1
|
Rafiei N, Ronceret A. The plant early recombinosome: a high security complex to break DNA during meiosis. PLANT REPRODUCTION 2024; 37:421-440. [PMID: 39331138 PMCID: PMC11511760 DOI: 10.1007/s00497-024-00509-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024]
Abstract
KEY MESSAGE The formacion of numerous unpredictable DNA Double Strand Breaks (DSBs) on chromosomes iniciates meiotic recombination. In this perspective, we propose a 'multi-key lock' model to secure the risky but necesary breaks as well as a 'one per pair of cromatids' model for the topoisomerase-like early recombinosome. During meiosis, homologous chromosomes recombine at few sites of crossing-overs (COs) to ensure correct segregation. The initiation of meiotic recombination involves the formation of DNA double strand breaks (DSBs) during prophase I. Too many DSBs are dangerous for genome integrity: if these DSBs are not properly repaired, it could potentially lead to chromosomal fragmentation. Too few DSBs are also problematic: if the obligate CO cannot form between bivalents, catastrophic unequal segregation of univalents lead to the formation of sterile aneuploid spores. Research on the regulation of the formation of these necessary but risky DSBs has recently advanced in yeast, mammals and plants. DNA DSBs are created by the enzymatic activity of the early recombinosome, a topoisomerase-like complex containing SPO11. This opinion paper reviews recent insights on the regulation of the SPO11 cofactors necessary for the introduction of temporally and spatially controlled DSBs. We propose that a 'multi-key-lock' model for each subunit of the early recombinosome complex is required to secure the formation of DSBs. We also discuss the hypothetical implications that the established topoisomerase-like nature of the SPO11 core-complex can have in creating DSB in only one of the two replicated chromatids of early prophase I meiotic chromosomes. This hypothetical 'one per pair of chromatids' DSB formation model could optimize the faithful repair of the self-inflicted DSBs. Each DSB could use three potential intact homologous DNA sequences as repair template: one from the sister chromatid and the two others from the homologous chromosomes.
Collapse
Affiliation(s)
- Nahid Rafiei
- Department of Plant Molecular Biology, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Arnaud Ronceret
- Department of Plant Molecular Biology, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México.
| |
Collapse
|
2
|
Henning PM, Minkoff BB, Sussman MR. Phosphoproteomic analysis of distylous Turnera subulata identifies pathways related to endoreduplication that correlate with reciprocal herkogamy. AMERICAN JOURNAL OF BOTANY 2024:e16438. [PMID: 39551943 DOI: 10.1002/ajb2.16438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 11/19/2024]
Abstract
PREMISE A multi-omic approach was used to explore proteins and networks hypothetically important for establishing filament dimorphisms in heterostylous Turnera subulata (Sm.) as an exploratory method to identify genes for future empirical research. METHODS Mass spectrometry (MS) was used to identify differentially expressed proteins and differentially phosphorylated peptides in the developing filaments between the L- and S-morphs. RNAseq was used to generate a co-expression network of the developing filaments, MS data were mapped to the co-expression network to identify hypothetical relationships between the S-gene responsible for filament dimorphisms and differentially expressed proteins. RESULTS Mapping all MS identified proteins to a co-expression network of the S-morph's developing filaments identified several clusters containing SPH1 and other differentially expressed or phosphorylated proteins. Co-expression analysis clustered CDKG2, a protein that induces endoreduplication, and SPH1-suggesting a shared biological function. MS analysis suggests that the protein is present and phosphorylated only in the S-morph, and thus active only in the S-morph. A series of CDKG2 regulators, including ATM1, and cell cycle regulators also correlated with the presence of reciprocal herkogamy, supporting our interest in the protein. CONCLUSIONS This work has built a foundation for future empirical work, specifically supporting the role of CDKG2 and ATM1 in promoting filament elongation in response to SPH1 perception.
