1
|
Goossens PL. Bacillus anthracis, "la maladie du charbon", Toxins, and Institut Pasteur. Toxins (Basel) 2024; 16:66. [PMID: 38393144 PMCID: PMC10891547 DOI: 10.3390/toxins16020066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/25/2023] [Accepted: 12/30/2023] [Indexed: 02/25/2024] Open
Abstract
Institut Pasteur and Bacillus anthracis have enjoyed a relationship lasting almost 120 years, starting from its foundation and the pioneering work of Louis Pasteur in the nascent fields of microbiology and vaccination, and blooming after 1986 following the molecular biology/genetic revolution. This contribution will give a historical overview of these two research eras, taking advantage of the archives conserved at Institut Pasteur. The first era mainly focused on the production, characterisation, surveillance and improvement of veterinary anthrax vaccines; the concepts and technologies with which to reach a deep understanding of this research field were not yet available. The second period saw a new era of B. anthracis research at Institut Pasteur, with the anthrax laboratory developing a multi-disciplinary approach, ranging from structural analysis, biochemistry, genetic expression, and regulation to bacterial-host cell interactions, in vivo pathogenicity, and therapy development; this led to the comprehensive unravelling of many facets of this toxi-infection. B. anthracis may exemplify some general points on how science is performed in a given society at a given time and how a scientific research domain evolves. A striking illustration can be seen in the additive layers of regulations that were implemented from the beginning of the 21st century and their impact on B. anthracis research. B. anthracis and anthrax are complex systems that raise many valuable questions regarding basic research. One may hope that B. anthracis research will be re-initiated under favourable circumstances later at Institut Pasteur.
Collapse
|
2
|
Zubair M, Wang J, Yu Y, Faisal M, Qi M, Shah AU, Feng Z, Shao G, Wang Y, Xiong Q. Proteomics approaches: A review regarding an importance of proteome analyses in understanding the pathogens and diseases. Front Vet Sci 2022; 9:1079359. [PMID: 36601329 PMCID: PMC9806867 DOI: 10.3389/fvets.2022.1079359] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Proteomics is playing an increasingly important role in identifying pathogens, emerging and re-emerging infectious agents, understanding pathogenesis, and diagnosis of diseases. Recently, more advanced and sophisticated proteomics technologies have transformed disease diagnostics and vaccines development. The detection of pathogens is made possible by more accurate and time-constrained technologies, resulting in an early diagnosis. More detailed and comprehensive information regarding the proteome of any noxious agent is made possible by combining mass spectrometry with various gel-based or short-gun proteomics approaches recently. MALDI-ToF has been proved quite useful in identifying and distinguishing bacterial pathogens. Other quantitative approaches are doing their best to investigate bacterial virulent factors, diagnostic markers and vaccine candidates. Proteomics is also helping in the identification of secreted proteins and their virulence-related functions. This review aims to highlight the role of cutting-edge proteomics approaches in better understanding the functional genomics of pathogens. This also underlines the limitations of proteomics in bacterial secretome research.
Collapse
Affiliation(s)
- Muhammad Zubair
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jia Wang
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yanfei Yu
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China,School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China,College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Muhammad Faisal
- Division of Hematology, Department of Medicine, The Ohio State University College of Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Mingpu Qi
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Abid Ullah Shah
- National Research Centre of Engineering and Technology for Veterinary Biologicals, Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Zhixin Feng
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Guoqing Shao
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China,School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yu Wang
- China Pharmaceutical University, Nanjing, China,*Correspondence: Yu Wang
| | - Qiyan Xiong
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China,College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China,School of Life Sciences, Jiangsu University, Zhenjiang, China,Qiyan Xiong
| |
Collapse
|
3
|
Identification of Universally Applicable and Species-Specific Marker Peptides for Bacillus anthracis. LIFE (BASEL, SWITZERLAND) 2022; 12:life12101549. [PMID: 36294983 PMCID: PMC9605612 DOI: 10.3390/life12101549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/09/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022]
Abstract
Anthrax is a zoonotic infection caused by the bacterium Bacillus anthracis (BA). Specific identification of this pathogen often relies on targeting genes located on two extrachromosomal plasmids, which represent the major pathogenicity factors of BA. However, more recent findings show that these plasmids have also been found in other closely related Bacillus species. In this study, we investigated the possibility of identifying species-specific and universally applicable marker peptides for BA. For this purpose, we applied a high-resolution mass spectrometry-based approach for 42 BA isolates. Along with the genomic sequencing data and by developing a bioinformatics data evaluation pipeline, which uses a database containing most of the publicly available protein sequences worldwide (UniParc), we were able to identify eleven universal marker peptides unique to BA. These markers are located on the chromosome and therefore, might overcome known problems, such as observable loss of plasmids in environmental species, plasmid loss during cultivation in the lab, and the fact that the virulence plasmids are not necessarily a unique feature of BA. The identified chromosomally encoded markers in this study could extend the small panel of already existing chromosomal targets and along with targets for the virulence plasmids, may pave the way to an even more reliable identification of BA using genomics- as well as proteomics-based techniques.
Collapse
|
4
|
Alves G, Ogurtsov A, Karlsson R, Jaén-Luchoro D, Piñeiro-Iglesias B, Salvà-Serra F, Andersson B, Moore ERB, Yu YK. Identification of Antibiotic Resistance Proteins via MiCId's Augmented Workflow. A Mass Spectrometry-Based Proteomics Approach. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:917-931. [PMID: 35500907 PMCID: PMC9164240 DOI: 10.1021/jasms.1c00347] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 06/01/2023]
Abstract
Fast and accurate identifications of pathogenic bacteria along with their associated antibiotic resistance proteins are of paramount importance for patient treatments and public health. To meet this goal from the mass spectrometry aspect, we have augmented the previously published Microorganism Classification and Identification (MiCId) workflow for this capability. To evaluate the performance of this augmented workflow, we have used MS/MS datafiles from samples of 10 antibiotic resistance bacterial strains belonging to three different species: Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. The evaluation shows that MiCId's workflow has a sensitivity value around 85% (with a lower bound at about 72%) and a precision greater than 95% in identifying antibiotic resistance proteins. In addition to having high sensitivity and precision, MiCId's workflow is fast and portable, making it a valuable tool for rapid identifications of bacteria as well as detection of their antibiotic resistance proteins. It performs microorganismal identifications, protein identifications, sample biomass estimates, and antibiotic resistance protein identifications in 6-17 min per MS/MS sample using computing resources that are available in most desktop and laptop computers. We have also demonstrated other use of MiCId's workflow. Using MS/MS data sets from samples of two bacterial clonal isolates, one being antibiotic-sensitive while the other being multidrug-resistant, we applied MiCId's workflow to investigate possible mechanisms of antibiotic resistance in these pathogenic bacteria; the results showed that MiCId's conclusions agree with the published study. The new version of MiCId (v.07.01.2021) is freely available for download at https://www.ncbi.nlm.nih.gov/CBBresearch/Yu/downloads.html.
Collapse
Affiliation(s)
- Gelio Alves
- National
Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, United States
| | - Aleksey Ogurtsov
- National
Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, United States
| | - Roger Karlsson
- Department
of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
- Department
of Clinical Microbiology, Sahlgrenska University
Hospital, 40234 Gothenburg, Sweden
- Center
for Antibiotic Resistance Research (CARe), University of Gothenburg, 40016 Gothenburg, Sweden
- Nanoxis
Consulting AB, 40234 Gothenburg, Sweden
| | - Daniel Jaén-Luchoro
- Department
of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
- Center
for Antibiotic Resistance Research (CARe), University of Gothenburg, 40016 Gothenburg, Sweden
- Culture Collection
University of Gothenburg (CCUG), Sahlgrenska
Academy of the University of Gothenburg, 40234 Gothenburg, Sweden
| | - Beatriz Piñeiro-Iglesias
- Department
of Clinical Microbiology, Sahlgrenska University
Hospital, 40234 Gothenburg, Sweden
- Center
for Antibiotic Resistance Research (CARe), University of Gothenburg, 40016 Gothenburg, Sweden
| | - Francisco Salvà-Serra
- Department
of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
- Department
of Clinical Microbiology, Sahlgrenska University
Hospital, 40234 Gothenburg, Sweden
- Center
for Antibiotic Resistance Research (CARe), University of Gothenburg, 40016 Gothenburg, Sweden
- Culture Collection
University of Gothenburg (CCUG), Sahlgrenska
Academy of the University of Gothenburg, 40234 Gothenburg, Sweden
- Microbiology,
Department of Biology, University of the
Balearic Islands, 07122 Palma de Mallorca, Spain
| | - Björn Andersson
- Bioinformatics
Core Facility at Sahlgrenska Academy, University
of Gothenburg, Box 413, 40530 Gothenburg, Sweden
| | - Edward R. B. Moore
- Department
of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
- Department
of Clinical Microbiology, Sahlgrenska University
Hospital, 40234 Gothenburg, Sweden
- Center
for Antibiotic Resistance Research (CARe), University of Gothenburg, 40016 Gothenburg, Sweden
- Culture Collection
University of Gothenburg (CCUG), Sahlgrenska
Academy of the University of Gothenburg, 40234 Gothenburg, Sweden
| | - Yi-Kuo Yu
- National
Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, United States
| |
Collapse
|
5
|
Kondori N, Kurtovic A, Piñeiro-Iglesias B, Salvà-Serra F, Jaén-Luchoro D, Andersson B, Alves G, Ogurtsov A, Thorsell A, Fuchs J, Tunovic T, Kamenska N, Karlsson A, Yu YK, Moore ERB, Karlsson R. Mass Spectrometry Proteotyping-Based Detection and Identification of Staphylococcus aureus, Escherichia coli, and Candida albicans in Blood. Front Cell Infect Microbiol 2021; 11:634215. [PMID: 34381737 PMCID: PMC8350517 DOI: 10.3389/fcimb.2021.634215] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 07/09/2021] [Indexed: 12/12/2022] Open
Abstract
Bloodstream infections (BSIs), the presence of microorganisms in blood, are potentially serious conditions that can quickly develop into sepsis and life-threatening situations. When assessing proper treatment, rapid diagnosis is the key; besides clinical judgement performed by attending physicians, supporting microbiological tests typically are performed, often requiring microbial isolation and culturing steps, which increases the time required for confirming positive cases of BSI. The additional waiting time forces physicians to prescribe broad-spectrum antibiotics and empirically based treatments, before determining the precise cause of the disease. Thus, alternative and more rapid cultivation-independent methods are needed to improve clinical diagnostics, supporting prompt and accurate treatment and reducing the development of antibiotic resistance. In this study, a culture-independent workflow for pathogen detection and identification in blood samples was developed, using peptide biomarkers and applying bottom-up proteomics analyses, i.e., so-called "proteotyping". To demonstrate the feasibility of detection of blood infectious pathogens, using proteotyping, Escherichia coli and Staphylococcus aureus were included in the study, as the most prominent bacterial causes of bacteremia and sepsis, as well as Candida albicans, one of the most prominent causes of fungemia. Model systems including spiked negative blood samples, as well as positive blood cultures, without further culturing steps, were investigated. Furthermore, an experiment designed to determine the incubation time needed for correct identification of the infectious pathogens in blood cultures was performed. The results for the spiked negative blood samples showed that proteotyping was 100- to 1,000-fold more sensitive, in comparison with the MALDI-TOF MS-based approach. Furthermore, in the analyses of ten positive blood cultures each of E. coli and S. aureus, both the MALDI-TOF MS-based and proteotyping approaches were successful in the identification of E. coli, although only proteotyping could identify S. aureus correctly in all samples. Compared with the MALDI-TOF MS-based approaches, shotgun proteotyping demonstrated higher sensitivity and accuracy, and required significantly shorter incubation time before detection and identification of the correct pathogen could be accomplished.
Collapse
Affiliation(s)
- Nahid Kondori
- Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Amra Kurtovic
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | | | - Francisco Salvà-Serra
- Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Culture Collection University of Gothenburg (CCUG), Sahlgrenska Academy of the University of Gothenburg, Gothenburg, Sweden
- Microbiology, Department of Biology, University of the Balearic Islands, Palma de Mallorca, Spain
| | - Daniel Jaén-Luchoro
- Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Culture Collection University of Gothenburg (CCUG), Sahlgrenska Academy of the University of Gothenburg, Gothenburg, Sweden
| | - Björn Andersson
- Bioinformatics Core Facility at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Gelio Alves
- National Center for Biotechnology Information (NCBI), Bethesda, MD, United States
| | - Aleksey Ogurtsov
- National Center for Biotechnology Information (NCBI), Bethesda, MD, United States
| | - Annika Thorsell
- Proteomics Core Facility at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Johannes Fuchs
- Proteomics Core Facility at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Timur Tunovic
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Nina Kamenska
- Norra-Älvsborgs-Länssjukhus (NÄL), Trollhättan, Sweden
| | | | - Yi-Kuo Yu
- National Center for Biotechnology Information (NCBI), Bethesda, MD, United States
| | - Edward R. B. Moore
- Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Culture Collection University of Gothenburg (CCUG), Sahlgrenska Academy of the University of Gothenburg, Gothenburg, Sweden
| | - Roger Karlsson
- Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Nanoxis Consulting AB, Gothenburg, Sweden
| |
Collapse
|
6
|
Mappa C, Pible O, Armengaud J, Alpha-Bazin B. Assessing the ratio of Bacillus spores and vegetative cells by shotgun proteomics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:25107-25115. [PMID: 30302730 DOI: 10.1007/s11356-018-3341-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 09/26/2018] [Indexed: 06/08/2023]
Abstract
Mass spectrometry for rapid identification of microorganisms is expanding over the last years because this approach is quick. This methodology provides a decisive interest to fight against bioterrorism as it is applicable whatever the pathogen to be considered and often allows subtyping which may be crucial for confirming a massive and widespread attack with biological agents. Here, we present a methodology based on next-generation proteomics and tandem mass spectrometry for discovering numerous protein biomarkers allowing the discrimination of spores and vegetative cells of Bacillus atrophaeus, a biowarfare simulant. We propose a global quantitative evaluation of the two groups of discriminant biomarkers based on their aggregated normalized spectral abundance factors.
Collapse
Affiliation(s)
- Charlotte Mappa
- Laboratoire Innovations technologiques pour la Détection et le Diagnostic (Li2D), Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, 30207, Bagnols sur Cèze, France
| | - Olivier Pible
- Laboratoire Innovations technologiques pour la Détection et le Diagnostic (Li2D), Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, 30207, Bagnols sur Cèze, France
| | - Jean Armengaud
- Laboratoire Innovations technologiques pour la Détection et le Diagnostic (Li2D), Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, 30207, Bagnols sur Cèze, France.
| | - Béatrice Alpha-Bazin
- Laboratoire Innovations technologiques pour la Détection et le Diagnostic (Li2D), Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, 30207, Bagnols sur Cèze, France
| |
Collapse
|
7
|
Sabna S, Kamboj DV, Rajoria S, Kumar RB, Babele P, Goel AK, Tuteja U, Gupta MK, Alam SI. Protein biomarker elucidation for the verification of biological agents in the taxonomic group of Gammaproteobacteria using tandem mass spectrometry. World J Microbiol Biotechnol 2021; 37:74. [PMID: 33779874 DOI: 10.1007/s11274-021-03039-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/16/2021] [Indexed: 12/01/2022]
Abstract
Some pathogenic microbes can be used for nefarious applications and instigate population-based fear. In a bio-threat scenario, rapid and accurate methods to detect biological agents in a wide range of complex environmental and clinical matrices, is of paramount importance for the implementation of mitigation protocols and medical countermeasures. This study describes targeted and shot-gun tandem MS based approaches for the verification of biological agents from the environmental samples. The marker proteins and peptides were elucidated by an exhaustive literature mining, in silico analysis of prioritized proteins, and MS/MS analysis of abundant proteins from selected bacterial species. For the shot-gun methodology, tandem MS analysis of abundant peptides was carried from spiked samples. The validation experiments employing a combination of shot-gun tandem MS analysis and a targeted search reported here is a proof of concept to show the applicability of the methodology for the unambiguous verification of biological agents at sub-species level, even with limited fractionation of crude protein extracts from environmental samples.
Collapse
Affiliation(s)
- Sasikumar Sabna
- Biotechnology Division, Defence Research & Development Establishment, Gwalior, 474002, India
| | - Dev Vrat Kamboj
- Biotechnology Division, Defence Research & Development Establishment, Gwalior, 474002, India
| | - Sakshi Rajoria
- Biotechnology Division, Defence Research & Development Establishment, Gwalior, 474002, India
| | - Ravi Bhushan Kumar
- Biotechnology Division, Defence Research & Development Establishment, Gwalior, 474002, India
| | - Prabhakar Babele
- Biotechnology Division, Defence Research & Development Establishment, Gwalior, 474002, India
| | - Ajay Kumar Goel
- Bioprocess Technology Division, Defence Research & Development Establishment, Gwalior, India
| | - Urmil Tuteja
- Microbiology Division, Defence Research & Development Establishment, Gwalior, India
| | | | - Syed Imteyaz Alam
- Biotechnology Division, Defence Research & Development Establishment, Gwalior, 474002, India.
| |
Collapse
|
8
|
Jeon JH, Kim YH, Kim KA, Kim YR, Woo SJ, Choi YJ, Rhie GE. A putative exosporium lipoprotein GBAA0190 of Bacillus anthracis as a potential anthrax vaccine candidate. BMC Immunol 2021; 22:20. [PMID: 33743606 PMCID: PMC7981958 DOI: 10.1186/s12865-021-00414-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/10/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bacillus ancthracis causes cutaneous, pulmonary, or gastrointestinal forms of anthrax. B. anthracis is a pathogenic bacterium that is potentially to be used in bioterrorism because it can be produced in the form of spores. Currently, protective antigen (PA)-based vaccines are being used for the prevention of anthrax, but it is necessary to develop more safe and effective vaccines due to their prolonged immunization schedules and adverse reactions. METHODS We selected the lipoprotein GBAA0190, a potent inducer of host immune response, present in anthrax spores as a novel potential vaccine candidate. Then, we evaluated its immune-stimulating activity in the bone marrow-derived macrophages (BMDMs) using enzyme-linked immunosorbent assay (ELISA) and Western blot analysis. Protective efficacy of GBAA0190 was evaluated in the guinea pig (GP) model. RESULTS The recombinant GBAA0190 (r0190) protein induced the expression of various inflammatory cytokines including tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), monocyte chemoattractant protein-1 (MCP-1), and macrophage inflammatory protein-1α (MIP-1α) in the BMDMs. These immune responses were mediated through toll-like receptor 1/2 via activation of mitogen-activated protein (MAP) kinase and Nuclear factor-κB (NF-κB) pathways. We demonstrated that not only immunization of r0190 alone, but also combined immunization with r0190 and recombinant PA showed significant protective efficacy against B. anthracis spore challenges in the GP model. CONCLUSIONS Our results suggest that r0190 may be a potential target for anthrax vaccine.
Collapse
Affiliation(s)
- Jun Ho Jeon
- Division of High-risk Pathogens, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency, Cheongju, 28159, Republic of Korea
| | - Yeon Hee Kim
- Division of High-risk Pathogens, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency, Cheongju, 28159, Republic of Korea
| | - Kyung Ae Kim
- Division of High-risk Pathogens, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency, Cheongju, 28159, Republic of Korea
| | - Yu-Ri Kim
- Division of High-risk Pathogens, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency, Cheongju, 28159, Republic of Korea
| | - Sun-Je Woo
- Division of High-risk Pathogens, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency, Cheongju, 28159, Republic of Korea
| | - Ye Jin Choi
- Division of High-risk Pathogens, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency, Cheongju, 28159, Republic of Korea
| | - Gi-Eun Rhie
- Division of High-risk Pathogens, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency, Cheongju, 28159, Republic of Korea.
| |
Collapse
|
9
|
Saadi J, Oueslati S, Bellanger L, Gallais F, Dortet L, Roque-Afonso AM, Junot C, Naas T, Fenaille F, Becher F. Quantitative Assessment of SARS-CoV-2 Virus in Nasopharyngeal Swabs Stored in Transport Medium by a Straightforward LC-MS/MS Assay Targeting Nucleocapsid, Membrane, and Spike Proteins. J Proteome Res 2021; 20:1434-1443. [PMID: 33497234 DOI: 10.1021/acs.jproteome.0c00887] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alternative methods to RT-PCR for SARS-CoV-2 detection are investigated to provide complementary data on viral proteins, increase the number of tests performed, or identify false positive/negative results. Here, we have developed a simple mass spectrometry assay for SARS-CoV-2 in nasopharyngeal swab samples using common laboratory reagents. The method employs high sensitivity and selectivity targeted mass spectrometry detection, monitoring nine constitutive peptides representative of the three main viral proteins and a straightforward pellet digestion protocol for convenient routine applications. Absolute quantification of N, M, and S proteins was achieved by addition of isotope-labeled versions of best peptides. Limit of detection, recovery, precision, and linearity were thoroughly evaluated in four representative viral transport media (VTM) containing distinct total protein content. The protocol was sensitive in all swab media with limit of detection determined at 2 × 103 pfu/mL, corresponding to as low as 30 pfu injected into the LC-MS/MS system. When tested on VTM-stored nasopharyngeal swab samples from positive and control patients, sensitivity was similar to or better than rapid immunoassay dipsticks, revealing a corresponding RT-PCR detection threshold at Ct ∼ 24. The study represents the first thorough evaluation of sensitivity and robustness of targeted mass spectrometry in nasal swabs, constituting a promising SARS-CoV-2 antigen assay for the first-line diagnosis of COVID-19 and compatible with the constraints of clinical settings. The raw files generated in this study can be found on PASSEL (Peptide Atlas) under data set identifier PASS01646.
Collapse
Affiliation(s)
- Justyna Saadi
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 91191 Gif sur Yvette, France
| | - Saoussen Oueslati
- Bacteriology-Hygiene Unit, Hôpital Bicêtre, APHP Paris Saclay, Team ReSIST, INSERM U1184, Université Paris-Saclay, LabEx LERMIT, 94270 Le Kremlin-Bicêtre, France
| | - Laurent Bellanger
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 30200 Bagnols-sur-Cèze, France
| | - Fabrice Gallais
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 30200 Bagnols-sur-Cèze, France
| | - Laurent Dortet
- Bacteriology-Hygiene Unit, Hôpital Bicêtre, APHP Paris Saclay, Team ReSIST, INSERM U1184, Université Paris-Saclay, LabEx LERMIT, 94270 Le Kremlin-Bicêtre, France
| | - Anne-Marie Roque-Afonso
- Service de Virologie, Hôpital Paul-Brousse, APHP Paris Saclay, and UMR 1193 Physiopathogénèse et Traitement des Maladies du Foie, 94800 Villejuif, France
| | - Christophe Junot
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 91191 Gif sur Yvette, France
| | - Thierry Naas
- Bacteriology-Hygiene Unit, Hôpital Bicêtre, APHP Paris Saclay, Team ReSIST, INSERM U1184, Université Paris-Saclay, LabEx LERMIT, 94270 Le Kremlin-Bicêtre, France
| | - François Fenaille
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 91191 Gif sur Yvette, France
| | - François Becher
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 91191 Gif sur Yvette, France
| |
Collapse
|
10
|
Highly accurate classification of biological spores by culture medium for forensic attribution using multiple chemical signature types and machine learning. Anal Bioanal Chem 2020; 412:4287-4299. [PMID: 32328690 DOI: 10.1007/s00216-020-02660-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/01/2020] [Accepted: 04/14/2020] [Indexed: 01/29/2023]
Abstract
Future proliferation of biological expertise and new technology may increasingly lower the difficulty to produce biological organisms for misuse. Rapid attribution of a biological attack is needed to quickly identify the person or lab responsible and prevent additional attacks by enabling the apprehension of suspects. Here, triplicate batches of Bacillus anthracis Sterne strain (BaSt) spores were grown in a total of seven amateur and professional media. Multiple orthogonal analytical signatures (peptides, metabolites, lipids by fatty acid methyl ester (FAME) analysis, bulk organic profile, and trace elements) were collected from the BaSt spores. The proteomics and metabolomics analyses identified promising attribution signature compounds that are unique to each of the seven production methods. In addition, while each of the signature types showed varying degrees of value individually for attributing BaSt spores to the culture medium used to prepare them, fusing results from all five signatures types to increase sourcing robustness and using a random forest sourcing algorithm yielded 100% hold-one-batch-out cross-validation classification accuracy and an average relative source probability for the correct source 5.5× higher than the most probable incorrect source. These preliminary results provide a proof-of-concept for the development of forensic examinations that can attribute biological agents to production methods for use in future investigations.
Collapse
|
11
|
Karlsson R, Thorsell A, Gomila M, Salvà-Serra F, Jakobsson HE, Gonzales-Siles L, Jaén-Luchoro D, Skovbjerg S, Fuchs J, Karlsson A, Boulund F, Johnning A, Kristiansson E, Moore ERB. Discovery of Species-unique Peptide Biomarkers of Bacterial Pathogens by Tandem Mass Spectrometry-based Proteotyping. Mol Cell Proteomics 2020; 19:518-528. [PMID: 31941798 PMCID: PMC7050107 DOI: 10.1074/mcp.ra119.001667] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 01/14/2020] [Indexed: 01/11/2023] Open
Abstract
Mass spectrometry (MS) and proteomics offer comprehensive characterization and identification of microorganisms and discovery of protein biomarkers that are applicable for diagnostics of infectious diseases. The use of biomarkers for diagnostics is widely applied in the clinic and the use of peptide biomarkers is increasingly being investigated for applications in the clinical laboratory. Respiratory-tract infections are a predominant cause for medical treatment, although, clinical assessments and standard clinical laboratory protocols are time-consuming and often inadequate for reliable diagnoses. Novel methods, preferably applied directly to clinical samples, excluding cultivation steps, are needed to improve diagnostics of infectious diseases, provide adequate treatment and reduce the use of antibiotics and associated development of antibiotic resistance. This study applied nano-liquid chromatography (LC) coupled with tandem MS, with a bioinformatics pipeline and an in-house database of curated high-quality reference genome sequences to identify species-unique peptides as potential biomarkers for four bacterial pathogens commonly found in respiratory tract infections (RTIs): Staphylococcus aureus; Moraxella catarrhalis; Haemophilus influenzae and Streptococcus pneumoniae The species-unique peptides were initially identified in pure cultures of bacterial reference strains, reflecting the genomic variation in the four species and, furthermore, in clinical respiratory tract samples, without prior cultivation, elucidating proteins expressed in clinical conditions of infection. For each of the four bacterial pathogens, the peptide biomarker candidates most predominantly found in clinical samples, are presented. Data are available via ProteomeXchange with identifier PXD014522. As proof-of-principle, the most promising species-unique peptides were applied in targeted tandem MS-analyses of clinical samples and their relevance for identifications of the pathogens, i.e. proteotyping, was validated, thus demonstrating their potential as peptide biomarker candidates for diagnostics of infectious diseases.
Collapse
Affiliation(s)
- Roger Karlsson
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy of the University of Gothenburg, SE-40234 Gothenburg, Sweden; Department of Clinical Microbiology, Sahlgrenska University Hospital, SE-413 46 Gothenburg, Region Västra Götaland, Sweden; Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, SE-40234 Gothenburg, Sweden; Nanoxis Consulting AB, SE-40016 Gothenburg, Sweden.
| | - Annika Thorsell
- Proteomics Core Facility at Sahlgrenska Academy, University of Gothenburg, SE- 40530 Gothenburg, Sweden
| | - Margarita Gomila
- Microbiology, Department of Biology, University of the Balearic Islands, E-07122, Palma de Mallorca, Spain
| | - Francisco Salvà-Serra
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy of the University of Gothenburg, SE-40234 Gothenburg, Sweden; Department of Clinical Microbiology, Sahlgrenska University Hospital, SE-413 46 Gothenburg, Region Västra Götaland, Sweden; Culture Collection University of Gothenburg (CCUG), Sahlgrenska Academy of the University of Gothenburg, SE-41346 Gothenburg, Sweden; Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, SE-40234 Gothenburg, Sweden; Microbiology, Department of Biology, University of the Balearic Islands, E-07122, Palma de Mallorca, Spain
| | - Hedvig E Jakobsson
- Department of Clinical Microbiology, Sahlgrenska University Hospital, SE-413 46 Gothenburg, Region Västra Götaland, Sweden; Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, SE-40234 Gothenburg, Sweden
| | - Lucia Gonzales-Siles
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy of the University of Gothenburg, SE-40234 Gothenburg, Sweden; Department of Clinical Microbiology, Sahlgrenska University Hospital, SE-413 46 Gothenburg, Region Västra Götaland, Sweden; Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, SE-40234 Gothenburg, Sweden
| | - Daniel Jaén-Luchoro
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy of the University of Gothenburg, SE-40234 Gothenburg, Sweden; Department of Clinical Microbiology, Sahlgrenska University Hospital, SE-413 46 Gothenburg, Region Västra Götaland, Sweden; Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, SE-40234 Gothenburg, Sweden
| | - Susann Skovbjerg
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy of the University of Gothenburg, SE-40234 Gothenburg, Sweden; Department of Clinical Microbiology, Sahlgrenska University Hospital, SE-413 46 Gothenburg, Region Västra Götaland, Sweden; Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, SE-40234 Gothenburg, Sweden
| | - Johannes Fuchs
- Proteomics Core Facility at Sahlgrenska Academy, University of Gothenburg, SE- 40530 Gothenburg, Sweden
| | | | - Fredrik Boulund
- Center for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden; Department of Mathematical Sciences, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Anna Johnning
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, SE-40234 Gothenburg, Sweden; Department of Mathematical Sciences, Chalmers University of Technology, SE-41296 Gothenburg, Sweden; Department of Systems and Data Analysis, Fraunhofer-Chalmers Centre, Chalmers Science Park, SE-412 88 Gothenburg, Sweden
| | - Erik Kristiansson
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, SE-40234 Gothenburg, Sweden; Department of Mathematical Sciences, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Edward R B Moore
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy of the University of Gothenburg, SE-40234 Gothenburg, Sweden; Department of Clinical Microbiology, Sahlgrenska University Hospital, SE-413 46 Gothenburg, Region Västra Götaland, Sweden; Culture Collection University of Gothenburg (CCUG), Sahlgrenska Academy of the University of Gothenburg, SE-41346 Gothenburg, Sweden; Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, SE-40234 Gothenburg, Sweden
| |
Collapse
|
12
|
Elucidation of protein biomarkers for verification of selected biological warfare agents using tandem mass spectrometry. Sci Rep 2020; 10:2205. [PMID: 32042063 PMCID: PMC7010682 DOI: 10.1038/s41598-020-59156-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 01/22/2020] [Indexed: 11/10/2022] Open
Abstract
Some pathogens and toxins have the potential to be used as weapons of mass destruction and instigate population-based fear. Efforts to mitigate biothreat require development of efficient countermeasures which in turn relies on fast and accurate methods to detect the biological agents in a range of complex matrices including environmental and clinical samples. We report here an mass spectrometry (MS) based methodology, employing both targeted and shot-gun approaches for the verification of biological agents from the environmental samples. Our shot-gun methodology relied on tandem MS analysis of abundant peptides from the spiked samples, whereas, the targeted method was based on an extensive elucidation of marker proteins and unique peptides resulting in the generation of an inclusion list of masses reflecting relevant peptides for the unambiguous identification of nine bacterial species [listed as priority agents of bioterrorism by Centre for Disease Control and Prevention (CDC)] belonging to phylogenetically diverse genera. The marker peptides were elucidated by extensive literature mining, in silico analysis, and tandem MS (MS/MS) analysis of abundant proteins of the cultivated bacterial species in our laboratory. A combination of shot-gun MS/MS analysis and the targeted search using a panel of unique peptides is likely to provide unambiguous verification of biological agents at sub-species level, even with limited fractionation of crude protein extracts from environmental samples. The comprehensive list of peptides reflected in the inclusion list, makes a valuable resource for the multiplex analysis of select biothreat agents and further development of targeted MS/MS assays.
Collapse
|
13
|
Saleh S, Staes A, Deborggraeve S, Gevaert K. Targeted Proteomics for Studying Pathogenic Bacteria. Proteomics 2019; 19:e1800435. [DOI: 10.1002/pmic.201800435] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/04/2019] [Indexed: 02/04/2023]
Affiliation(s)
- Sara Saleh
- Department of Biomedical SciencesInstitute of Tropical Medicine B‐2000 Antwerp Belgium
- VIB Center for Medical Biotechnology B‐9000 Ghent Belgium
- Department of Biomolecular MedicineGhent University B‐9000 Ghent Belgium
| | - An Staes
- VIB Center for Medical Biotechnology B‐9000 Ghent Belgium
- Department of Biomolecular MedicineGhent University B‐9000 Ghent Belgium
| | - Stijn Deborggraeve
- Department of Biomedical SciencesInstitute of Tropical Medicine B‐2000 Antwerp Belgium
| | - Kris Gevaert
- VIB Center for Medical Biotechnology B‐9000 Ghent Belgium
- Department of Biomolecular MedicineGhent University B‐9000 Ghent Belgium
| |
Collapse
|
14
|
Chen D, Bryden WA, Fenselau C. Microwave supported hydrolysis prepares Bacillus spores for proteomic analysis. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2019; 435:227-233. [PMID: 32476986 PMCID: PMC7261595 DOI: 10.1016/j.ijms.2018.10.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Rapid identification of Bacillus spores in the environment has depended primarily on a family of small acid soluble proteins (SASPs) as biomarkers. However, SASP sequences and molecular masses are similar or identical in some critical cases. For example, some strains of B. subtilis, and B. thuringiensis cannot be distinguished from strains of B. anthracis based on SASPs. Consequently, additional or alternative biomarkers should be sought. In this study microwave-assisted hot acid hydrolysis was coupled with mass spectrometry as a potentially powerful approach to the rapid automatable characterization of Bacillus spores. Hot acid provides lysis of the spores, Asp-selective hydrolysis of proteins, and peptides compatible with automated analysis of either peptide fingerprints or tandem mass spectra. Peptide biomarkers are compared here for a selection of Bacillus spores, and peptides unique to each spore type are identified.
Collapse
Affiliation(s)
- Dapeng Chen
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
- Corresponding author. (D. Chen)
| | | | - Catherine Fenselau
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
| |
Collapse
|
15
|
Proteotyping bacteria: Characterization, differentiation and identification of pneumococcus and other species within the Mitis Group of the genus Streptococcus by tandem mass spectrometry proteomics. PLoS One 2018; 13:e0208804. [PMID: 30532202 PMCID: PMC6287849 DOI: 10.1371/journal.pone.0208804] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 11/25/2018] [Indexed: 01/07/2023] Open
Abstract
A range of methodologies may be used for analyzing bacteria, depending on the purpose and the level of resolution needed. The capability for recognition of species distinctions within the complex spectrum of bacterial diversity is necessary for progress in microbiological research. In clinical settings, accurate, rapid and cost-effective methods are essential for early and efficient treatment of infections. Characterization and identification of microorganisms, using, bottom-up proteomics, or "proteotyping", relies on recognition of species-unique or associated peptides, by tandem mass spectrometry analyses, dependent upon an accurate and comprehensive foundation of genome sequence data, allowing for differentiation of species, at amino acid-level resolution. In this study, the high resolution and accuracy of MS/MS-based proteotyping was demonstrated, through analyses of the three phylogenetically and taxonomically most closely-related species of the Mitis Group of the genus Streptococcus: i.e., the pathogenic species, Streptococcus pneumoniae (pneumococcus), and the commensal species, Streptococcus pseudopneumoniae and Streptococcus mitis. To achieve high accuracy, a genome sequence database used for matching peptides was created and carefully curated. Here, MS-based, bottom-up proteotyping was observed and confirmed to attain the level of resolution necessary for differentiating and identifying the most-closely related bacterial species, as demonstrated by analyses of species of the Streptococcus Mitis Group, even when S. pneumoniae were mixed with S. pseudopneumoniae and S. mitis, by matching and identifying more than 200 unique peptides for each species.
Collapse
|
16
|
Unique biomarkers as a potential predictive tool for differentiation of Bacillus cereus group based on real-time PCR. Microb Pathog 2017; 115:131-137. [PMID: 29274457 DOI: 10.1016/j.micpath.2017.12.055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 12/11/2017] [Accepted: 12/19/2017] [Indexed: 11/20/2022]
Abstract
The aim of the study was to develop unique biomarkers for qPCR detection of Bacillus cereus group. Clinical and soil isolates were identified by specifically designed biomarkers - Lipoprotein (OPL-114-lipo), Methyltransferase (MT-17) and S-layer homology domain protein (151-1BC). In order to design biomarkers, we used 120 bacterial strains grouped into B. cereus and non-Bacillus group. The B. cereus group was confirmed by 108 strains of B. cereus and B. thuringiensis (30 reference and 78 wild), along with 3 strains of B. mycoides, B. pseudomycoides, and B. weihenstephanensis; while the non-Bacillus group was composed of 9 Gram-positive and Gram-negative strains. Direct analysis of samples revealed specificity towards identification and characterization of B. cereus group. The newly developed markers OPL-114-lipo and MT-17 showed specificity of 95% and 81%, respectively in identification of B. cereus. They are efficient tools to identify contaminated sources and the degree of bacterial contamination. Environmental and food samples do not require band isolation, re-amplification, sequencing or sequence identification. Thus, reducing the time and cost of analysis. Hence, it will be an alternative approach to traditional culture methods. Commercial food processing industries will be able to employ these biomarkers specific for B. cereus group as a detection tool to reduce economic loss due to B. cereus contamination.
Collapse
|
17
|
Triest D, Hendrickx M, Piérard D, Piarroux R, Fraselle S, De Cremer K. Proof-of-concept study of a new LC-ESI-MS/MS-based assay to identify Aspergillus spp. in artificially mixed samples using species/genus-specific proteotypic peptides. Mycol Prog 2017. [DOI: 10.1007/s11557-017-1273-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Chenau J, Fenaille F, Simon S, Filali S, Volland H, Junot C, Carniel E, Becher F. Detection of Yersinia pestis in Complex Matrices by Intact Cell Immunocapture and Targeted Mass Spectrometry. Methods Mol Biol 2017; 1600:69-83. [PMID: 28478558 DOI: 10.1007/978-1-4939-6958-6_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We describe an immunoaffinity-liquid chromatography-tandem mass spectrometry (immuno-LC-MS/MS) protocol for the direct (i.e., without prior culture), sensitive and specific detection of Yersinia pestis in complex matrices. Immunoaffinity enables isolation and concentration of intact bacterial cells from food and environmental samples. After protein extraction and digestion, suitable proteotypic peptides corresponding to three Y. pestis-specific protein markers (murine toxine, plasminogen activator and pesticin) are monitored by targeted LC-MS/MS using the selected reaction monitoring (SRM) mode. This immuno-LC-MS/MS assay has a limit of detection of 2 × 104 CFU/mL in milk or tap water, and 4.5 × 105 CFU in 10 mg of soil.
Collapse
Affiliation(s)
- Jérôme Chenau
- CEA, iBiTec-S, Service de Pharmacologie et d'Immunoanalyse, Bât. 136, 91191, Gif-sur-Yvette, France
| | - François Fenaille
- CEA, iBiTec-S, Service de Pharmacologie et d'Immunoanalyse, Bât. 136, 91191, Gif-sur-Yvette, France
| | - Stéphanie Simon
- CEA, iBiTec-S, Service de Pharmacologie et d'Immunoanalyse, Bât. 136, 91191, Gif-sur-Yvette, France
| | - Sofia Filali
- Institut Pasteur, Unité de Recherche Yersinia, Paris, France
| | - Hervé Volland
- CEA, iBiTec-S, Service de Pharmacologie et d'Immunoanalyse, Bât. 136, 91191, Gif-sur-Yvette, France
| | - Christophe Junot
- CEA, iBiTec-S, Service de Pharmacologie et d'Immunoanalyse, Bât. 136, 91191, Gif-sur-Yvette, France
| | | | - François Becher
- CEA, iBiTec-S, Service de Pharmacologie et d'Immunoanalyse, Bât. 136, 91191, Gif-sur-Yvette, France.
| |
Collapse
|
19
|
Mesuere B, Van der Jeugt F, Devreese B, Vandamme P, Dawyndt P. The unique peptidome: Taxon-specific tryptic peptides as biomarkers for targeted metaproteomics. Proteomics 2016; 16:2313-8. [DOI: 10.1002/pmic.201600023] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 06/13/2016] [Accepted: 07/01/2016] [Indexed: 12/23/2022]
Affiliation(s)
- Bart Mesuere
- Department of Applied Mathematics; Computer Science and Statistics; Faculty of Sciences; Ghent University; Ghent Belgium
| | - Felix Van der Jeugt
- Department of Applied Mathematics; Computer Science and Statistics; Faculty of Sciences; Ghent University; Ghent Belgium
| | - Bart Devreese
- Laboratory for Protein Biochemistry and Biomolecular Engineering; Faculty of Sciences; Ghent University; Ghent Belgium
| | - Peter Vandamme
- Laboratory for Microbiology; Faculty of Sciences; Ghent University; Ghent Belgium
| | - Peter Dawyndt
- Department of Applied Mathematics; Computer Science and Statistics; Faculty of Sciences; Ghent University; Ghent Belgium
| |
Collapse
|
20
|
Duriez E, Armengaud J, Fenaille F, Ezan E. Mass spectrometry for the detection of bioterrorism agents: from environmental to clinical applications. JOURNAL OF MASS SPECTROMETRY : JMS 2016; 51:183-199. [PMID: 26956386 DOI: 10.1002/jms.3747] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 12/14/2015] [Accepted: 01/13/2016] [Indexed: 06/05/2023]
Abstract
In the current context of international conflicts and localized terrorist actions, there is unfortunately a permanent threat of attacks with unconventional warfare agents. Among these, biological agents such as toxins, microorganisms, and viruses deserve particular attention owing to their ease of production and dissemination. Mass spectrometry (MS)-based techniques for the detection and quantification of biological agents have a decisive role to play for countermeasures in a scenario of biological attacks. The application of MS to every field of both organic and macromolecular species has in recent years been revolutionized by the development of soft ionization techniques (MALDI and ESI), and by the continuous development of MS technologies (high resolution, accurate mass HR/AM instruments, novel analyzers, hybrid configurations). New possibilities have emerged for exquisite specific and sensitive detection of biological warfare agents. MS-based strategies for clinical application can now address a wide range of analytical questions mainly including issues related to the complexity of biological samples and their available volume. Multiplexed toxin detection, discovery of new markers through omics approaches, and identification of untargeted microbiological or of novel molecular targets are examples of applications. In this paper, we will present these technological advances along with the novel perspectives offered by omics approaches to clinical detection and follow-up.
Collapse
Affiliation(s)
| | - Jean Armengaud
- CEA, iBiTec-S, Service de Pharmacologie et d'Immunologie, 30207, Bagnols sur-Cèze, France
| | - François Fenaille
- CEA, iBiTec-S, Service de Pharmacologie et d'Immunoanalyse, Laboratoire d'Etude du Métabolisme des Médicaments, MetaboHUB-Paris, CEA Saclay, Building 136, 91191, Gif-sur-Yvette cedex, France
| | - Eric Ezan
- CEA, Programme Transversal Technologies pour la Santé, 91191, Gif sur Yvette, France
| |
Collapse
|
21
|
Chenau J, Fenaille F, Simon S, Filali S, Volland H, Junot C, Carniel E, Becher F. Detection of Yersinia pestis in environmental and food samples by intact cell immunocapture and liquid chromatography-tandem mass spectrometry. Anal Chem 2014; 86:6144-52. [PMID: 24847944 DOI: 10.1021/ac501371r] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Yersinia pestis is the causative agent of bubonic and pneumonic plague, an acute and often fatal disease in humans. In addition to the risk of natural exposure to plague, there is also the threat of a bioterrorist act, leading to the deliberate spread of the bacteria in the environment or food. We report here an immuno-liquid chromatography-tandem mass spectrometry (immuno-LC-MS/MS) method for the direct (i.e., without prior culture), sensitive, and specific detection of Y. pestis in such complex samples. In the first step, a bottom-up proteomics approach highlighted three relevant protein markers encoded by the Y. pestis-specific plasmids pFra (murine toxin) and pPla (plasminogen activator and pesticin). Suitable proteotypic peptides were thoroughly selected to monitor the three protein markers by targeted MS using the selected reaction monitoring (SRM) mode. Immunocapture conditions were optimized for the isolation and concentration of intact bacterial cells from complex samples. The immuno-LC-SRM assay has a limit of detection of 2 × 10(4) CFU/mL in milk or tap water, which compares well with those of state-of-the-art immunoassays. Moreover, we report the first direct detection of Y. pestis in soil, which could be extremely useful in confirming Y. pestis persistence in the ground.
Collapse
Affiliation(s)
- Jérôme Chenau
- Service de Pharmacologie et d'Immunoanalyse, Institut de Biologie et de Technologies de Saclay (iBiTec-S), Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA) , 91191 Gif-sur-Yvette, France
| | | | | | | | | | | | | | | |
Collapse
|