1
|
Adán-Jiménez J, Sánchez-Salvador A, Morato E, Solana JC, Aguado B, Requena JM. A Proteogenomic Approach to Unravel New Proteins Encoded in the Leishmania donovani (HU3) Genome. Genes (Basel) 2024; 15:775. [PMID: 38927711 PMCID: PMC11203134 DOI: 10.3390/genes15060775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/10/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
The high-throughput proteomics data generated by increasingly more sensible mass spectrometers greatly contribute to our better understanding of molecular and cellular mechanisms operating in live beings. Nevertheless, proteomics analyses are based on accurate genomic and protein annotations, and some information may be lost if these resources are incomplete. Here, we show that most proteomics data may be recovered by interconnecting genomics and proteomics approaches (i.e., following a proteogenomic strategy), resulting, in turn, in an improvement of gene/protein models. In this study, we generated proteomics data from Leishmania donovani (HU3 strain) promastigotes that allowed us to detect 1908 proteins in this developmental stage on the basis of the currently annotated proteins available in public databases. However, when the proteomics data were searched against all possible open reading frames existing in the L. donovani genome, twenty new protein-coding genes could be annotated. Additionally, 43 previously annotated proteins were extended at their N-terminal ends to accommodate peptides detected in the proteomics data. Also, different post-translational modifications (phosphorylation, acetylation, methylation, among others) were found to occur in a large number of Leishmania proteins. Finally, a detailed comparative analysis of the L. donovani and Leishmania major experimental proteomes served to illustrate how inaccurate conclusions can be raised if proteomes are compared solely on the basis of the listed proteins identified in each proteome. Finally, we have created data entries (based on freely available repositories) to provide and maintain updated gene/protein models. Raw data are available via ProteomeXchange with the identifier PXD051920.
Collapse
Affiliation(s)
- Javier Adán-Jiménez
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Departamento de Biología Molecular, Instituto Universitario de Biología Molecular (IUBM), Universidad Autónoma de Madrid, 28049 Madrid, Spain; (J.A.-J.); (A.S.-S.); (E.M.); (J.C.S.)
| | - Alejandro Sánchez-Salvador
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Departamento de Biología Molecular, Instituto Universitario de Biología Molecular (IUBM), Universidad Autónoma de Madrid, 28049 Madrid, Spain; (J.A.-J.); (A.S.-S.); (E.M.); (J.C.S.)
| | - Esperanza Morato
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Departamento de Biología Molecular, Instituto Universitario de Biología Molecular (IUBM), Universidad Autónoma de Madrid, 28049 Madrid, Spain; (J.A.-J.); (A.S.-S.); (E.M.); (J.C.S.)
| | - Jose Carlos Solana
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Departamento de Biología Molecular, Instituto Universitario de Biología Molecular (IUBM), Universidad Autónoma de Madrid, 28049 Madrid, Spain; (J.A.-J.); (A.S.-S.); (E.M.); (J.C.S.)
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Begoña Aguado
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Departamento de Biología Molecular, Instituto Universitario de Biología Molecular (IUBM), Universidad Autónoma de Madrid, 28049 Madrid, Spain; (J.A.-J.); (A.S.-S.); (E.M.); (J.C.S.)
| | - Jose M. Requena
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Departamento de Biología Molecular, Instituto Universitario de Biología Molecular (IUBM), Universidad Autónoma de Madrid, 28049 Madrid, Spain; (J.A.-J.); (A.S.-S.); (E.M.); (J.C.S.)
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
2
|
Ober VT, Githure GB, Volpato Santos Y, Becker S, Moya Munoz G, Basquin J, Schwede F, Lorentzen E, Boshart M. Purine nucleosides replace cAMP in allosteric regulation of PKA in trypanosomatid pathogens. eLife 2024; 12:RP91040. [PMID: 38517938 PMCID: PMC10959531 DOI: 10.7554/elife.91040] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024] Open
Abstract
Cyclic nucleotide binding domains (CNB) confer allosteric regulation by cAMP or cGMP to many signaling proteins, including PKA and PKG. PKA of phylogenetically distant Trypanosoma is the first exception as it is cyclic nucleotide-independent and responsive to nucleoside analogues (Bachmaier et al., 2019). Here, we show that natural nucleosides inosine, guanosine and adenosine are nanomolar affinity CNB ligands and activators of PKA orthologs of the important tropical pathogens Trypanosoma brucei, Trypanosoma cruzi, and Leishmania. The sequence and structural determinants of binding affinity, -specificity and kinase activation of PKAR were established by structure-activity relationship (SAR) analysis, co-crystal structures and mutagenesis. Substitution of two to three amino acids in the binding sites is sufficient for conversion of CNB domains from nucleoside to cyclic nucleotide specificity. In addition, a trypanosomatid-specific C-terminal helix (αD) is required for high affinity binding to CNB-B. The αD helix functions as a lid of the binding site that shields ligands from solvent. Selectivity of guanosine for CNB-B and of adenosine for CNB-A results in synergistic kinase activation at low nanomolar concentration. PKA pulldown from rapid lysis establishes guanosine as the predominant ligand in vivo in T. brucei bloodstream forms, whereas guanosine and adenosine seem to synergize in the procyclic developmental stage in the insect vector. We discuss the versatile use of CNB domains in evolution and recruitment of PKA for novel nucleoside-mediated signaling.
Collapse
Affiliation(s)
- Veronica Teresa Ober
- Faculty of Biology, Genetics, Ludwig-Maximilians University Munich (LMU)MartinsriedGermany
| | | | - Yuri Volpato Santos
- Faculty of Biology, Genetics, Ludwig-Maximilians University Munich (LMU)MartinsriedGermany
| | - Sidney Becker
- Max Planck Institute of Molecular PhysiologyDortmundGermany
- TU Dortmund, Department of Chemistry and Chemical BiologyDortmundGermany
| | - Gabriel Moya Munoz
- Faculty of Biology, Genetics, Ludwig-Maximilians University Munich (LMU)MartinsriedGermany
| | | | - Frank Schwede
- BIOLOG Life Science Institute GmbH & Co KGBremenGermany
| | - Esben Lorentzen
- Department of Molecular Biology and Genetics, Aarhus UniversityAarhusDenmark
| | - Michael Boshart
- Faculty of Biology, Genetics, Ludwig-Maximilians University Munich (LMU)MartinsriedGermany
| |
Collapse
|
3
|
Fischer Weinberger R, Bachmaier S, Ober V, Githure GB, Dandugudumula R, Phan IQ, Almoznino M, Polatoglou E, Tsigankov P, Nitzan Koren R, Myler PJ, Boshart M, Zilberstein D. A divergent protein kinase A regulatory subunit essential for morphogenesis of the human pathogen Leishmania. PLoS Pathog 2024; 20:e1012073. [PMID: 38551993 PMCID: PMC11006142 DOI: 10.1371/journal.ppat.1012073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 04/10/2024] [Accepted: 02/26/2024] [Indexed: 04/11/2024] Open
Abstract
Parasitic protozoa of the genus Leishmania cycle between the phagolysosome of mammalian macrophages, where they reside as rounded intracellular amastigotes, and the midgut of female sand flies, which they colonize as elongated extracellular promastigotes. Previous studies indicated that protein kinase A (PKA) plays an important role in the initial steps of promastigote differentiation into amastigotes. Here, we describe a novel regulatory subunit of PKA (which we have named PKAR3) that is unique to Leishmania and most (but not all) other Kinetoplastidae. PKAR3 is localized to subpellicular microtubules (SPMT) in the cell cortex, where it recruits a specific catalytic subunit (PKAC3). Promastigotes of pkar3 or pkac3 null mutants lose their elongated shape and become rounded but remain flagellated. Truncation of an N-terminal formin homology (FH)-like domain of PKAR3 results in its detachment from the SPMT, also leading to rounded promastigotes. Thus, the tethering of PKAC3 via PKAR3 at the cell cortex is essential for maintenance of the elongated shape of promastigotes. This role of PKAR3 is reminiscent of PKARIβ and PKARIIβ binding to microtubules of mammalian neurons, which is essential for the elongation of dendrites and axons, respectively. Interestingly, PKAR3 binds nucleoside analogs, but not cAMP, with a high affinity similar to the PKAR1 isoform of Trypanosoma. We propose that these early-diverged protists have re-purposed PKA for a novel signaling pathway that spatiotemporally controls microtubule remodeling and cell shape.
Collapse
Affiliation(s)
| | - Sabine Bachmaier
- Faculty of Biology, Genetics, Ludwig-Maximilians Universität München, Martinsried, Germany
| | - Veronica Ober
- Faculty of Biology, Genetics, Ludwig-Maximilians Universität München, Martinsried, Germany
| | - George B. Githure
- Faculty of Biology, Genetics, Ludwig-Maximilians Universität München, Martinsried, Germany
| | - Ramu Dandugudumula
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Isabelle Q. Phan
- Seattle Structural Genomics Center for Infectious Disease, Seattle, Washington, United States of America
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Michal Almoznino
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Eleni Polatoglou
- Faculty of Biology, Genetics, Ludwig-Maximilians Universität München, Martinsried, Germany
| | - Polina Tsigankov
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Roni Nitzan Koren
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Peter J. Myler
- Seattle Structural Genomics Center for Infectious Disease, Seattle, Washington, United States of America
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- Department of Pediatrics, Department of Biomedical Informatics & Medical Education, and Department of Global Health, University of Washington, Seattle, Washington, United States of America
| | - Michael Boshart
- Faculty of Biology, Genetics, Ludwig-Maximilians Universität München, Martinsried, Germany
| | - Dan Zilberstein
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
4
|
Porta EO, Gao L, Denny PW, Steel PG, Kalesh K. Inhibition of HSP90 distinctively modulates the global phosphoproteome of Leishmania mexicana developmental stages. Microbiol Spectr 2023; 11:e0296023. [PMID: 37905935 PMCID: PMC10715028 DOI: 10.1128/spectrum.02960-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/26/2023] [Indexed: 11/02/2023] Open
Abstract
IMPORTANCE In the unicellular parasites Leishmania spp., the etiological agents of leishmaniasis, a complex infectious disease that affects 98 countries in 5 continents, chemical inhibition of HSP90 protein leads to differentiation from promastigote to amastigote stage. Recent studies indicate potential role for protein phosphorylation in the life cycle control of Leishmania. Also, recent studies suggest a fundamentally important role of RNA-binding proteins (RBPs) in regulating the downstream effects of the HSP90 inhibition in Leishmania. Phosphorylation-dephosphorylation dynamics of RBPs in higher eukaryotes serves as an important on/off switch to regulate RNA processing and decay in response to extracellular signals and cell cycle check points. In the current study, using a combination of highly sensitive TMT labeling-based quantitative proteomic MS and robust phosphoproteome enrichment, we show for the first time that HSP90 inhibition distinctively modulates global protein phosphorylation landscapes in the different life cycle stages of Leishmania, shedding light into a crucial role of the posttranslational modification in the differentiation of the parasite under HSP90 inhibition stress. We measured changes in phosphorylation of many RBPs and signaling proteins including protein kinases upon HSP90 inhibition in the therapeutically relevant amastigote stage. This work provides insights into the importance of HSP90-mediated protein cross-talks and regulation of phosphorylation in Leishmania, thus significantly expanding our knowledge of the posttranslational modification in Leishmania biology.
Collapse
Affiliation(s)
| | - Liqian Gao
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Paul W. Denny
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Patrick G. Steel
- Department of Chemistry, Durham University, Durham, United Kingdom
| | - Karunakaran Kalesh
- School of Health and Life Sciences,Teesside University, Middlesbrough, United Kingdom
- National Horizons Centre, Darlington, United Kingdom
| |
Collapse
|
5
|
Araujo NA, Bubis J. Analysis of a Novel Peptide That Is Capable of Inhibiting the Enzymatic Activity of the Protein Kinase A Catalytic Subunit-Like Protein from Trypanosoma equiperdum. Protein J 2023; 42:709-727. [PMID: 37713008 DOI: 10.1007/s10930-023-10153-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2023] [Indexed: 09/16/2023]
Abstract
A 26-residue peptide possessing the αN-helix motif of the protein kinase A (PKA) regulatory subunit-like proteins from the Trypanozoom subgenera (VAP26, sequence = VAPYFEKSEDETALILKLLTYNVLFS), was shown to inhibit the enzymatic activity of the Trypanosoma equiperdum PKA catalytic subunit-like protein, in a similar manner that the mammalian heat-stable soluble PKA inhibitor known as PKI. However, VAP26 does not contain the PKI inhibitory sequence. Bioinformatics analyzes of the αN-helix motif from various Trypanozoon PKA regulatory subunit-like proteins suggested that the sequence could form favorable peptide-protein interactions of hydrophobic nature with the PKA catalytic subunit-like protein, which possibly may represent an alternative PKA inhibitory mechanism. The sequence of the αN-helix motif of the Trypanozoon proteins was shown to be highly homologous but significantly divergent from the corresponding αN-helix motifs of their Leishmania and mammalian counterparts. This sequence divergence contrasted with the proposed secondary structure of the αN-helix motif, which appeared conserved in every analyzed regulatory subunit-like protein. In silico mutation experiments at positions I234, L238 and F244 of the αN-helix motif from the Trypanozoon proteins destabilized both the specific motif and the protein. On the contrary, mutations at positions T239 and Y240 stabilized the motif and the protein. These results suggested that the αN-helix motif from the Trypanozoon proteins probably possessed a different evolutionary path than their Leishmania and mammalian counterparts. Moreover, finding stabilizing mutations indicated that new inhibitory peptides may be designed based on the αN-helix motif from the Trypanozoon PKA regulatory subunit-like proteins.