Collapse
Affiliation(s)
- Paige M Henning
- Center for Genomic Science Innovation, University of Wisconsin-Madison, 425 Henry Mall, Madison, 53706, Wisconsin, USA
| | - Benjamin B Minkoff
- Center for Genomic Science Innovation, University of Wisconsin-Madison, 425 Henry Mall, Madison, 53706, Wisconsin, USA
| | - Michael R Sussman
- Center for Genomic Science Innovation, University of Wisconsin-Madison, 425 Henry Mall, Madison, 53706, Wisconsin, USA
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, 53706, Wisconsin, USA
| |
Collapse
|
3
|
Zhao Y, Zhang J, Fang Y, Zhang P, Chen H. The plant SMC5/6 complex: DNA repair, developmental regulation, and immune responses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109267. [PMID: 39515004 DOI: 10.1016/j.plaphy.2024.109267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
The Structural Maintenance of Chromosomes 5/6 (SMC5/6) complex plays a pivotal role in safeguarding the structural integrity and morphology of chromosomes, thereby contributing to genomic stability-a cornerstone for normal growth and development across organisms. Beyond its fundamental role in eukaryotic DNA damage repair, recent research has broadened our understanding of SMC5/6's multifaceted functions. It has emerged as a crucial regulator not only of the cell cycle but also in developmental processes, plant immunity, and meiotic DNA damage repair. In this review, we highlight its novel roles in modulating plant growth, development, and immunity, providing fresh perspectives on how this complex might help combat DNA damage stress and orchestrate growth strategies. Furthermore, we emphasize that SMC5/6 offers a unique window into the intricate mechanisms underlying genomic maintenance, development, and stress responses, with profound implications for crop improvement.
Collapse
Affiliation(s)
- Yan Zhao
- College of Life Sciences & Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Jian Zhang
- College of Life Sciences & Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yiru Fang
- College of Life Sciences & Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Pingxian Zhang
- College of Life Sciences & Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, 518120, China.
| | - Hanchen Chen
- College of Life Sciences & Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Yazhouwan National Laboratory, Sanya, Hainan, 572000, China.
| |
Collapse
|
4
|
Gonçalves Dias M, Doss B, Rawat A, Siegel KR, Mahathanthrige T, Sklenar J, Rodriguez Gallo MC, Derbyshire P, Dharmasena T, Cameron E, Uhrig RG, Zipfel C, Menke FLH, Monaghan J. Subfamily C7 Raf-like kinases MRK1, RAF26, and RAF39 regulate immune homeostasis and stomatal opening in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2024. [PMID: 39449177 DOI: 10.1111/nph.20198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024]
Abstract
The calcium-dependent protein kinase CPK28 regulates several stress pathways in multiple plant species. Here, we aimed to discover CPK28-associated proteins in Arabidopsis thaliana. We used affinity-based proteomics and identified several potential CPK28 binding partners, including the C7 Raf-like kinases MRK1, RAF26, and RAF39. We used biochemistry, genetics, and physiological assays to gain insight into their function. We define redundant roles for these kinases in stomatal opening, immune-triggered reactive oxygen species (ROS) production, and resistance to a bacterial pathogen. We report that CPK28 associates with and trans-phosphorylates RAF26 and RAF39, and that MRK1, RAF26, and RAF39 are active kinases that localize to endomembranes. Although Raf-like kinases share some features with mitogen-activated protein kinase kinase kinases (MKKKs), we found that MRK1, RAF26, and RAF39 are unable to trans-phosphorylate any of the 10 Arabidopsis mitogen-activated protein kinase kinases (MKKs). Overall, our study suggests that C7 Raf-like kinases associate with and are phosphorylated by CPK28, function redundantly in stomatal opening and immunity, and possess substrate specificities distinct from canonical MKKKs.
