1
|
Hartig J, Young LEA, Grimsley G, Mehta AS, Ippolito JE, Leach RJ, Angel PM, Drake RR. The glycosylation landscape of prostate cancer tissues and biofluids. Adv Cancer Res 2024; 161:1-30. [PMID: 39032948 DOI: 10.1016/bs.acr.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
An overview of the role of glycosylation in prostate cancer (PCa) development and progression is presented, focusing on recent advancements in defining the N-glycome through glycomic profiling and glycoproteomic methodologies. Glycosylation is a common post-translational modification typified by oligosaccharides attached N-linked to asparagine or O-linked to serine or threonine on carrier proteins. These attached sugars have crucial roles in protein folding and cellular recognition processes, such that altered glycosylation is a hallmark of cancer pathogenesis and progression. In the past decade, advancements in N-glycan profiling workflows using Matrix Assisted Laser Desorption/Ionization Mass Spectrometry Imaging (MALDI-MSI) technology have been applied to define the spatial distribution of glycans in PCa tissues. Multiple studies applying N-glycan MALDI-MSI to pathology-defined PCa tissues have identified significant alterations in N-glycan profiles associated with PCa progression. N-glycan compositions progressively increase in number, and structural complexity due to increased fucosylation and sialylation. Additionally, significant progress has been made in defining the glycan and glycopeptide compositions of prostatic-derived glycoproteins like prostate-specific antigen in tissues and biofluids. The glycosyltransferases involved in these changes are potential drug targets for PCa, and new approaches in this area are summarized. These advancements will be discussed in the context of the further development of clinical diagnostics and therapeutics targeting glycans and glycoproteins associated with PCa progression. Integration of large scale spatial glycomic data for PCa with other spatial-omic methodologies is now feasible at the tissue and single-cell levels.
Collapse
Affiliation(s)
- Jordan Hartig
- Medical University of South Carolina, Charleston, SC, United States
| | | | - Grace Grimsley
- Medical University of South Carolina, Charleston, SC, United States
| | - Anand S Mehta
- Medical University of South Carolina, Charleston, SC, United States
| | - Joseph E Ippolito
- Washington University School of Medicine in Saint Louis, St. Louis, MO, United States
| | - Robin J Leach
- University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Peggi M Angel
- Medical University of South Carolina, Charleston, SC, United States
| | - Richard R Drake
- Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
2
|
He K, Baniasad M, Kwon H, Caval T, Xu G, Lebrilla C, Hommes DW, Bertozzi C. Decoding the glycoproteome: a new frontier for biomarker discovery in cancer. J Hematol Oncol 2024; 17:12. [PMID: 38515194 PMCID: PMC10958865 DOI: 10.1186/s13045-024-01532-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 03/04/2024] [Indexed: 03/23/2024] Open
Abstract
Cancer early detection and treatment response prediction continue to pose significant challenges. Cancer liquid biopsies focusing on detecting circulating tumor cells (CTCs) and DNA (ctDNA) have shown enormous potential due to their non-invasive nature and the implications in precision cancer management. Recently, liquid biopsy has been further expanded to profile glycoproteins, which are the products of post-translational modifications of proteins and play key roles in both normal and pathological processes, including cancers. The advancements in chemical and mass spectrometry-based technologies and artificial intelligence-based platforms have enabled extensive studies of cancer and organ-specific changes in glycans and glycoproteins through glycomics and glycoproteomics. Glycoproteomic analysis has emerged as a promising tool for biomarker discovery and development in early detection of cancers and prediction of treatment efficacy including response to immunotherapies. These biomarkers could play a crucial role in aiding in early intervention and personalized therapy decisions. In this review, we summarize the significant advance in cancer glycoproteomic biomarker studies and the promise and challenges in integration into clinical practice to improve cancer patient care.
Collapse
Affiliation(s)
- Kai He
- James Comprehensive Cancer Center, The Ohio State University, Columbus, USA.
| | | | - Hyunwoo Kwon
- James Comprehensive Cancer Center, The Ohio State University, Columbus, USA
| | | | - Gege Xu
- InterVenn Biosciences, South San Francisco, USA
| | - Carlito Lebrilla
- Department of Biochemistry and Molecular Medicine, UC Davis Health, Sacramento, USA
| | | | | |
Collapse
|
3
|
Hempel F, Vernuccio F, König L, Buschbeck R, Rüsing M, Cerullo G, Polli D, Eng LM. Comparing transmission- and epi-BCARS: a round robin on solid-state materials. APPLIED OPTICS 2024; 63:112-121. [PMID: 38175007 DOI: 10.1364/ao.505374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024]
Abstract
Broadband coherent anti-Stokes Raman scattering (BCARS) is a powerful spectroscopy method combining high signal intensity with spectral sensitivity, enabling rapid imaging of heterogeneous samples in biomedical research and, more recently, in crystalline materials. However, BCARS encounters spectral distortion due to a setup-dependent non-resonant background (NRB). This study assesses BCARS reproducibility through a round robin experiment using two distinct BCARS setups and crystalline materials with varying structural complexity, including diamond, 6H-SiC, KDP, and KTP. The analysis compares setup-specific NRB correction procedures, detected and NRB-removed spectra, and mode assignment. We determine the influence of BCARS setup parameters like pump wavelength, pulse width, and detection geometry and provide a practical guide for optimizing BCARS setups for solid-state applications.
Collapse
|
4
|
Burke MC, Liu Y, Remoroza C, Mirokhin YA, Sheetlin SL, Tchekhovskoi DV, Wang G, Yang X, Stein SE. Determining Site-Specific Glycan Profiles of Recombinant SARS-CoV-2 Spike Proteins from Multiple Sources. J Proteome Res 2023; 22:3225-3241. [PMID: 37647588 DOI: 10.1021/acs.jproteome.3c00271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Glycopeptide Abundance Distribution Spectra (GADS) were recently introduced as a means of representing, storing, and comparing glycan profiles of intact glycopeptides. Here, using that representation, an extensive analysis is made of multiple commercial sources of the recombinant SARS-CoV-2 spike protein, each containing 22 N-linked glycan sites (sequons). Multiple proteases are used along with variable energy fragmentation followed by ion trap confirmation. This enables a detailed examination of the reproducibility of the method across multiple types of variability. These results show that GADS are consistent between replicates and laboratories for sufficiently abundant glycopeptides. Derived GADS enable the examination and comparison of the glycan profiles between commercial sources of the spike protein. Multiple distinct glycopeptide distributions, generated by multiple proteases, confirm these profiles. Comparisons of GADS derived from 11 sources of recombinant spike protein reveal that sources for which protein expression methods were the same produced near-identical glycan profiles, thereby demonstrating the ability of this method to measure GADS of sufficient reliability to distinguish different glycoform distributions between commercial vendors and potentially to reliably determine and compare differences in glycosylation for any glycoprotein under different conditions of production. All mass spectrometry data files have been deposited in the MassIVE repository under the identifier MSV000091776.
Collapse
Affiliation(s)
- Meghan C Burke
- Mass Spectrometry Data Center, Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Yi Liu
- Mass Spectrometry Data Center, Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Concepcion Remoroza
- Mass Spectrometry Data Center, Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Yuri A Mirokhin
- Mass Spectrometry Data Center, Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Sergey L Sheetlin
- Mass Spectrometry Data Center, Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Dmitrii V Tchekhovskoi
- Mass Spectrometry Data Center, Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Guanghui Wang
- Mass Spectrometry Data Center, Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Xiaoyu Yang
- Mass Spectrometry Data Center, Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Stephen E Stein
- Mass Spectrometry Data Center, Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
5
|
Elevated IsoPSA Selects for Clinically Significant Prostate Cancer Without a Preference for Any Particular Adverse Histopathologic or Radiographic Feature. Urology 2022; 168:150-155. [DOI: 10.1016/j.urology.2022.05.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/26/2022] [Indexed: 01/04/2023]
|
6
|
Constantin T, Savu DA, Bucur Ș, Predoiu G, Constantin MM, Jinga V. The Role and Significance of Bioumoral Markers in Prostate Cancer. Cancers (Basel) 2021; 13:5932. [PMID: 34885045 PMCID: PMC8656561 DOI: 10.3390/cancers13235932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/14/2021] [Accepted: 11/22/2021] [Indexed: 11/17/2022] Open
Abstract
The prostate is one of the most clinically accessible internal organs of the genitourinary tract in men. For decades, the only method of screening for prostate cancer (PCa) has been digital rectal examination of 1990s significantly increased the incidence and prevalence of PCa and consequently the morbidity and mortality associated with this disease. In addition, the different types of oncology treatment methods have been linked to specific complications and side effects, which would affect the patient's quality of life. In the first two decades of the 21st century, over-detection and over-treatment of PCa patients has generated enormous costs for health systems, especially in Europe and the United States. The Prostate Specific Antigen (PSA) is still the most common and accessible screening blood test for PCa, but with low sensibility and specificity at lower values (<10 ng/mL). Therefore, in order to avoid unnecessary biopsies, several screening tests (blood, urine, or genetic) have been developed. This review analyzes the most used bioumoral markers for PCa screening and also those that could predict the evolution of metastases of patients diagnosed with PCa.
Collapse
Affiliation(s)
- Traian Constantin
- Faculty of General Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (T.C.); (G.P.); (V.J.)
- Department of Urology, “Prof. Dr. Theodor Burghele” Hospital, 050659 Bucharest, Romania
| | - Diana Alexandra Savu
- Department of Urology, “Prof. Dr. Theodor Burghele” Hospital, 050659 Bucharest, Romania
| | - Ștefana Bucur
- Faculty of General Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (T.C.); (G.P.); (V.J.)
- IInd Department of Dermatology, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Gabriel Predoiu
- Faculty of General Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (T.C.); (G.P.); (V.J.)
- Department of Urology, “Prof. Dr. Theodor Burghele” Hospital, 050659 Bucharest, Romania
| | - Maria Magdalena Constantin
- Faculty of General Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (T.C.); (G.P.); (V.J.)
- IInd Department of Dermatology, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Viorel Jinga
- Faculty of General Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (T.C.); (G.P.); (V.J.)
- Department of Urology, “Prof. Dr. Theodor Burghele” Hospital, 050659 Bucharest, Romania
| |
Collapse
|
7
|
Blaschke CRK, Hartig JP, Grimsley G, Liu L, Semmes OJ, Wu JD, Ippolito JE, Hughes-Halbert C, Nyalwidhe JO, Drake RR. Direct N-Glycosylation Profiling of Urine and Prostatic Fluid Glycoproteins and Extracellular Vesicles. Front Chem 2021; 9:734280. [PMID: 34646811 PMCID: PMC8503230 DOI: 10.3389/fchem.2021.734280] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/10/2021] [Indexed: 12/19/2022] Open
Abstract
Expressed prostatic secretions (EPS), also called post digital rectal exam urines, are proximal fluids of the prostate that are widely used for diagnostic and prognostic assays for prostate cancer. These fluids contain an abundant number of glycoproteins and extracellular vesicles secreted by the prostate gland, and the ability to detect changes in their N-glycans composition as a reflection of disease state represents potential new biomarker candidates. Methods to characterize these N-glycan constituents directly from clinical samples in a timely manner and with minimal sample processing requirements are not currently available. In this report, an approach is described to directly profile the N-glycan constituents of EPS urine samples, prostatic fluids and urine using imaging mass spectrometry for detection. An amine reactive slide is used to immobilize glycoproteins from a few microliters of spotted samples, followed by peptide N-glycosidase digestion. Over 100 N-glycan compositions can be detected with this method, and it works with urine, urine EPS, prostatic fluids, and urine EPS-derived extracellular vesicles. A comparison of the N-glycans detected from the fluids with tissue N-glycans from prostate cancer tissues was done, indicating a subset of N-glycans present in fluids derived from the gland lumens. The developed N-glycan profiling is amenable to analysis of larger clinical cohorts and adaptable to other biofluids.
Collapse
Affiliation(s)
- Calvin R K Blaschke
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States
| | - Jordan P Hartig
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States
| | - Grace Grimsley
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States
| | - Liping Liu
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States
| | - O John Semmes
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, United States.,The Leroy T. Canoles Jr., Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Jennifer D Wu
- Departments of Urology and Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Joseph E Ippolito
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Chanita Hughes-Halbert
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, United States.,Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Julius O Nyalwidhe
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, United States.,The Leroy T. Canoles Jr., Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Richard R Drake
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States.,Department of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
8
|
Oliveira T, Thaysen-Andersen M, Packer NH, Kolarich D. The Hitchhiker's guide to glycoproteomics. Biochem Soc Trans 2021; 49:1643-1662. [PMID: 34282822 PMCID: PMC8421054 DOI: 10.1042/bst20200879] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/03/2021] [Accepted: 06/23/2021] [Indexed: 02/06/2023]
Abstract
Protein glycosylation is one of the most common post-translational modifications that are essential for cell function across all domains of life. Changes in glycosylation are considered a hallmark of many diseases, thus making glycoproteins important diagnostic and prognostic biomarker candidates and therapeutic targets. Glycoproteomics, the study of glycans and their carrier proteins in a system-wide context, is becoming a powerful tool in glycobiology that enables the functional analysis of protein glycosylation. This 'Hitchhiker's guide to glycoproteomics' is intended as a starting point for anyone who wants to explore the emerging world of glycoproteomics. The review moves from the techniques that have been developed for the characterisation of single glycoproteins to technologies that may be used for a successful complex glycoproteome characterisation. Examples of the variety of approaches, methodologies, and technologies currently used in the field are given. This review introduces the common strategies to capture glycoprotein-specific and system-wide glycoproteome data from tissues, body fluids, or cells, and a perspective on how integration into a multi-omics workflow enables a deep identification and characterisation of glycoproteins - a class of biomolecules essential in regulating cell function.
Collapse
Affiliation(s)
- Tiago Oliveira
- Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, Queensland, Australia
| | | | - Nicolle H. Packer
- Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, Queensland, Australia
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales, Australia
- ARC Centre of Excellence for Nanoscale BioPhotonics, Griffith University, QLD and Macquarie University, NSW, Australia
| | - Daniel Kolarich
- Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, Queensland, Australia
- ARC Centre of Excellence for Nanoscale BioPhotonics, Griffith University, QLD and Macquarie University, NSW, Australia
| |
Collapse
|
9
|
Glycosylation: Rising Potential for Prostate Cancer Evaluation. Cancers (Basel) 2021; 13:cancers13153726. [PMID: 34359624 PMCID: PMC8345048 DOI: 10.3390/cancers13153726] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/21/2021] [Accepted: 07/21/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Aberrant protein glycosylation is a well-known hallmark of cancer and is associated with differential expression of enzymes such as glycosyltransferases and glycosidases. The altered expression of the enzymes triggers cancer cells to produce glycoproteins with specific cancer-related aberrations in glycan structures. Increasing number of data indicate that glycosylation patterns of PSA and other prostate-originated proteins exert a potential to distinguish between benign prostate disease and cancer as well as among different stages of prostate cancer development and aggressiveness. This review summarizes the alterations in glycan sialylation, fucosylation, truncated O-glycans, and LacdiNAc groups outlining their potential applications in non-invasive diagnostic procedures of prostate diseases. Further research is desired to develop more general algorithms exploiting glycobiology data for the improvement of prostate diseases evaluation. Abstract Prostate cancer is the second most commonly diagnosed cancer among men. Alterations in protein glycosylation are confirmed to be a reliable hallmark of cancer. Prostate-specific antigen is the biomarker that is used most frequently for prostate cancer detection, although its lack of sensitivity and specificity results in many unnecessary biopsies. A wide range of glycosylation alterations in prostate cancer cells, including increased sialylation and fucosylation, can modify protein function and play a crucial role in many important biological processes in cancer, including cell signalling, adhesion, migration, and cellular metabolism. In this review, we summarize studies evaluating the prostate cancer associated glycosylation related alterations in sialylation, mainly α2,3-sialylation, core fucosylation, branched N-glycans, LacdiNAc group and presence of truncated O-glycans (sTn, sT antigen). Finally, we discuss the great potential to make use of glycans as diagnostic and prognostic biomarkers for prostate cancer.