Collapse
Affiliation(s)
- Nelson A Araujo
- Escuela de Ciencias Agroalimentarias, Animales y Ambientales, Universidad de O'Higgins, Campus Colchagua, ruta I-90, Km 3, San Fernando, Chile.
| | - José Bubis
- Unidad de Polimorfismo Genético, Genómica y Proteómica, Dirección de Salud, Fundación Instituto de Estudios Avanzados IDEA, Caracas, 1015-A, Venezuela
- Unidad de Señalización Celular y Bioquímica de Parásitos, Dirección de Salud, Fundación Instituto de Estudios Avanzados IDEA, Caracas, 1015-A, Venezuela
- Departamento de Biología Celular, Universidad Simón Bolívar, Apartado 89.000, Caracas, 1081‑A, Venezuela
| |
Collapse
|
6
|
Lourenço EMG, da Silva F, das Neves AR, Bonfá IS, Ferreira AMT, Menezes ACG, da Silva MEC, Dos Santos JT, Martines MAU, Perdomo RT, Toffoli-Kadri MC, G Barbosa E, Saba S, Beatriz A, Rafique J, de Arruda CCP, de Lima DP. Investigation of the Potential Targets behind the Promising and Highly Selective Antileishmanial Action of Synthetic Flavonoid Derivatives. ACS Infect Dis 2023; 9:2048-2061. [PMID: 37772925 DOI: 10.1021/acsinfecdis.3c00336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Leishmaniases are among the neglected tropical diseases that still cause devastating health, social, and economic consequences to more than 350 million people worldwide. Despite efforts to combat these vector-borne diseases, their incidence does not decrease. Meanwhile, current antileishmanial drugs are old and highly toxic, and safer presentations are unaffordable to the most severely affected human populations. In a previous study by our research group, we synthesized 17 flavonoid derivatives that demonstrated impressive inhibition capacity against rCPB2.8, rCPB3, and rH84Y. These cysteine proteases are highly expressed in the amastigote stage, the target form of the parasite. However, although these compounds have been already described in the literature, until now, the amastigote effect of any of these molecules has not been proven. In this work, we aimed to deeply analyze the antileishmanial action of this set of synthetic flavonoid derivatives by correlating their ability to inhibit cysteine proteases with the action against the parasite. Among all the synthesized flavonoid derivatives, 11 of them showed high activity against amastigotes of Leishmania amazonensis, also providing safety to mammalian host cells. Furthermore, the high production of nitric oxide by infected cells treated with the most active cysteine protease B (CPB) inhibitors confirms a potential immunomodulatory response of macrophages. Besides, considering flavonoids as multitarget drugs, we also investigated other potential antileishmanial mechanisms. The most active compounds were selected to investigate another potential biological pathway behind their antileishmanial action using flow cytometry analysis. The results confirmed an oxidative stress after 48 h of treatment. These data represent an important step toward the validation of CPB as an antileishmanial target, as well as aiding in new drug discovery studies based on this protease.
Collapse
Affiliation(s)
- Estela M G Lourenço
- Laboratório de Síntese e Transformação de Moléculas Orgânicas -SINTMOL, Instituto de Química, Universidade Federal de Mato Grosso do Sul, Av. Senador Filinto Muller, Campo Grande, 79074-460 MS, Brazil
| | - Fernanda da Silva
- Laboratório de Parasitologia Humana, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, 79070-900, MS, Brazil
| | - Amarith R das Neves
- Laboratório de Parasitologia Humana, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, 79070-900, MS, Brazil
| | - Iluska S Bonfá
- Laboratório de Farmacologia e Inflamação, Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso do Sul, Campo Grande, 79074-460 MS, Brazil
| | - Alda Maria T Ferreira
- Laboratório de Imunologia, Biologia Molecular e Bioensaios Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, 79070-900 MS, Brazil
| | - Adriana C G Menezes
- Biotério Central, Universidade Federal de Mato Grosso do Sul, Campo Grande, 79070-900 MS, Brazil
| | - Maria E C da Silva
- Laboratório de Síntese e Transformação de Moléculas Orgânicas -SINTMOL, Instituto de Química, Universidade Federal de Mato Grosso do Sul, Av. Senador Filinto Muller, Campo Grande, 79074-460 MS, Brazil
| | - Jéssica T Dos Santos
- Laboratório de Síntese e Transformação de Moléculas Orgânicas -SINTMOL, Instituto de Química, Universidade Federal de Mato Grosso do Sul, Av. Senador Filinto Muller, Campo Grande, 79074-460 MS, Brazil
| | - Marco A U Martines
- Instituto de Química, Universidade Federal de Mato Grosso do Sul, Av. Senador Filinto Muller, Campo Grande, 79074-460 MS, Brazil
| | - Renata T Perdomo
- Laboratório de Biologia Molecular e Cultura de Células, Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso do Sul, Campo Grande, 79070-900 MS, Brazil
| | - Mônica C Toffoli-Kadri
- Laboratório de Farmacologia e Inflamação, Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso do Sul, Campo Grande, 79074-460 MS, Brazil
| | - Euzébio G Barbosa
- Laboratório de Química Farmacêutica Computacional, Departamento de Farmácia, Universidade Federal do Rio Grande do Norte, Natal, 59012-570, RN, Brazil
| | - Sumbal Saba
- Laboratório de Síntese Sustentável e Organocalcogênio - LabSO, Instituto de Química, Universidade Federal de Goiás-UFG, Goiânia, 74690-900 GO, Brazil
| | - Adilson Beatriz
- Laboratório de Síntese e Transformação de Moléculas Orgânicas -SINTMOL, Instituto de Química, Universidade Federal de Mato Grosso do Sul, Av. Senador Filinto Muller, Campo Grande, 79074-460 MS, Brazil
| | - Jamal Rafique
- Laboratório de Síntese e Transformação de Moléculas Orgânicas -SINTMOL, Instituto de Química, Universidade Federal de Mato Grosso do Sul, Av. Senador Filinto Muller, Campo Grande, 79074-460 MS, Brazil
- Laboratório de Síntese Sustentável e Organocalcogênio - LabSO, Instituto de Química, Universidade Federal de Goiás-UFG, Goiânia, 74690-900 GO, Brazil
| | - Carla C P de Arruda
- Laboratório de Parasitologia Humana, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, 79070-900, MS, Brazil
| | - Dênis P de Lima
- Laboratório de Síntese e Transformação de Moléculas Orgânicas -SINTMOL, Instituto de Química, Universidade Federal de Mato Grosso do Sul, Av. Senador Filinto Muller, Campo Grande, 79074-460 MS, Brazil
| |
Collapse
|
7
|
Fernández-García M, Mesquita I, Ferreira C, Araújo M, Saha B, Rey-Stolle MF, García A, Silvestre R, Barbas C. Leishmania donovani Induces Multiple Dynamic Responses in the Metabolome Associated with Amastigote Differentiation and Maturation Inside the Human Macrophage. J Proteome Res 2023. [PMID: 37339249 DOI: 10.1021/acs.jproteome.2c00845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Leishmania donovani infection of macrophages drives profound changes in the metabolism of both the host macrophage and the parasite, which undergoes different phases of development culminating in replication and propagation. However, the dynamics of this parasite-macrophage cometabolome are poorly understood. In this study, a multiplatform metabolomics pipeline combining untargeted, high-resolution CE-TOF/MS and LC-QTOF/MS with targeted LC-QqQ/MS was followed to characterize the metabolome alterations induced in L. donovani-infected human monocyte-derived macrophages from different donors at 12, 36, and 72 h post-infection. The set of alterations known to occur during Leishmania infection of macrophages, substantially expanded in this investigation, characterized the dynamics of the glycerophospholipid, sphingolipid, purine, pentose phosphate, glycolytic, TCA, and amino acid metabolism. Our results showed that only citrulline, arginine, and glutamine exhibited constant trends across all studied infection time points, while most metabolite alterations underwent a partial recovery during amastigote maturation. We determined a major metabolite response pointing to an early induction of sphingomyelinase and phospholipase activities and correlated with amino acid depletion. These data represent a comprehensive overview of the metabolome alterations occurring during promastigote-to-amastigote differentiation and maturation of L. donovani inside macrophages that contributes to our understanding of the relationship between L. donovani pathogenesis and metabolic dysregulation.
Collapse
Affiliation(s)
- Miguel Fernández-García
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, España
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, España
| | - Inês Mesquita
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Carolina Ferreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Marta Araújo
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Bhaskar Saha
- National Centre for Cell Science, 411007 Pune, India
| | - Ma Fernanda Rey-Stolle
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, España
| | - Antonia García
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, España
| | - Ricardo Silvestre
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, España
| |
Collapse
|
8
|
Aiebchun T, Rasri N, Kiriwan D, Siripattanapipong S, Choowongkomon K. In Vitro and In Silico Studies of Kinase Inhibitor of MAPK3 Protein to Determine Leishmania martiniquensis Treatment. Acta Parasitol 2023; 68:240-248. [PMID: 36637694 DOI: 10.1007/s11686-023-00659-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 01/02/2023] [Indexed: 01/14/2023]
Abstract
PURPOSE Leishmaniasis is a parasitic disease transmitted by the bite of the phlebotomine female sand fly. Currently, no reported effective vaccines are available for the treatment of leishmaniasis; consequently, restricting this disease completely depends on controlling its transmission. Mitogen-activated protein (MAP) kinases have been reported to be involved in the regulation of the flagellum length and hence play an important role in disease transmission, especially the MAPK3 protein. Therefore, the current work focused on identifying approved drugs that can inhibit the MAPK3 protein. METHODS First, the recombinant plasmid (pET28b( +) MAPK3) was cloned into E. coli strain BL21 using the heatshock method. Afterward, E. coli was induced using IPTG, and cells were harvested for protein purification in the next step. After that, the MAPK3 protein was purified using Ni-NTA column. Then, the inhibition kinase activity of the purified MAPK3 protein was performed using an ADP-Glo™ Kinase Assay kit. Furthermore, the cytotoxicity of Leishmania cells were detected by alamarBlue™ Cell Viability Reagent. Finally, the binding affinity within the binding site of MAPK3 protein was performed by computational methods. RESULTS Purification of the MAPK3 protein was done using an Ni-NTA column and a protein band was identified at the expected 44 kDa molecular weight. Afterward, the ability of commercial drugs (afatinib and lapatinib) to inhibit the purified MAPK3 kinase activity was performed using an ADP-Glo™ Kinase Assay kit. The half-maximal inhibitory concentrations (IC50) of two drugs inhibited the MAPK3 protein within the same range of IC50 values (3.27 and 2.22 µM for afatinib and lapatinib, respectively). Furthermore, the cytotoxicity assay of compounds toward the extracellular promastigote and intracellular amastigote stages was investigated using alamarBlue™ Cell Viability Reagent. The results showed that both drugs were more efficient against extracellular promastigotes and intracellular amastigotes of both Leishmania donovani and Leishmania martiniquensis. Finally, the molecular dynamics simulation (MD) was performed to study the intermolecular interactions of both drugs with MAPK3 protein. From 100 ns molecular dynamics simulation, the structural stability of both drugs in a complex with MAPK3 was quite stable. CONCLUSION This work was suggesting that afatinib and lapatinib act as MAPK3 inhibitors and might be developed for leishmaniasis treatment.
Collapse
Affiliation(s)
- Thitinan Aiebchun
- Department of Biochemistry, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Rd,Chatuchak, Bangkok, 10900, Thailand
| | - Natchaya Rasri
- Department of Biochemistry, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Rd,Chatuchak, Bangkok, 10900, Thailand
| | - Duangnapa Kiriwan
- Department of Biochemistry, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Rd,Chatuchak, Bangkok, 10900, Thailand
| | | | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Rd,Chatuchak, Bangkok, 10900, Thailand.
| |
Collapse
|
9
|
Cayla M, Nievas YR, Matthews KR, Mottram JC. Distinguishing functions of trypanosomatid protein kinases. Trends Parasitol 2022; 38:950-961. [PMID: 36075845 DOI: 10.1016/j.pt.2022.08.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 01/13/2023]
Abstract
Trypanosomatid parasitic protozoa are divergent from opisthokont models and have evolved unique mechanisms to regulate their complex life cycles and to adapt to a range of hosts. Understanding how these organisms respond, adapt, and persist in their different hosts could reveal optimal drug-control strategies. Protein kinases are fundamental to many biological processes such as cell cycle control, adaptation to stress, and cellular differentiation. Therefore, we have focused this review on the features and functions of protein kinases that distinguish trypanosomatid kinomes from other eukaryotes. We describe the latest research, highlighting similarities and differences between two groups of trypanosomatid parasites, Leishmania and African trypanosomes.
Collapse
Affiliation(s)
- Mathieu Cayla
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Y Romina Nievas
- York Biomedical Research Institute, Department of Biology, University of York, York, UK
| | - Keith R Matthews
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Jeremy C Mottram
- York Biomedical Research Institute, Department of Biology, University of York, York, UK.
| |
Collapse
|
10
|
Oliveira IH, Kjeldsen F, Melo-Braga MN, Verano-Braga T, de Andrade HM. Assessing the effects of Leishmania (Leishmania) infantum and L. (L.) amazonensis infections in macrophages using a quantitative proteome approach. Exp Parasitol 2022; 243:108413. [DOI: 10.1016/j.exppara.2022.108413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 09/19/2022] [Accepted: 10/18/2022] [Indexed: 11/30/2022]
|
11
|
Yadav S, Anand A, Ramalingam K, Balodi DC, Maras JS, Goyal N. Unraveling of interacting protein network of chaperonin TCP1 gamma subunit of Leishmania donovani. Cell Stress Chaperones 2022; 27:205-222. [PMID: 35199315 PMCID: PMC9106790 DOI: 10.1007/s12192-022-01262-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/01/2022] [Accepted: 02/04/2022] [Indexed: 11/03/2022] Open
Abstract
T-complex polypeptide-1 (TCP1) is a group II chaperonin that folds various cellular proteins. About 10% of cytosolic proteins in yeast have been shown to flux through the TCP1 protein complex indicating that it interacts and folds a plethora of substrate proteins that perform essential functions. In Leishmania donovani, the gamma subunit of TCP1 (LdTCP1γ) has been shown to form a homo-oligomeric complex and exhibited ATP-dependent protein folding activity. LdTCP1γ is essential for the growth and infectivity of the parasite. The interacting partners of L. donovani TCP1γ, involved in many cellular processes, are far from being understood. In this study, we utilized co-immunoprecipitation assay coupled with liquid chromatography-mass spectrometry (LC-MS) to unravel protein-protein interaction (PPI) networks of LdTCP1γ in the L. donovani parasite. Label-free quantification (LFQ) proteomic analysis revealed 719 interacting partners of LdTCP1γ. String analysis showed that LdTCP1γ interacts with all subunits of TCP1 complex as well as other proteins belonging to pathways like metabolic process, ribosome, protein folding, sorting, and degradation. Trypanothione reductase, identified as one of the interacting partners, is refolded by LdTCP1γ. In addition, the differential expression of LdTCP1γ modulates the trypanothione reductase activity in L. donovani parasite. The study provides novel insight into the role of LdTCP1γ that will pave the way to better understand parasite biology by identifying the interacting partners of this chaperonin.
Collapse
Affiliation(s)
- Shailendra Yadav
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Gaziabaad, 201002, India
| | - Apeksha Anand
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Gaziabaad, 201002, India
| | - Karthik Ramalingam
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Deep Chandra Balodi
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Gaziabaad, 201002, India
| | - Jaswinder Singh Maras
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, 110070, India
| | - Neena Goyal
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, India.