Collapse
Affiliation(s)
| | - Bassem Doss
- Department of Biology, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Anamika Rawat
- Department of Biology, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Kristen R Siegel
- Department of Biology, Queen's University, Kingston, ON, K7L 3N6, Canada
| | | | - Jan Sklenar
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR4 7UH, UK
| | | | - Paul Derbyshire
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR4 7UH, UK
| | | | - Emma Cameron
- Department of Biology, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - R Glen Uhrig
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Cyril Zipfel
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR4 7UH, UK
- Institute of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, Zurich, 8008, Switzerland
| | - Frank L H Menke
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Jacqueline Monaghan
- Department of Biology, Queen's University, Kingston, ON, K7L 3N6, Canada
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
5
|
Hewezi T. Phytopathogens Reprogram Host Alternative mRNA Splicing. ANNUAL REVIEW OF PHYTOPATHOLOGY 2024; 62:173-192. [PMID: 38691872 DOI: 10.1146/annurev-phyto-121423-041908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Alternative splicing (AS) is an evolutionarily conserved cellular process in eukaryotes in which multiple messenger RNA (mRNA) transcripts are produced from a single gene. The concept that AS adds to transcriptome complexity and proteome diversity introduces a new perspective for understanding how phytopathogen-induced alterations in host AS cause diseases. Recently, it has been recognized that AS represents an integral component of the plant immune system during parasitic, commensalistic, and symbiotic interactions. Here, I provide an overview of recent progress detailing the reprogramming of plant AS by phytopathogens and the functional implications on disease phenotypes. Additionally, I discuss the vital function of AS of immune receptors in regulating plant immunity and how phytopathogens use effector proteins to target key components of the splicing machinery and exploit alternatively spliced variants of immune regulators to negate defense responses. Finally, the functional association between AS and nonsense-mediated mRNA decay in the context of plant-pathogen interface is recapitulated.
Collapse
Affiliation(s)
- Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee, USA;
| |
Collapse
|
6
|
Li C, Chen H, Chen X, Wang P, Shi Y, Xie X, Chen Y, Cai X. Identification of inflammatory response-related molecular mechanisms based on the ATM/ATR/p53 pathway in tumor cells. Comput Biol Med 2024; 180:108776. [PMID: 39089116 DOI: 10.1016/j.compbiomed.2024.108776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/07/2024] [Accepted: 06/15/2024] [Indexed: 08/03/2024]
Abstract
Inflammatory response is a crucial factor that affects prognosis and therapeutic effect in tumor cells. Although some studies have shown that inflammation could make DNA more vulnerable to external attacks, resulting in serious DNA damage, the underlying mechanism remains unknown. Then, using tumor necrosis factor α (TNF-α) and lipopolysaccharide (LPS), this research elevated the level of inflammation in cancer cells, and hydrogen peroxide (H2O2) and ultraviolet (UV) were utilized as common reactive oxygen species (ROS)-induced DNA damage agents. We show that either H2O2 or UV achieved a more substantial antiproliferative effect in the inflammation environment compared with H2O2 or UV treatment alone. The inflammation environment enhanced H2O2- or UV-induced cell apoptosis and ROS production. Although the phenomenon that inflammation itself could trigger ROS-dependent DNA damage was well known, the underlying mechanism for the sensitization of inflammation to trigger intense DNA damage via ROS in cancer cells remains unclear. In this study, the inflammation-related genes and the corresponding expression information were obtained from the TCGA and fetched genes associated with inflammatory factors. Screening of thirteen inflammatory-related, including ATM, and prognostic genes. In addition, KEGG analysis of prognostic genes shows that biological processes such as DNA replication. ATM and ATR, which belong to the PI3/PI4-kinase family, can activate p53. Inflammation promotes the vulnerability of DNA by activating the ATM/ATR/p53 pathway, while not affecting the DNA damage repair pathway. In brief, this research suggested that inflammation made DNA vulnerable due to the amplifying H2O2- or UV-induced ROS production and the motoring ATM/ATR/p53 pathway. In addition, our findings revealed that inflammation's motoring of the ATM/ATR/p53 pathway plays a crucial role in DNA damage. Therefore, exploring the mechanism between inflammation and ROS-dependent DNA damage would be extremely valuable and innovative. This study would somewhat establish a better understanding of inflammation, DNA damage, and cancer.
Collapse
Affiliation(s)
- Chengye Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Hanbin Chen
- Department of Medical Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Xiaojian Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, People's Republic of China
| | - Peizhen Wang
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Yunjiao Shi
- Department of Medical Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Xiaona Xie
- Department of Medical Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Yanfan Chen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Xueding Cai
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China.
| |
Collapse
|
7
|
Bergis-Ser C, Reji M, Latrasse D, Bergounioux C, Benhamed M, Raynaud C. Chromatin dynamics and RNA metabolism are double-edged swords for the maintenance of plant genome integrity. NATURE PLANTS 2024; 10:857-873. [PMID: 38658791 DOI: 10.1038/s41477-024-01678-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/27/2024] [Indexed: 04/26/2024]
Abstract
Maintenance of genome integrity is an essential process in all organisms. Mechanisms avoiding the formation of DNA lesions or mutations are well described in animals because of their relevance to human health and cancer. In plants, they are of growing interest because DNA damage accumulation is increasingly recognized as one of the consequences of stress. Although the cellular response to DNA damage is mostly studied in response to genotoxic treatments, the main source of DNA lesions is cellular activity itself. This can occur through the production of reactive oxygen species as well as DNA processing mechanisms such as DNA replication or transcription and chromatin dynamics. In addition, how lesions are formed and repaired is greatly influenced by chromatin features and dynamics and by DNA and RNA metabolism. Notably, actively transcribed regions or replicating DNA, because they are less condensed and are sites of DNA processing, are more exposed to DNA damage. However, at the same time, a wealth of cellular mechanisms cooperate to favour DNA repair at these genomic loci. These intricate relationships that shape the distribution of mutations along the genome have been studied extensively in animals but much less in plants. In this Review, we summarize how chromatin dynamics influence lesion formation and DNA repair in plants, providing a comprehensive view of current knowledge and highlighting open questions with regard to what is known in other organisms.
Collapse
Affiliation(s)
- Clara Bergis-Ser
- Université Paris-Saclay, CNRS, INRAE, Université d'Evry, Institute of Plant Sciences Paris-Saclay, Orsay, France
| | - Meega Reji
- Université Paris-Saclay, CNRS, INRAE, Université d'Evry, Institute of Plant Sciences Paris-Saclay, Orsay, France
- Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, India
| | - David Latrasse
- Université Paris-Saclay, CNRS, INRAE, Université d'Evry, Institute of Plant Sciences Paris-Saclay, Orsay, France
| | - Catherine Bergounioux
- Université Paris-Saclay, CNRS, INRAE, Université d'Evry, Institute of Plant Sciences Paris-Saclay, Orsay, France
| | - Moussa Benhamed
- Université Paris-Saclay, CNRS, INRAE, Université d'Evry, Institute of Plant Sciences Paris-Saclay, Orsay, France
- Université Paris Cité, Institute of Plant Sciences Paris-Saclay, Gif-sur-Yvette, France
- Institut Universitaire de France, Orsay, France
| | - Cécile Raynaud
- Université Paris-Saclay, CNRS, INRAE, Université d'Evry, Institute of Plant Sciences Paris-Saclay, Orsay, France.
| |
Collapse
|
8
|
Thibault E, Brandizzi F. Post-translational modifications: emerging directors of cell-fate decisions during endoplasmic reticulum stress in Arabidopsis thaliana. Biochem Soc Trans 2024; 52:831-848. [PMID: 38600022 PMCID: PMC11088923 DOI: 10.1042/bst20231025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/23/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
Homeostasis of the endoplasmic reticulum (ER) is critical for growth, development, and stress responses. