1
|
Sanjeev D, George M, John L, Gopalakrishnan AP, Priyanka P, Mendon S, Yandigeri T, Nisar M, Nisar M, Kanekar S, Balaya RDA, Raju R. Tyr352 as a Predominant Phosphosite in the Understudied Kinase and Molecular Target, HIPK1: Implications for Cancer Therapy. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2024; 28:111-124. [PMID: 38498023 DOI: 10.1089/omi.2023.0244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Homeodomain-interacting protein kinase 1 (HIPK1) is majorly found in the nucleoplasm. HIPK1 is associated with cell proliferation, tumor necrosis factor-mediated cellular apoptosis, transcription regulation, and DNA damage response, and thought to play significant roles in health and common diseases such as cancer. Despite this, HIPK1 remains an understudied molecular target. In the present study, based on a systematic screening and mapping approach, we assembled 424 qualitative and 44 quantitative phosphoproteome datasets with 15 phosphosites in HIPK1 reported across multiple studies. These HIPK1 phosphosites were not currently attributed to any functions. Among them, Tyr352 within the kinase domain was identified as the predominant phosphosite modulated in 22 differential datasets. To analyze the functional association of HIPK1 Tyr352, we first employed a stringent criterion to derive its positively and negatively correlated protein phosphosites. Subsequently, we categorized the correlated phosphosites in known interactors, known/predicted kinases, and substrates of HIPK1, for their prioritized validation. Bioinformatics analysis identified their significant association with biological processes such as the regulation of RNA splicing, DNA-templated transcription, and cellular metabolic processes. HIPK1 Tyr352 was also identified to be upregulated in Her2+ cell lines and a subset of pancreatic and cholangiocarcinoma tissues. These data and the systems biology approach undertaken in the present study serve as a platform to explore the functional role of other phosphosites in HIPK1, and by extension, inform cancer drug discovery and oncotherapy innovation. In all, this study highlights the comprehensive phosphosite map of HIPK1 kinase and the first of its kind phosphosite-centric analysis of HIPK1 kinase based on global-level phosphoproteomics datasets derived from human cellular differential experiments across distinct experimental conditions.
Collapse
Affiliation(s)
- Diya Sanjeev
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed-to-be University), Mangalore, Karnataka, India
| | - Mejo George
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed-to-be University), Mangalore, Karnataka, India
| | - Levin John
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed-to-be University), Mangalore, Karnataka, India
| | | | - Pahal Priyanka
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed-to-be University), Mangalore, Karnataka, India
| | - Spoorthi Mendon
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed-to-be University), Mangalore, Karnataka, India
| | - Tanuja Yandigeri
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed-to-be University), Mangalore, Karnataka, India
| | - Mahammad Nisar
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed-to-be University), Mangalore, Karnataka, India
| | - Muhammad Nisar
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed-to-be University), Mangalore, Karnataka, India
| | - Saptami Kanekar
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed-to-be University), Mangalore, Karnataka, India
| | | | - Rajesh Raju
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed-to-be University), Mangalore, Karnataka, India
| |
Collapse
|
2
|
Kołacz K, Robaszkiewicz A. PARP1 at the crossroad of cellular senescence and nucleolar processes. Ageing Res Rev 2024; 94:102206. [PMID: 38278370 DOI: 10.1016/j.arr.2024.102206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/09/2024] [Accepted: 01/22/2024] [Indexed: 01/28/2024]
Abstract
Senescent cells that occur in response to telomere shortening, oncogenes, extracellular and intracellular stress factors are characterized by permanent cell cycle arrest, the morphological and structural changes of the cell that include the senescence-associated secretory phenotype (SASP) and nucleoli rearrangement. The associated DNA lesions induce DNA damage response (DDR), which activates the DNA repair protein - poly-ADP-ribose polymerase 1 (PARP1). This protein consumes NAD+ to synthesize ADP-ribose polymer (PAR) on its own protein chain and on other interacting proteins. The involvement of PARP1 in nucleoli processes, such as rRNA transcription and ribosome biogenesis, the maintenance of heterochromatin and nucleoli structure, as well as controlling the crucial DDR protein release from the nucleoli to nucleus, links PARP1 with cellular senescence and nucleoli functioning. In this review we describe and discuss the impact of PARP1-mediated ADP-ribosylation on early cell commitment to senescence with the possible role of senescence-induced PARP1 transcriptional repression and protein degradation on nucleoli structure and function. The cause-effect interplay between PARP1 activation/decline and nucleoli functioning during senescence needs to be studied in detail.
Collapse
Affiliation(s)
- Kinga Kołacz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, University of Lodz, Banacha 12 /16, 90-237 Lodz, Poland.
| | - Agnieszka Robaszkiewicz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research (IFBR), 600 5th Street South, St. Petersburgh, FL 33701, USA.
| |
Collapse
|
3
|
Liao CL, Hu RC, Liao MS, Chen YJ, Chen YP, Hsieh HH, Tai CH, Chou TC, Chu CY, Chen YJ, Lo LC, Lin JJ. Unveiling a novel serpinB2/tripeptidyl peptidase II signaling axis during senescence. J Cell Sci 2022; 135:275508. [PMID: 35466366 DOI: 10.1242/jcs.259513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 04/15/2022] [Indexed: 11/20/2022] Open
Abstract
Tripeptidyl peptidase II (TPPII) degrades N-terminal tripeptides from proteins and peptides. Studies in both human and mice have shown that TPPII deficiency is linked to cellular immune-senescence, lifespan regulation, and the aging process. However, the mechanism of how TPPII participates in these processes is less clear. In this study, we established a chemical probe-based assay and found that while the mRNA and protein levels of TPPII were not altered during senescence, its enzymatic activity was reduced in senescent human fibroblasts. We also showed that elevation of serine protease inhibitor serpinB2 reduced TPPII activity in senescent cells. Moreover, suppression of TPPII led to elevation of lysosomal contents as well as TPPI and -galactosidase activities, suggesting that the lysosome biogenesis is induced to compensate for the reduction of TPPII activity in senescent cells. Together this study discloses a critical role of the serpinB2/TPPII signaling pathway in proteostasis during senescence. Since serpinB2 level can be increased by a variety of cellular stresses, reduction of TPPII activity through activation of serpinB2 might represent a common pathway for cells to respond to different stress conditions.
Collapse
Affiliation(s)
- Chia-Li Liao
- Institute of Biochemistry and Molecular Biology, National Taiwan University College of Medicine, Taipei, 100, Taiwan
| | - Rong-Chi Hu
- Institute of Biochemistry and Molecular Biology, National Taiwan University College of Medicine, Taipei, 100, Taiwan
| | - Min-Shiang Liao
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Yi-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Ya-Ping Chen
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Hsi-Hsien Hsieh
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, 112, Taiwan
| | - Chih-Hsuan Tai
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Tzyy-Chao Chou
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Chi-Yuan Chu
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Yu-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Lee-Chiang Lo
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Jing-Jer Lin
- Institute of Biochemistry and Molecular Biology, National Taiwan University College of Medicine, Taipei, 100, Taiwan
| |
Collapse
|
4
|
Doubleday PF, Fornelli L, Kelleher NL. Elucidating Proteoform Dynamics Underlying the Senescence Associated Secretory Phenotype. J Proteome Res 2020; 19:938-948. [PMID: 31940439 DOI: 10.1021/acs.jproteome.9b00739] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Primary diploid cells exit the cell cycle in response to exogenous stress or oncogene activation through a process known as cellular senescence. This cell-autonomous tumor-suppressive mechanism is also a major mechanism operative in organismal aging. To date, temporal aspects of senescence remain understudied. Therefore, we use quantitative proteomics to investigate changes following forced HRASG12V expression and induction of senescence across 1 week in normal diploid fibroblasts. We demonstrate that global intracellular proteomic changes correlate with the emergence of the senescence-associated secretory phenotype and the switch to robust cell cycle exit. The senescence secretome reinforces cell cycle exit, yet is largely detrimental to tissue homeostasis. Previous studies of secretomes rely on ELISA, bottom-up proteomics or RNA-seq. To date, no study to date has examined the proteoform complexity of secretomes to elucidate isoform-specific, post-translational modifications or regulated cleavage of signal peptides. Therefore, we use a quantitative top-down proteomics approach to define the molecular complexity of secreted proteins <30 kDa. We identify multiple forms of immune regulators with known activities and affinities such as distinct forms of interleukin-8, as well as GROα and HMGA1, and temporally resolve secreted proteoform dynamics. Together, our work demonstrates the complexity of the secretome past individual protein accessions and provides motivation for further proteoform-resolved measurements of the secretome.
Collapse
Affiliation(s)
- Peter F Doubleday
- Department of Molecular Biosciences, Proteomics Center of Excellence , Northwestern University , Evanston , Illinois 60208 , United States
| | - Luca Fornelli
- Department of Biology , University of Oklahoma , 730 Van Vleet Oval , Norman , Oklahoma 73019 , United States
| | - Neil L Kelleher
- Department of Molecular Biosciences, Proteomics Center of Excellence , Northwestern University , Evanston , Illinois 60208 , United States
| |
Collapse
|
5
|
Salotti J, Johnson PF. Regulation of senescence and the SASP by the transcription factor C/EBPβ. Exp Gerontol 2019; 128:110752. [PMID: 31648009 DOI: 10.1016/j.exger.2019.110752] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/09/2019] [Accepted: 10/14/2019] [Indexed: 12/19/2022]
Abstract
Oncogene-induced senescence (OIS) serves as an important barrier to tumor progression in cells that have acquired activating mutations in RAS and other oncogenes. Senescent cells also produce a secretome known as the senescence-associated secretory phenotype (SASP) that includes pro-inflammatory cytokines and chemokines. SASP factors reinforce and propagate the senescence program and identify senescent cells to the immune system for clearance. The OIS program is executed by several transcriptional effectors that include p53, RB, NF-κB and C/EBPβ. In this review, we summarize the critical role of C/EBPβ in regulating OIS and the SASP. Post-translational modifications induced by oncogenic RAS signaling control C/EBPβ activity and dimerization, and these alterations switch C/EBPβ to a pro-senescence form during OIS. In addition, C/EBPβ is regulated by a unique 3'UTR-mediated mechanism that restrains its activity in tumor cells to facilitate senescence bypass and suppression of the SASP.
Collapse
Affiliation(s)
- Jacqueline Salotti
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Peter F Johnson
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
6
|
Petit C, Guillon J, Toutain B, Boissard A, Patsouris A, Lelièvre E, Guette C, Coqueret O. Proteomics Approaches to Define Senescence Heterogeneity and Chemotherapy Response. Proteomics 2019; 19:e1800447. [PMID: 30968557 DOI: 10.1002/pmic.201800447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 03/29/2019] [Indexed: 01/07/2023]
Abstract
In primary cells, senescence induces a permanent proliferative arrest to prevent the propagation of malignant cells. However, the outcome of senescence is more complex in advanced cancer cells where senescent states are heterogeneous. Here, this heterogeneity is discussed and it is proposed that proteomic analysis should be used to identify specific signatures of cancer cells that use this pathway as an adaptive mechanism. Since senescent cells produce an inflammatory secretome, MRM approaches and quantification with internal standards might be particularly suited to follow the expression of the corresponding markers in body fluids. Used in combination with imaging medical technics, a better characterization of senescence heterogeneity should help to monitor the response to chemotherapy treatment.
Collapse
Affiliation(s)
- Coralie Petit
- Paul Papin ICO Cancer Center, CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, 49055, France.,SIRIC ILIAD, Nantes, 49055, Angers, France
| | - Jordan Guillon
- Paul Papin ICO Cancer Center, CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, 49055, France.,SIRIC ILIAD, Nantes, 49055, Angers, France
| | - Bertrand Toutain
- Paul Papin ICO Cancer Center, CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, 49055, France.,SIRIC ILIAD, Nantes, 49055, Angers, France
| | - Alice Boissard
- Paul Papin ICO Cancer Center, CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, 49055, France.,SIRIC ILIAD, Nantes, 49055, Angers, France
| | - Anne Patsouris
- Paul Papin ICO Cancer Center, CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, 49055, France.,SIRIC ILIAD, Nantes, 49055, Angers, France
| | - Eric Lelièvre
- Paul Papin ICO Cancer Center, CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, 49055, France.,SIRIC ILIAD, Nantes, 49055, Angers, France
| | - Catherine Guette
- Paul Papin ICO Cancer Center, CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, 49055, France.,SIRIC ILIAD, Nantes, 49055, Angers, France
| | - Olivier Coqueret
- Paul Papin ICO Cancer Center, CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, 49055, France.,SIRIC ILIAD, Nantes, 49055, Angers, France
| |
Collapse
|
7
|
Chen K, Lv F, Xu G, Zhang M, Wu Y, Wu Z. Phosphoproteomics reveals ALK promote cell progress via RAS/ JNK pathway in neuroblastoma. Oncotarget 2018; 7:75968-75980. [PMID: 27732954 PMCID: PMC5342791 DOI: 10.18632/oncotarget.12513] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 09/26/2016] [Indexed: 12/25/2022] Open
Abstract
Emerging evidence suggests receptor tyrosine kinase ALK as a promising therapeutic target in neuroblastoma. However, clinical trials reveal that a limited proportion of ALK-positive neuroblastoma patients experience clinical benefits from Crizotinib, a clinically approved specific inhibitor of ALK. The precise molecular mechanisms of aberrant ALK activity in neuroblastoma remain elusive, limiting the clinical application of ALK as a therapeutic target in neuroblastoma. Here, we describe a deep quantitative phosphoproteomic approach in which Crizotinib-treated neuroblastoma cell lines bearing aberrant ALK are used to investigate downstream regulated phosphoproteins. We identified more than 19,500-and quantitatively analyzed approximately 10,000-phosphorylation sites from each cell line, ultimately detecting 450-790 significantly-regulated phosphorylation sites. Multiple layers of bioinformatic analysis of the significantly-regulated phosphoproteins identified RAS/JNK as a downstream signaling pathway of ALK, independent of the ALK variant present. Further experiments demonstrated that ALK/JNK signaling could be inactivated by either ALK- or JNK-specific inhibitors, resulting in cell growth inhibition by induction of cell cycle arrest and cell apoptosis. Our study broadly defines the phosphoproteome in response to ALK inhibition and provides a resource for further clinical investigation of ALK as therapeutic target for the treatment of neuroblastoma.
Collapse
Affiliation(s)
- Kai Chen
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Division of Pediatric Oncology, Shanghai Institute of Pediatric Research, Shanghai, China
| | - Fan Lv
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Division of Pediatric Oncology, Shanghai Institute of Pediatric Research, Shanghai, China
| | - Guofeng Xu
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Min Zhang
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Division of Pediatric Oncology, Shanghai Institute of Pediatric Research, Shanghai, China
| | - Yeming Wu
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Division of Pediatric Oncology, Shanghai Institute of Pediatric Research, Shanghai, China
| | - Zhixiang Wu
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Division of Pediatric Oncology, Shanghai Institute of Pediatric Research, Shanghai, China
| |
Collapse
|
8
|
Zou X, Jie J, Yang B. Single-Step Enrichment of N-Glycopeptides and Phosphopeptides with Novel Multifunctional Ti4+-Immobilized Dendritic Polyglycerol Coated Chitosan Nanomaterials. Anal Chem 2017; 89:7520-7526. [DOI: 10.1021/acs.analchem.7b01209] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Xiajuan Zou
- Medical
and Healthy Analytical Center, Beijing Key Laboratory of Tumor Systems
Biology, Peking University, Xueyuan Road 38, Haidian District, Beijing 100191, China
| | - Jianzheng Jie
- Department
of Gastrointestinal Surgery, China-Japan Friendship Hospital, 2 Yinghua Dongjie, Chaoyang District, Beijing100029, China
| | - Bin Yang
- Medical
and Healthy Analytical Center, Beijing Key Laboratory of Tumor Systems
Biology, Peking University, Xueyuan Road 38, Haidian District, Beijing 100191, China
| |
Collapse
|
9
|
Durbin KR, Fornelli L, Fellers RT, Doubleday PF, Narita M, Kelleher NL. Quantitation and Identification of Thousands of Human Proteoforms below 30 kDa. J Proteome Res 2016; 15:976-82. [PMID: 26795204 PMCID: PMC4794255 DOI: 10.1021/acs.jproteome.5b00997] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Top-down proteomics is capable of identifying and quantitating unique proteoforms through the analysis of intact proteins. We extended the coverage of the label-free technique, achieving differential analysis of whole proteins <30 kDa from the proteomes of growing and senescent human fibroblasts. By integrating improved control software with more instrument time allocated for quantitation of intact ions, we were able to collect protein data between the two cell states, confidently comparing 1577 proteoform levels. To then identify and characterize proteoforms, our advanced acquisition software, named Autopilot, employed enhanced identification efficiency in identifying 1180 unique Swiss-Prot accession numbers at 1% false-discovery rate. This coverage of the low mass proteome is equivalent to the largest previously reported but was accomplished in 23% of the total acquisition time. By maximizing both the number of quantified proteoforms and their identification rate in an integrated software environment, this work significantly advances proteoform-resolved analyses of complex systems.
Collapse
Affiliation(s)
- Kenneth R. Durbin
- Departments of Chemistry and Molecular Biosciences, Northwestern University, 2170 Campus Drive, Evanston, Illinois 60208, United States
| | - Luca Fornelli
- Departments of Chemistry and Molecular Biosciences, Northwestern University, 2170 Campus Drive, Evanston, Illinois 60208, United States
| | - Ryan T. Fellers
- Departments of Chemistry and Molecular Biosciences, Northwestern University, 2170 Campus Drive, Evanston, Illinois 60208, United States
| | - Peter F. Doubleday
- Departments of Chemistry and Molecular Biosciences, Northwestern University, 2170 Campus Drive, Evanston, Illinois 60208, United States
| | - Masashi Narita
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge CB2 0RE, U.K
| | - Neil L. Kelleher
- Departments of Chemistry and Molecular Biosciences, Northwestern University, 2170 Campus Drive, Evanston, Illinois 60208, United States
| |
Collapse
|
10
|
de Graaf EL, Kaplon J, Mohammed S, Vereijken LAM, Duarte DP, Redondo Gallego L, Heck AJR, Peeper DS, Altelaar AFM. Signal Transduction Reaction Monitoring Deciphers Site-Specific PI3K-mTOR/MAPK Pathway Dynamics in Oncogene-Induced Senescence. J Proteome Res 2015; 14:2906-14. [PMID: 26011226 DOI: 10.1021/acs.jproteome.5b00236] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We report a straightforward strategy to comprehensively monitor signal transduction pathway dynamics in mammalian systems. Combining targeted quantitative proteomics with highly selective phosphopeptide enrichment, we monitor, with great sensitivity, phosphorylation dynamics of the PI3K-mTOR and MAPK signaling networks. Our approach consists of a single enrichment step followed by a single targeted proteomics experiment, circumventing the need for labeling and immune purification while enabling analysis of selected phosphorylation nodes throughout signaling pathways. The need for such a comprehensive pathway analysis is illustrated by highlighting previously uncharacterized phosphorylation changes in oncogene-induced senescence, associated with diverse biological phenotypes and pharmacological intervention of the PI3K-mTOR pathway.
Collapse
Affiliation(s)
- Erik L de Graaf
- †Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.,‡Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Joanna Kaplon
- §Division of Molecular Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Shabaz Mohammed
- †Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.,‡Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Lisette A M Vereijken
- †Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.,‡Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Daniel P Duarte
- §Division of Molecular Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Laura Redondo Gallego
- †Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.,‡Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Albert J R Heck
- †Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.,‡Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Daniel S Peeper
- §Division of Molecular Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - A F Maarten Altelaar
- †Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.,‡Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
11
|
Nakanuma Y, Sasaki M, Harada K. Autophagy and senescence in fibrosing cholangiopathies. J Hepatol 2015; 62:934-45. [PMID: 25435435 DOI: 10.1016/j.jhep.2014.11.027] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 11/08/2014] [Accepted: 11/16/2014] [Indexed: 12/16/2022]
Abstract
Fibrosing cholangiopathy such as primary sclerosing cholangitis (PSC) and biliary atresia (BA) is characterized by biliary epithelial injuries and concentric fibrous obliteration of the biliary tree together with inflammatory cell infiltration. In these diseases, inappropriate innate immunity is reported to contribute more to bile duct pathology as compared with various aspects of "classical" autoimmune diseases. Primary biliary cirrhosis (PBC) is characterized by chronic cholangitis with bile duct loss and classical autoimmune features. Cellular senescence of cholangiocytes and a senescence-associated secretory phenotype lead to the production of proinflammatory cytokines and chemokines that may modify the milieu of the bile duct and then trigger fibroinflammatory responses in PSC and PBC. Furthermore, deregulated autophagy might be involved in cholangiocyte senescence and possibly in the autoimmune process in PBC, and the deregulated innate immunity against enteric microbes or their products that is associated with cholangiocyte senescence might result in the fibrosing cholangitis that develops in PBC and PSC. In BA, innate immunity against double-stranded RNA viruses might be involved in cholangiocyte apoptosis and also in the development of the epithelial-mesenchymal transition of cholangiocytes that results in fibrous obliteration of bile ducts. These recent advances in the understanding of immune-mediated biliary diseases represent a paradigm shift: the cholangiocyte is no longer viewed merely as a passive victim of injury; it is now also considered to function as a potential effector in bile duct pathology.
Collapse
Affiliation(s)
- Yasuni Nakanuma
- Department of Diagnostic Pathology, Shizuoka Cancer Center, Shizuoka, Japan; Department of Pathology, Kanazawa University Graduate School of Medical Science, Japan.
| | - Motoko Sasaki
- Department of Pathology, Kanazawa University Graduate School of Medical Science, Japan
| | - Kenichi Harada
- Department of Pathology, Kanazawa University Graduate School of Medical Science, Japan
| |
Collapse
|