- Academy of Scientific and Innovative Research (AcSIR), Gaziabaad, 201002, India.
| |
Collapse
|
12
|
The Astonishing Large Family of HSP40/DnaJ Proteins Existing in Leishmania. Genes (Basel) 2022; 13:genes13050742. [PMID: 35627127 PMCID: PMC9141911 DOI: 10.3390/genes13050742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/14/2022] [Accepted: 04/21/2022] [Indexed: 02/04/2023] Open
Abstract
Abrupt environmental changes are faced by Leishmania parasites during transmission from a poikilothermic insect vector to a warm-blooded host. Adaptation to harsh environmental conditions, such as nutrient deprivation, hypoxia, oxidative stress and heat shock needs to be accomplished by rapid reconfiguration of gene expression and remodeling of protein interaction networks. Chaperones play a central role in the maintenance of cellular homeostasis, and they are responsible for crucial tasks such as correct folding of nascent proteins, protein translocation across different subcellular compartments, avoiding protein aggregates and elimination of damaged proteins. Nearly one percent of the gene content in the Leishmania genome corresponds to members of the HSP40 family, a group of proteins that assist HSP70s in a variety of cellular functions. Despite their expected relevance in the parasite biology and infectivity, little is known about their functions or partnership with the different Leishmania HSP70s. Here, we summarize the structural features of the 72 HSP40 proteins encoded in the Leishmania infantum genome and their classification into four categories. A review of proteomic data, together with orthology analyses, allow us to postulate cellular locations and possible functional roles for some of them. A detailed study of the members of this family would provide valuable information and opportunities for drug discovery and improvement of current treatments against leishmaniasis.
Collapse
|
13
|
Monte Neto RLD, Moreira POL, de Sousa AM, Garcia MADN, Maran SR, Moretti NS. Antileishmanial metallodrugs and the elucidation of new drug targets linked to post-translational modifications machinery: pitfalls and progress. Mem Inst Oswaldo Cruz 2022; 117:e210403. [PMID: 35320824 PMCID: PMC8944189 DOI: 10.1590/0074-02760220403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/17/2022] [Indexed: 11/29/2022] Open
Abstract
Despite the increasing number of manuscripts describing potential alternative antileishmanial compounds, little is advancing on translating these knowledges to new products to treat leishmaniasis. This is in part due to the lack of standardisations during pre-clinical drug discovery stage and also depends on the alignment of goals among universities/research centers, government and pharmaceutical industry. Inspired or not by drug repurposing, metal-based antileishmanial drugs represent a class that deserves more attention on its use for leishmaniasis chemotherapy. Together with new chemical entities, progresses have been made on the knowledge of parasite-specific drug targets specially after using CRISPR/Cas system for functional studies. In this regard, Leishmania parasites undergoe post-translational modification as key regulators in several cellular processes, which represents an entire new field for drug target elucidation, once this is poorly explored. This perspective review describes the advances on antileishmanial metallodrugs and the elucidation of drug targets based on post-translational modifications, highlighting the limitations on the drug discovery/development process and suggesting standardisations focused on products addressed to who need it most.
Collapse
Affiliation(s)
- Rubens Lima do Monte Neto
- Fundação Oswaldo Cruz-Fiocruz, Instituto René Rachou, Grupo de Pesquisas em Biotecnologia Aplicada ao Estudo de Patógenos, Belo Horizonte, MG, Brasil
| | - Paulo Otávio Lourenço Moreira
- Fundação Oswaldo Cruz-Fiocruz, Instituto René Rachou, Grupo de Pesquisas em Biotecnologia Aplicada ao Estudo de Patógenos, Belo Horizonte, MG, Brasil
| | - Alessandra Mara de Sousa
- Fundação Oswaldo Cruz-Fiocruz, Instituto René Rachou, Grupo de Pesquisas em Biotecnologia Aplicada ao Estudo de Patógenos, Belo Horizonte, MG, Brasil
| | - Miguel Antonio do Nascimento Garcia
- Universidade Federal de São Paulo, Departamento de Microbiologia, Imunologia e Parasitologia, Laboratório de Biologia Molecular de Patógenos, São Paulo, SP, Brasil
| | - Suellen Rodrigues Maran
- Universidade Federal de São Paulo, Departamento de Microbiologia, Imunologia e Parasitologia, Laboratório de Biologia Molecular de Patógenos, São Paulo, SP, Brasil
| | - Nilmar Silvio Moretti
- Universidade Federal de São Paulo, Departamento de Microbiologia, Imunologia e Parasitologia, Laboratório de Biologia Molecular de Patógenos, São Paulo, SP, Brasil
| |
Collapse
|
14
|
Monte Neto RLD, Moreira POL, de Sousa AM, Garcia MADN, Maran SR, Moretti NS. Antileishmanial metallodrugs and the elucidation of new drug targets linked to post-translational modifications machinery: pitfalls and progress. Mem Inst Oswaldo Cruz 2022. [DOI: 10.1590/0074-02760210403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
15
|
Dias-Lopes G, Zabala-Peñafiel A, de Albuquerque-Melo BC, Souza-Silva F, Menaguali do Canto L, Cysne-Finkelstein L, Alves CR. Axenic amastigotes of Leishmania species as a suitable model for in vitro studies. Acta Trop 2021; 220:105956. [PMID: 33979642 DOI: 10.1016/j.actatropica.2021.105956] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 12/26/2022]
Abstract
Leishmania spp. are etiological agents of infection diseases, which in some cases can be fatal. The main forms of their biological cycle, promastigotes and amastigotes, can be maintained in vitro. While promastigotes are easier to maintain, amastigotes are more complex and can be obtained through different ways, including infection assays of tissues or in vitro cells, and differentiation from promastigotes to axenic amastigotes. Several protocols have been proposed for in vitro differentiation for at least 12 Leishmania spp. of both subgenera, Leishmania and Viannia. In this review we propose a critical summary of axenic amastigotes induction, as well as the impact of these strategies on metabolic pathways and regulatory networks analyzed by omics approaches. The parameters used by different research groups show considerable variations in temperature, pH and induction stages, as highlighted here for Leishmania (Viannia) braziliensis. Therefore, a consensus on strategies for inducing amastigogenesis is necessary to improve accuracy and even define stage-specific biomarkers. In fact, the axenic amastigote model has contributed to elucidate several aspects of the parasite cycle, however, since it does not reproduce the intracellular environment, its use requires several precautions. In addition, we present a discussion about using axenic amastigotes for drug screening, suggesting the need of a more sensitive methodology to verify cell viability in these tests. Collectively, this review explores the advantages and limitations found in studies with axenic amastigotes, done for more than 30 years, and discuss the gaps that impair their use as a suitable model for in vitro studies.
Collapse
|
16
|
Zilberstein D. Lysosome Sensing Is a Key Mechanism in Leishmania Intracellular Development. Front Microbiol 2021; 12:667807. [PMID: 34025623 PMCID: PMC8137843 DOI: 10.3389/fmicb.2021.667807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 03/25/2021] [Indexed: 01/01/2023] Open
Abstract
Phagolysosomes of macrophages are the niche where the parasitic protozoan Leishmania resides and causes human leishmaniasis. During infection, this organism encounters dramatic environmental changes. These include heat shock (from 26°C in the vector to 33°C or 37°C in the host, for cutaneous and visceral species, respectively) and acidic pH typical to the lysosome and nutrient availability. Leishmania cells developed ways to sense the lysosome-specific environment (acidic pH and body temperature) as means of recognition and, subsequently, initiation of differentiation into the intracellular form. Recent studies have indicated that protein kinase A plays a role as the gatekeeper that enables differentiation initiation. This review provides an update on the lysosome signaling pathway-mediated Leishmania intracellular development.
Collapse
Affiliation(s)
- Dan Zilberstein
- Faculty of Biology, Technion – Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
17
|
de Lima GB, de Lima Cavalcanti TYV, de Brito ANALM, de Assis LA, Andrade-Vieira RP, Freire ER, da Silva Assunção TR, de Souza Reis CR, Zanchin NIT, Guimarães BG, de-Melo-Neto OP. The translation initiation factor EIF4E5 from Leishmania: crystal structure and interacting partners. RNA Biol 2021; 18:2433-2449. [PMID: 33945405 DOI: 10.1080/15476286.2021.1918919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The mRNA cap-binding protein, eIF4E, mediates the recognition of the mRNA 5' end and, as part of the heterotrimeric eIF4F complex, facilitates the recruitment of the ribosomal subunits to initiate eukaryotic translation. Various regulatory events involving eIF4E and a second eIF4F subunit, eIF4G, are required for proper control of translation initiation. In pathogenic trypanosomatids, six eIF4Es and five eIF4Gs have been described, several forming different eIF4F-like complexes with yet unresolved roles. EIF4E5 is one of the least known of the trypanosomatid eIF4Es and has not been characterized in Leishmania species. Here, we used immunoprecipitation assays, combined with mass-spectrometry, to identify major EIF4E5 interacting proteins in L. infantum. A constitutively expressed, HA-tagged, EIF4E5 co-precipitated mainly with EIF4G1 and binding partners previously described in Trypanosoma brucei, EIF4G1-IP, RBP43 and the 14-3-3 proteins. In contrast, no clear co-precipitation with EIF4G2, also previously reported, was observed. EIF4E5 also co-precipitated with protein kinases, possibly associated with cell-cycle regulation, selected RNA binding proteins and histones. Phosphorylated residues were identified and mapped to the Leishmania-specific C-terminal end. Mutagenesis of the tryptophan residue (W53) postulated to mediate interactions with protein partners or of a neighbouring tryptophan conserved in Leishmania (W45) did not substantially impair the identified interactions. Finally, the crystal structure of Leishmania EIF4E5 evidences remarkable differences in the eIF4G interfacing region, when compared with human eIF4E-1 and with its Trypanosoma orthologue. Mapping of its C-terminal end near the cap-binding site also imply relevant differences in cap-binding function and/or regulation.
Collapse
Affiliation(s)
- Gustavo Barbosa de Lima
- Departamento de Microbiologia, Instituto Aggeu Magalhães, FIOCRUZ-PE, Av. Moraes Rego s/n, Recife-PE, Brazil
| | - Thaíse Yasmine Vasconcelos de Lima Cavalcanti
- Departamento de Microbiologia, Instituto Aggeu Magalhães, FIOCRUZ-PE, Av. Moraes Rego s/n, Recife-PE, Brazil.,Programa de Pós-Graduação em Genética, Universidade Federal de Pernambuco, Recife-PE, Brazil
| | - Adriana Neuman Albuquerque Lins Moura de Brito
- Departamento de Microbiologia, Instituto Aggeu Magalhães, FIOCRUZ-PE, Av. Moraes Rego s/n, Recife-PE, Brazil.,Programa de Pós-Graduação em Genética, Universidade Federal de Pernambuco, Recife-PE, Brazil
| | - Ludmilla Arruda de Assis
- Departamento de Microbiologia, Instituto Aggeu Magalhães, FIOCRUZ-PE, Av. Moraes Rego s/n, Recife-PE, Brazil
| | | | - Eden Ribeiro Freire
- Departamento de Microbiologia, Instituto Aggeu Magalhães, FIOCRUZ-PE, Av. Moraes Rego s/n, Recife-PE, Brazil.,Laboratório de Biologia Estrutural e Engenharia de Proteínas, Instituto Carlos Chagas, FIOCRUZ-PR, Curitiba-PR, Brazil
| | | | | | - Nilson Ivo Tonin Zanchin
- Laboratório de Biologia Estrutural e Engenharia de Proteínas, Instituto Carlos Chagas, FIOCRUZ-PR, Curitiba-PR, Brazil
| | - Beatriz Gomes Guimarães
- Laboratório de Biologia Estrutural e Engenharia de Proteínas, Instituto Carlos Chagas, FIOCRUZ-PR, Curitiba-PR, Brazil
| | | |
Collapse
|
18
|
Freitas-Mesquita AL, Dos-Santos ALA, Meyer-Fernandes JR. Involvement of Leishmania Phosphatases in Parasite Biology and Pathogeny. Front Cell Infect Microbiol 2021; 11:633146. [PMID: 33968798 PMCID: PMC8100340 DOI: 10.3389/fcimb.2021.633146] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 04/06/2021] [Indexed: 01/01/2023] Open
Abstract
In the Leishmania lifecycle, the motile promastigote form is transmitted from the sand fly vector to a mammalian host during a blood meal. Inside vertebrate host macrophages, the parasites can differentiate into the amastigote form and multiply, causing leishmaniasis, one of the most significant neglected tropical diseases. Leishmania parasites face different conditions throughout their development inside sand flies. Once in the mammalian host, the parasites have to overcome the microbicide repertoire of the cells of the immune system to successfully establish the infection. In this context, the expression of protein phosphatases is of particular interest. Several members of the serine/threonine-specific protein phosphatase (STP), protein tyrosine phosphatase (PTP), and histidine acid phosphatase (HAcP) families have been described in different Leishmania species. Although their physiological roles have not been fully elucidated, many studies suggest they have an involvement with parasite biology and pathogeny. Phosphatases play a role in adaptation to nutrient starvation during parasite passage through the sand fly midgut. They are also important to parasite virulence, mainly due to the modulation of host cytokine production and impairment of the microbiocidal potential of macrophages. Furthermore, recent whole-genome expression analyses have shown that different phosphatases are upregulated in metacyclic promastigotes, the infective form of the mammalian host. Leishmania phosphatases are also upregulated in drug-resistant strains, probably due to the increase in drug efflux related to the activation of ABC transporters. Throughout this review, we will describe the physiological roles that have been attributed to Leishmania endogenous phosphatases, including their involvement in the adaptation, survival, and proliferation of the parasites inside their hosts.
Collapse
Affiliation(s)
- Anita Leocadio Freitas-Mesquita
- Instituto de Bioquímica Médica Leopoldo De Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - André Luiz Araújo Dos-Santos
- Instituto de Bioquímica Médica Leopoldo De Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - José Roberto Meyer-Fernandes
- Instituto de Bioquímica Médica Leopoldo De Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
19
|
Gioseffi A, Edelmann MJ, Kima PE. Intravacuolar Pathogens Hijack Host Extracellular Vesicle Biogenesis to Secrete Virulence Factors. Front Immunol 2021; 12:662944. [PMID: 33959131 PMCID: PMC8093443 DOI: 10.3389/fimmu.2021.662944] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/30/2021] [Indexed: 12/18/2022] Open
Abstract
Extracellular vesicles (EVs) have garnered significant interest in recent years due to their contributions to cell-to-cell communication and disease processes. EVs are composed of a complex profile of bioactive molecules, which include lipids, nucleic acids, metabolites, and proteins. Although the biogenesis of EVs released by cells under various normal and abnormal conditions has been well-studied, there is incomplete knowledge about how infection influences EV biogenesis. EVs from infected cells contain specific molecules of both host and pathogen origin that may contribute to pathogenesis and the elicitation of the host immune response. Intracellular pathogens exhibit diverse lifestyles that undoubtedly dictate the mechanisms by which their molecules enter the cell’s exosome biogenesis schemes. We will discuss the current understanding of the mechanisms used during infection to traffic molecules from their vacuolar niche to host EVs by selected intravacuolar pathogens. We initially review general exosome biogenesis schemes and then discuss what is known about EV biogenesis in Mycobacterium, Plasmodium, Toxoplasma, and Leishmania infections, which are pathogens that reside within membrane delimited compartments in phagocytes at some time in their life cycle within mammalian hosts. The review includes discussion of the need for further studies into the biogenesis of EVs to better understand the contributions of these vesicles to host-pathogen interactions, and to uncover potential therapeutic targets to control these pathogens.
Collapse
Affiliation(s)
- Anna Gioseffi
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Mariola J Edelmann
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Peter E Kima
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| |
Collapse
|
20
|
Papadaki A, Tziouvara O, Kotopouli A, Koumarianou P, Doukas A, Rios P, Tardieux I, Köhn M, Boleti H. The Leishmania donovani LDBPK_220120.1 Gene Encodes for an Atypical Dual Specificity Lipid-Like Phosphatase Expressed in Promastigotes and Amastigotes; Substrate Specificity, Intracellular Localizations, and Putative Role(s). Front Cell Infect Microbiol 2021; 11:591868. [PMID: 33842381 PMCID: PMC8027504 DOI: 10.3389/fcimb.2021.591868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/25/2021] [Indexed: 11/13/2022] Open
Abstract
The intracellular protozoan parasites of the Leishmania genus are responsible for Leishmaniases, vector borne diseases with a wide range of clinical manifestations. Leishmania (L.) donovani causes visceral leishmaniasis (kala azar), the most severe of these diseases. Along their biological cycle, Leishmania parasites undergo distinct developmental transitions including metacyclogenesis and differentiation of metacyclic promastigotes (MPs) to amastigotes. Metacyclogenesis inside the phlebotomine sandfly host's midgut converts the procyclic dividing promastigotes to non-dividing infective MPs eventually injected into the skin of mammalian hosts and phagocytosed by macrophages where the MPs are converted inside modified phagolysosomes to the intracellular amastigotes. These developmental transitions involve dramatic changes in cell size and shape and reformatting of the flagellum requiring thus membrane and cytoskeleton remodeling in which phosphoinositide (PI) signaling and metabolism must play central roles. This study reports on the LDBPK_220120.1 gene, the L. donovani ortholog of LmjF.22.0250 from L. major that encodes a phosphatase from the "Atypical Lipid Phosphatases" (ALPs) enzyme family. We confirmed the expression of the LDBPK_220120.1 gene product in both L. donovani promastigotes and axenic amastigotes and showed that it behaves in vitro as a Dual Specificity P-Tyr and monophosphorylated [PI(3)P and PI(4)P] PI phosphatase and therefore named it LdTyrPIP_22 (Leishmaniad onovani Tyrosine PI Phosphatase, gene locus at chromosome 22). By immunofluorescence confocal microscopy we localized the LdTyrPIP_22 in several intracellular sites in the cell body of L. donovani promastigotes and amastigotes and in the flagellum. A temperature and pH shift from 25°C to 37°C and from pH 7 to 5.5, induced a pronounced recruitment of LdTyrPIP_22 epitopes to the flagellar pocket and a redistribution around the nucleus. These results suggest possible role(s) for this P-Tyr/PI phosphatase in the regulation of processes initiated or upregulated by this temperature/pH shift that contribute to the developmental transition from MPs to amastigotes inside the mammalian host macrophages.
Collapse
Affiliation(s)
- Amalia Papadaki
- Intracellular Parasitism Laboratory, Department of Microbiology, Hellenic Pasteur Institute, Athens, Greece
| | - Olympia Tziouvara
- Intracellular Parasitism Laboratory, Department of Microbiology, Hellenic Pasteur Institute, Athens, Greece
| | - Anastasia Kotopouli
- Intracellular Parasitism Laboratory, Department of Microbiology, Hellenic Pasteur Institute, Athens, Greece
| | - Petrina Koumarianou
- Intracellular Parasitism Laboratory, Department of Microbiology, Hellenic Pasteur Institute, Athens, Greece.,Light Microscopy Unit, Hellenic Pasteur Institute, Athens, Greece
| | - Anargyros Doukas
- Intracellular Parasitism Laboratory, Department of Microbiology, Hellenic Pasteur Institute, Athens, Greece
| | - Pablo Rios
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Isabelle Tardieux
- Team «Biomechanics of Host Parasite Interactions», Institut for Advanced BioSciences, Univ. Grenoble Alpes, Inserm U1209 - CNRS UMR 5309, 38700 La Tronche, France
| | - Maja Köhn
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Haralabia Boleti
- Intracellular Parasitism Laboratory, Department of Microbiology, Hellenic Pasteur Institute, Athens, Greece.,Light Microscopy Unit, Hellenic Pasteur Institute, Athens, Greece
| |
Collapse
|
21
|
Baron N, Tupperwar N, Dahan I, Hadad U, Davidov G, Zarivach R, Shapira M. Distinct features of the Leishmania cap-binding protein LeishIF4E2 revealed by CRISPR-Cas9 mediated hemizygous deletion. PLoS Negl Trop Dis 2021; 15:e0008352. [PMID: 33760809 PMCID: PMC8021392 DOI: 10.1371/journal.pntd.0008352] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 04/05/2021] [Accepted: 02/15/2021] [Indexed: 01/08/2023] Open
Abstract
Leishmania parasites cycle between sand-fly vectors and mammalian hosts adapting to alternating environments by stage-differentiation accompanied by changes in the proteome profiles. Translation regulation plays a central role in driving the differential program of gene expression since control of gene regulation in Leishmania is mostly post-transcriptional. The Leishmania genome encodes six eIF4E paralogs, some of which bind a dedicated eIF4G candidate, and each eIF4E is assumed to have specific functions with perhaps some overlaps. However, LeishIF4E2 does not bind any known eIF4G ortholog and was previously shown to comigrate with the polysomal fractions of sucrose gradients in contrast to the other initiation factors that usually comigrate with pre-initiation and initiation complexes. Here we deleted one of the two LeishIF4E2 gene copies using the CRISPR-Cas9 methodology. The deletion caused severe alterations in the morphology of the mutant cells that became round, small, and equipped with a very short flagellum that did not protrude from its pocket. Reduced expression of LeishIF4E2 had no global effect on translation and growth, unlike other LeishIF4Es; however, there was a change in the proteome profile of the LeishIF4E2(+/-) cells. Upregulated proteins were related mainly to general metabolic processes including enzymes involved in fatty acid metabolism, DNA repair and replication, signaling, and cellular motor activity. The downregulated proteins included flagellar rod and cytoskeletal proteins, as well as surface antigens involved in virulence. Moreover, the LeishIF4E2(+/-) cells were impaired in their ability to infect cultured macrophages. Overall, LeishIF4E2 does not behave like a general translation factor and its function remains elusive. Our results also suggest that the individual LeishIF4Es perform unique functions. Leishmania parasites cause a broad spectrum of diseases with different pathological symptoms. During their life cycle the parasites shuffle between sand-fly vectors and mammalian hosts adapting to the changing environments via a stage specific program of gene expression that promotes their survival. Translation initiation plays a key role in control of gene expression and in Leishmania this is exemplified by the presence of multiple cap-binding complexes that interact with mRNAs. The parasites encode multiple paralogs of the cap-binding translation initiation factor eIF4E and of its corresponding binding partner eIF4G forming complexes with different potential functions. The role of LeishIF4E2 remains elusive: it does not bind any of the LeishIF4G candidate subunits and associates with polysomes, a feature less common for canonical translation factors. Here we generated a hemizygous Leishmania mutant of the least studied cap-binding paralog, LeishIF4E2, by eliminating one of the two alleles using the CRISPR-Cas9 methodology. The mutant showed morphological defects with short and rounded cells, and a significant reduction in their flagellar length. Moreover, the LeishIF4E2(+/-) cells were impaired in their ability to infect cultured macrophages. The mutants showed differences in their proteome: upregulated proteins were related mainly to general metabolic processes including enzymes involved in fatty acid metabolism, DNA repair and replication, signaling, and cellular motor activity. Downregulated proteins included flagellar rod and cytoskeletal proteins, as well as surface antigens involved in virulence. Overall, LeishIF4E2 does not behave like a general translation factor and its function remains elusive. It could affect translation of a particular set of transcripts, causing direct or downstream effects that do not affect global translation. Our results suggest that individual LeishIF4Es perform specific functions.
Collapse
Affiliation(s)
- Nofar Baron
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Nitin Tupperwar
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Irit Dahan
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Uzi Hadad
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Geula Davidov
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Raz Zarivach
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Michal Shapira
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- * E-mail:
| |
Collapse
|
22
|
Comparative phosphoproteomic analysis unravels MAPK1 regulated phosphoproteins in Leishmania donovani. J Proteomics 2021; 240:104189. [PMID: 33757882 DOI: 10.1016/j.jprot.2021.104189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/05/2021] [Accepted: 03/09/2021] [Indexed: 12/18/2022]
Abstract
Mitogen Activated Protein Kinase1 (MAPK1) of Leishmania donovani functions as key regulators of various cellular activities, which seem to be imperative for parasite survival, infectivity, drug resistance and post-translational modification of chaperones/co-chaperones. However, very less is known about LdMAPK1 target proteins. With recent advancements in proteomics, we aimed to identify phosphoproteins which were differentially expressed in LdMAPK1 overexpressing (Dd8++/++) and single replacement mutants (Dd8+/) as compared to wild type (Dd8+/+) parasites, utilizing LC-MS/MS approach. An in-depth label-free phospoproteomic analysis revealed that modulation of LdMAPK1 expression significantly modulates expression levels of miscellaneous phosphoproteins which may act as its targets/substrates. Out of 1974 quantified phosphoproteins in parasite, 140 were significantly differentially expressed in MAPK1 overexpressing and single replacement mutants. These differentially expressed phosphoproteins are majorly associated with metabolism, signal transduction, replication, transcription, translation, transporters and cytoskeleton/motor proteins, hence suggested that MAPK1 may act in concert to modulate global biological processes. The study further implicated possible role of LdMAPK1 in regulation and management of stress machinery in parasite through post translational modifications. Precisely, comparative phosphoproteomics study has elucidated significant role of LdMAPK1 in regulating various pathways contributing in parasite biology with relevance to future drug development. SIGNIFICANCE: MAPKinase1, the downstream kinase of MAPK signal transduction pathway, has drawn much attention as potential therapeutic drug target due to their indispensable role in survival and infectivity of Leishmania donovani. However, limited information is available about its downstream effector proteins/signaling networks. Utilizing label free LC-MS/MS analysis, phosphoproteome of LdMAPK1 over-expressing (Dd8++/++) and LdMAPK1 single replacement mutants (Dd8+/-) with wild type (Dd8+/+) parasites was compared and identified 140 LdMAPK1 modulated phosphoproteins, mainly involved in pathways like signal transduction, metabolism, transcriptional, translational, post-translational modification and regulation of heat shock proteins. Interestingly, LdMAPK1 interacts directly with only six phosphoproteins i.e. casein kinase, casein kinase II, HSP83/HSP90, LACK, protein kinase and serine/threonine protein kinase. Thus, the study elucidates significant role of LdMAPK1 in Leishmania biology which may drive drug-discovery efforts against visceral leishmaniasis.
Collapse
|
23
|
Heat Shock Proteins as the Druggable Targets in Leishmaniasis: Promises and Perils. Infect Immun 2021; 89:IAI.00559-20. [PMID: 33139381 DOI: 10.1128/iai.00559-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Leishmania, the causative agent of leishmaniasis, is an intracellular pathogen that thrives in the insect gut and mammalian macrophages to complete its life cycle. Apart from temperature difference (26 to 37°C), it encounters several harsh conditions, including oxidative stress, inflammatory reactions, and low pH. Heat shock proteins (HSPs) play essential roles in cell survival by strategically reprogramming cellular processes and signaling pathways. HSPs assist cells in multiple functions, including differentiation, adaptation, virulence, and persistence in the host cell. Due to cyclical epidemiological patterns, limited chemotherapeutic options, drug resistance, and the absence of a vaccine, control of leishmaniasis remains a far-fetched dream. The essential roles of HSPs in parasitic differentiation and virulence and increased expression in drug-resistant strains highlight their importance in combating the disease. In this review, we highlighted the diverse physiological importance of HSPs present in Leishmania, emphasizing their significance in disease pathogenesis. Subsequently, we assessed the potential of HSPs as a chemotherapeutic target and underlined the challenges associated with it. Furthermore, we have summarized a few ongoing drug discovery initiatives that need to be explored further to develop clinically successful chemotherapeutic agents in the future.
Collapse
|
24
|
Andrade JM, Gonçalves LO, Liarte DB, Lima DA, Guimarães FG, de Melo Resende D, Santi AMM, de Oliveira LM, Velloso JPL, Delfino RG, Pescher P, Späth GF, Ruiz JC, Murta SMF. Comparative transcriptomic analysis of antimony resistant and susceptible Leishmania infantum lines. Parasit Vectors 2020; 13:600. [PMID: 33256787 PMCID: PMC7706067 DOI: 10.1186/s13071-020-04486-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/17/2020] [Indexed: 11/22/2022] Open
Abstract
Background One of the major challenges to leishmaniasis treatment is the emergence of parasites resistant to antimony. To study differentially expressed genes associated with drug resistance, we performed a comparative transcriptomic analysis between wild-type and potassium antimonyl tartrate (SbIII)-resistant Leishmania infantum lines using high-throughput RNA sequencing. Methods All the cDNA libraries were constructed from promastigote forms of each line, sequenced and analyzed using STAR for mapping the reads against the reference genome (L. infantum JPCM5) and DESeq2 for differential expression statistical analyses. All the genes were functionally annotated using sequence similarity search. Results The analytical pipeline considering an adjusted p-value < 0.05 and fold change > 2.0 identified 933 transcripts differentially expressed (DE) between wild-type and SbIII-resistant L. infantum lines. Out of 933 DE transcripts, 504 presented functional annotation and 429 were assigned as hypothetical proteins. A total of 837 transcripts were upregulated and 96 were downregulated in the SbIII-resistant L. infantum line. Using this DE dataset, the proteins were further grouped in functional classes according to the gene ontology database. The functional enrichment analysis for biological processes showed that the upregulated transcripts in the SbIII-resistant line are associated with protein phosphorylation, microtubule-based movement, ubiquitination, host–parasite interaction, cellular process and other categories. The downregulated transcripts in the SbIII-resistant line are assigned in the GO categories: ribonucleoprotein complex, ribosome biogenesis, rRNA processing, nucleosome assembly and translation. Conclusions The transcriptomic profile of L. infantum showed a robust set of genes from different metabolic pathways associated with the antimony resistance phenotype in this parasite. Our results address the complex and multifactorial antimony resistance mechanisms in Leishmania, identifying several candidate genes that may be further evaluated as molecular targets for chemotherapy of leishmaniasis.![]()
Collapse
Affiliation(s)
- Juvana Moreira Andrade
- Genômica Funcional de Parasitos, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, MG, Brazil
| | - Leilane Oliveira Gonçalves
- Grupo Informática de Biossistemas, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, MG, Brazil.,Programa de Pós-graduação em Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
| | | | - Davi Alvarenga Lima
- Genômica Funcional de Parasitos, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, MG, Brazil.,Grupo Informática de Biossistemas, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, MG, Brazil
| | | | - Daniela de Melo Resende
- Genômica Funcional de Parasitos, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, MG, Brazil.,Grupo Informática de Biossistemas, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, MG, Brazil
| | - Ana Maria Murta Santi
- Genômica Funcional de Parasitos, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, MG, Brazil
| | - Luciana Marcia de Oliveira
- Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, Institut Pasteur, Paris, France
| | | | - Renato Guimarães Delfino
- Grupo Informática de Biossistemas, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, MG, Brazil
| | - Pascale Pescher
- Unité de Parasitologie moléculaire et Signalisation, Département de Parasitologie et Mycologie, Institut Pasteur, Paris, France
| | - Gerald F Späth
- Unité de Parasitologie moléculaire et Signalisation, Département de Parasitologie et Mycologie, Institut Pasteur, Paris, France
| | - Jeronimo Conceição Ruiz
- Grupo Informática de Biossistemas, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, MG, Brazil. .,Programa de Pós-graduação em Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil.
| | | |
Collapse
|
25
|
Burge RJ, Damianou A, Wilkinson AJ, Rodenko B, Mottram JC. Leishmania differentiation requires ubiquitin conjugation mediated by a UBC2-UEV1 E2 complex. PLoS Pathog 2020; 16:e1008784. [PMID: 33108402 PMCID: PMC7647121 DOI: 10.1371/journal.ppat.1008784] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/06/2020] [Accepted: 09/10/2020] [Indexed: 12/27/2022] Open
Abstract
Post-translational modifications such as ubiquitination are important for orchestrating the cellular transformations that occur as the Leishmania parasite differentiates between its main morphological forms, the promastigote and amastigote. 2 E1 ubiquitin-activating (E1), 13 E2 ubiquitin-conjugating (E2), 79 E3 ubiquitin ligase (E3) and 20 deubiquitinating cysteine peptidase (DUB) genes can be identified in the Leishmania mexicana genome but, currently, little is known about the role of E1, E2 and E3 enzymes in this parasite. Bar-seq analysis of 23 E1, E2 and HECT/RBR E3 null mutants generated in promastigotes using CRISPR-Cas9 revealed numerous loss-of-fitness phenotypes in promastigote to amastigote differentiation and mammalian infection. The E2s UBC1/CDC34, UBC2 and UEV1 and the HECT E3 ligase HECT2 are required for the successful transformation from promastigote to amastigote and UBA1b, UBC9, UBC14, HECT7 and HECT11 are required for normal proliferation during mouse infection. Of all ubiquitination enzyme null mutants examined in the screen, Δubc2 and Δuev1 exhibited the most extreme loss-of-fitness during differentiation. Null mutants could not be generated for the E1 UBA1a or the E2s UBC3, UBC7, UBC12 and UBC13, suggesting these genes are essential in promastigotes. X-ray crystal structure analysis of UBC2 and UEV1, orthologues of human UBE2N and UBE2V1/UBE2V2 respectively, reveal a heterodimer with a highly conserved structure and interface. Furthermore, recombinant L. mexicana UBA1a can load ubiquitin onto UBC2, allowing UBC2-UEV1 to form K63-linked di-ubiquitin chains in vitro. Notably, UBC2 can cooperate in vitro with human E3s RNF8 and BIRC2 to form non-K63-linked polyubiquitin chains, showing that UBC2 can facilitate ubiquitination independent of UEV1, but association of UBC2 with UEV1 inhibits this ability. Our study demonstrates the dual essentiality of UBC2 and UEV1 in the differentiation and intracellular survival of L. mexicana and shows that the interaction between these two proteins is crucial for regulation of their ubiquitination activity and function. The post-translational modification of proteins is key for allowing Leishmania parasites to transition between the different life cycle stages that exist in its insect vector and mammalian host. In particular, components of the ubiquitin system are important for the transformation of Leishmania from its insect (promastigote) to mammalian (amastigote) stage and normal infection in mice. However, little is known about the role of the enzymes that generate ubiquitin modifications in Leishmania. Here we characterise 28 enzymes of the ubiquitination pathway and show that many are required for life cycle progression or mouse infection by this parasite. Two proteins, UBC2 and UEV1, were selected for further study based on their importance in the promastigote to amastigote transition. We demonstrate that UBC2 and UEV1 form a heterodimer capable of carrying out ubiquitination and that the structural basis for this activity is conserved between Leishmania, Saccharomyces cerevisiae and humans. We also show that the interaction of UBC2 with UEV1 alters the nature of the ubiquitination activity performed by UBC2. Overall, we demonstrate the important role that ubiquitination enzymes play in the life cycle and infection process of Leishmania and explore the biochemistry underlying UBC2 and UEV1 function.
Collapse
Affiliation(s)
- Rebecca J. Burge
- York Biomedical Research Institute and Department of Biology, University of York, United Kingdom
| | - Andreas Damianou
- York Biomedical Research Institute and Department of Biology, University of York, United Kingdom
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, United Kingdom
| | - Anthony J. Wilkinson
- York Biomedical Research Institute and York Structural Biology Laboratory, Department of Chemistry, University of York, United Kingdom
| | - Boris Rodenko
- UbiQ Bio BV, Amsterdam Science Park, the Netherlands
| | - Jeremy C. Mottram
- York Biomedical Research Institute and Department of Biology, University of York, United Kingdom
- * E-mail:
| |
Collapse
|
26
|
Damianou A, Burge RJ, Catta-Preta CMC, Geoghegan V, Nievas YR, Newling K, Brown E, Burchmore R, Rodenko B, Mottram JC. Essential roles for deubiquitination in Leishmania life cycle progression. PLoS Pathog 2020; 16:e1008455. [PMID: 32544189 PMCID: PMC7319358 DOI: 10.1371/journal.ppat.1008455] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 06/26/2020] [Accepted: 05/07/2020] [Indexed: 12/22/2022] Open
Abstract
The parasitic protozoan Leishmania requires proteasomal, autophagic and lysosomal proteolytic pathways to enact the extensive cellular remodelling that occurs during its life cycle. The proteasome is essential for parasite proliferation, yet little is known about the requirement for ubiquitination/deubiquitination processes in growth and differentiation. Activity-based protein profiling of L. mexicana C12, C19 and C65 deubiquitinating cysteine peptidases (DUBs) revealed DUB activity remains relatively constant during differentiation of procyclic promastigote to amastigote. However, when life cycle phenotyping (bar-seq) was performed on a pool including 15 barcoded DUB null mutants created in promastigotes using CRISPR-Cas9, significant loss of fitness was observed during differentiation and intracellular infection. DUBs 4, 7, and 13 are required for successful transformation from metacyclic promastigote to amastigote and DUBs 3, 5, 6, 8, 10, 11 and 14 are required for normal amastigote proliferation in mice. DUBs 1, 2, 12 and 16 are essential for promastigote viability and the essential role of DUB2 in establishing infection was demonstrated using DiCre inducible gene deletion in vitro and in vivo. DUB2 is found in the nucleus and interacts with nuclear proteins associated with transcription/chromatin dynamics, mRNA splicing and mRNA capping. DUB2 has broad linkage specificity, cleaving all the di-ubiquitin chains except for Lys27 and Met1. Our study demonstrates the crucial role that DUBs play in differentiation and intracellular survival of Leishmania and that amastigotes are exquisitely sensitive to disruption of ubiquitination homeostasis.
Collapse
Affiliation(s)
- Andreas Damianou
- York Biomedical Research Institute and Department of Biology, University of York, United Kingdom
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Rebecca J. Burge
- York Biomedical Research Institute and Department of Biology, University of York, United Kingdom
| | | | - Vincent Geoghegan
- York Biomedical Research Institute and Department of Biology, University of York, United Kingdom
| | - Y. Romina Nievas
- York Biomedical Research Institute and Department of Biology, University of York, United Kingdom
| | - Katherine Newling
- York Biomedical Research Institute and Department of Biology, University of York, United Kingdom
| | - Elaine Brown
- York Biomedical Research Institute and Department of Biology, University of York, United Kingdom
| | - Richard Burchmore
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Boris Rodenko
- UbiQ Bio BV, Amsterdam Science Park, The Netherlands
| | - Jeremy C. Mottram
- York Biomedical Research Institute and Department of Biology, University of York, United Kingdom
| |
Collapse
|
27
|
Ooi CP, Benz C, Urbaniak MD. Phosphoproteomic analysis of mammalian infective Trypanosoma brucei subjected to heat shock suggests atypical mechanisms for thermotolerance. J Proteomics 2020; 219:103735. [PMID: 32198071 DOI: 10.1016/j.jprot.2020.103735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/11/2020] [Accepted: 03/10/2020] [Indexed: 10/24/2022]
Abstract
The symptoms of African sleeping sickness, caused by the parasite Trypanosoma brucei, can include periods of fever as high as 41 °C which triggers a heat shock response in the parasite. To capture events involved in sensing and responding to heat shock in the mammalian infective form we have conducted a SILAC-based quantitative proteomic and phosphoproteomic analysis of T. brucei cells treated at 41 °C for 1h. Our analysis identified 193 heat shock responsive phosphorylation sites with an average of 5-fold change in abundance, but only 20 heat shock responsive proteins with average of 1.5-fold change. These data indicate that protein abundance does not rapidly respond (≤1 h) to heat shock, and that the changes observed in phosphorylation site abundance are larger and more widespread. The heat shock responsive phosphorylation sites showed enrichment of RNA binding proteins with putative roles in heat shock response included P-body / stress granules and the eukaryotic translation initiation 4F complex. The ZC3H11-MKT1 complex, which stabilises mRNAs of thermotolerance proteins, appears to represent a key signal integration node in the heat shock response. SIGNIFICANCE: We report the first quantitative study of changes in protein and phosphorylation site abundance in response to heat shock in the clinically relevant form of the human parasite Trypanosoma brucei. The identification of heat shock responsive phosphorylation sites on proteins with putative roles in thermotolerance including the ZC3H11-MKT1 complex provides evidence of the role dynamic phosphorylation of RNA binding proteins in co-ordinating heat shock. Temperature changes in the host are a major physiological challenge to parasites and factors conferring tolerance to heat shock constitute overlooked virulence factors. A better understanding of these virulence factors will pave the way for the development of novel drug therapies which selectively target T. brucei.
Collapse
Affiliation(s)
- Cher P Ooi
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington, London SW7 2AZ, UK.
| | - Corinna Benz
- Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YG, UK
| | - Michael D Urbaniak
- Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YG, UK.
| |
Collapse
|
28
|
Rocha VPC, Dacher M, Young SA, Kolokousi F, Efstathiou A, Späth GF, Soares MBP, Smirlis D. Leishmania dual-specificity tyrosine-regulated kinase 1 (DYRK1) is required for sustaining Leishmania stationary phase phenotype. Mol Microbiol 2020; 113:983-1002. [PMID: 31975452 DOI: 10.1111/mmi.14464] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 01/13/2020] [Accepted: 01/16/2020] [Indexed: 01/05/2023]
Abstract
Although the multiplicative and growth-arrested states play key roles in Leishmania development, the regulators of these transitions are largely unknown. In an attempt to gain a better understanding of these processes, we characterised one member of a family of protein kinases with dual specificity, LinDYRK1, which acts as a stasis regulator in other organisms. LinDYRK1 overexpressing parasites displayed a decrease in proliferation and in cell cycle re-entry of arrested cells. Parasites lacking LinDYRK1 displayed distinct fitness phenotypes in logarithmic and stationary growth phases. In logarithmic growth phase, LinDYRK1-/- parasites proliferated better than control lines, supporting a role of this kinase in stasis, while in stationary growth phase, LinDYRK1-/- parasites had important defects as they rounded up, accumulated vacuoles and lipid bodies and displayed subtle but consistent differences in lipid composition. Moreover, they expressed less metacyclic-enriched transcripts, displayed increased sensitivity to complement lysis and a significant reduction in survival within peritoneal macrophages. The distinct LinDYRK1-/- growth phase phenotypes were mirrored by the distinct LinDYRK1 localisations in logarithmic (mainly in flagellar pocket area and endosomes) and late stationary phase (mitochondrion). Overall, this work provides first evidence for the role of a DYRK family member in sustaining promastigote stationary phase phenotype and infectivity.
Collapse
Affiliation(s)
- Vinícius Pinto Costa Rocha
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
- Centro de Biotecnologia e Terapia Celular, Hospital São Rafael, Salvador, Brazil
| | - Mariko Dacher
- Unité de Parasitologie Moléculaire et Signalisation, Department of Parasites and Insect Vectors, Institut Pasteur and INSERM U1201, Paris, France
| | - Simon Alan Young
- Biomedical Sciences Research Complex, School of Biology, The University of St. Andrews, St. Andrews, UK
| | - Foteini Kolokousi
- Molecular Parasitology Laboratory, Microbiology Department, Hellenic Pasteur Institute, Athens, Greece
| | - Antonia Efstathiou
- Molecular Parasitology Laboratory, Microbiology Department, Hellenic Pasteur Institute, Athens, Greece
| | - Gerald Frank Späth
- Unité de Parasitologie Moléculaire et Signalisation, Department of Parasites and Insect Vectors, Institut Pasteur and INSERM U1201, Paris, France
| | - Milena Botelho Pereira Soares
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
- Centro de Biotecnologia e Terapia Celular, Hospital São Rafael, Salvador, Brazil
| | - Despina Smirlis
- Molecular Parasitology Laboratory, Microbiology Department, Hellenic Pasteur Institute, Athens, Greece
| |
Collapse
|
29
|
Manzano-Román R, Fuentes M. Relevance and proteomics challenge of functional posttranslational modifications in Kinetoplastid parasites. J Proteomics 2020; 220:103762. [PMID: 32244008 DOI: 10.1016/j.jprot.2020.103762] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/06/2020] [Accepted: 03/23/2020] [Indexed: 02/06/2023]
Abstract
Protozoan parasitic infections are health, social and economic issues impacting both humans and animals, with significant morbidity and mortality worldwide. Protozoan parasites have complicated life cycles with both intracellular and extracellular forms. As a consequence, protozoan adapt to changing environments in part through a dynamic enzyme-catalyzed process leading to reversible posttranslational modifications (PTMs). The characterization by proteomics approaches reveals the critical role of the PTMs of the proteins involved in host-pathogen interaction. The complexity of PTMs characterization is increased by the high diversity, stoichiometry, dynamic and also co-existence of several PTMs in the same moieties which crosstalk between them. Here, we review how to understand the complexity and the essential role of PTMs crosstalk in order to provide a new hallmark for vaccines developments, immunotherapies and personalized medicine. In addition, the importance of these motifs in the biology and biological cycle of kinetoplastid parasites is highlighted with key examples showing the potential to act as targets against protozoan diseases.
Collapse
Affiliation(s)
- R Manzano-Román
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007, Salamanca, Spain..
| | - M Fuentes
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007, Salamanca, Spain.; Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007, Salamanca, Spain
| |
Collapse
|
30
|
Genome-Wide Proteomics and Phosphoproteomics Analysis of Leishmania spp. During Differentiation. Methods Mol Biol 2020. [PMID: 32221921 DOI: 10.1007/978-1-0716-0294-2_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Determining variations in protein abundance and/or posttranslational modification as a function of time or upon induction by a signal in a particular cell type is central to quantitative proteomics. Isobaric labeling methodologies now allow for parallel quantification of proteins at various conditions concurrently or multiplexing in relatively quantitative proteomics workflows. Hence, mapping the protein expression profiles of various developmental stages of Leishmania parasites is possible with high-resolution mass spectrometry. To analyze global changes in protein expression and cellular signaling pathways during Leishmania differentiation and development is possible with a quantitative proteomics approach. The tandem mass tags (TMT) approach provides a chemical labeling method based on the principle of amine reactive tags; the maximum number of conditions that can be multiplexed is 10-plex. We describe herein a detailed method for sample preparation, TMT-labeling, mass spectrometry and data analysis of different developmental stages of Leishmania donovani parasites. This quantitative proteomic approach is useful to study dynamic changes in protein expression levels during L. donovani differentiation, and also allows in-depth analysis of signaling pathways via phosphoproteomics.
Collapse
|
31
|
Raj S, Saha G, Sasidharan S, Dubey VK, Saudagar P. Biochemical characterization and chemical validation of Leishmania MAP Kinase-3 as a potential drug target. Sci Rep 2019; 9:16209. [PMID: 31700105 PMCID: PMC6838069 DOI: 10.1038/s41598-019-52774-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/22/2019] [Indexed: 12/16/2022] Open
Abstract
Protozoan parasites of the Leishmania genus have evolved unique signaling pathways that can sense various environmental changes and trigger stage differentiation for survival and host infectivity. MAP kinase (MAPK) plays a critical role in various cellular activities like cell differentiation, proliferation, stress regulation, and apoptosis. The Leishmania donovani MAPK3 (LdMAPK3) is involved in the regulation of flagella length and hence plays an important role in disease transmission. Here, we reported the gene cloning, protein expression, biochemical characterizations, inhibition studies and cell proliferation assay of LdMAPK3. The recombinant purified LdMAPK3 enzyme obeys the Michaelis-Menten equation with Km and Vmax of LdMAPK3 was found to be 20.23 nM and 38.77 ± 0.71 nmoles ATP consumed/mg LdMAPK3/min respectively. The maximum kinase activity of LdMAPK3 was recorded at 35 °C and pH 7. The in-vitro inhibition studies with two natural inhibitors genistein (GEN) and chrysin (CHY) was evaluated against LdMAPK3. The Ki value for GEN and CHY were found to be 3.76 ± 0.28 µM and Ki = 8.75 ± 0.11 µM respectively. The IC50 value for the compounds, GEN and CHY against L. donovani promastigotes were calculated as 9.9 µg/mL and 13 µg/mL respectively. Our study, therefore, reports LdMAPK3 as a new target for therapeutic approach against leishmaniasis.
Collapse
Affiliation(s)
- Shweta Raj
- Department of Biotechnology, National Institute of Technology-Warangal, Telangana State, 506004, India
| | - Gundappa Saha
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Santanu Sasidharan
- Department of Biotechnology, National Institute of Technology-Warangal, Telangana State, 506004, India
| | - Vikash Kumar Dubey
- School of Biochemical Engineering, Indian Institute of Technology-Banaras Hindu University, Uttar Pradesh, 221005, India
| | - Prakash Saudagar
- Department of Biotechnology, National Institute of Technology-Warangal, Telangana State, 506004, India.
| |
Collapse
|
32
|
Xu P, Ianes C, Gärtner F, Liu C, Burster T, Bakulev V, Rachidi N, Knippschild U, Bischof J. Structure, regulation, and (patho-)physiological functions of the stress-induced protein kinase CK1 delta (CSNK1D). Gene 2019; 715:144005. [PMID: 31376410 PMCID: PMC7939460 DOI: 10.1016/j.gene.2019.144005] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/19/2019] [Accepted: 07/23/2019] [Indexed: 12/11/2022]
Abstract
Members of the highly conserved pleiotropic CK1 family of serine/threonine-specific kinases are tightly regulated in the cell and play crucial regulatory roles in multiple cellular processes from protozoa to human. Since their dysregulation as well as mutations within their coding regions contribute to the development of various different pathologies, including cancer and neurodegenerative diseases, they have become interesting new drug targets within the last decade. However, to develop optimized CK1 isoform-specific therapeutics in personalized therapy concepts, a detailed knowledge of the regulation and functions of the different CK1 isoforms, their various splice variants and orthologs is mandatory. In this review we will focus on the stress-induced CK1 isoform delta (CK1δ), thereby addressing its regulation, physiological functions, the consequences of its deregulation for the development and progression of diseases, and its potential as therapeutic drug target.
Collapse
Affiliation(s)
- Pengfei Xu
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Chiara Ianes
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Fabian Gärtner
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Congxing Liu
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Timo Burster
- Department of Biology, School of Science and Technology, Nazarbayev University, 53 Kabanbay Batyr Ave, Nur-Sultan 020000, Kazakhstan.
| | - Vasiliy Bakulev
- Ural Federal University named after the first President of Russia B. N. Eltsin, Technology for Organic Synthesis Laboratory, 19 Mirastr., 620002 Ekaterinburg, Russia.
| | - Najma Rachidi
- Unité de Parasitologie Moléculaire et Signalisation, Department of Parasites and Insect Vectors, Institut Pasteur and INSERM U1201, 25-28 Rue du Dr Roux, 75015 Paris, France.
| | - Uwe Knippschild
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Joachim Bischof
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| |
Collapse
|
33
|
Capelli-Peixoto J, Mule SN, Tano FT, Palmisano G, Stolf BS. Proteomics and Leishmaniasis: Potential Clinical Applications. Proteomics Clin Appl 2019; 13:e1800136. [PMID: 31347770 DOI: 10.1002/prca.201800136] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 07/02/2019] [Indexed: 02/06/2023]
Abstract
Leishmaniases are diseases caused by protozoan parasites of the genus Leishmania. They are endemic in 98 countries, affect around 12 million people worldwide and may present several distinct clinical forms. Unfortunately, there are only a few drugs available for treatment of leishmaniasis, which are toxic and not always effective. Different parasite species and different clinical forms require optimization of the treatment or more specific therapies, which are not available. The emergence of resistance is also a matter of concern. Besides, diagnosis can sometimes be complicated due to atypical manifestations and associations with other pathologies. In this review, proteomic data are presented and discussed in terms of their application in important issues in leishmaniasis such as parasite resistance to chemotherapy, diagnosis of active disease in patients and dogs, markers for different clinical forms, identification of virulence factors, and their potential use in vaccination. It is shown that proteomics has contributed to the discovery of potential biomarkers for prognosis, diagnosis, therapeutics, monitoring of disease progression, treatment follow-up and identification of vaccine candidates for specific diseases. However, the authors believe its capabilities have not yet been fully explored for routine clinical analysis for several reasons, which will be presented in this review.
Collapse
Affiliation(s)
- Janaína Capelli-Peixoto
- Leishmaniasis laboratory, Institute of Biomedical Sciences, Department of Parasitology, University of São Paulo, São Paulo, Brazil
| | - Simon Ngao Mule
- GlycoProteomics laboratory, Institute of Biomedical Sciences, Department of Parasitology, University of São Paulo, São Paulo, Brazil
| | - Fabia Tomie Tano
- Leishmaniasis laboratory, Institute of Biomedical Sciences, Department of Parasitology, University of São Paulo, São Paulo, Brazil
| | - Giuseppe Palmisano
- GlycoProteomics laboratory, Institute of Biomedical Sciences, Department of Parasitology, University of São Paulo, São Paulo, Brazil
| | - Beatriz Simonsen Stolf
- Leishmaniasis laboratory, Institute of Biomedical Sciences, Department of Parasitology, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
34
|
de Pablos LM, Ferreira TR, Dowle AA, Forrester S, Parry E, Newling K, Walrad PB. The mRNA-bound Proteome of Leishmania mexicana: Novel Genetic Insight into an Ancient Parasite. Mol Cell Proteomics 2019; 18:1271-1284. [PMID: 30948621 PMCID: PMC6601212 DOI: 10.1074/mcp.ra118.001307] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 02/23/2019] [Indexed: 01/08/2023] Open
Abstract
Leishmania parasite infections, termed the leishmaniases, cause significant global infectious disease burden. The lifecycle of the parasite embodies three main stages that require precise coordination of gene regulation to survive environmental shifts between sandfly and mammalian hosts. Constitutive transcription in kinetoplastid parasites means that gene regulation is overwhelmingly reliant on post-transcriptional mechanisms, yet strikingly few Leishmania trans-regulators are known. Using optimized crosslinking and deep, quantified mass spectrometry, we present a comprehensive analysis of 1400 mRNA binding proteins (mRBPs) and whole cell proteomes from the three main Leishmania lifecycle stages. Supporting the validity, although the crosslinked RBPome is magnitudes more enriched, the protein identities of the crosslinked and non-crosslinked RBPomes were nearly identical. Moreover, multiple candidate RBPs were endogenously tagged and found to associate with discrete mRNA target pools in a stage-specific manner. Results indicate that in L. mexicana parasites, mRNA levels are not a strong predictor of the whole cell expression or RNA binding potential of encoded proteins. Evidence includes a low correlation between transcript and corresponding protein expression and stage-specific variation in protein expression versus RNA binding potential. Unsurprisingly, RNA binding protein enrichment correlates strongly with relative replication efficiency of the specific lifecycle stage. Our study is the first to quantitatively define and compare the mRBPome of multiple stages in kinetoplastid parasites. It provides novel, in-depth insight into the trans-regulatory mRNA:Protein (mRNP) complexes that drive Leishmania parasite lifecycle progression.
Collapse
Affiliation(s)
| | | | - Adam A Dowle
- §Metabolomics and Proteomics Lab, Bioscience Technology Facility, and
| | | | - Ewan Parry
- From the ‡Centre for Immunology and Infection
| | - Katherine Newling
- ¶Genomics and Bioinformatics Lab, Bioscience Technology Facility, Department of Biology, University of York, UK
| | | |
Collapse
|
35
|
Hombach-Barrigah A, Bartsch K, Smirlis D, Rosenqvist H, MacDonald A, Dingli F, Loew D, Späth GF, Rachidi N, Wiese M, Clos J. Leishmania donovani 90 kD Heat Shock Protein - Impact of Phosphosites on Parasite Fitness, Infectivity and Casein Kinase Affinity. Sci Rep 2019; 9:5074. [PMID: 30911045 PMCID: PMC6434042 DOI: 10.1038/s41598-019-41640-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 03/11/2019] [Indexed: 12/28/2022] Open
Abstract
Leishmania parasites are thought to control protein activity at the post-translational level, e.g. by protein phosphorylation. In the pathogenic amastigote, the mammalian stage of Leishmania parasites, heat shock proteins show increased phosphorylation, indicating a role in stage-specific signal transduction. Here we investigate the impact of phosphosites in the L. donovani heat shock protein 90. Using a chemical knock-down/genetic complementation approach, we mutated 11 confirmed or presumed phosphorylation sites and assessed the impact on overall fitness, morphology and in vitro infectivity. Most phosphosite mutations affected the growth and morphology of promastigotes in vitro, but with one exception, none of the phosphorylation site mutants had a selective impact on the in vitro infection of macrophages. Surprisingly, aspartate replacements mimicking the negative charge of phosphorylated serines or threonines had mostly negative impacts on viability and infectivity. HSP90 is a substrate for casein kinase 1.2-catalysed phosphorylation in vitro. While several putative phosphosite mutations abrogated casein kinase 1.2 activity on HSP90, only Ser289 could be identified as casein kinase target by mass spectrometry. In summary, our data show HSP90 as a downstream client of phosphorylation-mediated signalling in an organism that depends on post-transcriptional gene regulation.
Collapse
Affiliation(s)
| | | | - Despina Smirlis
- Institut Pasteur and Institut National de Santé et Recherche Médicale INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Paris, France
- Hellenic Pasteur Institute, Athens, Greece
| | - Heidi Rosenqvist
- Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS) University of Strathclyde, Glasgow, Scotland, UK
- Novo Nordisk A/S, Gentofte, Denmark
| | - Andrea MacDonald
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Florent Dingli
- Laboratoire de Spectrométrie de Masse Protéomique, Centre de Recherche, Institut Curie, PSL Research University, Paris, France
| | - Damarys Loew
- Laboratoire de Spectrométrie de Masse Protéomique, Centre de Recherche, Institut Curie, PSL Research University, Paris, France
| | - Gerald F Späth
- Institut Pasteur and Institut National de Santé et Recherche Médicale INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Paris, France
| | - Najma Rachidi
- Institut Pasteur and Institut National de Santé et Recherche Médicale INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Paris, France
| | - Martin Wiese
- Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS) University of Strathclyde, Glasgow, Scotland, UK
| | - Joachim Clos
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.
| |
Collapse
|
36
|
Shrivastava R, Drory-Retwitzer M, Shapira M. Nutritional stress targets LeishIF4E-3 to storage granules that contain RNA and ribosome components in Leishmania. PLoS Negl Trop Dis 2019; 13:e0007237. [PMID: 30870425 PMCID: PMC6435199 DOI: 10.1371/journal.pntd.0007237] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 03/26/2019] [Accepted: 02/12/2019] [Indexed: 12/02/2022] Open
Abstract
Leishmania parasites lack pathways for de novo purine biosynthesis. The depletion of purines induces differentiation into virulent metacyclic forms. In vitro, the parasites can survive prolonged periods of purine withdrawal changing their morphology to long and slender cells with an extended flagellum, and decreasing their translation rates. Reduced translation leads to the appearance of discrete granules that contain LeishIF4E-3, one of the six eIF4E paralogs encoded by the Leishmania genome. We hypothesize that each is responsible for a different function during the life cycle. LeishIF4E-3 is a weak cap-binding protein paralog, but its involvement in translation under normal conditions cannot be excluded. However, in response to nutritional stress, LeishIF4E-3 concentrates in specific cytoplasmic granules. LeishIF4E-3 granulation can be induced by the independent elimination of purines, amino acids and glucose. As these granules contain mature mRNAs, we propose that these bodies store inactive transcripts until recovery from stress occurs. In attempt to examine the content of the nutritional stress-induced granules, they were concentrated over sucrose gradients and further pulled-down by targeting in vivo tagged LeishIF4E-3. Proteomic analysis highlighted granule enrichment with multiple ribosomal proteins, suggesting that ribosome particles are abundant in these foci, as expected in case of translation inhibition. RNA-binding proteins, RNA helicases and metabolic enzymes were also enriched in the granules, whereas no degradation enzymes or P-body markers were detected. The starvation-induced LeishIF4E-3-containing granules, therefore, appear to store stalled ribosomes and ribosomal subunits, along with their associated mRNAs. Following nutritional stress, LeishIF4E-3 becomes phosphorylated at position S75, located in its less-conserved N-terminal extension. The ability of the S75A mutant to form granules was reduced, indicating that cellular signaling regulates LeishIF4E-3 function. Cells respond to cellular stress by decreasing protein translation, to prevent the formation of partially folded or misfolded new polypeptides whose accumulation can be detrimental to living cells. Under such conditions, the cells benefit from storing inactive mRNAs and stalled ribosomal particles, to maintain their availability once conditions improve; dedicated granules offer a solution for such storage. Leishmania parasites are exposed to a variety of stress conditions as a natural part of their life cycle, including the nutritional stress that the parasites experience within the gut of the sandfly. Thus, Leishmania and related trypanosomatids serve as a good model system to investigate RNA fate during different stress conditions. Various granules appear in Leishmania and related organisms in response to different stress conditions. Here, we investigated how nutritional stress, in particular elimination of purines, induced the formation of granules that harbor a specific cap-binding protein, LeishIF4E-3. The starvation-induced LeishIF4E-3 containing granules consist of a variety of ribosomal proteins, along with RNA-binding proteins and mature mRNAs. We thus propose that Leishmania modulates the assembly of LeishIF4E-3-containing granules for transient storage of stalled ribosomal particles and inactive mRNAs. Following renewal of nutrient availability, as occurs during the parasite’s life cycle, the granules disappear. Although their fate is yet unclear, they could be recycled in the cell. Unlike other granules described in trypanosomes, the LeishIF4E-3-containing granules did not contain RNA degradation enzymes, suggesting that their function is mainly for storage until conditions improve.
Collapse
Affiliation(s)
- Rohit Shrivastava
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Matan Drory-Retwitzer
- Department of Computer Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Michal Shapira
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- * E-mail:
| |
Collapse
|
37
|
Lamotte S, Aulner N, Späth GF, Prina E. Discovery of novel hit compounds with broad activity against visceral and cutaneous Leishmania species by comparative phenotypic screening. Sci Rep 2019; 9:438. [PMID: 30679614 PMCID: PMC6345745 DOI: 10.1038/s41598-018-36944-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 11/28/2018] [Indexed: 12/22/2022] Open
Abstract
The limited success of recent phenotypic anti-leishmanial drug screening campaigns calls for new screening strategies for the discovery of clinically relevant hits. Here we present such a novel strategy based on physiologically relevant, ex vivo biology. We established high content phenotypic assays that combine primary murine macrophages and lesion-derived, virulent L. donovani and L. amazonensis amastigotes, which we applied to validate previously identified, anti-leishmanial hit compounds referred to as ‘GSK Leish-Box’. Together with secondary screens using cultured promastigotes, our pipeline distinguished stage- and/or species-specific compounds, including 20 hits with broad activity at 10 µM against intracellular amastigotes of both viscerotropic and dermotropic Leishmania. Even though the GSK Leish-Box hits were identified by phenotypic screening using THP-1 macrophage-like cells hosting culture-derived L. donovani LdBob parasites, our ex vivo assays only validated anti-leishmanial activity at 10 µM on intra-macrophagic L. donovani for 23 out of the 188 GSK Leish-Box hits. In conclusion, our comparative approach allowed the identification of hits with broad anti-leishmanial activity that represent interesting novel candidates to be tested in animal models. Physiologically more relevant screening approaches such as described here may reduce the very high attrition rate observed during pre-clinical and clinical phases of the drug development process.
Collapse
Affiliation(s)
- S Lamotte
- Institut Pasteur, Molecular Parasitology and Signaling, INSERM U1201, Department of Parasites and Insect Vectors, Paris, France
| | - N Aulner
- Institut Pasteur, UTechS Photonic BioImaging, Center for Technological Research and Resources, 75015, Paris, France
| | - G F Späth
- Institut Pasteur, Molecular Parasitology and Signaling, INSERM U1201, Department of Parasites and Insect Vectors, Paris, France.
| | - E Prina
- Institut Pasteur, Molecular Parasitology and Signaling, INSERM U1201, Department of Parasites and Insect Vectors, Paris, France.
| |
Collapse
|
38
|
Bentley SJ, Jamabo M, Boshoff A. The Hsp70/J-protein machinery of the African trypanosome, Trypanosoma brucei. Cell Stress Chaperones 2019; 24:125-148. [PMID: 30506377 PMCID: PMC6363631 DOI: 10.1007/s12192-018-0950-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 11/06/2018] [Accepted: 11/12/2018] [Indexed: 12/28/2022] Open
Abstract
The etiological agent of the neglected tropical disease African trypanosomiasis, Trypanosoma brucei, possesses an expanded and diverse repertoire of heat shock proteins, which have been implicated in cytoprotection, differentiation, as well as progression and transmission of the disease. Hsp70 plays a crucial role in proteostasis, and inhibition of its interactions with co-chaperones is emerging as a potential therapeutic target for numerous diseases. In light of genome annotations and the release of the genome sequence of the human infective subspecies, an updated and current in silico overview of the Hsp70/J-protein machinery in both T. brucei brucei and T. brucei gambiense was conducted. Functional, structural, and evolutionary analyses of the T. brucei Hsp70 and J-protein families were performed. The Hsp70 and J-proteins from humans and selected kinetoplastid parasites were used to assist in identifying proteins from T. brucei, as well as the prediction of potential Hsp70-J-protein partnerships. The Hsp70 and J-proteins were mined from numerous genome-wide proteomics studies, which included different lifecycle stages and subcellular localisations. In this study, 12 putative Hsp70 proteins and 67 putative J-proteins were identified to be encoded on the genomes of both T. brucei subspecies. Interestingly there are 6 type III J-proteins that possess tetratricopeptide repeat-containing (TPR) motifs. Overall, it is envisioned that the results of this study will provide a future context for studying the biology of the African trypanosome and evaluating Hsp70 and J-protein interactions as potential drug targets.
Collapse
Affiliation(s)
| | - Miebaka Jamabo
- Biotechnology Innovation Centre, Rhodes University, Grahamstown, South Africa
| | - Aileen Boshoff
- Biotechnology Innovation Centre, Rhodes University, Grahamstown, South Africa.
| |
Collapse
|
39
|
Davenport BJ, Martin CG, Beverley SM, Orlicky DJ, Vazquez-Torres A, Morrison TE. SODB1 is essential for Leishmania major infection of macrophages and pathogenesis in mice. PLoS Negl Trop Dis 2018; 12:e0006921. [PMID: 30372439 PMCID: PMC6224164 DOI: 10.1371/journal.pntd.0006921] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 11/08/2018] [Accepted: 10/12/2018] [Indexed: 12/29/2022] Open
Abstract
Leishmania species are sand fly-transmitted protozoan parasites that cause leishmaniasis, neglected tropical diseases that affect millions of people. Leishmania amastigotes must overcome a variety of host defenses, including reactive oxygen species (ROS) produced by the NADPH oxidase. Leishmania species encode three superoxide dismutases (SODs): the mitochondrial SODA and two glycosomal SODs (SODB1 and SODB2). SODs are metalloenzymes that function in antioxidant defense by converting superoxide to oxygen and hydrogen peroxide. Here, we investigated a role for SODB1 in Leishmania infection of macrophages and virulence in mice. We found that a single allele deletion of SODB1 (SODB1/Δsodb1) had minimal effects on the replication of axenically-grown L. major promastigotes or differentiation to infective metacyclic promastigotes. Disruption of a single SODB1 allele also did not affect L. donovani differentiation to amastigotes induced axenically, or the replication of axenically-grown L. donovani promastigotes and amastigotes. In contrast, the persistence of SODB1/Δsodb1 L. major in WT macrophages was impaired, and the development of cutaneous lesions in SODB1/Δsodb1 L. major-infected C57BL/6 and BALB/c mice was strongly reduced. The reduced disease severity in mice was associated with reduced burdens of SODB1/Δsodb1 L. major parasites in the foot at late, but not early times post-inoculation, as well as an impaired capacity to disseminate from the site of inoculation. Collectively, these data suggest that SODB1 is critical for L. major persistence in macrophages and virulence in mice.
Collapse
Affiliation(s)
- Bennett J. Davenport
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Casey G. Martin
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Stephen M. Beverley
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - David J. Orlicky
- Department of Pathology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Andres Vazquez-Torres
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Thomas E. Morrison
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| |
Collapse
|
40
|
Sundar S, Singh B. Understanding Leishmania parasites through proteomics and implications for the clinic. Expert Rev Proteomics 2018; 15:371-390. [PMID: 29717934 PMCID: PMC5970101 DOI: 10.1080/14789450.2018.1468754] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
INTRODUCTION Leishmania spp. are causative agents of leishmaniasis, a broad-spectrum neglected vector-borne disease. Genomic and transcriptional studies are not capable of solving intricate biological mysteries, leading to the emergence of proteomics, which can provide insights into the field of parasite biology and its interactions with the host. Areas covered: The combination of genomics and informatics with high throughput proteomics may improve our understanding of parasite biology and pathogenesis. This review analyses the roles of diverse proteomic technologies that facilitate our understanding of global protein profiles and definition of parasite development, survival, virulence and drug resistance mechanisms for disease intervention. Additionally, recent innovations in proteomics have provided insights concerning the drawbacks associated with conventional chemotherapeutic approaches and Leishmania biology, host-parasite interactions and the development of new therapeutic approaches. Expert commentary: With progressive breakthroughs in the foreseeable future, proteome profiles could provide target molecules for vaccine development and therapeutic intervention. Furthermore, proteomics, in combination with genomics and informatics, could facilitate the elimination of several diseases. Taken together, this review provides an outlook on developments in Leishmania proteomics and their clinical implications.
Collapse
Affiliation(s)
- Shyam Sundar
- a Department of Medicine, Institute of Medical Sciences , Banaras Hindu University , Varanasi , India
| | - Bhawana Singh
- a Department of Medicine, Institute of Medical Sciences , Banaras Hindu University , Varanasi , India
| |
Collapse
|
41
|
Liburkin-Dan T, Schlisselberg D, Fischer-Weinberger R, Pescher P, Inbar E, Ephros M, Rentsch D, Späth GF, Zilberstein D. Stage-specific expression of the proline-alanine transporter in the human pathogen Leishmania. Mol Biochem Parasitol 2018; 222:1-5. [PMID: 29655799 DOI: 10.1016/j.molbiopara.2018.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/03/2018] [Accepted: 04/09/2018] [Indexed: 11/26/2022]
Abstract
Leishmania are obligatory intracellular parasites that cycle between the sand fly midgut (extracellular promastigotes) and mammalian macrophage phagolysosomes (intracellular amastigotes). They have developed mechanisms of adaptation to the distinct environments of host and vector that favor utilization of both proline and alanine. LdAAP24 is the L. donovani proline-alanine transporter. It is a member of Leishmania system A that translocates neutral amino acids. Since system A is promastigote-specific, we aimed to assess whether LdAAP24 is also expressed exclusively in promastigotes. Herein, we established that upon exposing L. donovani promastigotes to amastigote differentiation signal (pH 5.5 and 37 °C), parasites rapidly and completely degrade LdAAP24 protein in both axenic and in spleen-derived amastigotes. In contrast, LdAAP24 mRNA remained unchanged throughout differentiation. Addition of either MG132 or Bafilomycin A1 partially inhibited LdAAP24 protein degradation, indicating a role for both lysosome- and proteasome-mediated degradation. This work provides the first evidence for post-translational regulation of stage-specific expression of LdAAP24.
Collapse
Affiliation(s)
- T Liburkin-Dan
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Haifa, Israel
| | - D Schlisselberg
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Haifa, Israel
| | - R Fischer-Weinberger
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Haifa, Israel
| | - P Pescher
- Institut Pasteur, INSERM U1201, Unité de Parasitologie moléculaire et Signalisation, 75015 Paris, France
| | - E Inbar
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Haifa, Israel
| | - M Ephros
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Haifa, Israel
| | - D Rentsch
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| | - G F Späth
- Institut Pasteur, INSERM U1201, Unité de Parasitologie moléculaire et Signalisation, 75015 Paris, France
| | - D Zilberstein
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Haifa, Israel.
| |
Collapse
|
42
|
The Akt-like kinase of Leishmania panamensis: As a new molecular target for drug discovery. Acta Trop 2018; 177:171-178. [PMID: 29037519 DOI: 10.1016/j.actatropica.2017.10.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 09/11/2017] [Accepted: 10/09/2017] [Indexed: 01/15/2023]
Abstract
The Akt-like kinase of Leishmania spp. is a cytoplasmic orthologous protein of the serine/threonine kinase B-PKB/human-Akt group, which is involved in the cellular survival of these parasites. By the application of a computational strategy we obtained two specific inhibitors of the Akt-like protein of L. panamensis (UBMC1 and UBMC4), which are predicted to bind specifically to the pleckstrin domain (PH) of the enzyme. We show that the Akt-like of Leishmania panamensis is phospho-activated in parasites under nutritional and thermic stress, this phosphorylation is blocked by the UBMC1 and UMBC2 and such inhibition leads to cell death. Amongst the effects caused by the inhibitors on the parasites we found high percentage of hypodiploidy and loss of mitochondrial membrane potential. Ultrastructural studies showed highly vacuolated cytoplasm, as well as shortening of the flagellum, loss of nuclear membrane integrity and DNA fragmentation. Altogether the presented results suggest that the cell death caused by UMBC1 and UMBC4 may be associated to an apoptosis-like process. The compounds present an inhibitory concentration (IC50) over intracellular amastigotes of L. panamensis of 9.2±0.8μM for UBMC1 and 4.6±1.9μM for UBMC4. The cytotoxic activity for UBMC1 and UBMC4 in human macrophages derived from monocytes (huMDM) was 29±1.2μM and >40μM respectively. Our findings strongly support that the presented compounds can be plausible candidates as a new therapeutic alternative for the inhibition of specific kinases of the parasite.
Collapse
|
43
|
Soulat D, Bogdan C. Function of Macrophage and Parasite Phosphatases in Leishmaniasis. Front Immunol 2017; 8:1838. [PMID: 29312331 PMCID: PMC5743797 DOI: 10.3389/fimmu.2017.01838] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 12/05/2017] [Indexed: 01/23/2023] Open
Abstract
The kinetoplastid protozoan parasites belonging to the genus Leishmania are the causative agents of different clinical forms of leishmaniasis, a vector-borne infectious disease with worldwide prevalence. The protective host immune response against Leishmania parasites relies on myeloid cells such as dendritic cells and macrophages in which upon stimulation by cytokines (e.g., interferon-γ) a complex network of signaling pathways is switched on leading to strong antimicrobial activities directed against the intracellular parasite stage. The regulation of these pathways classically depends on post-translational modifications of proteins, with phosphorylation events playing a cardinal role. Leishmania parasites deactivate their phagocytic host cells by inducing specific mammalian phosphatases that are capable to impede signaling. On the other hand, there is now also evidence that Leishmania spp. themselves express phosphatases that might target host cell molecules and thereby facilitate the intracellular survival of the parasite. This review will present an overview on the modulation of host phosphatases by Leishmania parasites as well as on the known families of Leishmania phosphatases and their possible function as virulence factors. A more detailed understanding of the role of phosphatases in Leishmania–host cell interactions might open new avenues for the treatment of non-healing, progressive forms of leishmaniasis.
Collapse
Affiliation(s)
- Didier Soulat
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany.,Medical Immunology Campus Erlangen, Interdisciplinary Center of the FAU, Erlangen, Germany
| | - Christian Bogdan
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany.,Medical Immunology Campus Erlangen, Interdisciplinary Center of the FAU, Erlangen, Germany
| |
Collapse
|
44
|
Singh J, Khan MI, Singh Yadav SP, Srivastava A, Sinha KK, Ashish, Das P, Kundu B. L-Asparaginase of Leishmania donovani: Metabolic target and its role in Amphotericin B resistance. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2017; 7:337-349. [PMID: 28988014 PMCID: PMC5633258 DOI: 10.1016/j.ijpddr.2017.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 08/22/2017] [Accepted: 09/21/2017] [Indexed: 01/12/2023]
Abstract
Emergence of Amphotericin B (AmB) resistant Leishmania donovani has posed major therapeutic challenge against the parasite. Consequently, combination therapy aimed at multiple molecular targets, based on proteome wise network analysis has been recommended. In this regard we had earlier identified and proposed L-asparaginase of Leishmania donovani (LdAI) as a crucial metabolic target. Here we report that both LdAI overexpressing axenic amastigote and promastigote forms of L. donovani survives better when challenged with AmB as compared to wild type strain. Conversely, qRT-PCR analysis showed an upregulation of LdAI in both forms upon AmB treatment. Our data demonstrates the importance of LdAI in imparting immediate protective response to the parasite upon AmB treatment. In the absence of structural and functional information, we modeled LdAI and validated its solution structure through small angle X-ray scattering (SAXS) analysis. We identified its specific inhibitors through ligand and structure-based approach and characterized their effects on enzymatic properties (Km, Vmax, Kcat) of LdAI. We show that in presence of two of the inhibitors L1 and L2, the survival of L. donovani is compromised whereas overexpression of LdAI in these cells restores viability. Taken together, our results conclusively prove that LdAI is a crucial metabolic enzyme conferring early counter measure against AmB treatment by Leishmania.
Collapse
Affiliation(s)
- Jasdeep Singh
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Mohd Imran Khan
- National Institute of Pharmaceutical Education & Research, EPIP Complex, Hajipur, Vaishali 844102, India
| | - Shiv Pratap Singh Yadav
- The Council of Scientific and Industrial Research Institute of Microbial Technology, Chandigarh, India
| | - Ankit Srivastava
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Kislay K Sinha
- National Institute of Pharmaceutical Education & Research, EPIP Complex, Hajipur, Vaishali 844102, India
| | - Ashish
- The Council of Scientific and Industrial Research Institute of Microbial Technology, Chandigarh, India
| | - Pradeep Das
- Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India
| | - Bishwajit Kundu
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
45
|
MAPK1 of Leishmania donovani interacts and phosphorylates HSP70 and HSP90 subunits of foldosome complex. Sci Rep 2017; 7:10202. [PMID: 28860596 PMCID: PMC5579238 DOI: 10.1038/s41598-017-09725-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 07/17/2017] [Indexed: 01/14/2023] Open
Abstract
MAP kinases (MAPK) are the most downstream kinases in signal transduction cascades and regulate critical cellular activities such as cell proliferation, differentiation, mortality, stress response, and apoptosis. The Leishmania donovani MAPK1 (LdMAPK1) is involved in parasite viability and drug resistance, but its substrates have not been identified yet. Aiming to identify the possible targets(s) of LdMAPK1, we sought to isolate interacting partners by co-immunoprecipitation, gel electrophoresis and mass spectrometry. Out of fifteen analyzed protein bands, four were identified as subunits of the HSP90 foldosome complex, namely HSP 90, HSP70, STI and SGT. Western blot analysis not only confirmed that LdMAPK1 interacts with HSP70 and HSP90 but also demonstrated that MAPK1 abundance modulates their expression. The interaction is sensitive to treatment with AMTZD, a competitive ERK inhibitor. MAPK1 also displayed kinase activity with HSP90 or HSP70 as substrates. By phosphorylating HSPs in the foldosome complex, MAPK1 may regulate the stability and activity of the foldosome which in turn plays a pivotal role in the parasitic life cycle of L. donovani. Our study therefore implicates LdMAPK1 in the post-translational modification and possibly the regulation of heat shock proteins. Conversely, HSP90 and HSP70 are identified as the first substrates of LdMAPK1.
Collapse
|
46
|
Sinha S, Sundaram S. An analysis of phosphorylation sites in protein kinases from Leishmania. Bioinformation 2017; 12:249-253. [PMID: 28197062 PMCID: PMC5290666 DOI: 10.6026/97320630012249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 07/04/2016] [Accepted: 07/05/2016] [Indexed: 01/16/2023] Open
Abstract
Protein kinases are promising drug targets for Leishmaniasis. We have evaluated the phosphorylation potential of protein kinases in
different species and strains of Leishmania. Phosphorylation potential of serine, threonine and tyrosine residues of kinases in Leishmania
parasite were studied. The results indicate that some species specific residues of serine, threonine and tyrosine have a phosphorylation
potential of 1 suggesting that these residues are important target sites in protein kinases based anti-leishmanial therapies.
Collapse
Affiliation(s)
- Sukrat Sinha
- Centre of Biotechnology, University of Allahabad, Allahabad, Uttar Pradesh - 211002 India
| | - Shanthy Sundaram
- Centre of Biotechnology, University of Allahabad, Allahabad, Uttar Pradesh - 211002 India
| |
Collapse
|
47
|
Bouazizi-Ben Messaoud H, Guichard M, Lawton P, Delton I, Azzouz-Maache S. Changes in Lipid and Fatty Acid Composition During Intramacrophagic Transformation of Leishmania donovani Complex Promastigotes into Amastigotes. Lipids 2017; 52:433-441. [PMID: 28161835 PMCID: PMC5427136 DOI: 10.1007/s11745-017-4233-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 01/10/2017] [Indexed: 11/27/2022]
Abstract
Leishmania sp., are trypanosomatid parasites that are phagocytized by human and animal macrophages. Transformation from the vector promastigote stage to the intracellular amastigote host cell stage is mandatory, since development in the host depends on the internalization of the parasite. We identified and analyzed the lipids involved in the promastigote to amastigote transformation process in the Leishmania donovani complex. Four lipid classes, phospholipids, free fatty acids, triglycerides and sterols were studied. The derivatization method of Bligh and Dyer was used to establish the fatty acid composition in each stage of the parasite. To stay within the context of Leishmania infection, we used amastigotes extracted from macrophages after experimental in vitro infection. The purification process was checked by electronic microscopy, the absence of major contamination by host-cell debris and a correct purification yield validated our experimental model. Our results show that free fatty acids and cholesterol increased, whereas triglycerides and ergosterol decreased during the transition between promastigotes to amastigotes. With respect to phospholipid classes, we found increased proportion of sphingomyelin and phosphatidylserine and lowered proportion of phosphatidylinositol and lysophosphatidylethanolamine. Regarding fatty acid composition, a significant increase of n-7 fatty acids was observed in amastigotes. Overall, the total n-6 fatty acids were decreased in PL. Several of the changes were also observed in TG and free fatty acids. Particularly, n-7 fatty acids and 20:4n-6 were highly increased, whereas n-9 fatty acid and n-6 precursors decreased.
Collapse
Affiliation(s)
- Hana Bouazizi-Ben Messaoud
- Institut de recherche pour le développement (IRD), UMR InterTryp IRD/CIRAD, campus international de Baillarguet, Montpellier, France.,Department of Parasitology and Medical Mycology, Lyon University, Lyon, France.,Inserm U1060 CarMeN Laboratory, INSA-Lyon, Villeurbanne, France
| | - Marion Guichard
- Institut de recherche pour le développement (IRD), UMR InterTryp IRD/CIRAD, campus international de Baillarguet, Montpellier, France.,Department of Parasitology and Medical Mycology, Lyon University, Lyon, France
| | - Philippe Lawton
- Institut de recherche pour le développement (IRD), UMR InterTryp IRD/CIRAD, campus international de Baillarguet, Montpellier, France.,Department of Parasitology and Medical Mycology, Lyon University, Lyon, France
| | - Isabelle Delton
- Inserm U1060 CarMeN Laboratory, INSA-Lyon, Villeurbanne, France
| | - Samira Azzouz-Maache
- Institut de recherche pour le développement (IRD), UMR InterTryp IRD/CIRAD, campus international de Baillarguet, Montpellier, France. .,Department of Parasitology and Medical Mycology, Lyon University, Lyon, France.
| |
Collapse
|
48
|
Tomiotto-Pellissier F, Cataneo AHD, Orsini TM, Thomazelli APFDS, Dalevedo GA, de Oliveira AG, Panagio LA, Costa IN, Conchon-Costa I, Pavanelli WR, Almeida RS. Galleria mellonella hemocytes: A novel phagocytic assay for Leishmania (Viannia) braziliensis. J Microbiol Methods 2016; 131:45-50. [DOI: 10.1016/j.mimet.2016.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 09/23/2016] [Accepted: 10/01/2016] [Indexed: 11/28/2022]
|
49
|
Leishmania donovani Aurora kinase: A promising therapeutic target against visceral leishmaniasis. Biochim Biophys Acta Gen Subj 2016; 1860:1973-88. [PMID: 27288586 DOI: 10.1016/j.bbagen.2016.06.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 06/02/2016] [Accepted: 06/06/2016] [Indexed: 01/04/2023]
Abstract
BACKGROUND Aurora kinases are key mitotic kinases executing multiple aspects of eukaryotic cell-division. The apicomplexan homologs being essential for survival, suggest that the Leishmania homolog, annotated LdAIRK, may be equally important. METHODS Bioinformatics, stage-specific immunofluorescence microscopy, immunoblotting, RT-PCR, molecular docking, in-vitro kinase assay, anti-leishmanial activity assays, flow cytometry, fluorescence microscopy. RESULTS Ldairk expression is seen to vary as the cell-cycle progresses from G1 through S and finally G2M and cytokinesis. Kinetic studies demonstrate their enzymatic activity exhibiting a Km and Vmax of 6.12μM and 82.9pmoles·min(-1)mg(-1) respectively against ATP using recombinant Leishmania donovani H3, its physiological substrate. Due to the failure of LdAIRK-/+ knock-out parasites to survive, we adopted a chemical knock-down approach. Based on the conservation of key active site residues, three mammalian Aurora kinase inhibitors were investigated to evaluate their potential as inhibitors of LdAIRK activity. Interestingly, the cell-cycle progressed unhindered, despite treatment with GSK-1070916 or Barasertib, inhibitors with greater potencies for the ATP-binding pocket compared to Hesperadin, which at nanomolar concentrations, severely compromised viability at IC50s 105.9 and 36.4nM for promastigotes and amastigotes, respectively. Cell-cycle and morphological studies implicated their role in both mitosis and cytokinesis. CONCLUSION We identified an Aurora kinase homolog in L. donovani implicated in cell-cycle progression, whose inhibition led to aberrant changes in cell-cycle progression and reduced viability. GENERAL SIGNIFICANCE Human homologs being actively pursued drug targets and the observations with LdAIRK in both promastigotes and amastigotes suggest their potential as therapeutic-targets. Importantly, our results encourage the exploration of other proteins identified herein as potential novel drug targets.
Collapse
|
50
|
Parsons M, Myler PJ. Illuminating Parasite Protein Production by Ribosome Profiling. Trends Parasitol 2016; 32:446-457. [PMID: 27061497 DOI: 10.1016/j.pt.2016.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 02/25/2016] [Accepted: 03/04/2016] [Indexed: 12/29/2022]
Abstract
While technologies for global enumeration of transcript abundance are well-developed, those that assess protein abundance require tailoring to penetrate to low-abundance proteins. Ribosome profiling circumvents this challenge by measuring global protein production via sequencing small mRNA fragments protected by the assembled ribosome. This powerful approach is now being applied to protozoan parasites including trypanosomes and Plasmodium. It has been used to identify new protein-coding sequences (CDSs) and clarify the boundaries of previously annotated CDSs in Trypanosoma brucei. Ribosome profiling has demonstrated that translation efficiencies vary widely between genes and, for trypanosomes at least, for the same gene across stages. The ribosomal proteins are themselves subjected to translational control, suggesting a means of reinforcing global translational regulation.
Collapse
Affiliation(s)
- Marilyn Parsons
- Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute), 307 Westlake Avenue North STE 500, Seattle, WA 98109 USA; Department of Global Health, Box 357965, University of Washington, Seattle, WA 98195, USA.
| | - Peter J Myler
- Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute), 307 Westlake Avenue North STE 500, Seattle, WA 98109 USA; Department of Global Health, Box 357965, University of Washington, Seattle, WA 98195, USA; Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|