: 01/12/2023] Open
Abstract
Cyclophilins are structurally conserved pan-allergens showing extensive cross-reactivity. So far, no precise information on cross-reactive IgE-epitopes of cyclophilins is available. Here, an 18-kDa IgE-reactive cyclophilin (Rhi o 2) was purified from Rhizopus oryzae, an indoor mold causing allergic sensitization. Based on LC-MS/MS-derived sequences of natural Rhi o 2, the full-length cDNA was cloned, and expressed as recombinant (r) allergen. Purified rRhi o 2 displayed IgE-reactivity and basophil degranulation with sera from all cyclophilin-positive patients. The melting curve of properly folded rRhi o 2 showed partial refolding after heat denaturation. The allergen displayed monomeric functional peptidyl-prolyl cis-trans isomerase (PPIase) activity. In IgE-inhibition assays, rRhi o 2 exhibited extensive cross-reactivity with various other cyclophilins reported as allergens from diverse sources including its homologous human autoantigen. By generating a series of deletion mutants, a conserved 69-residue (Asn81-Asn149) fragment at C terminus of Rhi o 2 was identified as crucial for IgE-recognition and cross-reactivity. Grafting of the Asn81-Asn149 fragment within the primary structure of yeast cyclophilin CPR1 by replacing its homologous sequence resulted in a hybrid molecule with structural folds similar to Rhi o 2. The IgE-reactivity and allergenic activity of the hybrid cyclophilin were greater than that of CPR1. Therefore, the Asn81-Asn149 fragment can be considered as the site of IgE recognition of Rhi o 2. Hence, Rhi o 2 serves as a candidate antigen for the molecular diagnosis of mold allergy, and determination of a major cross-reactive IgE-epitope has clinical potential for the design of next-generation immunotherapeutics against cyclophilin-induced allergies.
Collapse
Affiliation(s)
- Gaurab Sircar
- Department of Botany, Visva-Bharati, Santiniketan 731235, India; Division of Plant Biology (Main campus), Bose Institute, 93/1 Acharya Prafulla Chandra Rd., Kolkata 700009, India.
| | - Moumita Bhowmik
- Division of Plant Biology (Main campus), Bose Institute, 93/1 Acharya Prafulla Chandra Rd., Kolkata 700009, India
| | | | - Nazanin Najafi
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Währinger Gürtel 18-20, A-1090 Vienna, Austria
| | - Angira Dasgupta
- Department of Chest Medicine, B. R. Singh Hospital and Center for Medical Education and Research, Kolkata 700014, India
| | - Margarete Focke-Tejkl
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Währinger Gürtel 18-20, A-1090 Vienna, Austria
| | - Sabine Flicker
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Währinger Gürtel 18-20, A-1090 Vienna, Austria
| | - Irene Mittermann
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Währinger Gürtel 18-20, A-1090 Vienna, Austria
| | - Rudolf Valenta
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Währinger Gürtel 18-20, A-1090 Vienna, Austria; NRC Institute of Immunology FMBA of Russia, 115478 Moscow, Russia; Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, 119146 Moscow, Russian Federation
| | | | - Swati Gupta Bhattacharya
- Division of Plant Biology (Main campus), Bose Institute, 93/1 Acharya Prafulla Chandra Rd., Kolkata 700009, India.
| |
Collapse
|
24
|
Chen D, Fu Q, Lin J, Hu C, Huang N, Chang KX, Sun B, Liu Z. Gene synthesizing, expression and immunogenicity characterization of recombinant translation elongation factor 2 from Dermatophagoides farinae. Mol Med Rep 2019; 20:5324-5334. [PMID: 31702815 PMCID: PMC6854542 DOI: 10.3892/mmr.2019.10786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 09/04/2019] [Indexed: 11/06/2022] Open
Abstract
House dust mite (HDM) hypersensitivity increasingly affects millions of individuals worldwide. Although numerous major allergens produced by HDM species have been characterized, some of the less potent allergens remain to be studied. The present study aimed to obtain the recombinant allergen of Translation Elongation Factor 2 (TEF 2) from the HDM Dermatophagoides farinae by synthesizing, and then expressing the recombinant TEF 2 to identify its immunogenicity. In the present study, the D. farinae TEF 2 (Der f TEF 2) was synthesized, expressed and purified. The molecular characteristics of Der f TEF 2 were analyzed using bioinformatics approaches. The recombinant protein was purified via affinity chromatography, and the allergenicity was assessed using immunoblotting, ELISAs and skin prick tests. The gene for TEF 2 consists of 2,535 bp and encodes an 844‑amino acid protein. A positive response to recombinant Der f TEF 2 was detected in 16.2% of 37 patients with HDM allergies using skin prick tests. In addition, the immunoblotting indicated that the protein showed a high ability to bind serum IgE from patients allergic to HDMs, and that the recombinant TEF 2 was highly immunogenic. Bioinformatics analysis predicted 17 peptides as B cell epitopes (amino acids 29‑35, 55‑64, 92‑99, 173‑200, 259‑272, 311‑318, 360‑365, 388‑395, 422‑428, 496‑502, 512‑518, 567‑572, 580‑586, 602‑617, 785‑790, 811‑817 and 827‑836) and 14 peptides as T cell epitopes (amino acids 1‑15, 65‑79, 120‑134, 144‑159, 236‑250, 275‑289, 404‑418, 426‑440, 463‑477, 510‑524, 644‑658, 684‑698, 716‑730 and 816‑830). The software DNAStar predicted the secondary structure of TEF 2, and showed that 27 α‑helices and five β‑sheets were found in the protein. In conclusion, the present study cloned and expressed the Der f TEF 2 gene, and the recombinant protein exhibited immunogenicity, providing a theoretical bases, and references, for the diagnosis and treatment of allergic disease.
Collapse
Affiliation(s)
- Desheng Chen
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, P.R. China
| | - Qinghui Fu
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, P.R. China
| | - Jianli Lin
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, P.R. China
| | - Chengshen Hu
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, P.R. China
| | - Nana Huang
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, P.R. China
| | - Ke Xin Chang
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, P.R. China
| | - Baoqing Sun
- Department of Allergy, Affiliated Luohu Hospital of Shenzhen University, Shenzhen Luohu Hospital Group, Shenzhen, Guangdong 518000, P.R. China
| | - Zhigang Liu
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, P.R. China
| |
Collapse
|
25
|
Ole e 15 and its human counterpart -PPIA- chimeras reveal an heterogeneous IgE response in olive pollen allergic patients. Sci Rep 2019; 9:15027. [PMID: 31636292 PMCID: PMC6803672 DOI: 10.1038/s41598-019-51005-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 09/16/2019] [Indexed: 12/27/2022] Open
Abstract
Olive pollen is a major cause of immunoglobulin E (IgE)-mediated allergy in Mediterranean countries. It is expected to become a worldwide leading allergenic source because olive cultivation is increasing in many countries. Ole e 15 belongs to the cyclophilin pan-allergen family, which includes highly cross-reactive allergens from non-related plant, animal and mold species. Here, the amino acid differences between Ole e 15 and its weak cross-reactive human homolog PPIA were grafted onto Ole e 15 to assess the contribution of specific surface areas to the IgE-binding. Eight Ole e 15-PPIA chimeras were produced in E. coli, purified and tested with 20 sera from Ole e 15-sensitized patients with olive pollen allergy by ELISA experiments. The contribution of linear epitopes was analyzed using twelve overlapping peptides spanning the entire Ole e 15 sequence. All the patients displayed a diverse reduction of the IgE-reactivity to the chimeras, revealing a highly polyclonal and patient-specific response to Ole e 15. IgE-epitopes are distributed across the entire Ole e 15 surface. Two main surface areas containing relevant conformational epitopes have been characterized. This is the first study to identify important IgE-binding regions on the surface of an allergenic cyclophilin.
Collapse
|
26
|
Santos da Silva E, Marques Ponte JC, Barbosa da Silva M, Silva Pinheiro C, Carvalho Pacheco LG, Ferreira F, Briza P, Alcantara-Neves NM. Proteomic Analysis Reveals Allergen Variability among Breeds of the Dust Mite Blomia tropicalis. Int Arch Allergy Immunol 2019; 180:159-172. [PMID: 31563904 DOI: 10.1159/000501964] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 07/06/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The dawn of the "omics" technologies has changed allergy research, increasing the knowledge and identification of new allergens. However, these studies have been almost restricted to Dermatophagoides spp. Although Blomia tropicalis has long been established as a clinically important source of allergens, a thorough proteomic characterization is still lacking for this dust mite. OBJECTIVE To increase knowledge of B. tropicalis allergens through proteomic analysis. METHODS Eleven in-bred lineages of B. tropicalis were obtained from 11 unique different pregnant females. Their somatic extracts were analyzed and compared with a commercially available extract by liquid chromatography tandem mass spectrometry (LC-MS/MS). RESULTS Considerable differences in the protein expression profiles were found among the breeds, and most of them displayed higher expression levels of major allergens than the commercially available extract. Blo t 2 was the most prominent allergenic protein in the analyzed extracts. Six identified allergens and 14 isoforms have not yet been recognized by IUIS. Conversely, 3 previously recognized B. tropicalis allergens were not found. CONCLUSIONS The clear impact of inbreeding on allergen content shown by our study leads us to conclude that the quantification and/or identification of allergens from in-bred lines should be routinely considered for mite cultivation in order to select breeds with higher amounts of major allergens. In this sense, LC-MS/MS may be a useful method to achieve this quality control for research and commercial purposes.
Collapse
Affiliation(s)
- Eduardo Santos da Silva
- Laboratório de Alergia e Acarologia, Departamento de Ciências da Biointeração, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil.,Department of Biosciences, University of Salzburg, Salzburg, Austria.,Programa de Pós-Graduação em Biotecnologia da Rede Nordeste de Biotecnologia (RENORBIO), Natal, Brazil
| | - João Carlos Marques Ponte
- Laboratório de Alergia e Acarologia, Departamento de Ciências da Biointeração, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil.,Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Márcia Barbosa da Silva
- Laboratório de Alergia e Acarologia, Departamento de Ciências da Biointeração, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil.,Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Carina Silva Pinheiro
- Laboratório de Alergia e Acarologia, Departamento de Ciências da Biointeração, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
| | - Luis Gustavo Carvalho Pacheco
- Laboratório de Alergia e Acarologia, Departamento de Ciências da Biointeração, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
| | - Fatima Ferreira
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Peter Briza
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Neuza Maria Alcantara-Neves
- Laboratório de Alergia e Acarologia, Departamento de Ciências da Biointeração, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil, .,Programa de Pós-Graduação em Biotecnologia da Rede Nordeste de Biotecnologia (RENORBIO), Natal, Brazil,
| |
Collapse
|
27
|
Reginald K, Pang SL, Chew FT. Blo t 2: Group 2 allergen from the dust mite Blomia tropicalis. Sci Rep 2019; 9:12239. [PMID: 31439916 PMCID: PMC6706440 DOI: 10.1038/s41598-019-48688-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 08/02/2019] [Indexed: 01/28/2023] Open
Abstract
Blomia tropicalis has been recognized as a cause of allergic diseases in the tropical and subtropical regions. Here we report the immuno-characterization of its group 2 allergen, Blo t 2. Allergen Blo t 2 was amplified from the cDNA of B. tropicalis using degenerate primers, expressed in Escherichia coli as a recombinant protein and purified to homogeneity. The mature protein of Blo t 2 was 126 amino acids long with 52% sequence identity to Der p 2 and apparent molecular mass of 15 kDa. Circular dichroism spectroscopy showed that Blo t 2 is mainly a beta-sheeted protein. We confirmed the presence of three disulfide bonds in recombinant (r) Blo t 2 protein using electrospray mass spectrometry. Thirty-four percent of dust-mite allergic individuals from the Singapore showed specific IgE binding to rBlo t 2 as tested using immuno dot-blots. IgE-cross reactivity assays showed that Blo t 2 had between 20-50% of unique IgE-epitopes compared to Der p 2. IgE binding of native and recombinant forms of Blo t 2 were highly concordant (r2 = 0.77, p < 0.0001) to rBlo t 2. Dose-dependent in vitro histamine was observed when rBlo t 2 was incubated with whole blood of Blo t 2 sensitized individuals, demonstrating that it is a functional allergen. Nine naturally occurring isoforms of Blo t 2 were identified in this study, each having between 1-3 amino acid variations compared to the reference clone. Blo t 2 is a clinically relevant allergen of B. tropicalis as it has unique IgE epitopes compared to major group 2 allergens from Dermatophagoides spp.
Collapse
Grants
- Research scholarship from the National University of Singapore.
- MOH | National Medical Research Council (NMRC)
- Deanship of Academic Research, University of Jordan (DAR)
- Ministry of Education Academic Research Fund, Biomedical Research Council, Singapore and the Agency for Science, Technology and Research, Singapore (A*STAR); R-154-000-404-112, R-154-000-553-112, R-154-000-565-112, R-154-000-630-112, R-154-000-A08-592, R-154-000-A27-597, BMRC/01/1/21/18/077, BMRC/04/1/21/19/315, R-154-000-A80-305, R-154-000-A91-592, and R154-000-A95-592.
Collapse
Affiliation(s)
- Kavita Reginald
- Department of Biological Sciences, Sunway University, Bandar Sunway 47500, Selangor, Malaysia
- Allergy and Molecular Immunology Laboratory, Department of Biological Science, National University of Singapore, Singapore, 117543, Singapore
| | - Sze Lei Pang
- Allergy and Molecular Immunology Laboratory, Department of Biological Science, National University of Singapore, Singapore, 117543, Singapore
| | - Fook Tim Chew
- Allergy and Molecular Immunology Laboratory, Department of Biological Science, National University of Singapore, Singapore, 117543, Singapore.
| |
Collapse
|
28
|
San Segundo-Acosta P, Oeo-Santos C, Benedé S, de Los Ríos V, Navas A, Ruiz-Leon B, Moreno C, Pastor-Vargas C, Jurado A, Villalba M, Barderas R. Delineation of the Olive Pollen Proteome and Its Allergenome Unmasks Cyclophilin as a Relevant Cross-Reactive Allergen. J Proteome Res 2019; 18:3052-3066. [PMID: 31192604 DOI: 10.1021/acs.jproteome.9b00167] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Olive pollen is a major allergenic source worldwide due to its extensive cultivation. We have combined available genomics data with a comprehensive proteomics approach to get the annotated olive tree (Olea europaea L.) pollen proteome and define its complex allergenome. A total of 1907 proteins were identified by LC-MS/MS using predicted protein sequences from its genome. Most proteins (60%) were predicted to possess catalytic activity and be involved in metabolic processes. In total, 203 proteins belonging to 47 allergen families were found in olive pollen. A peptidyl-prolyl cis-trans isomerase, cyclophilin, produced in Escherichia coli, was found as a new olive pollen allergen (Ole e 15). Most Ole e 15-sensitized patients were children (63%) and showed strong IgE recognition to the allergen. Ole e 15 shared high sequence identity with other plant, animal, and fungal cyclophilins and presented high IgE cross-reactivity with pollen, plant food, and animal extracts.
Collapse
Affiliation(s)
- Pablo San Segundo-Acosta
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas , Universidad Complutense de Madrid , E-28040 Madrid , Spain
| | - Carmen Oeo-Santos
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas , Universidad Complutense de Madrid , E-28040 Madrid , Spain
| | - Sara Benedé
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas , Universidad Complutense de Madrid , E-28040 Madrid , Spain
| | | | - Ana Navas
- Hospital Universitario Reina Sofía de Córdoba , E-14004 Córdoba , Spain
| | - Berta Ruiz-Leon
- Hospital Universitario Reina Sofía de Córdoba , E-14004 Córdoba , Spain
| | - Carmen Moreno
- Hospital Universitario Reina Sofía de Córdoba , E-14004 Córdoba , Spain
| | - Carlos Pastor-Vargas
- Department of Immunology , Instituto de Investigación Sanitaria Hospital Universitario Fundación Jiménez Díaz (IIS-FJD, UAM) , E-28040 Madrid , Spain
| | - Aurora Jurado
- Hospital Universitario Reina Sofía de Córdoba , E-14004 Córdoba , Spain
| | - Mayte Villalba
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas , Universidad Complutense de Madrid , E-28040 Madrid , Spain
| | - Rodrigo Barderas
- Chronic Disease Programme (UFIEC) , Instituto de Salud Carlos III , Majadahonda, E-28220 Madrid , Spain
| |
Collapse
|
29
|
Zhang Z, Cai Z, Hou Y, Hu J, He Y, Chen J, Ji K. Enhanced sensitivity of capture IgE‑ELISA based on a recombinant Der f 1/2 fusion protein for the detection of IgE antibodies targeting house dust mite allergens. Mol Med Rep 2019; 19:3497-3504. [PMID: 30896856 PMCID: PMC6472038 DOI: 10.3892/mmr.2019.10050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 03/06/2019] [Indexed: 12/20/2022] Open
Abstract
The detection of allergen‑specific immunoglobulin (Ig)E is an important method for the diagnosis of IgE‑mediated allergic diseases. The sensitivity of the indirect IgE‑ELISA method against allergen extracts is limited by interference from high IgG titers and low quantities of effectual allergen components in extracts. To overcome these limitations, a novel capture IgE‑ELISA based on a recombinant Der f 1/Der f 2 fusion protein (rDer f 1/2) was developed to enhance the sensitivity to IgEs that bind allergens from the house dust mite (HDM) species Dermatophagoides farina. pET28‑Der f 1/2 was constructed and expressed in Escherichia coli BL21 (DE3) pLysS. The purified fusion protein was evaluated by IgE western blotting, IgE dot blotting and indirect IgE‑ELISA. Capture‑ELISA was performed by coating wells with omalizumab and incubating in series with sera, biotinylated Der f 1/2, horseradish peroxidase‑conjugated streptavidin and 3,3,5,5‑tetramethylbenzidine. The relative sensitivities of indirect‑ELISA and capture‑ELISA for HDM allergen‑specific IgE binding were determined; sera from non‑allergic individuals were used as the control group. rDer f 1/2 was expressed in the form of inclusion bodies comprising refolded protein, which were then purified. It exhibited increased IgE‑specific binding (24/28, 85.8%) than rDer f 1 (21/28, 75.0%) or rDer f 2 (22/28, 78.6%) with HDM‑allergic sera. Furthermore, in a random sample of HDM‑allergic sera (n=71), capture‑ELISA (71/71, 100%) was more sensitive than indirect‑ELISA (68/71, 95.8%) for the detection of HDM‑specific IgEs (P<0.01), indicating that this novel method may be useful for the diagnosis of HDM allergy.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Biochemistry and Molecular Biology, Health Science Center of Shenzhen University, Shenzhen, Guangdong 518035, P.R. China
| | - Zelang Cai
- Department of Biochemistry and Molecular Biology, Health Science Center of Shenzhen University, Shenzhen, Guangdong 518035, P.R. China
| | - Yibo Hou
- Department of Biochemistry and Molecular Biology, Health Science Center of Shenzhen University, Shenzhen, Guangdong 518035, P.R. China
| | - Jiayun Hu
- Department of Biochemistry and Molecular Biology, Health Science Center of Shenzhen University, Shenzhen, Guangdong 518035, P.R. China
| | - Yongshen He
- Department of Biochemistry and Molecular Biology, Health Science Center of Shenzhen University, Shenzhen, Guangdong 518035, P.R. China
| | - Jiajie Chen
- Department of Biochemistry and Molecular Biology, Health Science Center of Shenzhen University, Shenzhen, Guangdong 518035, P.R. China
| | - Kunmei Ji
- Department of Biochemistry and Molecular Biology, Health Science Center of Shenzhen University, Shenzhen, Guangdong 518035, P.R. China
| |
Collapse
|
30
|
Waldron R, McGowan J, Gordon N, McCarthy C, Mitchell EB, Fitzpatrick DA. Proteome and allergenome of the European house dust mite Dermatophagoides pteronyssinus. PLoS One 2019; 14:e0216171. [PMID: 31042761 PMCID: PMC6493757 DOI: 10.1371/journal.pone.0216171] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/15/2019] [Indexed: 11/18/2022] Open
Abstract
The European house dust mite Dermatophagoides pteronyssinus is of significant medical importance as it is a major elicitor of allergic illnesses. In this analysis we have undertaken comprehensive bioinformatic and proteomic examination of Dermatophagoides pteronyssinus airmid, identified 12,530 predicted proteins and validated the expression of 4,002 proteins. Examination of homology between predicted proteins and allergens from other species revealed as much as 2.6% of the D. pteronyssinus airmid proteins may cause an allergenic response. Many of the potential allergens have evidence for expression (n = 259) and excretion (n = 161) making them interesting targets for future allergen studies. Comparative proteomic analysis of mite body and spent growth medium facilitated qualitative assessment of mite group allergen localisation. Protein extracts from house dust contain a substantial number of uncharacterised D. pteronyssinus proteins in addition to known and putative allergens. Novel D. pteronyssinus proteins were identified to be highly abundant both in house dust and laboratory cultures and included numerous carbohydrate active enzymes that may be involved in cuticle remodelling, bacteriophagy or mycophagy. These data may have clinical applications in the development of allergen-specific immunotherapy that mimic natural exposure. Using a phylogenomic approach utilising a supermatrix and supertree methodologies we also show that D. pteronyssinus is more closely related to Euroglyphus maynei than Dermatophagoides farinae.
Collapse
Affiliation(s)
- Rose Waldron
- Department of Biology, National University of Ireland Maynooth, Co. Kildare, Ireland
- Airmid Healthgroup Ltd., Trinity Enterprise Campus, Dublin, Ireland
| | - Jamie McGowan
- Department of Biology, National University of Ireland Maynooth, Co. Kildare, Ireland
- Human Health Research Institute, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Natasha Gordon
- Airmid Healthgroup Ltd., Trinity Enterprise Campus, Dublin, Ireland
| | - Charley McCarthy
- Department of Biology, National University of Ireland Maynooth, Co. Kildare, Ireland
- Human Health Research Institute, Maynooth University, Maynooth, Co. Kildare, Ireland
| | | | - David A. Fitzpatrick
- Department of Biology, National University of Ireland Maynooth, Co. Kildare, Ireland
- Human Health Research Institute, Maynooth University, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
31
|
Polikovsky M, Fernand F, Sack M, Frey W, Müller G, Golberg A. In silico food allergenic risk evaluation of proteins extracted from macroalgae Ulva sp. with pulsed electric fields. Food Chem 2019; 276:735-744. [DOI: 10.1016/j.foodchem.2018.09.134] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 09/20/2018] [Accepted: 09/22/2018] [Indexed: 01/06/2023]
|
32
|
Barre A, Simplicien M, Cassan G, Benoist H, Rougé P. Food allergen families common to different arthropods (mites, insects, crustaceans), mollusks and nematods: Cross-reactivity and potential cross-allergenicity. REVUE FRANCAISE D ALLERGOLOGIE 2018. [DOI: 10.1016/j.reval.2018.10.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
33
|
Dong X, Chaisiri K, Xia D, Armstrong SD, Fang Y, Donnelly MJ, Kadowaki T, McGarry JW, Darby AC, Makepeace BL. Genomes of trombidid mites reveal novel predicted allergens and laterally transferred genes associated with secondary metabolism. Gigascience 2018; 7:5160133. [PMID: 30445460 PMCID: PMC6275457 DOI: 10.1093/gigascience/giy127] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 10/18/2018] [Indexed: 12/21/2022] Open
Abstract
Background Trombidid mites have a unique life cycle in which only the larval stage is ectoparasitic. In the superfamily Trombiculoidea ("chiggers"), the larvae feed preferentially on vertebrates, including humans. Species in the genus Leptotrombidium are vectors of a potentially fatal bacterial infection, scrub typhus, that affects 1 million people annually. Moreover, chiggers can cause pruritic dermatitis (trombiculiasis) in humans and domesticated animals. In the Trombidioidea (velvet mites), the larvae feed on other arthropods and are potential biological control agents for agricultural pests. Here, we present the first trombidid mites genomes, obtained both for a chigger, Leptotrombidium deliense, and for a velvet mite, Dinothrombium tinctorium. Results Sequencing was performed using Illumina technology. A 180 Mb draft assembly for D. tinctorium was generated from two paired-end and one mate-pair library using a single adult specimen. For L. deliense, a lower-coverage draft assembly (117 Mb) was obtained using pooled, engorged larvae with a single paired-end library. Remarkably, both genomes exhibited evidence of ancient lateral gene transfer from soil-derived bacteria or fungi. The transferred genes confer functions that are rare in animals, including terpene and carotenoid synthesis. Thirty-seven allergenic protein families were predicted in the L. deliense genome, of which nine were unique. Preliminary proteomic analyses identified several of these putative allergens in larvae. Conclusions Trombidid mite genomes appear to be more dynamic than those of other acariform mites. A priority for future research is to determine the biological function of terpene synthesis in this taxon and its potential for exploitation in disease control.
Collapse
Affiliation(s)
- Xiaofeng Dong
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom.,Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China.,School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China.,Institute of Infection & Global Health, University of Liverpool, L3 5RF, United Kingdom
| | - Kittipong Chaisiri
- Institute of Infection & Global Health, University of Liverpool, L3 5RF, United Kingdom.,Faculty of Tropical Medicine, Mahidol University, Ratchathewi Bangkok 10400, Thailand
| | - Dong Xia
- Institute of Infection & Global Health, University of Liverpool, L3 5RF, United Kingdom.,The Royal Veterinary College, London NW1 0TU, United Kingdom
| | - Stuart D Armstrong
- Institute of Infection & Global Health, University of Liverpool, L3 5RF, United Kingdom
| | - Yongxiang Fang
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Martin J Donnelly
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
| | - Tatsuhiko Kadowaki
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - John W McGarry
- Institute of Veterinary Science, University of Liverpool, Liverpool L3 5RP, United Kingdom
| | - Alistair C Darby
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Benjamin L Makepeace
- Institute of Infection & Global Health, University of Liverpool, L3 5RF, United Kingdom
| |
Collapse
|
34
|
Beckert H, Meyer-Martin H, Buhl R, Taube C, Reuter S. The Canonical but Not the Noncanonical Wnt Pathway Inhibits the Development of Allergic Airway Disease. THE JOURNAL OF IMMUNOLOGY 2018; 201:1855-1864. [PMID: 30135183 DOI: 10.4049/jimmunol.1800554] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/26/2018] [Indexed: 12/27/2022]
Abstract
Asthma is a syndrome with multifactorial causes, resulting in a variety of different phenotypes. Current treatment options are not curative and are sometimes ineffective in certain disease phenotypes. Therefore, novel therapeutic approaches are required. Recent findings have shown that activation of the canonical Wnt signaling pathway suppresses the development of allergic airway disease. In contrast, the effect of the noncanonical Wnt signaling pathway activation on allergic airway disease is not well described. The aim of this study was to validate the therapeutic effectiveness of Wnt-1-driven canonical Wnt signaling compared with Wnt-5a-driven noncanonical signaling in murine models. In vitro, both ligands were capable of attenuating allergen-specific T cell activation in a dendritic cell-dependent manner. In addition, the therapeutic effects of Wnt ligands were assessed in two different models of allergic airway disease. Application of Wnt-1 resulted in suppression of airway inflammation as well as airway hyperresponsiveness and mucus production. In contrast, administration of Wnt-5a was less effective in reducing airway inflammation or goblet cell metaplasia. These results suggest an immune modulating function for canonical as well as noncanonical Wnt signaling, but canonical Wnt pathway activation appears to be more effective in suppressing allergic airway disease than noncanonical Wnt activation.
Collapse
Affiliation(s)
- Hendrik Beckert
- Department of Pulmonary Medicine, University Medical Center Essen-Ruhrlandklinik, Essen, North Rhine-Westphalia 45239, Germany; and
| | - Helen Meyer-Martin
- Department of Pulmonary Medicine, III. Medical Clinic, University Medical Center of the Johannes Gutenberg University, D-55131 Mainz, Germany
| | - Roland Buhl
- Department of Pulmonary Medicine, III. Medical Clinic, University Medical Center of the Johannes Gutenberg University, D-55131 Mainz, Germany
| | - Christian Taube
- Department of Pulmonary Medicine, University Medical Center Essen-Ruhrlandklinik, Essen, North Rhine-Westphalia 45239, Germany; and
| | - Sebastian Reuter
- Department of Pulmonary Medicine, University Medical Center Essen-Ruhrlandklinik, Essen, North Rhine-Westphalia 45239, Germany; and
| |
Collapse
|
35
|
Cui Y, Wang Q, Jia H. Consideration of methods for identifying mite allergens. Clin Transl Allergy 2018; 8:14. [PMID: 29719717 PMCID: PMC5921985 DOI: 10.1186/s13601-018-0200-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 03/24/2018] [Indexed: 12/14/2022] Open
Abstract
House dust mites are small arthropods that produce proteins—found in their feces, body parts, and eggs—that are major triggers of human allergies worldwide. The goal of this review is to describe the current methods used to identify these allergens. A literature search for allergen identification methods employed between 1995 and 2016 revealed multiple techniques that can be broadly grouped into discovery and confirmation phases. The discovery phase employs screening for mite proteins that can bind IgEs in sera from animals or patients allergic to dust mites. The confirmation phase employs biochemical methods to isolate either native or recombinant mite proteins, confirms the IgE binding of the purified allergens, and uses either in vitro or in vivo assays to demonstrate that the purified antigen can stimulate an immune response. The methods used in the two phases are defined and their strengths and weaknesses are discussed. The majority of HDM-allergic patients may respond to just a small subset of proteins, but new protein discovery methods are still warranted in order to develop a complete panel of HDM allergens for component resolved diagnosis and patient-tailored therapies.
Collapse
Affiliation(s)
- Yubao Cui
- Department of Clinical Laboratory, Wuxi People's Hospital Affiliated to Nanjing Medical University, No. 299, Qingyang Road, Wuxi, 214023 Jiangsu Province People's Republic of China
| | - Qiong Wang
- Department of Clinical Laboratory, Wuxi People's Hospital Affiliated to Nanjing Medical University, No. 299, Qingyang Road, Wuxi, 214023 Jiangsu Province People's Republic of China
| | - Haoyuan Jia
- Department of Clinical Laboratory, Wuxi People's Hospital Affiliated to Nanjing Medical University, No. 299, Qingyang Road, Wuxi, 214023 Jiangsu Province People's Republic of China
| |
Collapse
|
36
|
Teng F, Sun J, Yu L, Li Q, Cui Y. Homology modeling and epitope prediction of Der f 33. ACTA ACUST UNITED AC 2018; 51:e6213. [PMID: 29561952 PMCID: PMC5875910 DOI: 10.1590/1414-431x20186213] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 01/08/2018] [Indexed: 02/05/2023]
Abstract
Dermatophagoides farinae (Der f), one of the main species of house dust mites, produces more than 30 allergens. A recently identified allergen belonging to the alpha-tubulin protein family, Der f 33, has not been characterized in detail. In this study, we used bioinformatics tools to construct the secondary and tertiary structures and predict the B and T cell epitopes of Der f 33. First, protein attribution, protein patterns, and physicochemical properties were predicted. Then, a reasonable tertiary structure was constructed by homology modeling. In addition, six B cell epitopes (amino acid positions 34–45, 63–67, 103–108, 224–230, 308–316, and 365–377) and four T cell epitopes (positions 178–186, 241–249, 335–343, and 402–410) were predicted. These results established a theoretical basis for further studies and eventual epitope-based vaccine design against Der f 33.
Collapse
Affiliation(s)
- Feixiang Teng
- Department of Basic Medicine, Jiangsu Vocational College of Medicine, Yancheng, China
| | - Jinxia Sun
- Department of Basic Medicine, Jiangsu Vocational College of Medicine, Yancheng, China
| | - Lili Yu
- Department of Basic Medicine, Jiangsu Vocational College of Medicine, Yancheng, China
| | - Qisong Li
- Department of Basic Medicine, Jiangsu Vocational College of Medicine, Yancheng, China
| | - Yubao Cui
- Department of Clinical Laboratory, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| |
Collapse
|
37
|
Wang G, Long C, Liu W, Xu C, Zhang M, Li Q, Lu Q, Meng P, Li D, Rong M, Sun Z, Luo X, Lai R. Novel Sodium Channel Inhibitor From Leeches. Front Pharmacol 2018; 9:186. [PMID: 29559913 PMCID: PMC5845541 DOI: 10.3389/fphar.2018.00186] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 02/19/2018] [Indexed: 12/16/2022] Open
Abstract
Considering blood-sucking habits of leeches from surviving strategy of view, it can be hypothesized that leech saliva has analgesia or anesthesia functions for leeches to stay undetected by the host. However, no specific substance with analgesic function has been reported from leech saliva although clinical applications strongly indicated that leech therapy produces a strong and long lasting pain-reducing effect. Herein, a novel family of small peptides (HSTXs) including 11 members which show low similarity with known peptides was identified from salivary glands of the leech Haemadipsa sylvestris. A typical HSTX is composed of 22-25 amino acid residues including four half-cysteines, forming two intra-molecular disulfide bridges, and an amidated C-terminus. HSTX-I exerts significant analgesic function by specifically inhibiting voltage-gated sodium (NaV) channels (NaV1.8 and NaV1.9) which contribute to action potential electrogenesis in neurons and potential targets to develop analgesics. This study reveals that sodium channel inhibitors are analgesic substances in the leech. HSTXs are excellent candidates or templates for development of analgesics.
Collapse
Affiliation(s)
- Gan Wang
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, Kunming Institute of Zoology, Kunming, China
| | - Chengbo Long
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, Kunming Institute of Zoology, Kunming, China
| | - Weihui Liu
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, Kunming Institute of Zoology, Kunming, China
| | - Cheng Xu
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, Kunming Institute of Zoology, Kunming, China
| | - Min Zhang
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, Kunming Institute of Zoology, Kunming, China.,Graduate School of University of Chinese Academy of Sciences, Beijing, China
| | - Qiong Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Qiumin Lu
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, Kunming Institute of Zoology, Kunming, China.,Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| | - Ping Meng
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, Kunming Institute of Zoology, Kunming, China
| | - Dongsheng Li
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, Kunming Institute of Zoology, Kunming, China
| | - Mingqiang Rong
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, Kunming Institute of Zoology, Kunming, China.,Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| | - Zhaohui Sun
- Department of Clinical Laboratory, Guangzhou General Hospital of Guangzhou Military Command of PLA, Guangzhou, China
| | - Xiaodong Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Ren Lai
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, Kunming Institute of Zoology, Kunming, China.,Life Sciences College of Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
38
|
Spiric J, Reuter A, Rabin RL. Mass spectrometry to complement standardization of house dust mite and other complex allergenic extracts. Clin Exp Allergy 2018; 47:604-617. [PMID: 28370618 DOI: 10.1111/cea.12931] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In the United States, the Center for Biologics Evaluation and Research of the US Food and Drug Administration regulates biologics used for diagnosis and treatment of allergic diseases. The Code of Federal Regulations 21CFR680.3(e) states that when measured, the potency of an allergenic extract is assessed according to its allergenic activity. As of 2016, 19 allergenic extracts are standardized for potency in the United States. While these standardized extracts constitute a minority of those available, they treat the most prevalent allergies (e.g. grass and ragweed pollens, dust mites, and cat) and those that induce life-threatening anaphylaxis (e.g. Hymenoptera venom). Standardization for potency enhances safety and efficacy of immunotherapy by minimizing the risks of variations in allergen dosing when switching from one lot of manufactured extract to another, and by providing an objective measure of stability of each lot of allergenic extract over time. Allergenic extracts that have multiple immunodominant allergenic proteins are standardized with little or no information about compositional differences among extracts. Here, we propose application of mass spectrometry towards measurement of compositional differences among extracts that may affect the efficacy and safety of allergen immunotherapy. In addition, we discuss of house dust mite allergen extracts as a prototypical complex extract that may be standardized by mass spectrometry.
Collapse
Affiliation(s)
- J Spiric
- Laboratory of Immunobiochemistry, Division of Bacterial, Parasitic, and Allergenic Products, Office of Vaccine Research and Review, CBER/FDA, Silver Spring, MD, USA
| | - A Reuter
- Division of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - R L Rabin
- Laboratory of Immunobiochemistry, Division of Bacterial, Parasitic, and Allergenic Products, Office of Vaccine Research and Review, CBER/FDA, Silver Spring, MD, USA
| |
Collapse
|
39
|
Identification of a novel cofilin-related molecule (Der f 31) as an allergen from Dermatophagoides farinae. Immunobiology 2017; 223:246-251. [PMID: 29102047 DOI: 10.1016/j.imbio.2017.10.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 09/19/2017] [Accepted: 10/03/2017] [Indexed: 01/11/2023]
Abstract
House dust mite (HDM) allergen is a major cause of allergic disease. In this study, two-dimensional immunoblot and Matrix-Assisted Laser Desorption Ionization tandem Time-of-flight mass spectrometry (MALDI-TOF-MS) were used to identify Der f 31. After Der f 31 was cloned, expressed and purified, skin prick test (SPT), Immune inhibitory assays, Western blot, ELISA and asthmatic mouse model were employed to examine the allergenicity of recombinant Der f 31. The gene of Der f 31 includes 447 bps, and encoded 148 amino acids. Positive responses of SPT to r-Der f 31 were 32.5% in 43 HDM-allergic patients. r-Der f 31 can induce allergic pulmonary inflammation in the mouse model. In conclusion, Der f 31 is a novel subtype of dust mite allergens.
Collapse
|
40
|
Bordas-Le Floch V, Le Mignon M, Bussières L, Jain K, Martelet A, Baron-Bodo V, Nony E, Mascarell L, Moingeon P. A combined transcriptome and proteome analysis extends the allergome of house dust mite Dermatophagoides species. PLoS One 2017; 12:e0185830. [PMID: 28982170 PMCID: PMC5628879 DOI: 10.1371/journal.pone.0185830] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/20/2017] [Indexed: 02/07/2023] Open
Abstract
Background House dust mites (HDMs) such as Dermatophagoides farinae and D. pteronyssinus represent major causes of perennial allergy. HDM proteomes are currently poorly characterized, with information mostly restricted to allergens. As of today, 33 distinct allergen groups have been identified for these 2 mite species, with groups 1 and 2 established as major allergens. Given the multiplicity of IgE-reactive mite proteins, potential additional allergens have likely been overlooked. Objective To perform a comprehensive characterization of the transcriptomes, proteomes and allergomes of D. farinae and D. pteronyssinus in order to identify novel allergens. Methods Transcriptomes were analyzed by RNA sequencing and de novo assembly. Comprehensive mass spectrometry-based analyses proteomes were combined with two-dimensional IgE reactivity profiling. Results Transcripts from D. farinae and D. pteronyssinus were assembled, translated into protein sequences and used to populate derived sequence databases in order to inform immunoproteomic analyses. A total of 527 and 157 proteins were identified by bottom-up MS analyses in aqueous extracts from purified HDM bodies and fecal pellets, respectively. Based on high sequence similarities (>71% identity), we also identified 2 partial and 11 complete putative sequences of currently undisclosed D. pteronyssinus counterparts of D. farinae registered allergens. Immunoprofiling on 2D-gels revealed the presence of unknown 23 kDa IgE reactive proteins in both species. Following expression of non-glycosylated recombinant forms of these molecules, we confirm that these new allergens react with serum IgEs from 42% (8/19) of HDM-allergic individuals. Conclusions Using combined transcriptome and immunoproteome approaches, we provide a comprehensive characterization of D. farinae and D. pteronyssinus allergomes. We expanded the known allergen repertoire for D. pteronyssinus and identified two novel HDM allergens, now officially referred by the International Union of Immunological Societies (IUIS) Nomenclature Subcommittee as Der f 36 and Der p 36.
Collapse
|
41
|
Cantillo JF, Puerta L, Puchalska P, Lafosse-Marin S, Subiza JL, Fernández-Caldas E. Allergenome characterization of the mosquito Aedes aegypti. Allergy 2017; 72:1499-1509. [PMID: 28235135 DOI: 10.1111/all.13150] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Saliva and muscle-derived mosquito allergens have been purified and characterized. However, the complete set of allergens remains to be elucidated. In this study, we identified and characterized IgE-binding proteins from the mosquito species Aedes aegypti. METHODS Serum was obtained from 15 allergic individuals with asthma and/or rhinitis and sensitized to mosquito. IgE binding was determined by ELISA. Total proteins from freeze-dried bodies of A. aegypti were extracted and IgE-reactive proteins were identified by 2D gel electrophoresis, followed by Western blot with pooled or individual sera. IgE-reactive spots were further characterized by mass spectrometry. RESULTS Twenty-five IgE-reactive spots were identified, corresponding to 10 different proteins, some of which appeared as different variants or isoforms. Heat-shock cognate 70 (HSC-70) and tropomyosin showed IgE reactivity with 60% of the sera, lysosomal aspartic protease, and "AAEL006070-PA" (Uniprot: Q177P3) with 40% and the other proteins with <33.3% of the sera. Different variants or isoforms of tropomyosin, arginine or creatine kinase, glyceraldehyde-3-phosphate dehydrogenase (GPDH), calcium-binding protein, and phosphoglycerate mutase were also identified. The mixture of three allergens (Aed a 6, Aed a 8, and Aed a 10) seems to identify more than 80% of A. aegypti-sensitized individuals, indicating that these allergens should be considered when designing of improved mosquito allergy diagnostic tools. CONCLUSIONS The newly identified allergens may play a role in the pathophysiology of mosquito allergy in the tropics, and some of them might be important arthropod-related proteins involved in cross-reactivity between A. aegypti and other allergenic arthropods.
Collapse
Affiliation(s)
- J. F. Cantillo
- Institute for Immunological Research/University of Cartagena; Cartagena Colombia
| | - L. Puerta
- Institute for Immunological Research/University of Cartagena; Cartagena Colombia
| | - P. Puchalska
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering; Faculty of Biology, Environmental Sciences and Chemistry; University of Alcalá; Madrid Spain
| | | | | | - E. Fernández-Caldas
- Inmunotek S.L.; Alcalá de Henares Spain
- Division of Allergy and Immunology; University of South Florida; Tampa FL USA
| |
Collapse
|
42
|
Mindaye ST, Spiric J, David NA, Rabin RL, Slater JE. Accurate quantification of 5 German cockroach (GCr) allergens in complex extracts using multiple reaction monitoring mass spectrometry (MRM MS). Clin Exp Allergy 2017; 47:1661-1670. [PMID: 28756650 DOI: 10.1111/cea.12986] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/21/2017] [Accepted: 07/24/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND German cockroach (GCr) allergen extracts are complex and heterogeneous products, and methods to better assess their potency and composition are needed for adequate studies of their safety and efficacy. OBJECTIVE AND METHODS The objective of this study was to develop an assay based on liquid chromatography and multiple reaction monitoring mass spectrometry (LC-MRM MS) for rapid, accurate, and reproducible quantification of 5 allergens (Bla g 1, Bla g 2, Bla g 3, Bla g 4, and Bla g 5) in crude GCr allergen extracts. RESULTS We first established a comprehensive peptide library of allergens from various commercial extracts as well as recombinant allergens. Peptide mapping was performed using high-resolution MS, and the peptide library was then used to identify prototypic and quantotypic peptides to proceed with MRM method development. Assay development included a systematic optimization of digestion conditions (buffer, digestion time, and trypsin concentration), chromatographic separation, and MS parameters. Robustness and suitability were assessed following ICH (Q2 [R1]) guidelines. The method is precise (RSD < 10%), linear over a wide range (r > 0.99, 0.01-1384 fmol/μL), and sensitive (LLOD and LLOQ <1 fmol/μL). Having established the parameters for LC-MRM MS, we quantified allergens from various commercial GCr extracts and showed considerable variability that may impact clinical efficacy. CONCLUSIONS AND CLINICAL RELEVANCE Our data demonstrate that the LC-MRM MS method is valuable for absolute quantification of allergens in GCr extracts and likely has broader applicability to other complex allergen extracts. Definitive quantification provides a new standard for labelling of allergen extracts, which will inform patient care, enable personalized therapy, and enhance the efficacy of immunotherapy for environmental and food allergies.
Collapse
Affiliation(s)
- S T Mindaye
- Laboratory of Immunobiochemistry, Division of Bacterial, Parasitic, and Allergenic Products, Office of Vaccines Research and Review, CBER/FDA, Silver Spring, MD, USA
| | - J Spiric
- Laboratory of Immunobiochemistry, Division of Bacterial, Parasitic, and Allergenic Products, Office of Vaccines Research and Review, CBER/FDA, Silver Spring, MD, USA
| | - N A David
- Laboratory of Immunobiochemistry, Division of Bacterial, Parasitic, and Allergenic Products, Office of Vaccines Research and Review, CBER/FDA, Silver Spring, MD, USA
| | - R L Rabin
- Laboratory of Immunobiochemistry, Division of Bacterial, Parasitic, and Allergenic Products, Office of Vaccines Research and Review, CBER/FDA, Silver Spring, MD, USA
| | - J E Slater
- Laboratory of Immunobiochemistry, Division of Bacterial, Parasitic, and Allergenic Products, Office of Vaccines Research and Review, CBER/FDA, Silver Spring, MD, USA
| |
Collapse
|
43
|
Allergen homologs in the Euroglyphus maynei draft genome. PLoS One 2017; 12:e0183535. [PMID: 28829832 PMCID: PMC5568732 DOI: 10.1371/journal.pone.0183535] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 08/04/2017] [Indexed: 11/19/2022] Open
Abstract
Euroglyphus maynei is a house dust mite commonly found in homes worldwide and is the source of allergens that sensitize and induce allergic reactions in humans. It is the source of species-specific allergens as well as allergens that are cross-reactive with the allergens from house dust mites Dermatophagoides farinae and D. pteronyssinus, and the ectoparasitic scabies mite Sarcoptes scabiei. The genomics, proteomics and molecular biology of E. maynei and its allergens have not been as extensively investigated as those of D. farinae, D. pteronyssinus, and S. scabiei where natural and recombinant allergens from these species have been characterized. Until now, little was known about the genome of E. maynei and it allergens but this information will be important for producing recombinant allergens for diagnostic and therapeutic purposes and for understanding the allergic response mechanism by immune effector cells that mediate the allergic reaction. We sequenced and assembled the 59 Mb E. maynei genome to aid the identification of homologs for known allergenic proteins. The predicted proteome shared orthologs with D. farinae and S. scabiei, and included proteins with homology to more than 30 different groups of allergens. However, the majority of allergen candidates could not be assigned as clear orthologs to known mite allergens. The genomic sequence data, predicted proteome, and allergen homologs identified from E. maynei provide insight into the relationships among astigmatid mites and their allergens, which should allow for the development of improved diagnostics and immunotherapy.
Collapse
|
44
|
Patel S, Rani A, Goyal A. Insights into the immune manipulation mechanisms of pollen allergens by protein domain profiling. Comput Biol Chem 2017; 70:31-39. [PMID: 28780227 DOI: 10.1016/j.compbiolchem.2017.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/13/2017] [Accepted: 07/26/2017] [Indexed: 11/25/2022]
Abstract
Plant pollens are airborne allergens, as their inhalation causes immune activation, leading to rhinitis, conjunctivitis, sinusitis and oral allergy syndrome. A myriad of pollen proteins belonging to profilin, expansin, polygalacturonase, glucan endoglucosidase, pectin esterase, and lipid transfer protein class have been identified. In the present in silico study, the protein domains of fifteen pollen sequences were extracted from the UniProt database and submitted to the interactive web tool SMART (Simple Modular Architecture Research Tool), for finding the protein domain profiles. Analysis of the data based on custom-made scripts revealed the conservation of pathogenic domains such as OmpH, PROF, PreSET, Bet_v_1, Cpl-7 and GAS2. Further, the retention of critical domains like CHASE2, Galanin, Dak2, DALR_1, HAMP, PWI, EFh, Excalibur, CT, PbH1, HELICc, and Kelch in pollen proteins, much like cockroach allergens and lethal viruses (such as HIV, HCV, Ebola, Dengue and Zika) was observed. Based on the shared motifs in proteins of taxonomicall-ydispersed organisms, it can be hypothesized that allergens and pathogens manipulate the human immune system in a similar manner. Allergens, being inanimate, cannot replicate in human body, and are neutralized by immune system. But, when the allergens are unremitting, the immune system becomes persistently hyper-sensitized, creating an inflammatory milieu. This study is expected to contribute to the understanding of pollen allergenicity and pathogenicity.
Collapse
Affiliation(s)
- Seema Patel
- Bioinformatics and Medical Informatics Research Center, San Diego State University, San Diego 92182, USA.
| | - Aruna Rani
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Arun Goyal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
45
|
Thomas WR. House Dust Mite Allergens: New Discoveries and Relevance to the Allergic Patient. Curr Allergy Asthma Rep 2017; 16:69. [PMID: 27600386 DOI: 10.1007/s11882-016-0649-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
PURPOSE OF REVIEW Recent findings on house dust allergens and their contribution to knowledge that will significantly impact on current and future allergy treatments are appraised. RECENT FINDINGS Quantitation of IgE binding to a spectrum of allergen components in several independent studies in varying locations has largely affirmed the main components as the groups 1 and 2 and possibly 23 allergens with mid-tier contributions from the groups 4, 5, 7, and 21. Prevalent binding to Der p 23 has been recapitulated sometimes with low titers. The IgE of non-asthmatic atopic subjects binds at lower titer and to fewer components than that of asthmatics, and their IgG binding relative to IgE is higher especially for children hospitalized for exacerbation. The higher IgG ratios were associated with increased IL-10 a cytokine more readily induced from T cells of allergic subjects. Peptides representing the groups 1 and 2 allergens can be used to stimulate ex vivo T cells showing responses correlating with IgE binding and providing a valuable tool for ascertaining the contribution of IgE and T cells to disease. Also, the induction of Th2 and follicular helper T cells are shown to make different contributions in mice. Cross-reactivity of IgE binding assays with high-titer cross-reactive antibodies induced by scabies is a problem in the many areas of the world where scabies is highly prevalent and endemic and from recent increases in immigration. In the last few years, allergen research has produced results that warrant rapid translation into diagnostic tools and the formulation of allergen components for immunotherapy.
Collapse
Affiliation(s)
- Wayne R Thomas
- Telethon Kids Institute, University of Western Australia, 100 Roberts Road, Subiaco, Western Australia, 6008, Australia.
| |
Collapse
|
46
|
Saha B, Bhattacharya SG. Charting novel allergens from date palm pollen (Phoenix sylvestris) using homology driven proteomics. J Proteomics 2017; 165:1-10. [PMID: 28535932 DOI: 10.1016/j.jprot.2017.05.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 05/05/2017] [Accepted: 05/17/2017] [Indexed: 11/19/2022]
Abstract
Pollen grains from Phoenix sylvestris (date palm), a commonly cultivated tree in India has been found to cause severe allergic diseases in an increasing percentage of hypersensitive individuals. To unearth its allergenic components, pollen protein were profiled by two-dimensional gel electrophoresis followed by immunoblotting with date palm pollen sensitive patient sera. Allergens were identified by MALDI-TOF/TOF employing a layered proteomic approach combining conventional database dependent search and manual de novo sequencing followed by homology-based search as Phoenix sylvestris is unsequenced. Derivatization of tryptic peptides by acetylation has been demonstrated to differentiate the 'b' from the 'y' ions facilitating efficient de novo sequencing. Ten allergenic proteins were identified, out of which six showed homology with known allergens while others were reported for the first time. Amongst these, isoflavone reductase, beta-conglycinin, S-adenosyl methionine synthase, 1, 4 glucan synthase and beta-galactosidase were commonly reported as allergens from coconut pollen and presumably responsible for cross-reactivity. One of the allergens had IgE binding epitope recognized by its glycan moiety. The allergenic potency of date palm pollen has been demonstrated using in vitro tests. The identified allergens can be used to develop vaccines for immunotherapy against date palm pollen allergy. THE SIGNIFICANCE OF THE STUDY Identification of allergenic proteins from sources harboring them is essential in developing therapeutic interventions. This is the first comprehensive study on the identification of allergens from Phoenix sylvestris (date palm) pollen, one of the major aeroallergens in India using a proteomic approach. Proteomic methods are being increasingly used to identify allergens. However, since many of these proteins arise from species which are un-sequenced, it becomes difficult to interpret those using conventional proteomics. Date palm being an unsequenced species, the IgE-reactive proteins have been identified using a stratified proteomic workflow incorporating manual de novo sequencing and homology-based proteomics. This study also gives an insight into the presence of glycan nature of the IgE binding epitopes. Five proteins have been found to be common with coconut pollen allergens and presumably responsible for cross-reactivity. These can be used in diagnostics to differentiate patient cohorts allergic to both coconut and date palm pollen from true date palm pollen allergic subjects. This would also determine better specific immunotherapy regimes between the two cohorts. The allergens identified herein have potential towards vaccine development in date palm pollen allergy as well as in enriching the existing catalogue of allergenic proteins.
Collapse
Affiliation(s)
- Bodhisattwa Saha
- Division of Plant Biology, Bose Institute, 93/1 Acharya Prafulla Chandra Road, Kolkata 700009, India
| | - Swati Gupta Bhattacharya
- Division of Plant Biology, Bose Institute, 93/1 Acharya Prafulla Chandra Road, Kolkata 700009, India.
| |
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to evaluate the most recent findings on indoor allergens and their impact on allergic diseases. RECENT FINDINGS Indoor allergens are present inside buildings (home, work environment, school), and given the chronic nature of the exposures, indoor allergies tend to be associated with the development of asthma. The most common indoor allergens are derived from dust mites, cockroaches, mammals (including wild rodents and pets), and fungi. The advent of molecular biology and proteomics has led to the identification, cloning, and expression of new indoor allergens, which have facilitated research to elucidate their role in allergic diseases. This review is an update on new allergens and their molecular features, together with the most recent reports on their avoidance for allergy prevention and their use for diagnosis and treatment. Research progress on indoor allergens will result in the development of new diagnostic tools and design of coherent strategies for immunotherapy.
Collapse
Affiliation(s)
- Anna Pomés
- Indoor Biotechnologies, Inc., 700 Harris Street, Charlottesville, VA, 22903, USA.
| | - Martin D Chapman
- Indoor Biotechnologies, Inc., 700 Harris Street, Charlottesville, VA, 22903, USA
| | - Sabina Wünschmann
- Indoor Biotechnologies, Inc., 700 Harris Street, Charlottesville, VA, 22903, USA
| |
Collapse
|
48
|
Allergens involved in the cross-reactivity of Aedes aegypti with other arthropods. Ann Allergy Asthma Immunol 2017; 118:710-718. [PMID: 28434865 DOI: 10.1016/j.anai.2017.03.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/30/2017] [Accepted: 03/14/2017] [Indexed: 01/22/2023]
Abstract
BACKGROUND Cross-reactivity between Aedes aegypti and mites, cockroaches, and shrimp has been previously suggested, but the involved molecular components have not been fully described. OBJECTIVE To evaluate the cross-reactivity between A aegypti and other arthropods. METHODS Thirty-four serum samples from patients with asthma and/or allergic rhinitis were selected, and specific IgE to A aegypti, Dermatophagoides pteronyssinus, Dermatophagoides farinae, Blomia tropicalis, Periplaneta americana. and Litopenaeus vannamei was measured by enzyme-linked immunosorbent assay. Cross-reactivity was investigated using pooled serum samples from allergic patients, allergenic extracts, and the recombinant tropomyosins (Aed a 10.0201, Der p 10, Blo t 10, Lit v 1, and Per a 7). Four IgE reactive bands were further characterized by matrix-assisted laser desorption/ionization tandem time of flight. RESULTS Frequency of positive IgE reactivity was 82.35% to at least one mite species, 64.7% to A aegypti, 29.4% to P americana, and 23.5% to L vannamei. The highest IgE cross-reactivity was seen between A aegypti and D pteronyssinus (96.6%) followed by L vannamei (95.4%), B tropicalis (84.4%), and P americana (75.4%). Recombinant tropomyosins from mites, cockroach, or shrimp inhibited the IgE reactivity to the mosquito at a lower extent than the extracts from these arthropods. Several bands of A aegypti cross-reacted with arthropod extracts, and 4 of them were identified as odorant binding protein, mitochondrial cytochrome C, peptidyl-prolyl cis-trans isomerase, and protein with hypothetical magnesium ion binding function. CONCLUSION We identified 4 novel cross-reactive allergens in A aegypti allergenic extract. These molecules could influence the manifestation of allergy to environmental allergens in the tropics.
Collapse
|
49
|
Yang Y, Chen ZW, Hurlburt BK, Li GL, Zhang YX, Fei DX, Shen HW, Cao MJ, Liu GM. Identification of triosephosphate isomerase as a novel allergen in Octopus fangsiao. Mol Immunol 2017; 85:35-46. [PMID: 28208072 DOI: 10.1016/j.molimm.2017.02.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/21/2017] [Accepted: 02/06/2017] [Indexed: 11/19/2022]
Abstract
Octopus is an important mollusk in human dietary for its nutritional value, however it also causes allergic reactions in humans. Major allergens from octopus have been identified, while the knowledge of novel allergens remains poor. In the present study, a novel allergen with molecular weight of 28kDa protein was purified from octopus (Octopus fangsiao) and identified as triosephosphate isomerase (TIM) by mass spectrometry. TIM aggregated beyond 45°C, and its IgE-binding activity was affected under extreme pH conditions due to the altered secondary structure. In simulated gastric fluid digestion, TIM can be degraded into small fragments, while retaining over 80% of the IgE-binding activity. The full-length cDNA of O. fangsiao TIM (1140bp) was cloned, which encodes 247 amino acid residues, and the entire recombinant TIM was successfully expressed in Escherichia coli BL21, which showed similar immunoreactivity to the native TIM. Different intensity of cross-reactivity among TIM from related species revealed the complexity of its epitopes. Eight linear epitopes of TIM were predicted following bioinformatic analysis. Furthermore, a conformational epitope (A71G74S69D75T73F72V67) was confirmed by the phage display technology. The results revealed the physicochemical and immunological characteristics of TIM, which is significant in the development of hyposensitivity food and allergy diagnosis.
Collapse
Affiliation(s)
- Yang Yang
- College of Food and Biological Engineering, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen Key Laboratory of Marine Functional Food, Jimei University, 43 Yindou Road, Xiamen, Fujian, 361021, China
| | - Zhong-Wei Chen
- College of Food and Biological Engineering, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen Key Laboratory of Marine Functional Food, Jimei University, 43 Yindou Road, Xiamen, Fujian, 361021, China
| | - Barry K Hurlburt
- U.S. Department of Agriculture, Agriculture Research Service, Southern Regional Research Center, 1100 Robert E. Lee Boulevard, New Orleans, LA, 70124, USA
| | - Gui-Ling Li
- College of Food and Biological Engineering, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen Key Laboratory of Marine Functional Food, Jimei University, 43 Yindou Road, Xiamen, Fujian, 361021, China
| | - Yong-Xia Zhang
- College of Food and Biological Engineering, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen Key Laboratory of Marine Functional Food, Jimei University, 43 Yindou Road, Xiamen, Fujian, 361021, China
| | - Dan-Xia Fei
- College of Food and Biological Engineering, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen Key Laboratory of Marine Functional Food, Jimei University, 43 Yindou Road, Xiamen, Fujian, 361021, China
| | - Hai-Wang Shen
- College of Food and Biological Engineering, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen Key Laboratory of Marine Functional Food, Jimei University, 43 Yindou Road, Xiamen, Fujian, 361021, China
| | - Min-Jie Cao
- College of Food and Biological Engineering, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen Key Laboratory of Marine Functional Food, Jimei University, 43 Yindou Road, Xiamen, Fujian, 361021, China
| | - Guang-Ming Liu
- College of Food and Biological Engineering, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen Key Laboratory of Marine Functional Food, Jimei University, 43 Yindou Road, Xiamen, Fujian, 361021, China.
| |
Collapse
|
50
|
Cui Y, Yu L, Teng F, Zhang C, Wang N, Yang L, Zhou Y. Transcriptomic/proteomic identification of allergens in the mite Tyrophagus putrescentiae. Allergy 2016; 71:1635-1639. [PMID: 27496383 DOI: 10.1111/all.12999] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2016] [Indexed: 11/29/2022]
Abstract
While a number of allergens from house dust mites have been described, much remains to be discovered about allergens from storage mites. Here, next-generation sequencing was combined with MS/MS shotgun proteomics to identify proteins, especially potential allergens from Tyrophagus putrescentiae, commonly found in stored food products, especially flour. cDNAs of suspected allergens were cloned and expressed from bacterial cells, and recombinant allergens were tested for binding to IgE in sera from T. putrescentiae-sensitive patients. These analyses identified three previously uncharacterized allergens, Tyr p 28, Tyr p 35, and Tyr p 36, which have been officially assigned by the WHO/IUIS Allergen Nomenclature Sub-committee. Recombinant proteins rTyr p 28, rTyr p 35, and rTyr p 36 bound with 47.1%, 82.4%, and 70.6% of T. putrescentiae-sensitive sera. We provide here a new method to identify allergens by the combination of transcriptomic and proteomic approaches.
Collapse
Affiliation(s)
- Y. Cui
- Department of Central Laboratory; The Third People's Hospital of Yancheng; Affiliated Yancheng Hospital; School of Medicine; Southeast University; Yancheng Jiangsu Province China
| | - L. Yu
- Department of Laboratory Medicine; Yancheng Health Vocational & Technical College; Yancheng Jiangsu Province China
| | - F. Teng
- Department of Laboratory Medicine; Yancheng Health Vocational & Technical College; Yancheng Jiangsu Province China
| | - C. Zhang
- Department of Laboratory Medicine; Yancheng Health Vocational & Technical College; Yancheng Jiangsu Province China
| | - N. Wang
- Department of Laboratory Medicine; Yancheng Health Vocational & Technical College; Yancheng Jiangsu Province China
| | - L. Yang
- Department of Laboratory Medicine; Yancheng Health Vocational & Technical College; Yancheng Jiangsu Province China
| | - Y. Zhou
- Department of Central Laboratory; The Third People's Hospital of Yancheng; Affiliated Yancheng Hospital; School of Medicine; Southeast University; Yancheng Jiangsu Province China
| |
Collapse
|