Collapse
|
10
|
Mass Spectrometry-Based Glycoproteomics and Prostate Cancer. Int J Mol Sci 2021; 22:ijms22105222. [PMID: 34069262 PMCID: PMC8156230 DOI: 10.3390/ijms22105222] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 02/07/2023] Open
Abstract
Aberrant glycosylation has long been known to be associated with cancer, since it is involved in key mechanisms such as tumour onset, development and progression. This review will focus on protein glycosylation studies in cells, tissue, urine and serum in the context of prostate cancer. A dedicated section will cover the glycoforms of prostate specific antigen, the molecule that, despite some important limitations, is routinely tested for helping prostate cancer diagnosis. Our aim is to provide readers with an overview of mass spectrometry-based glycoproteomics of prostate cancer. From this perspective, the first part of this review will illustrate the main strategies for glycopeptide enrichment and mass spectrometric analysis. The molecular information obtained by glycoproteomic analysis performed by mass spectrometry has led to new insights into the mechanism linking aberrant glycosylation to cancer cell proliferation, migration and immunoescape.
Collapse
|
11
|
Moran AB, Domínguez-Vega E, Nouta J, Pongracz T, de Reijke TM, Wuhrer M, Lageveen-Kammeijer GSM. Profiling the proteoforms of urinary prostate-specific antigen by capillary electrophoresis - mass spectrometry. J Proteomics 2021; 238:104148. [PMID: 33618028 DOI: 10.1016/j.jprot.2021.104148] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/26/2021] [Accepted: 01/31/2021] [Indexed: 01/07/2023]
Abstract
Early detection of prostate cancer may lead to the overdiagnosis and overtreatment of patients as well as missing significant cancers. The current diagnostic approach uses elevated serum concentrations of prostate-specific antigen (PSA) as an indicator of risk. However, this test has been widely criticized as it shows poor specificity and sensitivity. In order to improve early detection and diagnosis, several studies have investigated whether different PSA proteoforms are correlated to prostate cancer. Until now, studies and methodologies for the comprehensive characterization of PSA proteoforms from biofluids are scarce. For this purpose, we developed an intact protein assay to analyze PSA by capillary electrophoresis-electrospray ionization-mass spectrometry after affinity purification from patients' urine. Here, we determined six proteolytic cleavage variants. In regard to glycosylation, tri-, di-, mono- and non-sialylated complex-type N-glycans were found on non-cleaved PSA, as well as the non-glycosylated variant. The performance of the intact protein assay was assessed using a pooled sample, obtaining an inter-day variability of 15%. Furthermore, urinary patient samples were analyzed by intact protein analysis and a bottom-up approach (glycopeptide analysis). This combined approach revealed complimentary information on both levels, demonstrating the benefit of using two orthogonal techniques to provide a thorough profile of urinary PSA. SIGNIFICANCE: The detection of clinically relevant prostate cancer requires a more specific and sensitive biomarker and, in this case, several PSA proteoforms may be able to aid or improve the current PSA test. However, a comprehensive analysis of the intact PSA proteoform profile is still lacking. This study investigated the PSA proteoforms present in urine and, in particular, determined the relative contribution of cleaved PSA and non-cleaved PSA forms to the total glycosylation profile. Importantly, intact protein analysis did not require further sample treatment before being measured by CE-ESI-MS. Furthermore, its glycosylation was also assessed in a bottom-up approach to provide complementary information. Overall, these results represent an important basis for future characterization and biomarker studies.
Collapse
Affiliation(s)
- Alan B Moran
- Leiden University Medical Center, Center for Proteomics and Metabolomics, 2300 RC Leiden, the Netherlands
| | - Elena Domínguez-Vega
- Leiden University Medical Center, Center for Proteomics and Metabolomics, 2300 RC Leiden, the Netherlands
| | - Jan Nouta
- Leiden University Medical Center, Center for Proteomics and Metabolomics, 2300 RC Leiden, the Netherlands
| | - Tamas Pongracz
- Leiden University Medical Center, Center for Proteomics and Metabolomics, 2300 RC Leiden, the Netherlands
| | - Theo M de Reijke
- Amsterdam UMC, location Academic Medical Center, Department of Urology, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Manfred Wuhrer
- Leiden University Medical Center, Center for Proteomics and Metabolomics, 2300 RC Leiden, the Netherlands
| | | |
Collapse
|
12
|
Separation based characterization methods for the N-glycosylation analysis of prostate-specific antigen. J Pharm Biomed Anal 2020; 194:113797. [PMID: 33288345 DOI: 10.1016/j.jpba.2020.113797] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/19/2020] [Accepted: 11/21/2020] [Indexed: 12/13/2022]
Abstract
Prostate cancer has the highest malignancy rate diagnosed in men worldwide. Albeit, the gold standard serum prostate-specific antigen (PSA) assays reduced the mortality rate of the disease, the number of false positive diagnoses steeply increased. Therefore, there is an urgent need for complementary biomarkers to enhance the specificity and selectivity of current diagnostic methods. Information about PSA glycosylation can help to fulfill this gap as alterations of its carbohydrate moieties due to cancerous transformation may represent additional markers to distinguish malignant from benign tumors. However, development of suitable methods and instrumentations to investigate the N-glycosylation profile of PSA represents a challenge. In this paper, we critically review the current bioanalytical trends and strategies in the field of PSA glycobiomarker research focusing on separation based characterization methods.
Collapse
|
13
|
Wang W, Kałuża A, Nouta J, Nicolardi S, Ferens-Sieczkowska M, Wuhrer M, Lageveen-Kammeijer GSM, de Haan N. High-throughput glycopeptide profiling of prostate-specific antigen from seminal plasma by MALDI-MS. Talanta 2020; 222:121495. [PMID: 33167210 DOI: 10.1016/j.talanta.2020.121495] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/27/2020] [Accepted: 07/30/2020] [Indexed: 11/28/2022]
Abstract
An altered total seminal plasma glycosylation has been associated with male infertility, and the highly abundant seminal plasma glycoprotein prostate-specific antigen (PSA) plays an important role in fertilization. However, the exact role of PSA glycosylation in male fertility is not clear. To understand the involvement of PSA glycosylation in the fertilization process, analytical methods are required to study the glycosylation of PSA from seminal plasma with a high glycoform resolution and in a protein-specific manner. In this study, we developed a novel, high-throughput PSA glycopeptide workflow, based on matrix-assisted laser desorption/ionization-mass spectrometry, allowing the discrimination of sialic acid linkage isomers via the derivatization of glycopeptides. The method was successfully applied on a cohort consisting of seminal plasma from infertile and fertile men (N = 102). Forty-four glycopeptides were quantified in all samples, showing mainly complex-type glycans with high levels of fucosylation and sialylation. In addition, N,N-diacetyllactosamine (LacdiNAc) motives were found as well as hybrid-type and high mannose-type structures. Our method showed a high intra- and interday repeatability and revealed no difference in PSA glycosylation between fertile and infertile men. Next to seminal plasma, the method is also expected to be of use for studying PSA glycopeptides derived from other biofluids and/or in other disease contexts.
Collapse
Affiliation(s)
- Wei Wang
- Leiden University Medical Center, Center for Proteomics and Metabolomics, 2300, RC, Leiden, the Netherlands
| | - Anna Kałuża
- Wrocław Medical University, Department of Chemistry and Immunochemistry, Curie-Skłodowska Str. 50, 50-369, Wrocław, Poland
| | - Jan Nouta
- Leiden University Medical Center, Center for Proteomics and Metabolomics, 2300, RC, Leiden, the Netherlands
| | - Simone Nicolardi
- Leiden University Medical Center, Center for Proteomics and Metabolomics, 2300, RC, Leiden, the Netherlands
| | - Mirosława Ferens-Sieczkowska
- Wrocław Medical University, Department of Chemistry and Immunochemistry, Curie-Skłodowska Str. 50, 50-369, Wrocław, Poland
| | - Manfred Wuhrer
- Leiden University Medical Center, Center for Proteomics and Metabolomics, 2300, RC, Leiden, the Netherlands
| | | | - Noortje de Haan
- Leiden University Medical Center, Center for Proteomics and Metabolomics, 2300, RC, Leiden, the Netherlands.
| |
Collapse
|
14
|
Riley N, Malaker SA, Driessen MD, Bertozzi CR. Optimal Dissociation Methods Differ for N- and O-Glycopeptides. J Proteome Res 2020; 19:3286-3301. [PMID: 32500713 PMCID: PMC7425838 DOI: 10.1021/acs.jproteome.0c00218] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Indexed: 01/29/2023]
Abstract
Site-specific characterization of glycosylation requires intact glycopeptide analysis, and recent efforts have focused on how to best interrogate glycopeptides using tandem mass spectrometry (MS/MS). Beam-type collisional activation, i.e., higher-energy collisional dissociation (HCD), has been a valuable approach, but stepped collision energy HCD (sceHCD) and electron transfer dissociation with HCD supplemental activation (EThcD) have emerged as potentially more suitable alternatives. Both sceHCD and EThcD have been used with success in large-scale glycoproteomic experiments, but they each incur some degree of compromise. Most progress has occurred in the area of N-glycoproteomics. There is growing interest in extending this progress to O-glycoproteomics, which necessitates comparisons of method performance for the two classes of glycopeptides. Here, we systematically explore the advantages and disadvantages of conventional HCD, sceHCD, ETD, and EThcD for intact glycopeptide analysis and determine their suitability for both N- and O-glycoproteomic applications. For N-glycopeptides, HCD and sceHCD generate similar numbers of identifications, although sceHCD generally provides higher quality spectra. Both significantly outperform EThcD methods in terms of identifications, indicating that ETD-based methods are not required for routine N-glycoproteomics even if they can generate higher quality spectra. Conversely, ETD-based methods, especially EThcD, are indispensable for site-specific analyses of O-glycopeptides. Our data show that O-glycopeptides cannot be robustly characterized with HCD-centric methods that are sufficient for N-glycopeptides, and glycoproteomic methods aiming to characterize O-glycopeptides must be constructed accordingly.
Collapse
Affiliation(s)
- Nicholas
M. Riley
- Department
of Chemistry, Stanford University, Stanford, California 94305-6104, United States
| | - Stacy A. Malaker
- Department
of Chemistry, Stanford University, Stanford, California 94305-6104, United States
| | - Marc D. Driessen
- Department
of Chemistry, Stanford University, Stanford, California 94305-6104, United States
| | - Carolyn R. Bertozzi
- Department
of Chemistry, Stanford University, Stanford, California 94305-6104, United States
- Howard
Hughes Medical Institute, Stanford, California 94305-6104, United States
| |
Collapse
|
15
|
Díaz-Fernández A, Miranda-Castro R, Díaz N, Suárez D, de-Los-Santos-Álvarez N, Lobo-Castañón MJ. Aptamers targeting protein-specific glycosylation in tumor biomarkers: general selection, characterization and structural modeling. Chem Sci 2020; 11:9402-9413. [PMID: 34094206 PMCID: PMC8162130 DOI: 10.1039/d0sc00209g] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Detecting specific protein glycoforms is attracting particular attention due to its potential to improve the performance of current cancer biomarkers. Although natural receptors such as lectins and antibodies have served as powerful tools for the detection of protein-bound glycans, the development of effective receptors able to integrate in the recognition both the glycan and peptide moieties is still challenging. Here we report a method for selecting aptamers toward the glycosylation site of a protein. It allows identification of an aptamer that binds with nM affinity to prostate-specific antigen, discriminating it from proteins with a similar glycosylation pattern. We also computationally predict the structure of the selected aptamer and characterize its complex with the glycoprotein by docking and molecular dynamics calculations, further supporting the binary recognition event. This study opens a new route for the identification of aptamers for the binary recognition of glycoproteins, useful for diagnostic and therapeutic applications. Binary recognition of the glycoprotein prostate specific antigen by aptamers: a tool for detecting aberrant glycosylation associated with cancer.![]()
Collapse
Affiliation(s)
- Ana Díaz-Fernández
- Departamento de Química Física y Analítica, Universidad de Oviedo Av. Julián Clavería 8 33006 Oviedo Spain .,Instituto de Investigación Sanitaria del Principado de Asturias Avenida de Roma 33011 Oviedo Spain
| | - Rebeca Miranda-Castro
- Departamento de Química Física y Analítica, Universidad de Oviedo Av. Julián Clavería 8 33006 Oviedo Spain .,Instituto de Investigación Sanitaria del Principado de Asturias Avenida de Roma 33011 Oviedo Spain
| | - Natalia Díaz
- Departamento de Química Física y Analítica, Universidad de Oviedo Av. Julián Clavería 8 33006 Oviedo Spain
| | - Dimas Suárez
- Departamento de Química Física y Analítica, Universidad de Oviedo Av. Julián Clavería 8 33006 Oviedo Spain
| | - Noemí de-Los-Santos-Álvarez
- Departamento de Química Física y Analítica, Universidad de Oviedo Av. Julián Clavería 8 33006 Oviedo Spain .,Instituto de Investigación Sanitaria del Principado de Asturias Avenida de Roma 33011 Oviedo Spain
| | - M Jesús Lobo-Castañón
- Departamento de Química Física y Analítica, Universidad de Oviedo Av. Julián Clavería 8 33006 Oviedo Spain .,Instituto de Investigación Sanitaria del Principado de Asturias Avenida de Roma 33011 Oviedo Spain
| |
Collapse
|
16
|
Joe CCD, Chatterjee S, Lovrecz G, Adams TE, Thaysen-Andersen M, Walsh R, Locarnini SA, Smooker P, Netter HJ. Glycoengineered hepatitis B virus-like particles with enhanced immunogenicity. Vaccine 2020; 38:3892-3901. [PMID: 32284273 DOI: 10.1016/j.vaccine.2020.03.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 02/25/2020] [Accepted: 03/02/2020] [Indexed: 01/04/2023]
Abstract
Virus-like particles (VLP) represent biological platforms for the development of novel products such as vaccines and delivery platforms for foreign antigenic sequences. VLPs composed of the small surface antigen (HBsAgS) derived from the hepatitis B virus (HBV) are the immunogenic components of a licensed, preventative vaccine, which contains aluminum hydroxide as adjuvant. Herein, we report that glycoengineering of N-glycosylated HBsAgS to generate hyper-glycosylated VLPs display an enhanced immunogenicity relative to the wild type (WT) HBsAgS VLPs when expressed in FreeStyle HEK 293F cells. Comparative mass spectrometry-based N-glycan profiling, gel electrophoresis, and immunoassays demonstrated that WT and hyper-glycosylated HBsAgS VLPs contain the same type and distribution of N-glycan structures, but the latter shows a higher glycan abundance per protein mass. The antigenic integrity of the modified VLPs was also shown to be retained. To assess whether hyper-glycosylated VLPs induce an enhanced immune response in the presence of the adjuvant aluminum hydroxide, the anti-HBV surface antigen (anti-HBsAgS) antibody response was monitored in BALB/c mice, subcutaneously injected with different VLP derivatives. In the absence and presence of adjuvant, hyper-glycosylated VLPs showed an enhanced immunogenicity compared to WT VLPs. The ability of hyper-glycosylated VLPs to promote potent anti-HBsAgS immune responses compared to VLPs with a native N-glycan level as well as non-glycosylated, yeast-derived HBsAgS VLPs opens exciting avenues for generating more efficacious VLP-based vaccines against hepatitis B and improved HBsAgS VLP carrier platforms using glycoengineering.
Collapse
Affiliation(s)
- Carina C D Joe
- Royal Melbourne Institute of Technology (RMIT) University, School of Science, Melbourne, Victoria 3001, Australia; Commonwealth Scientific and Industrial Research Organisation, Clayton, Victoria 3169, Australia
| | - Sayantani Chatterjee
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - George Lovrecz
- Commonwealth Scientific and Industrial Research Organisation, Clayton, Victoria 3169, Australia
| | - Timothy E Adams
- Commonwealth Scientific and Industrial Research Organisation, Clayton, Victoria 3169, Australia
| | - Morten Thaysen-Andersen
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Renae Walsh
- Victorian Infectious Diseases Reference Laboratory (VIDRL), Melbourne Health, The Peter Doherty Institute, Melbourne, Victoria 3000, Australia
| | - Stephen A Locarnini
- Victorian Infectious Diseases Reference Laboratory (VIDRL), Melbourne Health, The Peter Doherty Institute, Melbourne, Victoria 3000, Australia
| | - Peter Smooker
- Royal Melbourne Institute of Technology (RMIT) University, School of Science, Melbourne, Victoria 3001, Australia
| | - Hans J Netter
- Royal Melbourne Institute of Technology (RMIT) University, School of Science, Melbourne, Victoria 3001, Australia; Victorian Infectious Diseases Reference Laboratory (VIDRL), Melbourne Health, The Peter Doherty Institute, Melbourne, Victoria 3000, Australia.
| |
Collapse
|
17
|
Mische SM, Fisher NC, Meyn SM, Sol-Church K, Hegstad-Davies RL, Weis-Garcia F, Adams M, Ashton JM, Delventhal KM, Dragon JA, Holmes L, Jagtap P, Kubow KE, Mason CE, Palmblad M, Searle BC, Turck CW, Knudtson KL. A Review of the Scientific Rigor, Reproducibility, and Transparency Studies Conducted by the ABRF Research Groups. J Biomol Tech 2020; 31:11-26. [PMID: 31969795 PMCID: PMC6959150 DOI: 10.7171/jbt.20-3101-003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Shared research resource facilities, also known as core laboratories (Cores), are responsible for generating a significant and growing portion of the research data in academic biomedical research institutions. Cores represent a central repository for institutional knowledge management, with deep expertise in the strengths and limitations of technology and its applications. They inherently support transparency and scientific reproducibility by protecting against cognitive bias in research design and data analysis, and they have institutional responsibility for the conduct of research (research ethics, regulatory compliance, and financial accountability) performed in their Cores. The Association of Biomolecular Resource Facilities (ABRF) is a FASEB-member scientific society whose members are scientists and administrators that manage or support Cores. The ABRF Research Groups (RGs), representing expertise for an array of cutting-edge and established technology platforms, perform multicenter research studies to determine and communicate best practices and community-based standards. This review provides a summary of the contributions of the ABRF RGs to promote scientific rigor and reproducibility in Cores from the published literature, ABRF meetings, and ABRF RGs communications.
Collapse
Affiliation(s)
- Sheenah M. Mische
- New York University (NYU) Langone Medical Center, New
York, New York 10016, USA
| | - Nancy C. Fisher
- University of North Carolina at Chapel Hill, Chapel
Hill, North Carolina 27599, USA
| | - Susan M. Meyn
- Vanderbilt University Medical Center, Nashville,
Tennessee 37212, USA
| | - Katia Sol-Church
- University of Virginia School of Medicine,
Charlottesville, Virginia 22908, USA
| | | | | | - Marie Adams
- Van Andel Institute, Grand Rapids, Michigan 49503,
USA
| | - John M. Ashton
- University of Rochester Medical Center, West
Henrietta, New York 14642, USA
| | - Kym M. Delventhal
- Stowers Institute for Medical Research, Kansas City,
Missouri 64110, USA
| | | | - Laura Holmes
- Stowers Institute for Medical Research, Kansas City,
Missouri 64110, USA
| | - Pratik Jagtap
- University of Minnesota, Minneapolis, Minnesota
55455, USA
| | | | | | - Magnus Palmblad
- Leiden University Medical Center, Leiden 2333, The
Netherlands
| | - Brian C. Searle
- Institute for Systems Biology, Seattle, Washington
98109, USA
| | | | | |
Collapse
|
18
|
Sobsey CA, Ibrahim S, Richard VR, Gaspar V, Mitsa G, Lacasse V, Zahedi RP, Batist G, Borchers CH. Targeted and Untargeted Proteomics Approaches in Biomarker Development. Proteomics 2020; 20:e1900029. [DOI: 10.1002/pmic.201900029] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/10/2019] [Indexed: 01/24/2023]
Affiliation(s)
- Constance A. Sobsey
- Segal Cancer Proteomics CentreLady Davis InstituteJewish General HospitalMcGill University Montreal Quebec H3T 1E2 Canada
| | - Sahar Ibrahim
- Segal Cancer Proteomics CentreLady Davis InstituteJewish General HospitalMcGill University Montreal Quebec H3T 1E2 Canada
| | - Vincent R. Richard
- Segal Cancer Proteomics CentreLady Davis InstituteJewish General HospitalMcGill University Montreal Quebec H3T 1E2 Canada
| | - Vanessa Gaspar
- Segal Cancer Proteomics CentreLady Davis InstituteJewish General HospitalMcGill University Montreal Quebec H3T 1E2 Canada
| | - Georgia Mitsa
- Segal Cancer Proteomics CentreLady Davis InstituteJewish General HospitalMcGill University Montreal Quebec H3T 1E2 Canada
| | - Vincent Lacasse
- Segal Cancer Proteomics CentreLady Davis InstituteJewish General HospitalMcGill University Montreal Quebec H3T 1E2 Canada
| | - René P. Zahedi
- Segal Cancer Proteomics CentreLady Davis InstituteJewish General HospitalMcGill University Montreal Quebec H3T 1E2 Canada
| | - Gerald Batist
- Gerald Bronfman Department of OncologyJewish General HospitalMcGill University Montreal Quebec H4A 3T2 Canada
| | - Christoph H. Borchers
- Segal Cancer Proteomics CentreLady Davis InstituteJewish General HospitalMcGill University Montreal Quebec H3T 1E2 Canada
- Gerald Bronfman Department of OncologyJewish General HospitalMcGill University Montreal Quebec H4A 3T2 Canada
- Department of Data Intensive Science and EngineeringSkolkovo Institute of Science and TechnologySkolkovo Innovation Center Moscow 143026 Russia
| |
Collapse
|
19
|
De Leoz MLA, Duewer DL, Fung A, Liu L, Yau HK, Potter O, Staples GO, Furuki K, Frenkel R, Hu Y, Sosic Z, Zhang P, Altmann F, Grunwald-Grube C, Shao C, Zaia J, Evers W, Pengelley S, Suckau D, Wiechmann A, Resemann A, Jabs W, Beck A, Froehlich JW, Huang C, Li Y, Liu Y, Sun S, Wang Y, Seo Y, An HJ, Reichardt NC, Ruiz JE, Archer-Hartmann S, Azadi P, Bell L, Lakos Z, An Y, Cipollo JF, Pucic-Bakovic M, Štambuk J, Lauc G, Li X, Wang PG, Bock A, Hennig R, Rapp E, Creskey M, Cyr TD, Nakano M, Sugiyama T, Leung PKA, Link-Lenczowski P, Jaworek J, Yang S, Zhang H, Kelly T, Klapoetke S, Cao R, Kim JY, Lee HK, Lee JY, Yoo JS, Kim SR, Suh SK, de Haan N, Falck D, Lageveen-Kammeijer GSM, Wuhrer M, Emery RJ, Kozak RP, Liew LP, Royle L, Urbanowicz PA, Packer NH, Song X, Everest-Dass A, Lattová E, Cajic S, Alagesan K, Kolarich D, Kasali T, Lindo V, Chen Y, Goswami K, Gau B, Amunugama R, Jones R, Stroop CJM, Kato K, Yagi H, Kondo S, Yuen CT, Harazono A, Shi X, Magnelli PE, Kasper BT, Mahal L, Harvey DJ, O'Flaherty R, Rudd PM, Saldova R, Hecht ES, Muddiman DC, Kang J, Bhoskar P, Menard D, Saati A, Merle C, Mast S, Tep S, Truong J, Nishikaze T, Sekiya S, Shafer A, Funaoka S, Toyoda M, de Vreugd P, Caron C, Pradhan P, Tan NC, Mechref Y, Patil S, Rohrer JS, Chakrabarti R, Dadke D, Lahori M, Zou C, Cairo C, Reiz B, Whittal RM, Lebrilla CB, Wu L, Guttman A, Szigeti M, Kremkow BG, Lee KH, Sihlbom C, Adamczyk B, Jin C, Karlsson NG, Örnros J, Larson G, Nilsson J, Meyer B, Wiegandt A, Komatsu E, Perreault H, Bodnar ED, Said N, Francois YN, Leize-Wagner E, Maier S, Zeck A, Heck AJR, Yang Y, Haselberg R, Yu YQ, Alley W, Leone JW, Yuan H, Stein SE. NIST Interlaboratory Study on Glycosylation Analysis of Monoclonal Antibodies: Comparison of Results from Diverse Analytical Methods. Mol Cell Proteomics 2020; 19:11-30. [PMID: 31591262 PMCID: PMC6944243 DOI: 10.1074/mcp.ra119.001677] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/26/2019] [Indexed: 01/24/2023] Open
Abstract
Glycosylation is a topic of intense current interest in the development of biopharmaceuticals because it is related to drug safety and efficacy. This work describes results of an interlaboratory study on the glycosylation of the Primary Sample (PS) of NISTmAb, a monoclonal antibody reference material. Seventy-six laboratories from industry, university, research, government, and hospital sectors in Europe, North America, Asia, and Australia submitted a total of 103 reports on glycan distributions. The principal objective of this study was to report and compare results for the full range of analytical methods presently used in the glycosylation analysis of mAbs. Therefore, participation was unrestricted, with laboratories choosing their own measurement techniques. Protein glycosylation was determined in various ways, including at the level of intact mAb, protein fragments, glycopeptides, or released glycans, using a wide variety of methods for derivatization, separation, identification, and quantification. Consequently, the diversity of results was enormous, with the number of glycan compositions identified by each laboratory ranging from 4 to 48. In total, one hundred sixteen glycan compositions were reported, of which 57 compositions could be assigned consensus abundance values. These consensus medians provide community-derived values for NISTmAb PS. Agreement with the consensus medians did not depend on the specific method or laboratory type. The study provides a view of the current state-of-the-art for biologic glycosylation measurement and suggests a clear need for harmonization of glycosylation analysis methods.
Collapse
Affiliation(s)
- Maria Lorna A De Leoz
- Mass Spectrometry Data Center, Biomolecular Measurement Division, Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive Gaithersburg, Maryland 20899.
| | - David L Duewer
- Chemical Sciences Division, Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive Gaithersburg, Maryland 20899
| | - Adam Fung
- Analytical Development, Agensys, Inc., 1800 Steward Street Santa Monica, California 90404
| | - Lily Liu
- Analytical Development, Agensys, Inc., 1800 Steward Street Santa Monica, California 90404
| | - Hoi Kei Yau
- Analytical Development, Agensys, Inc., 1800 Steward Street Santa Monica, California 90404
| | - Oscar Potter
- Agilent Technologies, Inc., 5301 Stevens Creek Blvd Santa Clara, California 95051
| | - Gregory O Staples
- Agilent Technologies, Inc., 5301 Stevens Creek Blvd Santa Clara, California 95051
| | - Kenichiro Furuki
- Astellas Pharma, 5-2-3 Tokodai, Tsukiba, Ibaraki, 300-2698, Japan
| | - Ruth Frenkel
- Analytical Development, Biogen, 14 Cambridge Center Cambridge, Massachusetts 02142
| | - Yunli Hu
- Analytical Development, Biogen, 14 Cambridge Center Cambridge, Massachusetts 02142
| | - Zoran Sosic
- Analytical Development, Biogen, 14 Cambridge Center Cambridge, Massachusetts 02142
| | - Peiqing Zhang
- Bioprocessing Technology Institute, 20 Biopolis Way, Level 3 Singapore 138668
| | - Friedrich Altmann
- Department of Chemistry, University of Natural Resources and Life Science, Vienna (BOKU), Muthgasse 18 1190 Wien, Austria
| | - Clemens Grunwald-Grube
- Department of Chemistry, University of Natural Resources and Life Science, Vienna (BOKU), Muthgasse 18 1190 Wien, Austria
| | - Chun Shao
- Center for Biomedical Mass Spectrometry, Boston University School of Medicine, 670 Albany Street Boston, Massachusetts 02118
| | - Joseph Zaia
- Center for Biomedical Mass Spectrometry, Boston University School of Medicine, 670 Albany Street Boston, Massachusetts 02118
| | - Waltraud Evers
- Bruker Daltonik GmbH, Fahrenheitstr. 4, 28359 Bremen, Germany
| | | | - Detlev Suckau
- Bruker Daltonik GmbH, Fahrenheitstr. 4, 28359 Bremen, Germany
| | - Anja Wiechmann
- Bruker Daltonik GmbH, Fahrenheitstr. 4, 28359 Bremen, Germany
| | - Anja Resemann
- Bruker Daltonik GmbH, Fahrenheitstr. 4, 28359 Bremen, Germany
| | - Wolfgang Jabs
- Bruker Daltonik GmbH, Fahrenheitstr. 4, 28359 Bremen, Germany; Department of Life Sciences & Technology, Beuth Hochschule für Technik Berlin, Seestraβe 64, 13347 Berlin, Germany
| | - Alain Beck
- Centre d'Immunologie Pierre Fabre, 5 Avenue Napoléon III, BP 60497, 74164 St Julien-en-Genevois, France
| | - John W Froehlich
- Department of Urology, Boston Children's Hospital, 300 Longwood Avenue Boston Massachusetts 02115
| | - Chuncui Huang
- Institute of Biophysics, Chinese Academy of Sciences, 15 Da Tun Road, Chaoyang District, Beijing 100101 China
| | - Yan Li
- Institute of Biophysics, Chinese Academy of Sciences, 15 Da Tun Road, Chaoyang District, Beijing 100101 China
| | - Yaming Liu
- Institute of Biophysics, Chinese Academy of Sciences, 15 Da Tun Road, Chaoyang District, Beijing 100101 China
| | - Shiwei Sun
- Key Lab of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, 15 Da Tun Road, Chaoyang District, Beijing 100101 China
| | - Yaojun Wang
- Key Lab of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, 15 Da Tun Road, Chaoyang District, Beijing 100101 China
| | - Youngsuk Seo
- Graduate School of Analytical Science and Technology, Chungnam National University, Gung-dong 220, Yuseong-Gu, Daejeon 305-764, Korea (South)
| | - Hyun Joo An
- Graduate School of Analytical Science and Technology, Chungnam National University, Gung-dong 220, Yuseong-Gu, Daejeon 305-764, Korea (South)
| | | | | | - Stephanie Archer-Hartmann
- Analytical Services, Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road Athens, Georgia 30602
| | - Parastoo Azadi
- Analytical Services, Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road Athens, Georgia 30602
| | - Len Bell
- BioCMC Solutions (Large Molecules), Covance Laboratories Limited, Otley Road, Harrogate, North Yorks HG3 1PY, United Kingdom
| | - Zsuzsanna Lakos
- Biochemistry Method Development & Validation, Eurofins Lancaster Laboratories, Inc., 2425 New Holland Pike Lancaster, Pennsylvania 17601
| | - Yanming An
- Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland 20993
| | - John F Cipollo
- Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland 20993
| | - Maja Pucic-Bakovic
- Glycoscience Research Laboratory, Genos, Borongajska cesta 83h, 10 000 Zagreb, Croatia
| | - Jerko Štambuk
- Glycoscience Research Laboratory, Genos, Borongajska cesta 83h, 10 000 Zagreb, Croatia
| | - Gordan Lauc
- Glycoscience Research Laboratory, Genos, Borongajska cesta 83h, 10 000 Zagreb, Croatia; Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10 000 Zagreb, Croatia
| | - Xu Li
- Department of Chemistry, Georgia State University, 100 Piedmont Avenue, Atlanta, Georgia 30303
| | - Peng George Wang
- Department of Chemistry, Georgia State University, 100 Piedmont Avenue, Atlanta, Georgia 30303
| | - Andreas Bock
- glyXera GmbH, Brenneckestrasse 20 * ZENIT / 39120 Magdeburg, Germany
| | - René Hennig
- glyXera GmbH, Brenneckestrasse 20 * ZENIT / 39120 Magdeburg, Germany
| | - Erdmann Rapp
- glyXera GmbH, Brenneckestrasse 20 * ZENIT / 39120 Magdeburg, Germany; AstraZeneca, Granta Park, Cambridgeshire, CB21 6GH United Kingdom
| | - Marybeth Creskey
- Health Products and Foods Branch, Health Canada, AL 2201E, 251 Sir Frederick Banting Driveway, Ottawa, Ontario, K1A 0K9 Canada
| | - Terry D Cyr
- Health Products and Foods Branch, Health Canada, AL 2201E, 251 Sir Frederick Banting Driveway, Ottawa, Ontario, K1A 0K9 Canada
| | - Miyako Nakano
- Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama Higashi-Hiroshima 739-8530 Japan
| | - Taiki Sugiyama
- Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama Higashi-Hiroshima 739-8530 Japan
| | | | - Paweł Link-Lenczowski
- Department of Medical Physiology, Jagiellonian University Medical College, ul. Michalowskiego 12, 31-126 Krakow, Poland
| | - Jolanta Jaworek
- Department of Medical Physiology, Jagiellonian University Medical College, ul. Michalowskiego 12, 31-126 Krakow, Poland
| | - Shuang Yang
- Department of Pathology, Johns Hopkins University, 400 N. Broadway Street Baltimore, Maryland 21287
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University, 400 N. Broadway Street Baltimore, Maryland 21287
| | - Tim Kelly
- Mass Spec Core Facility, KBI Biopharma, 1101 Hamlin Road Durham, North Carolina 27704
| | - Song Klapoetke
- Mass Spec Core Facility, KBI Biopharma, 1101 Hamlin Road Durham, North Carolina 27704
| | - Rui Cao
- Mass Spec Core Facility, KBI Biopharma, 1101 Hamlin Road Durham, North Carolina 27704
| | - Jin Young Kim
- Division of Mass Spectrometry, Korea Basic Science Institute, 162 YeonGuDanji-Ro, Ochang-eup, Cheongwon-gu, Cheongju Chungbuk, 363-883 Korea (South)
| | - Hyun Kyoung Lee
- Division of Mass Spectrometry, Korea Basic Science Institute, 162 YeonGuDanji-Ro, Ochang-eup, Cheongwon-gu, Cheongju Chungbuk, 363-883 Korea (South)
| | - Ju Yeon Lee
- Division of Mass Spectrometry, Korea Basic Science Institute, 162 YeonGuDanji-Ro, Ochang-eup, Cheongwon-gu, Cheongju Chungbuk, 363-883 Korea (South)
| | - Jong Shin Yoo
- Division of Mass Spectrometry, Korea Basic Science Institute, 162 YeonGuDanji-Ro, Ochang-eup, Cheongwon-gu, Cheongju Chungbuk, 363-883 Korea (South)
| | - Sa-Rang Kim
- Advanced Therapy Products Research Division, Korea National Institute of Food and Drug Safety, 187 Osongsaengmyeong 2-ro Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, 363-700, Korea (South)
| | - Soo-Kyung Suh
- Advanced Therapy Products Research Division, Korea National Institute of Food and Drug Safety, 187 Osongsaengmyeong 2-ro Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, 363-700, Korea (South)
| | - Noortje de Haan
- Center for Proteomics and Metabolomics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - David Falck
- Center for Proteomics and Metabolomics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | | | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Robert J Emery
- Ludger Limited, Culham Science Centre, Abingdon, Oxfordshire, OX14 3EB, United Kingdom
| | - Radoslaw P Kozak
- Ludger Limited, Culham Science Centre, Abingdon, Oxfordshire, OX14 3EB, United Kingdom
| | - Li Phing Liew
- Ludger Limited, Culham Science Centre, Abingdon, Oxfordshire, OX14 3EB, United Kingdom
| | - Louise Royle
- Ludger Limited, Culham Science Centre, Abingdon, Oxfordshire, OX14 3EB, United Kingdom
| | - Paulina A Urbanowicz
- Ludger Limited, Culham Science Centre, Abingdon, Oxfordshire, OX14 3EB, United Kingdom
| | - Nicolle H Packer
- Biomolecular Discovery and Design Research Centre and ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, North Ryde, Australia
| | - Xiaomin Song
- Biomolecular Discovery and Design Research Centre and ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, North Ryde, Australia
| | - Arun Everest-Dass
- Biomolecular Discovery and Design Research Centre and ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, North Ryde, Australia
| | - Erika Lattová
- Proteomics, Central European Institute for Technology, Masaryk University, Kamenice 5, A26, 625 00 BRNO, Czech Republic
| | - Samanta Cajic
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany
| | - Kathirvel Alagesan
- Department of Biomolecular Sciences, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Daniel Kolarich
- Department of Biomolecular Sciences, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Toyin Kasali
- AstraZeneca, Granta Park, Cambridgeshire, CB21 6GH United Kingdom
| | - Viv Lindo
- AstraZeneca, Granta Park, Cambridgeshire, CB21 6GH United Kingdom
| | - Yuetian Chen
- Merck, 2015 Galloping Hill Rd, Kenilworth, New Jersey 07033
| | - Kudrat Goswami
- Merck, 2015 Galloping Hill Rd, Kenilworth, New Jersey 07033
| | - Brian Gau
- Analytical R&D, MilliporeSigma, 2909 Laclede Ave. St. Louis, Missouri 63103
| | - Ravi Amunugama
- MS Bioworks, LLC, 3950 Varsity Drive Ann Arbor, Michigan 48108
| | - Richard Jones
- MS Bioworks, LLC, 3950 Varsity Drive Ann Arbor, Michigan 48108
| | | | - Koichi Kato
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787 Japan; Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuhoku, Nagoya 467-8603 Japan
| | - Hirokazu Yagi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuhoku, Nagoya 467-8603 Japan
| | - Sachiko Kondo
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuhoku, Nagoya 467-8603 Japan; Medical & Biological Laboratories Co., Ltd, 2-22-8 Chikusa, Chikusa-ku, Nagoya 464-0858 Japan
| | - C T Yuen
- National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG United Kingdom
| | - Akira Harazono
- Division of Biological Chemistry & Biologicals, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501 Japan
| | - Xiaofeng Shi
- New England Biolabs, Inc., 240 County Road, Ipswich, Massachusetts 01938
| | - Paula E Magnelli
- New England Biolabs, Inc., 240 County Road, Ipswich, Massachusetts 01938
| | - Brian T Kasper
- New York University, 100 Washington Square East New York City, New York 10003
| | - Lara Mahal
- New York University, 100 Washington Square East New York City, New York 10003
| | - David J Harvey
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| | - Roisin O'Flaherty
- GlycoScience Group, The National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Co. Dublin, Ireland
| | - Pauline M Rudd
- GlycoScience Group, The National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Co. Dublin, Ireland
| | - Radka Saldova
- GlycoScience Group, The National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Co. Dublin, Ireland
| | - Elizabeth S Hecht
- Department of Chemistry, North Carolina State University, 2620 Yarborough Drive Raleigh, North Carolina 27695
| | - David C Muddiman
- Department of Chemistry, North Carolina State University, 2620 Yarborough Drive Raleigh, North Carolina 27695
| | - Jichao Kang
- Pantheon, 201 College Road East Princeton, New Jersey 08540
| | | | | | - Andrew Saati
- Pfizer Inc., 1 Burtt Road Andover, Massachusetts 01810
| | - Christine Merle
- Proteodynamics, ZI La Varenne 20-22 rue Henri et Gilberte Goudier 63200 RIOM, France
| | - Steven Mast
- ProZyme, Inc., 3832 Bay Center Place Hayward, California 94545
| | - Sam Tep
- ProZyme, Inc., 3832 Bay Center Place Hayward, California 94545
| | - Jennie Truong
- ProZyme, Inc., 3832 Bay Center Place Hayward, California 94545
| | - Takashi Nishikaze
- Koichi Tanaka Mass Spectrometry Research Laboratory, Shimadzu Corporation, 1 Nishinokyo Kuwabara-cho Nakagyo-ku, Kyoto, 604 8511 Japan
| | - Sadanori Sekiya
- Koichi Tanaka Mass Spectrometry Research Laboratory, Shimadzu Corporation, 1 Nishinokyo Kuwabara-cho Nakagyo-ku, Kyoto, 604 8511 Japan
| | - Aaron Shafer
- Children's GMP LLC, St. Jude Children's Research Hospital, 262 Danny Thomas Place Memphis, Tennessee 38105
| | - Sohei Funaoka
- Sumitomo Bakelite Co., Ltd., 1-5 Muromati 1-Chome, Nishiku, Kobe, 651-2241 Japan
| | - Masaaki Toyoda
- Sumitomo Bakelite Co., Ltd., 1-5 Muromati 1-Chome, Nishiku, Kobe, 651-2241 Japan
| | - Peter de Vreugd
- Synthon Biopharmaceuticals, Microweg 22 P.O. Box 7071, 6503 GN Nijmegen, The Netherlands
| | - Cassie Caron
- Takeda Pharmaceuticals International Co., 40 Landsdowne Street Cambridge, Massachusetts 02139
| | - Pralima Pradhan
- Takeda Pharmaceuticals International Co., 40 Landsdowne Street Cambridge, Massachusetts 02139
| | - Niclas Chiang Tan
- Takeda Pharmaceuticals International Co., 40 Landsdowne Street Cambridge, Massachusetts 02139
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, 2500 Broadway, Lubbock, Texas 79409
| | - Sachin Patil
- Thermo Fisher Scientific, 1214 Oakmead Parkway Sunnyvale, California 94085
| | - Jeffrey S Rohrer
- Thermo Fisher Scientific, 1214 Oakmead Parkway Sunnyvale, California 94085
| | - Ranjan Chakrabarti
- United States Pharmacopeia India Pvt. Ltd. IKP Knowledge Park, Genome Valley, Shamirpet, Turkapally Village, Medchal District, Hyderabad 500 101 Telangana, India
| | - Disha Dadke
- United States Pharmacopeia India Pvt. Ltd. IKP Knowledge Park, Genome Valley, Shamirpet, Turkapally Village, Medchal District, Hyderabad 500 101 Telangana, India
| | - Mohammedazam Lahori
- United States Pharmacopeia India Pvt. Ltd. IKP Knowledge Park, Genome Valley, Shamirpet, Turkapally Village, Medchal District, Hyderabad 500 101 Telangana, India
| | - Chunxia Zou
- Alberta Glycomics Centre, University of Alberta, Edmonton, Alberta T6G 2G2 Canada; Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2 Canada
| | - Christopher Cairo
- Alberta Glycomics Centre, University of Alberta, Edmonton, Alberta T6G 2G2 Canada; Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2 Canada
| | - Béla Reiz
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2 Canada
| | - Randy M Whittal
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2 Canada
| | - Carlito B Lebrilla
- Department of Chemistry, University of California, One Shields Ave, Davis, California 95616
| | - Lauren Wu
- Department of Chemistry, University of California, One Shields Ave, Davis, California 95616
| | - Andras Guttman
- Horváth Csaba Memorial Laboratory for Bioseparation Sciences, Research Center for Molecular Medicine, Doctoral School of Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Egyetem ter 1, Hungary
| | - Marton Szigeti
- Horváth Csaba Memorial Laboratory for Bioseparation Sciences, Research Center for Molecular Medicine, Doctoral School of Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Egyetem ter 1, Hungary; Translational Glycomics Research Group, Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, Veszprem, Egyetem ut 10, Hungary
| | - Benjamin G Kremkow
- Delaware Biotechnology Institute, University of Delaware, 15 Innovation Way Newark, Delaware 19711
| | - Kelvin H Lee
- Delaware Biotechnology Institute, University of Delaware, 15 Innovation Way Newark, Delaware 19711
| | - Carina Sihlbom
- Proteomics Core Facility, University of Gothenburg, Medicinaregatan 1G SE 41390 Gothenburg, Sweden
| | - Barbara Adamczyk
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Institute of Biomedicine, Sahlgrenska Academy, Medicinaregatan 9A, Box 440, 405 30, Gothenburg, Sweden
| | - Chunsheng Jin
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Institute of Biomedicine, Sahlgrenska Academy, Medicinaregatan 9A, Box 440, 405 30, Gothenburg, Sweden
| | - Niclas G Karlsson
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Institute of Biomedicine, Sahlgrenska Academy, Medicinaregatan 9A, Box 440, 405 30, Gothenburg, Sweden
| | - Jessica Örnros
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Institute of Biomedicine, Sahlgrenska Academy, Medicinaregatan 9A, Box 440, 405 30, Gothenburg, Sweden
| | - Göran Larson
- Department of Clinical Chemistry and Transfusion Medicine, Sahlgrenska Academy at the University of Gothenburg, Bruna Straket 16, 41345 Gothenburg, Sweden
| | - Jonas Nilsson
- Department of Clinical Chemistry and Transfusion Medicine, Sahlgrenska Academy at the University of Gothenburg, Bruna Straket 16, 41345 Gothenburg, Sweden
| | - Bernd Meyer
- Department of Chemistry, University of Hamburg, Martin Luther King Pl. 6 20146 Hamburg, Germany
| | - Alena Wiegandt
- Department of Chemistry, University of Hamburg, Martin Luther King Pl. 6 20146 Hamburg, Germany
| | - Emy Komatsu
- Department of Chemistry, University of Manitoba, 144 Dysart Road, Winnipeg, Manitoba, Canada R3T 2N2
| | - Helene Perreault
- Department of Chemistry, University of Manitoba, 144 Dysart Road, Winnipeg, Manitoba, Canada R3T 2N2
| | - Edward D Bodnar
- Department of Chemistry, University of Manitoba, 144 Dysart Road, Winnipeg, Manitoba, Canada R3T 2N2; Agilent Technologies, Inc., 5301 Stevens Creek Blvd Santa Clara, California 95051
| | - Nassur Said
- Laboratory of Mass Spectrometry of Interactions and Systems, University of Strasbourg, UMR Unistra-CNRS 7140, France
| | - Yannis-Nicolas Francois
- Laboratory of Mass Spectrometry of Interactions and Systems, University of Strasbourg, UMR Unistra-CNRS 7140, France
| | - Emmanuelle Leize-Wagner
- Laboratory of Mass Spectrometry of Interactions and Systems, University of Strasbourg, UMR Unistra-CNRS 7140, France
| | - Sandra Maier
- Natural and Medical Sciences Institute, University of Tübingen, Markwiesenstraβe 55, 72770 Reutlingen, Germany
| | - Anne Zeck
- Natural and Medical Sciences Institute, University of Tübingen, Markwiesenstraβe 55, 72770 Reutlingen, Germany
| | - Albert J R Heck
- Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Yang Yang
- Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Rob Haselberg
- Division of Bioanalytical Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, de Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Ying Qing Yu
- Department of Chemistry, Waters Corporation, 34 Maple Street Milford, Massachusetts 01757
| | - William Alley
- Department of Chemistry, Waters Corporation, 34 Maple Street Milford, Massachusetts 01757
| | | | - Hua Yuan
- Zoetis, 333 Portage St. Kalamazoo, Michigan 49007
| | - Stephen E Stein
- Mass Spectrometry Data Center, Biomolecular Measurement Division, Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive Gaithersburg, Maryland 20899
| |
Collapse
|
20
|
Campbell MP, Abrahams JL, Rapp E, Struwe WB, Costello CE, Novotny M, Ranzinger R, York WS, Kolarich D, Rudd PM, Kettner C. The minimum information required for a glycomics experiment (MIRAGE) project: LC guidelines. Glycobiology 2019; 29:349-354. [PMID: 30778580 DOI: 10.1093/glycob/cwz009] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/11/2019] [Accepted: 02/13/2019] [Indexed: 11/13/2022] Open
Abstract
The Minimum Information Required for a Glycomics Experiment (MIRAGE) is an initiative created by experts in the fields of glycobiology, glycoanalytics and glycoinformatics to design guidelines that improve the reporting and reproducibility of glycoanalytical methods. Previously, the MIRAGE Commission has published guidelines for describing sample preparation methods and the reporting of glycan array and mass spectrometry techniques and data collections. Here, we present the first version of guidelines that aim to improve the quality of the reporting of liquid chromatography (LC) glycan data in the scientific literature. These guidelines cover all aspects of instrument setup and modality of data handling and manipulation and is cross-linked with other MIRAGE recommendations. The most recent version of the MIRAGE-LC guidelines is freely available at the MIRAGE project website doi:10.3762/mirage.4.
Collapse
Affiliation(s)
- Matthew P Campbell
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Jodie L Abrahams
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Erdmann Rapp
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, Magdeburg, Germany
| | - Weston B Struwe
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford, UK
| | - Catherine E Costello
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University School of Medicine, 670 Albany Street, Suite 504, Boston, MA, USA
| | - Milos Novotny
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN, USA
| | - Rene Ranzinger
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA, USA
| | - William S York
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA, USA
| | - Daniel Kolarich
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia.,ARC Centre for Nanoscale BioPhotonics, Griffith University, Gold Coast, Queensland, Australia
| | - Pauline M Rudd
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, Centros, Singapore
| | - Carsten Kettner
- Beilstein-Institut, Trakehner Str. 7-9, Frankfurt am Main, Germany
| |
Collapse
|
21
|
Tjondro HC, Loke I, Chatterjee S, Thaysen-Andersen M. Human protein paucimannosylation: cues from the eukaryotic kingdoms. Biol Rev Camb Philos Soc 2019; 94:2068-2100. [PMID: 31410980 DOI: 10.1111/brv.12548] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 07/10/2019] [Accepted: 07/17/2019] [Indexed: 12/11/2022]
Abstract
Paucimannosidic proteins (PMPs) are bioactive glycoproteins carrying truncated α- or β-mannosyl-terminating asparagine (N)-linked glycans widely reported across the eukaryotic domain. Our understanding of human PMPs remains limited, despite findings documenting their existence and association with human disease glycobiology. This review comprehensively surveys the structures, biosynthetic routes and functions of PMPs across the eukaryotic kingdoms with the aim of synthesising an improved understanding on the role of protein paucimannosylation in human health and diseases. Convincing biochemical, glycoanalytical and biological data detail a vast structural heterogeneity and fascinating tissue- and subcellular-specific expression of PMPs within invertebrates and plants, often comprising multi-α1,3/6-fucosylation and β1,2-xylosylation amongst other glycan modifications and non-glycan substitutions e.g. O-methylation. Vertebrates and protists express less-heterogeneous PMPs typically only comprising variable core fucosylation of bi- and trimannosylchitobiose core glycans. In particular, the Manα1,6Manβ1,4GlcNAc(α1,6Fuc)β1,4GlcNAcβAsn glycan (M2F) decorates various human neutrophil proteins reportedly displaying bioactivity and structural integrity demonstrating that they are not degradation products. Less-truncated paucimannosidic glycans (e.g. M3F) are characteristic glycosylation features of proteins expressed by human cancer and stem cells. Concertedly, these observations suggest the involvement of human PMPs in processes related to innate immunity, tumorigenesis and cellular differentiation. The absence of human PMPs in diverse bodily fluids studied under many (patho)physiological conditions suggests extravascular residence and points to localised functions of PMPs in peripheral tissues. Absence of PMPs in Fungi indicates that paucimannosylation is common, but not universally conserved, in eukaryotes. Relative to human PMPs, the expression of PMPs in plants, invertebrates and protists is more tissue-wide and constitutive yet, similar to their human counterparts, PMP expression remains regulated by the physiology of the producing organism and PMPs evidently serve essential functions in development, cell-cell communication and host-pathogen/symbiont interactions. In most PMP-producing organisms, including humans, the N-acetyl-β-hexosaminidase isoenzymes and linkage-specific α-mannosidases are glycoside hydrolases critical for generating PMPs via N-acetylglucosaminyltransferase I (GnT-I)-dependent and GnT-I-independent truncation pathways. However, the identity and structure of many species-specific PMPs in eukaryotes, their biosynthetic routes, strong tissue- and development-specific expression, and diverse functions are still elusive. Deep exploration of these PMP features involving, for example, the characterisation of endogenous PMP-recognising lectins across a variety of healthy and N-acetyl-β-hexosaminidase-deficient human tissue types and identification of microbial adhesins reactive to human PMPs, are amongst the many tasks required for enhanced insight into the glycobiology of human PMPs. In conclusion, the literature supports the notion that PMPs are significant, yet still heavily under-studied biomolecules in human glycobiology that serve essential functions and create structural heterogeneity not dissimilar to other human N-glycoprotein types. Human PMPs should therefore be recognised as bioactive glycoproteins that are distinctly different from the canonical N-glycoprotein classes and which warrant a more dedicated focus in glycobiological research.
Collapse
Affiliation(s)
- Harry C Tjondro
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Ian Loke
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales, 2109, Australia.,Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Sayantani Chatterjee
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Morten Thaysen-Andersen
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales, 2109, Australia
| |
Collapse
|
22
|
Baerenfaenger M, Meyer B. Simultaneous characterization of SNPs and N-glycans from multiple glycosylation sites of intact β-2-glycoprotein-1 (B2GP1) by ESI-qTOF-MS. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:556-564. [DOI: 10.1016/j.bbapap.2019.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/21/2019] [Accepted: 03/19/2019] [Indexed: 12/16/2022]
|
23
|
Capturing site-specific heterogeneity with large-scale N-glycoproteome analysis. Nat Commun 2019; 10:1311. [PMID: 30899004 PMCID: PMC6428843 DOI: 10.1038/s41467-019-09222-w] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 02/19/2019] [Indexed: 11/08/2022] Open
Abstract
Protein glycosylation is a highly important, yet poorly understood protein post-translational modification. Thousands of possible glycan structures and compositions create potential for tremendous site heterogeneity. A lack of suitable analytical methods for large-scale analyses of intact glycopeptides has limited our abilities both to address the degree of heterogeneity across the glycoproteome and to understand how this contributes biologically to complex systems. Here we show that N-glycoproteome site-specific microheterogeneity can be captured via large-scale glycopeptide profiling methods enabled by activated ion electron transfer dissociation (AI-ETD), ultimately characterizing 1,545 N-glycosites (>5,600 unique N-glycopeptides) from mouse brain tissue. Our data reveal that N-glycosylation profiles can differ between subcellular regions and structural domains and that N-glycosite heterogeneity manifests in several different forms, including dramatic differences in glycosites on the same protein. Moreover, we use this large-scale glycoproteomic dataset to develop several visualizations that will prove useful for analyzing intact glycopeptides in future studies. Mass spectrometry facilitates large-scale glycosylation profiling but in-depth analysis of intact glycopeptides is still challenging. Here, the authors show that activated ion electron transfer dissociation is suitable for glycopeptide fragmentation and improves glycoproteome coverage.
Collapse
|
24
|
Quantitation of Glycopeptides by ESI/MS - size of the peptide part strongly affects the relative proportions and allows discovery of new glycan compositions of Ceruloplasmin. Glycoconj J 2019; 36:13-26. [PMID: 30612270 DOI: 10.1007/s10719-018-9852-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/04/2018] [Accepted: 12/11/2018] [Indexed: 10/27/2022]
Abstract
Significant changes of glycan structures are observed in humans if diseases like cancer, arthritis or inflammation are present. Thus, interest in biomarkers based on glycan structures has rapidly emerged in recent years and monitoring disease specific changes of glycosylation and their quantification is of great interest. Mass spectrometry is most commonly used to characterize and quantify glycopeptides and glycans liberated from the glycoprotein of interest. However, ionization properties of glycopeptides can strongly depend on their composition and can therefore lead to intensities that do not reflect the actual proportions present in the intact glycoprotein. Here we show that an increase in the length of the peptide can lead to a more accurate determination and quantification of the glycans. The four glycosylation sites of human serum ceruloplasmin from 17 different individuals were analyzed using glycopeptides of varying peptide lengths, obtained by action of different proteases and by limited digestion. In most cases, highly sialylated compositions showed an increased relative abundance with increasing peptide length. We observed a relative increase of triantennary glycans of up to a factor of three and, even more, MS peaks corresponding to tetraantennary compositions on ceruloplasmin at glycosite 137N in all 17 samples, which we did not detect using a bottom up approach. The data presented here leads to the conclusion that a middle down - or when possible a top down - approach is favorable for qualitative and quantitative analysis of the glycosylation of glycoproteins.
Collapse
|
25
|
Reiding KR, Bondt A, Hennig R, Gardner RA, O'Flaherty R, Trbojević-Akmačić I, Shubhakar A, Hazes JMW, Reichl U, Fernandes DL, Pučić-Baković M, Rapp E, Spencer DIR, Dolhain RJEM, Rudd PM, Lauc G, Wuhrer M. High-throughput Serum N-Glycomics: Method Comparison and Application to Study Rheumatoid Arthritis and Pregnancy-associated Changes. Mol Cell Proteomics 2019; 18:3-15. [PMID: 30242110 PMCID: PMC6317482 DOI: 10.1074/mcp.ra117.000454] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 05/14/2018] [Indexed: 11/06/2022] Open
Abstract
N-Glycosylation is a fundamentally important protein modification with a major impact on glycoprotein characteristics such as serum half-life and receptor interaction. More than half of the proteins in human serum are glycosylated, and the relative abundances of protein glycoforms often reflect alterations in health and disease. Several analytical methods are currently capable of analyzing the total serum N-glycosylation in a high-throughput manner.Here we evaluate and compare the performance of three high-throughput released N-glycome analysis methods. Included were hydrophilic-interaction ultra-high-performance liquid chromatography with fluorescence detection (HILIC-UHPLC-FLD) with 2-aminobenzamide labeling of the glycans, multiplexed capillary gel electrophoresis with laser-induced fluorescence detection (xCGE-LIF) with 8-aminopyrene-1,3,6-trisulfonic acid labeling, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) with linkage-specific sialic acid esterification. All methods assessed the same panel of serum samples, which were obtained at multiple time points during the pregnancies and postpartum periods of healthy women and patients with rheumatoid arthritis (RA). We compared the analytical methods on their technical performance as well as on their ability to describe serum protein N-glycosylation changes throughout pregnancy, with RA, and with RA disease activity.Overall, the methods proved to be similar in their detection and relative quantification of serum protein N-glycosylation. However, the non-MS methods showed superior repeatability over MALDI-TOF-MS and allowed the best structural separation of low-complexity N-glycans. MALDI-TOF-MS achieved the highest throughput and provided compositional information on higher-complexity N-glycans. Consequentially, MALDI-TOF-MS could establish the linkage-specific sialylation differences within pregnancy and RA, whereas HILIC-UHPLC-FLD and xCGE-LIF demonstrated differences in α1,3- and α1,6-branch galactosylation. While the combination of methods proved to be the most beneficial for the analysis of total serum protein N-glycosylation, informed method choices can be made for the glycosylation analysis of single proteins or samples of varying complexity.
Collapse
Affiliation(s)
| | - Albert Bondt
- From the ‡Center for Proteomics and Metabolomics,; §Department of Rheumatology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - René Hennig
- ¶Max Planck Institute (MPI) for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany;; ‖glyXera GmbH., 39120 Magdeburg, Germany
| | - Richard A Gardner
- **Ludger, Ltd., Culham Science Centre, Abingdon, Oxfordshire, United Kingdom
| | - Roisin O'Flaherty
- ‡‡GlycoScience Group, National Institute for Bioprocessing Research and Training (NIBRT), Fosters Avenue, Blackrock, Co. Dublin, Ireland
| | | | - Archana Shubhakar
- **Ludger, Ltd., Culham Science Centre, Abingdon, Oxfordshire, United Kingdom
| | - Johanna M W Hazes
- ¶¶Department of Rheumatology, Erasmus University Medical Center, Rotterdam, The Netherland
| | - Udo Reichl
- ¶Max Planck Institute (MPI) for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany;; ‖‖Otto von Guericke University Magdeburg, Chair of Bioprocess Engineering, 39106 Magdeburg, Germany
| | - Daryl L Fernandes
- **Ludger, Ltd., Culham Science Centre, Abingdon, Oxfordshire, United Kingdom
| | | | - Erdmann Rapp
- ¶Max Planck Institute (MPI) for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany;; ‖glyXera GmbH., 39120 Magdeburg, Germany
| | - Daniel I R Spencer
- **Ludger, Ltd., Culham Science Centre, Abingdon, Oxfordshire, United Kingdom
| | - Radboud J E M Dolhain
- ¶¶Department of Rheumatology, Erasmus University Medical Center, Rotterdam, The Netherland
| | - Pauline M Rudd
- ‡‡GlycoScience Group, National Institute for Bioprocessing Research and Training (NIBRT), Fosters Avenue, Blackrock, Co. Dublin, Ireland
| | - Gordan Lauc
- §§Genos Glycoscience Research Laboratory, Zagreb, Croatia;; ***Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia
| | | |
Collapse
|
26
|
Ruhaak LR, Xu G, Li Q, Goonatilleke E, Lebrilla CB. Mass Spectrometry Approaches to Glycomic and Glycoproteomic Analyses. Chem Rev 2018; 118:7886-7930. [PMID: 29553244 PMCID: PMC7757723 DOI: 10.1021/acs.chemrev.7b00732] [Citation(s) in RCA: 265] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Glycomic and glycoproteomic analyses involve the characterization of oligosaccharides (glycans) conjugated to proteins. Glycans are produced through a complicated nontemplate driven process involving the competition of enzymes that extend the nascent chain. The large diversity of structures, the variations in polarity of the individual saccharide residues, and the poor ionization efficiencies of glycans all conspire to make the analysis arguably much more difficult than any other biopolymer. Furthermore, the large number of glycoforms associated with a specific protein site makes it more difficult to characterize than any post-translational modification. Nonetheless, there have been significant progress, and advanced separation and mass spectrometry methods have been at its center and the main reason for the progress. While glycomic and glycoproteomic analyses are still typically available only through highly specialized laboratories, new software and workflow is making it more accessible. This review focuses on the role of mass spectrometry and separation methods in advancing glycomic and glycoproteomic analyses. It describes the current state of the field and progress toward making it more available to the larger scientific community.
Collapse
Affiliation(s)
- L. Renee Ruhaak
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Gege Xu
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Qiongyu Li
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Elisha Goonatilleke
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Carlito B. Lebrilla
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, California 95616, United States
- Foods for Health Institute, University of California, Davis, Davis, California 95616, United States
| |
Collapse
|
27
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2013-2014. MASS SPECTROMETRY REVIEWS 2018; 37:353-491. [PMID: 29687922 DOI: 10.1002/mas.21530] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/29/2016] [Indexed: 06/08/2023]
Abstract
This review is the eighth update of the original article published in 1999 on the application of Matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2014. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly- saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2018 Wiley Periodicals, Inc. Mass Spec Rev 37:353-491, 2018.
Collapse
Affiliation(s)
- David J Harvey
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
28
|
Skala W, Wohlschlager T, Senn S, Huber GE, Huber CG. MoFi: A Software Tool for Annotating Glycoprotein Mass Spectra by Integrating Hybrid Data from the Intact Protein and Glycopeptide Level. Anal Chem 2018; 90:5728-5736. [DOI: 10.1021/acs.analchem.8b00019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Wolfgang Skala
- Department of Biosciences, Bioanalytical Research Laboratories, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
- Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
| | - Therese Wohlschlager
- Department of Biosciences, Bioanalytical Research Laboratories, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
- Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
| | - Stefan Senn
- Department of Biosciences, Bioanalytical Research Laboratories, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
- Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
| | - Gabriel E. Huber
- Department of Biosciences, Bioanalytical Research Laboratories, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
| | - Christian G. Huber
- Department of Biosciences, Bioanalytical Research Laboratories, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
- Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
| |
Collapse
|
29
|
Baker MR, Ching T, Tabb DL, Li QX. Characterization of Plant Glycoproteins: Analysis of Plant Glycopeptide Mass Spectrometry Data with plantGlycoMS, a Package in the R Statistical Computing Environment. Methods Mol Biol 2018; 1789:205-220. [PMID: 29916082 DOI: 10.1007/978-1-4939-7856-4_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
plantGlycoMS is a set of tools, implemented in R, which is used to assess and validate glycopeptide spectrum matches (gPSMs). Validity of gPSMs is based on characteristic fragmentation patterns of glycopeptides (gPSMvalidator), adherence of the glycan moiety to the known N-glycan biosynthesis pathway in plants (pGlycoFilter), and elution of the glycopeptide within the observed retention time window of other glycopeptides sharing the same peptide backbone (rt.Restrict). plantGlycoMS also contains a tool for relative quantitation of glycoforms based on selected ion chromatograms of glycopeptide ion precursors in the mass spectrometry level 1 data (glycoRQ). This protocol walks the user through this workflow with example mass spectrometry data obtained for a plant glycoprotein.
Collapse
Affiliation(s)
- Margaret R Baker
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Travers Ching
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, USA
| | - David L Tabb
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical TB Research, Stellenbosch University, Cape Town, South Africa
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, USA.
| |
Collapse
|
30
|
The Single-parameter, Structure-based IsoPSA Assay Demonstrates Improved Diagnostic Accuracy for Detection of Any Prostate Cancer and High-grade Prostate Cancer Compared to a Concentration-based Assay of Total Prostate-specific Antigen: A Preliminary Report. Eur Urol 2017; 72:942-949. [DOI: 10.1016/j.eururo.2017.03.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 03/17/2017] [Indexed: 12/23/2022]
|
31
|
Jia G, Dong Z, Sun C, Wen F, Wang H, Guo H, Gao X, Xu C, Xu C, Yang C, Sun Y. Alterations in expressed prostate secretion-urine PSA N-glycosylation discriminate prostate cancer from benign prostate hyperplasia. Oncotarget 2017; 8:76987-76999. [PMID: 29100363 PMCID: PMC5652757 DOI: 10.18632/oncotarget.20299] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 06/27/2017] [Indexed: 01/13/2023] Open
Abstract
The prostate specific antigen (PSA) test is widely used for early diagnosis of prostate cancer (PCa). However, its limited sensitivity has led to over-diagnosis and over-treatment of PCa. Glycosylation alteration is a common phenomenon in cancer development. Different PSA glycan subforms have been proposed as diagnostic markers to better differentiate PCa from benign prostate hyperplasia (BPH). In this study, we purified PSA from expressed prostate secretions (EPS)-urine samples from 32 BPH and 30 PCa patients and provided detailed PSA glycan profiles in Chinese population. We found that most of the PSA glycans from EPS-urine were complex type biantennary glycans. We observed two major patterns in PSA glycan profiles. Overall there was no distinct separation of PSA glycan profiles between BPH and PCa patients. However, we detected a significant increase of glycan FA2 and FM5A2G2S1 in PCa when compared with BPH patients. Furthermore, we observed that the composition of FA2 glycan increased significantly in advanced PCa with Gleason score ≥8, which potentially could be translated to clinic as a marker for aggressive PCa.
Collapse
Affiliation(s)
- Gaozhen Jia
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai 2000433, China
| | - Zhenyang Dong
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai 2000433, China
| | - Chenxia Sun
- Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Fuping Wen
- Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Haifeng Wang
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai 2000433, China
| | - Huaizu Guo
- State Key Laboratory of Antibody Medicine and Targeted Therapy, Shanghai 201203, China
| | - Xu Gao
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai 2000433, China
| | - Chuanliang Xu
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai 2000433, China
| | - Chuanliang Xu
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai 2000433, China
| | - Chenghua Yang
- Joint Center for Translational Research of Chronic Diseases, Changhai Hospital, Second Military Medical University, Shanghai 2000433, China.,Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yinghao Sun
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai 2000433, China
| |
Collapse
|
32
|
Pedersen CT, Loke I, Lorentzen A, Wolf S, Kamble M, Kristensen SK, Munch D, Radutoiu S, Spillner E, Roepstorff P, Thaysen-Andersen M, Stougaard J, Dam S. N-glycan maturation mutants in Lotus japonicus for basic and applied glycoprotein research. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:394-407. [PMID: 28407380 DOI: 10.1111/tpj.13570] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 03/27/2017] [Accepted: 04/03/2017] [Indexed: 05/11/2023]
Abstract
Studies of protein N-glycosylation are important for answering fundamental questions on the diverse functions of glycoproteins in plant growth and development. Here we generated and characterised a comprehensive collection of Lotus japonicusLORE1 insertion mutants, each lacking the activity of one of the 12 enzymes required for normal N-glycan maturation in the glycosylation machinery. The inactivation of the individual genes resulted in altered N-glycan patterns as documented using mass spectrometry and glycan-recognising antibodies, indicating successful identification of null mutations in the target glyco-genes. For example, both mass spectrometry and immunoblotting experiments suggest that proteins derived from the α1,3-fucosyltransferase (Lj3fuct) mutant completely lacked α1,3-core fucosylation. Mass spectrometry also suggested that the Lotus japonicus convicilin 2 was one of the main glycoproteins undergoing differential expression/N-glycosylation in the mutants. Demonstrating the functional importance of glycosylation, reduced growth and seed production phenotypes were observed for the mutant plants lacking functional mannosidase I, N-acetylglucosaminyltransferase I, and α1,3-fucosyltransferase, even though the relative protein composition and abundance appeared unaffected. The strength of our N-glycosylation mutant platform is the broad spectrum of resulting glycoprotein profiles and altered physiological phenotypes that can be produced from single, double, triple and quadruple mutants. This platform will serve as a valuable tool for elucidating the functional role of protein N-glycosylation in plants. Furthermore, this technology can be used to generate stable plant mutant lines for biopharmaceutical production of glycoproteins displaying relative homogeneous and mammalian-like N-glycosylation features.
Collapse
Affiliation(s)
- Carina T Pedersen
- Centre for Carbohydrate Recognition and Signalling, Department of Molecular Biology and Genetics, Aarhus University, DK-8000, Aarhus, Denmark
| | - Ian Loke
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Andrea Lorentzen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230, Odense M, Denmark
| | - Sara Wolf
- Department of Engineering, Aarhus University, DK-8000, Aarhus, Denmark
| | - Manoj Kamble
- Centre for Carbohydrate Recognition and Signalling, Department of Molecular Biology and Genetics, Aarhus University, DK-8000, Aarhus, Denmark
| | - Sebastian K Kristensen
- Centre for Carbohydrate Recognition and Signalling, Department of Molecular Biology and Genetics, Aarhus University, DK-8000, Aarhus, Denmark
| | - David Munch
- Centre for Carbohydrate Recognition and Signalling, Department of Molecular Biology and Genetics, Aarhus University, DK-8000, Aarhus, Denmark
| | - Simona Radutoiu
- Centre for Carbohydrate Recognition and Signalling, Department of Molecular Biology and Genetics, Aarhus University, DK-8000, Aarhus, Denmark
| | - Edzard Spillner
- Department of Engineering, Aarhus University, DK-8000, Aarhus, Denmark
| | - Peter Roepstorff
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230, Odense M, Denmark
| | - Morten Thaysen-Andersen
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Jens Stougaard
- Centre for Carbohydrate Recognition and Signalling, Department of Molecular Biology and Genetics, Aarhus University, DK-8000, Aarhus, Denmark
| | - Svend Dam
- Centre for Carbohydrate Recognition and Signalling, Department of Molecular Biology and Genetics, Aarhus University, DK-8000, Aarhus, Denmark
| |
Collapse
|
33
|
Yang Y, Franc V, Heck AJ. Glycoproteomics: A Balance between High-Throughput and In-Depth Analysis. Trends Biotechnol 2017; 35:598-609. [DOI: 10.1016/j.tibtech.2017.04.010] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/15/2017] [Accepted: 04/20/2017] [Indexed: 11/25/2022]
|
34
|
Sialic acid linkage differentiation of glycopeptides using capillary electrophoresis - electrospray ionization - mass spectrometry. Sci Rep 2017. [PMID: 28623326 PMCID: PMC5473812 DOI: 10.1038/s41598-017-03838-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Sialylation is a glycosylation feature that occurs in different linkages at the non-reducing end of a glycan moiety, the linkage isomers are often differentially associated with various biological processes. Due to very similar physico-chemical properties, the separation of isomeric sialylated glycopeptides remains challenging but of utmost importance in the biomedicine and biotechnology, including biomarker discovery, glyco-engineering and biopharmaceutical characterization. This study presents the implementation of a high-resolution separation platform based on capillary electrophoresis - mass spectrometry (CE-MS) allowing for the selective analysis of α2,3- and α2,6-sialylated glycopeptides. These differentially linked glycopeptides showed an identical fragmentation pattern (collision induced dissociation) but different electrophoretic mobilities, allowing for baseline separation of the different linkages without the need for an extensive sample preparation. The different migration behavior between the two moieties was found to correlate with differences in pKa values. Using a novel methodology adapted from the so-called internal standard CE approach, a relative difference of 3.4·10-2 in pKa unit was determined. This approach was applied for the analysis of tryptic glycopeptides of prostate specific antigen, which shows highly complex and heterogeneous glycosylation. The developed platform therefore appears attractive for the identification of differentially linked sialic acids that may be related to pathological conditions.
Collapse
|
35
|
Zou X, Yoshida M, Nagai-Okatani C, Iwaki J, Matsuda A, Tan B, Hagiwara K, Sato T, Itakura Y, Noro E, Kaji H, Toyoda M, Zhang Y, Narimatsu H, Kuno A. A standardized method for lectin microarray-based tissue glycome mapping. Sci Rep 2017; 7:43560. [PMID: 28262709 PMCID: PMC5337905 DOI: 10.1038/srep43560] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 01/25/2017] [Indexed: 01/12/2023] Open
Abstract
The significance of glycomic profiling has been highlighted by recent findings that structural changes of glycans are observed in many diseases, including cancer. Therefore, glycomic profiling of the whole body (glycome mapping) under different physiopathological states may contribute to the discovery of reliable biomarkers with disease-specific alterations. To achieve this, standardization of high-throughput and in-depth analysis of tissue glycome mapping is needed. However, this is a great challenge due to the lack of analytical methodology for glycans on small amounts of endogenous glycoproteins. Here, we established a standardized method of lectin-assisted tissue glycome mapping. Formalin-fixed, paraffin-embedded tissue sections were prepared from brain, liver, kidney, spleen, and testis of two C57BL/6J mice. In total, 190 size-adjusted fragments with different morphology were serially collected from each tissue by laser microdissection and subjected to lectin microarray analysis. The results and subsequent histochemical analysis with selected lectins were highly consistent with previous reports of mass spectrometry-based N- and/or O-glycome analyses and histochemistry. This is the first report to look at both N- and O-glycome profiles of various regions within tissue sections of five different organs. This simple and reproducible mapping approach is also applicable to various disease model mice to facilitate disease-related biomarker discovery.
Collapse
Affiliation(s)
- Xia Zou
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan.,Ministry of Education, Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Maki Yoshida
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan
| | - Chiaki Nagai-Okatani
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan
| | - Jun Iwaki
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan
| | - Atsushi Matsuda
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan
| | - Binbin Tan
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan.,Ministry of Education, Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kozue Hagiwara
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan
| | - Takashi Sato
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan
| | - Yoko Itakura
- Research Team for Geriatric Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan
| | - Erika Noro
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan
| | - Hiroyuki Kaji
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan
| | - Masashi Toyoda
- Research Team for Geriatric Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan
| | - Yan Zhang
- Ministry of Education, Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hisashi Narimatsu
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan
| | - Atsushi Kuno
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan
| |
Collapse
|
36
|
Sweet Strategies in Prostate Cancer Biomarker Research: Focus on a Prostate Specific Antigen. BIONANOSCIENCE 2017. [DOI: 10.1007/s12668-017-0397-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
37
|
Zhou S, Dong X, Veillon L, Huang Y, Mechref Y. LC-MS/MS analysis of permethylated N-glycans facilitating isomeric characterization. Anal Bioanal Chem 2017; 409:453-466. [PMID: 27796453 PMCID: PMC5444817 DOI: 10.1007/s00216-016-9996-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/23/2016] [Accepted: 09/29/2016] [Indexed: 12/18/2022]
Abstract
The biosynthesis of glycans is a template-free process; hence compositionally identical glycans may contain highly heterogeneous structures. Meanwhile, the functions of glycans in biological processes are significantly influenced by the glycan structure. Structural elucidation of glycans is an essential component of glycobiology. Although NMR is considered the most powerful approach for structural glycan studies, it suffers from low sensitivity and requires highly purified glycans. Although mass spectrometry (MS)-based methods have been applied in numerous glycan structure studies, there are challenges in preserving glycan structure during ionization. Permethylation is an efficient derivatization method that improves glycan structural stability. In this report, permethylated glycans are isomerically separated; thus facilitating structural analysis of a mixture of glycans by LC-MS/MS. Separation by porous graphitic carbon liquid chromatography at high temperatures in conjunction with tandem mass spectrometry (PGC-LC-MS/MS) was utilized for unequivocal characterization of glycan isomers. Glycan fucosylation sites were confidently determined by eliminating fucose rearrangement and assignment of diagnostic ions, achieved by permethylation and PGC-LC at high temperatures, respectively. Assigning monosaccharide residues to specific glycan antennae was also achieved. Galactose linkages were also distinguished from each other by CID/HCD tandem MS. This was attainable because of the different bond energies associated with monosaccharide linkages. Graphical Abstract LC-MS and tandem MS of terminal galactose isomers.
Collapse
Affiliation(s)
- Shiyue Zhou
- Department of Chemistry and Biochemistry, Texas Tech University, Memorial Circle & Boston, Box 41061, Lubbock, TX, 79409-1061, USA
| | - Xue Dong
- Department of Chemistry and Biochemistry, Texas Tech University, Memorial Circle & Boston, Box 41061, Lubbock, TX, 79409-1061, USA
| | - Lucas Veillon
- Department of Chemistry and Biochemistry, Texas Tech University, Memorial Circle & Boston, Box 41061, Lubbock, TX, 79409-1061, USA
| | - Yifan Huang
- Department of Chemistry and Biochemistry, Texas Tech University, Memorial Circle & Boston, Box 41061, Lubbock, TX, 79409-1061, USA
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Memorial Circle & Boston, Box 41061, Lubbock, TX, 79409-1061, USA.
| |
Collapse
|
38
|
Banazadeh A, Veillon L, Wooding KM, Zabet-Moghaddam M, Mechref Y. Recent advances in mass spectrometric analysis of glycoproteins. Electrophoresis 2016; 38:162-189. [PMID: 27757981 DOI: 10.1002/elps.201600357] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/23/2016] [Accepted: 09/24/2016] [Indexed: 12/13/2022]
Abstract
Glycosylation is one of the most common posttranslational modifications of proteins that plays essential roles in various biological processes, including protein folding, host-pathogen interaction, immune response, and inflammation and aberrant protein glycosylation is a well-known event in various disease states including cancer. As a result, it is critical to develop rapid and sensitive methods for the analysis of abnormal glycoproteins associated with diseases. Mass spectrometry (MS) in conjunction with different separation methods, such as capillary electrophoresis (CE), ion mobility (IM), and high performance liquid chromatography (HPLC) has become a popular tool for glycoprotein analysis, providing highly informative fragments for structural identification of glycoproteins. This review provides an overview of the developments and accomplishments in the field of glycomics and glycoproteomics reported between 2014 and 2016.
Collapse
Affiliation(s)
- Alireza Banazadeh
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Lucas Veillon
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Kerry M Wooding
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | | | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA.,Center for Biotechnology and Genomics, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
39
|
Abstract
Chemical tools have accelerated progress in glycoscience, reducing experimental barriers to studying protein glycosylation, the most widespread and complex form of posttranslational modification. For example, chemical glycoproteomics technologies have enabled the identification of specific glycosylation sites and glycan structures that modulate protein function in a number of biological processes. This field is now entering a stage of logarithmic growth, during which chemical innovations combined with mass spectrometry advances could make it possible to fully characterize the human glycoproteome. In this review, we describe the important role that chemical glycoproteomics methods are playing in such efforts. We summarize developments in four key areas: enrichment of glycoproteins and glycopeptides from complex mixtures, emphasizing methods that exploit unique chemical properties of glycans or introduce unnatural functional groups through metabolic labeling and chemoenzymatic tagging; identification of sites of protein glycosylation; targeted glycoproteomics; and functional glycoproteomics, with a focus on probing interactions between glycoproteins and glycan-binding proteins. Our goal with this survey is to provide a foundation on which continued technological advancements can be made to promote further explorations of protein glycosylation.
Collapse
Affiliation(s)
- Krishnan K. Palaniappan
- Verily Life Sciences, 269 East Grand Ave., South San Francisco, California 94080, United States
| | - Carolyn R. Bertozzi
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
40
|
Parsons LM, An Y, de Vries RP, de Haan CAM, Cipollo JF. Glycosylation Characterization of an Influenza H5N7 Hemagglutinin Series with Engineered Glycosylation Patterns: Implications for Structure-Function Relationships. J Proteome Res 2016; 16:398-412. [PMID: 28060516 DOI: 10.1021/acs.jproteome.6b00175] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The glycosylation patterns of four recombinant H5 hemagglutinins (HAs) derived from A/Mallard/Denmark/64650/03 (H5N7) have been characterized. The proteins were expressed in (i) HEK293T cells to produce complex glycoforms, (ii) HEK293T cells treated with Vibrio cholera neuraminidase to provide asialo-complex glycoforms, (iii) HEK293S GnTI(-) cells with predominantly the canonical Man5GlcNAc2 glycoform, and (iv) Drosophila S2 insect cells producing primarily paucimannose glycoforms. Previously, these HAs were used to investigate the effect of different glycosylation states on the immune responses in chicken and mouse systems. Evidence was found that high-mannose glycans diminished antibody response via DC-SIGN interactions. We performed two semiquantitative analyses including MALDI-TOF MS permethylation analysis of released glycans and LC-MSE analysis of glycosylation site microheterogeneity. Glycosylation site occupancy was also determined by LC-MSE. Our major findings include (1) decreasing complexity of glycosylation from the stem to the globular head, (2) absence of glycosylation at N10 and N193, (3) complex glycans at N165 in HEK293T cell HA but high mannose glycans at this site in HEK293S and S2 cells, and (4) differences between the three-dimensional structures of H3 and H5 HAs that may explain glycan type preferences at selected sites. Biological implications of the findings are discussed.
Collapse
Affiliation(s)
- Lisa M Parsons
- Center for Biologics Evaluation and Research, Food and Drug Administration , Silver Spring, Maryland 20993, United States
| | - Yanming An
- Center for Biologics Evaluation and Research, Food and Drug Administration , Silver Spring, Maryland 20993, United States
| | - Robert P de Vries
- Department of Medicinal Chemistry and Chemical Biology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University , 3584CG Utrecht, The Netherlands
| | - Cornelis A M de Haan
- Virology Division, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University , Yalelaan 1, 3584CL Utrecht, The Netherlands
| | - John F Cipollo
- Center for Biologics Evaluation and Research, Food and Drug Administration , Silver Spring, Maryland 20993, United States
| |
Collapse
|
41
|
Lee JY, Lee HK, Park GW, Hwang H, Jeong HK, Yun KN, Ji ES, Kim KH, Kim JS, Kim JW, Yun SH, Choi CW, Kim SI, Lim JS, Jeong SK, Paik YK, Lee SY, Park J, Kim SY, Choi YJ, Kim YI, Seo J, Cho JY, Oh MJ, Seo N, An HJ, Kim JY, Yoo JS. Characterization of Site-Specific N-Glycopeptide Isoforms of α-1-Acid Glycoprotein from an Interlaboratory Study Using LC-MS/MS. J Proteome Res 2016; 15:4146-4164. [PMID: 27760464 DOI: 10.1021/acs.jproteome.5b01159] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Glycoprotein conformations are complex and heterogeneous. Currently, site-specific characterization of glycopeptides is a challenge. We sought to establish an efficient method of N-glycoprotein characterization using mass spectrometry (MS). Using alpha-1-acid glycoprotein (AGP) as a model N-glycoprotein, we identified its tryptic N-glycopeptides and examined the data reproducibility in seven laboratories running different LC-MS/MS platforms. We used three test samples and one blind sample to evaluate instrument performance with entire sample preparation workflow. 165 site-specific N-glycopeptides representative of all N-glycosylation sites were identified from AGP 1 and AGP 2 isoforms. The glycopeptide fragmentations by collision-induced dissociation or higher-energy collisional dissociation (HCD) varied based on the MS analyzer. Orbitrap Elite identified the greatest number of AGP N-glycopeptides, followed by Triple TOF and Q-Exactive Plus. Reproducible generation of oxonium ions, glycan-cleaved glycopeptide fragment ions, and peptide backbone fragment ions was essential for successful identification. Laboratory proficiency affected the number of identified N-glycopeptides. The relative quantities of the 10 major N-glycopeptide isoforms of AGP detected in four laboratories were compared to assess reproducibility. Quantitative analysis showed that the coefficient of variation was <25% for all test samples. Our analytical protocol yielded identification and quantification of site-specific N-glycopeptide isoforms of AGP from control and disease plasma sample.
Collapse
Affiliation(s)
- Ju Yeon Lee
- Biomedical Omics Group, Korea Basic Science Institute , Ochang 28119, Republic of Korea
| | - Hyun Kyoung Lee
- Biomedical Omics Group, Korea Basic Science Institute , Ochang 28119, Republic of Korea.,Graduate School of Analytical Science and Technology, Chungnam National University , Daejeon 34134, Republic of Korea
| | - Gun Wook Park
- Biomedical Omics Group, Korea Basic Science Institute , Ochang 28119, Republic of Korea.,Graduate School of Analytical Science and Technology, Chungnam National University , Daejeon 34134, Republic of Korea
| | - Heeyoun Hwang
- Biomedical Omics Group, Korea Basic Science Institute , Ochang 28119, Republic of Korea
| | - Hoi Keun Jeong
- Biomedical Omics Group, Korea Basic Science Institute , Ochang 28119, Republic of Korea.,Graduate School of Analytical Science and Technology, Chungnam National University , Daejeon 34134, Republic of Korea
| | - Ki Na Yun
- Biomedical Omics Group, Korea Basic Science Institute , Ochang 28119, Republic of Korea.,Department of Chemistry, Sogang University , Seoul 04107, Republic of Korea
| | - Eun Sun Ji
- Biomedical Omics Group, Korea Basic Science Institute , Ochang 28119, Republic of Korea.,Department of Chemistry, Hannam University , Daejeon 34430, Republic of Korea
| | - Kwang Hoe Kim
- Biomedical Omics Group, Korea Basic Science Institute , Ochang 28119, Republic of Korea.,Graduate School of Analytical Science and Technology, Chungnam National University , Daejeon 34134, Republic of Korea
| | - Jun Seok Kim
- Department of Biomedical Systems Engineering, Korea Polytechnics , Gyeonggi 13590, Republic of Korea
| | - Jong Won Kim
- New Drug Development Center, Osong Medical Innovation Foundation , Cheongju 28160, Republic of Korea
| | - Sung Ho Yun
- Drug & Disease Target Group, Korea Basic Science Institute , Daejeon 34133, Republic of Korea
| | - Chi-Won Choi
- Drug & Disease Target Group, Korea Basic Science Institute , Daejeon 34133, Republic of Korea
| | - Seung Il Kim
- Drug & Disease Target Group, Korea Basic Science Institute , Daejeon 34133, Republic of Korea
| | - Jong-Sun Lim
- Yonsei Proteome Research Center, Yonsei University , Seoul 03722, Republic of Korea
| | - Seul-Ki Jeong
- Yonsei Proteome Research Center, Yonsei University , Seoul 03722, Republic of Korea
| | - Young-Ki Paik
- Yonsei Proteome Research Center, Yonsei University , Seoul 03722, Republic of Korea
| | - Soo-Youn Lee
- Department of Laboratory & Genetics, Samsung Medical Center, Sungkyunkwan University of Medicine , Seoul 06351, Republic of Korea.,Department of Clinical Pharmacology and Therapeutics, Samsung Medical Center , Seoul 06351, Republic of Korea
| | - Jisook Park
- Samsung Biomedical Research Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine , Seoul 06351, Republic of Korea
| | - Su Yeon Kim
- Department of Clinical Research Supporting Team, Clinical Research Institute, Samsung Medical Center , Seoul 06351, Republic of Korea
| | - Young-Jin Choi
- Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University , Seoul 08826, Republic of Korea
| | - Yong-In Kim
- Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University , Seoul 08826, Republic of Korea
| | - Jawon Seo
- Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University , Seoul 08826, Republic of Korea
| | - Je-Yoel Cho
- Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University , Seoul 08826, Republic of Korea
| | - Myoung Jin Oh
- Graduate School of Analytical Science and Technology, Chungnam National University , Daejeon 34134, Republic of Korea
| | - Nari Seo
- Graduate School of Analytical Science and Technology, Chungnam National University , Daejeon 34134, Republic of Korea
| | - Hyun Joo An
- Graduate School of Analytical Science and Technology, Chungnam National University , Daejeon 34134, Republic of Korea
| | - Jin Young Kim
- Biomedical Omics Group, Korea Basic Science Institute , Ochang 28119, Republic of Korea
| | - Jong Shin Yoo
- Biomedical Omics Group, Korea Basic Science Institute , Ochang 28119, Republic of Korea.,Graduate School of Analytical Science and Technology, Chungnam National University , Daejeon 34134, Republic of Korea
| |
Collapse
|
42
|
Use of an informed search space maximizes confidence of site-specific assignment of glycoprotein glycosylation. Anal Bioanal Chem 2016; 409:607-618. [PMID: 27734143 DOI: 10.1007/s00216-016-9970-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/31/2016] [Accepted: 09/22/2016] [Indexed: 01/13/2023]
Abstract
In order to interpret glycopeptide tandem mass spectra, it is necessary to estimate the theoretical glycan compositions and peptide sequences, known as the search space. The simplest way to do this is to build a naïve search space from sets of glycan compositions from public databases and to assume that the target glycoprotein is pure. Often, however, purified glycoproteins contain co-purified glycoprotein contaminants that have the potential to confound assignment of tandem mass spectra based on naïve assumptions. In addition, there is increasing need to characterize glycopeptides from complex biological mixtures. Fortunately, liquid chromatography-mass spectrometry (LC-MS) methods for glycomics and proteomics are now mature and accessible. We demonstrate the value of using an informed search space built from measured glycomes and proteomes to define the search space for interpretation of glycoproteomics data. We show this using α-1-acid glycoprotein (AGP) mixed into a set of increasingly complex matrices. As the mixture complexity increases, the naïve search space balloons and the ability to assign glycopeptides with acceptable confidence diminishes. In addition, it is not possible to identify glycopeptides not foreseen as part of the naïve search space. A search space built from released glycan glycomics and proteomics data is smaller than its naïve counterpart while including the full range of proteins detected in the mixture. This maximizes the ability to assign glycopeptide tandem mass spectra with confidence. As the mixture complexity increases, the number of tandem mass spectra per glycopeptide precursor ion decreases, resulting in lower overall scores and reduced depth of coverage for the target glycoprotein. We suggest use of α-1-acid glycoprotein as a standard to gauge effectiveness of analytical methods and bioinformatics search parameters for glycoproteomics studies. Graphical Abstract Assignment of site specific glycosylation from LC-tandemMS data.
Collapse
|
43
|
Hu W, Su X, Zhu Z, Go EP, Desaire H. GlycoPep MassList: software to generate massive inclusion lists for glycopeptide analyses. Anal Bioanal Chem 2016; 409:561-570. [PMID: 27614974 DOI: 10.1007/s00216-016-9896-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/12/2016] [Accepted: 08/19/2016] [Indexed: 12/14/2022]
Abstract
Protein glycosylation drives many biological processes and serves as markers for disease; therefore, the development of tools to study glycosylation is an essential and growing area of research. Mass spectrometry can be used to identify both the glycans of interest and the glycosylation sites to which those glycans are attached, when proteins are proteolytically digested and their glycopeptides are analyzed by a combination of high-resolution mass spectrometry (MS) and tandem mass spectrometry (MS/MS) methods. One major challenge in these experiments is collecting the requisite MS/MS data. The digested glycopeptides are often present in complex mixtures and in low abundance, and the most commonly used approach to collect MS/MS data on these species is data-dependent acquisition (DDA), where only the most intense precursor ions trigger MS/MS. DDA results in limited glycopeptide coverage. Semi-targeted data acquisition is an alternative experimental approach that can alleviate this difficulty. However, due to the massive heterogeneity of glycopeptides, it is not obvious how to expediently generate inclusion lists for these types of analyses. To solve this problem, we developed the software tool GlycoPep MassList, which can be used to generate inclusion lists for liquid chromatography tandem-mass spectrometry (LC-MS/MS) experiments. The utility of the software was tested by conducting comparisons between semi-targeted and untargeted data-dependent analysis experiments on a variety of proteins, including IgG, a protein whose glycosylation must be characterized during its production as a biotherapeutic. When the GlycoPep MassList software was used to generate inclusion lists for LC-MS/MS experiments, more unique glycopeptides were selected for fragmentation. Generally, ∼30 % more unique glycopeptides can be analyzed per protein, in the simplest cases, with low background. In cases where background ions from proteins or other interferents are high, usage of an inclusion list is even more advantageous. The software is freely publically accessible. Graphical abstract Software increases the number of glycopeptides that get selected for MS/MS analysis.
Collapse
Affiliation(s)
- Wenting Hu
- Department of Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, KS, 66047, USA
| | - Xiaomeng Su
- Department of Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, KS, 66047, USA
| | - Zhikai Zhu
- Department of Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, KS, 66047, USA
| | - Eden P Go
- Department of Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, KS, 66047, USA
| | - Heather Desaire
- Department of Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, KS, 66047, USA.
| |
Collapse
|
44
|
Lee LY, Moh ESX, Parker BL, Bern M, Packer NH, Thaysen-Andersen M. Toward Automated N-Glycopeptide Identification in Glycoproteomics. J Proteome Res 2016; 15:3904-3915. [DOI: 10.1021/acs.jproteome.6b00438] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Ling Y. Lee
- Department
of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Edward S. X. Moh
- Department
of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Benjamin L. Parker
- Charles
Perkins Centre, School of Molecular Bioscience, The University of Sydney, Sydney, Australia
| | - Marshall Bern
- Protein Metrics
Inc., San Carlos, California 94070, United States
| | - Nicolle H. Packer
- Department
of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Morten Thaysen-Andersen
- Department
of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
45
|
Mehta N, Porterfield M, Struwe WB, Heiss C, Azadi P, Rudd PM, Tiemeyer M, Aoki K. Mass Spectrometric Quantification of N-Linked Glycans by Reference to Exogenous Standards. J Proteome Res 2016; 15:2969-80. [PMID: 27432553 DOI: 10.1021/acs.jproteome.6b00132] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Environmental and metabolic processes shape the profile of glycoprotein glycans expressed by cells, whether in culture, developing tissues, or mature organisms. Quantitative characterization of glycomic changes associated with these conditions has been achieved historically by reductive coupling of oligosaccharides to various fluorophores following release from glycoprotein and subsequent HPLC or capillary electrophoretic separation. Such labeling-based approaches provide a robust means of quantifying glycan amount based on fluorescence yield. Mass spectrometry, on the other hand, has generally been limited to relative quantification in which the contribution of the signal intensity for an individual glycan is expressed as a percent of the signal intensity summed over the total profile. Relative quantification has been valuable for highlighting changes in glycan expression between samples; sensitivity is high, and structural information can be derived by fragmentation. We have investigated whether MS-based glycomics is amenable to absolute quantification by referencing signal intensities to well-characterized oligosaccharide standards. We report the qualification of a set of N-linked oligosaccharide standards by NMR, HPLC, and MS. We also demonstrate the dynamic range, sensitivity, and recovery from complex biological matrices for these standards in their permethylated form. Our results indicate that absolute quantification for MS-based glycomic analysis is reproducible and robust utilizing currently available glycan standards.
Collapse
Affiliation(s)
| | | | - Weston B Struwe
- National Institute for Bioprocessing Research and Training (NIBRT) , Dublin, Ireland
| | | | | | - Pauline M Rudd
- National Institute for Bioprocessing Research and Training (NIBRT) , Dublin, Ireland.,University College , Dublin, Ireland
| | | | | |
Collapse
|
46
|
Tonry CL, Leacy E, Raso C, Finn SP, Armstrong J, Pennington SR. The Role of Proteomics in Biomarker Development for Improved Patient Diagnosis and Clinical Decision Making in Prostate Cancer. Diagnostics (Basel) 2016; 6:E27. [PMID: 27438858 PMCID: PMC5039561 DOI: 10.3390/diagnostics6030027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/28/2016] [Accepted: 07/07/2016] [Indexed: 02/06/2023] Open
Abstract
Prostate Cancer (PCa) is the second most commonly diagnosed cancer in men worldwide. Although increased expression of prostate-specific antigen (PSA) is an effective indicator for the recurrence of PCa, its intended use as a screening marker for PCa is of considerable controversy. Recent research efforts in the field of PCa biomarkers have focused on the identification of tissue and fluid-based biomarkers that would be better able to stratify those individuals diagnosed with PCa who (i) might best receive no treatment (active surveillance of the disease); (ii) would benefit from existing treatments; or (iii) those who are likely to succumb to disease recurrence and/or have aggressive disease. The growing demand for better prostate cancer biomarkers has coincided with the development of improved discovery and evaluation technologies for multiplexed measurement of proteins in bio-fluids and tissues. This review aims to (i) provide an overview of these technologies as well as describe some of the candidate PCa protein biomarkers that have been discovered using them; (ii) address some of the general limitations in the clinical evaluation and validation of protein biomarkers; and (iii) make recommendations for strategies that could be adopted to improve the successful development of protein biomarkers to deliver improvements in personalized PCa patient decision making.
Collapse
Affiliation(s)
- Claire L Tonry
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland.
| | - Emma Leacy
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland.
| | - Cinzia Raso
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland.
| | - Stephen P Finn
- School of Medicine, Trinity College Dublin, Dublin 2, Ireland.
| | | | - Stephen R Pennington
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland.
| |
Collapse
|
47
|
Lobas AA, Karpov DS, Kopylov AT, Solovyeva EM, Ivanov MV, Ilina IY, Lazarev VN, Kuznetsova KG, Ilgisonis EV, Zgoda VG, Gorshkov MV, Moshkovskii SA. Exome-based proteogenomics of HEK-293 human cell line: Coding genomic variants identified at the level of shotgun proteome. Proteomics 2016; 16:1980-91. [DOI: 10.1002/pmic.201500349] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 03/30/2016] [Accepted: 05/24/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Anna A. Lobas
- Institute of Biomedical Chemistry; Moscow Russia
- Institute for Energy Problems of Chemical Physics; Russian Academy of Sciences; Moscow Russia
- Moscow Institute of Physics and Technology (State University); Dolgoprudny Moscow Region Russia
| | - Dmitry S. Karpov
- Institute of Biomedical Chemistry; Moscow Russia
- Engelhardt Institute of Molecular Biology; Russian Academy of Sciences; Moscow Russia
| | | | - Elizaveta M. Solovyeva
- Institute for Energy Problems of Chemical Physics; Russian Academy of Sciences; Moscow Russia
- Moscow Institute of Physics and Technology (State University); Dolgoprudny Moscow Region Russia
| | - Mark V. Ivanov
- Institute for Energy Problems of Chemical Physics; Russian Academy of Sciences; Moscow Russia
- Moscow Institute of Physics and Technology (State University); Dolgoprudny Moscow Region Russia
| | | | - Vassily N. Lazarev
- Research Institute of Physico-Chemical Medicine; Federal Medical and Biological Agency; Moscow Russia
| | | | | | | | - Mikhail V. Gorshkov
- Institute for Energy Problems of Chemical Physics; Russian Academy of Sciences; Moscow Russia
- Moscow Institute of Physics and Technology (State University); Dolgoprudny Moscow Region Russia
| | - Sergei A. Moshkovskii
- Institute of Biomedical Chemistry; Moscow Russia
- Medico-Biological Faculty; Pirogov Russian National Research Medical University (RNRMU); Moscow Russia
| |
Collapse
|
48
|
Chandler KB, Costello CE. Glycomics and glycoproteomics of membrane proteins and cell-surface receptors: Present trends and future opportunities. Electrophoresis 2016; 37:1407-19. [PMID: 26872045 PMCID: PMC4889498 DOI: 10.1002/elps.201500552] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/02/2016] [Accepted: 02/02/2016] [Indexed: 12/16/2022]
Abstract
Membrane proteins mediate cell-cell interactions and adhesion, the transfer of ions and metabolites, and the transmission of signals from the extracellular environment to the cell interior. The extracellular domains of most cell membrane proteins are glycosylated, often at multiple sites. There is a growing awareness that glycosylation impacts the structure, interaction, and function of membrane proteins. The application of glycoproteomics and glycomics methods to membrane proteins has great potential. However, challenges also arise from the unique physical properties of membrane proteins. Successful analytical workflows must be developed and disseminated to advance functional glycoproteomics and glycomics studies of membrane proteins. This review explores the opportunities and challenges related to glycomic and glycoproteomic analysis of membrane proteins, including discussion of sample preparation, enrichment, and MS/MS analyses, with a focus on recent successful workflows for analysis of N- and O-linked glycosylation of mammalian membrane proteins.
Collapse
Affiliation(s)
- Kevin Brown Chandler
- Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Catherine E Costello
- Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
49
|
Thaysen-Andersen M, Chertova E, Bergamaschi C, Moh ESX, Chertov O, Roser J, Sowder R, Bear J, Lifson J, Packer NH, Felber BK, Pavlakis GN. Recombinant human heterodimeric IL-15 complex displays extensive and reproducible N- and O-linked glycosylation. Glycoconj J 2016; 33:417-33. [PMID: 26563299 PMCID: PMC7537637 DOI: 10.1007/s10719-015-9627-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 09/30/2015] [Accepted: 10/11/2015] [Indexed: 01/25/2023]
Abstract
Human interleukin 15 (IL-15) circulates in blood as a stable molecular complex with the soluble IL-15 receptor alpha (sIL-15Rα). This heterodimeric IL-15:sIL-15Rα complex (hetIL-15) shows therapeutic potential by promoting the growth, mobilization and activation of lymphocytes and is currently evaluated in clinical trials. Favorable pharmacokinetic properties are associated with the heterodimeric formation and the glycosylation of hetIL-15, which, however, remains largely uncharacterized. We report the site-specific N- and O-glycosylation of two clinically relevant large-scale preparations of HEK293-derived recombinant human hetIL-15. Intact IL-15 and sIL-15Rα and derived glycans and glycopeptides were separately profiled using multiple LC-MS/MS strategies. IL-15 Asn79 and sIL-15Rα Asn107 carried the same repertoire of biosynthetically-related N-glycans covering mostly α1-6-core-fucosylated and β-GlcNAc-terminating complex-type structures. The two potential IL-15 N-glycosylation sites (Asn71 and Asn112) located at the IL-2 receptor interface were unoccupied. Mass analysis of intact IL-15 confirmed its N-glycosylation and suggested that Asn79-glycosylation partially prevents Asn77-deamidation. IL-15 contained no O-glycans, whereas sIL-15Rα was heavily O-glycosylated with partially sialylated core 1 and 2-type mono- to hexasaccharides on Thr2, Thr81, Thr86, Thr156, Ser158, and Ser160. The sialoglycans displayed α2-3- and α2-6-NeuAc-type sialylation. Non-human, potentially immunogenic glycoepitopes (e.g. N-glycolylneuraminic acid and α-galactosylation) were not displayed by hetIL-15. Highly reproducible glycosylation of IL-15 and sIL-15Rα of two batches of hetIL-15 demonstrated consistent manufacturing and purification. In conclusion, we document the heterogeneous and reproducible N- and O-glycosylation of large-scale preparations of the therapeutic candidate hetIL-15. Site-specific mapping of these molecular features is important to evaluate the consistent large-scale production and clinical efficacy of hetIL-15.
Collapse
Affiliation(s)
- M Thaysen-Andersen
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia.
| | - E Chertova
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, MD, 21702, USA
| | - C Bergamaschi
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| | - E S X Moh
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - O Chertov
- Cancer Research Technology Program, Leidos Biomedical, Inc., Frederick National Laboratory, Frederick, MD, 21702, USA
| | - J Roser
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, MD, 21702, USA
| | - R Sowder
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, MD, 21702, USA
| | - J Bear
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| | - J Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, MD, 21702, USA
| | - N H Packer
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - B K Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| | - G N Pavlakis
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| |
Collapse
|
50
|
Llop E, Ferrer-Batallé M, Barrabés S, Guerrero PE, Ramírez M, Saldova R, Rudd PM, Aleixandre RN, Comet J, de Llorens R, Peracaula R. Improvement of Prostate Cancer Diagnosis by Detecting PSA Glycosylation-Specific Changes. Am J Cancer Res 2016; 6:1190-204. [PMID: 27279911 PMCID: PMC4893645 DOI: 10.7150/thno.15226] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 04/20/2016] [Indexed: 12/16/2022] Open
Abstract
New markers based on PSA isoforms have recently been developed to improve prostate cancer (PCa) diagnosis. However, novel approaches are still required to differentiate aggressive from non-aggressive PCa to improve decision making for patients. PSA glycoforms have been shown to be differentially expressed in PCa. In particular, changes in the extent of core fucosylation and sialylation of PSA N-glycans in PCa patients compared to healthy controls or BPH patients have been reported. The objective of this study was to determine these specific glycan structures in serum PSA to analyze their potential value as markers for discriminating between BPH and PCa of different aggressiveness. In the present work, we have established two methodologies to analyze the core fucosylation and the sialic acid linkage of PSA N-glycans in serum samples from BPH (29) and PCa (44) patients with different degrees of aggressiveness. We detected a significant decrease in the core fucose and an increase in the α2,3-sialic acid percentage of PSA in high-risk PCa that differentiated BPH and low-risk PCa from high-risk PCa patients. In particular, a cut-off value of 0.86 of the PSA core fucose ratio, could distinguish high-risk PCa patients from BPH with 90% sensitivity and 95% specificity, with an AUC of 0.94. In the case of the α2,3-sialic acid percentage of PSA, the cut-off value of 30% discriminated between high-risk PCa and the group of BPH, low-, and intermediate-risk PCa with a sensitivity and specificity of 85.7% and 95.5%, respectively, with an AUC of 0.97. The latter marker exhibited high performance in differentiating between aggressive and non-aggressive PCa and has the potential for translational application in the clinic.
Collapse
|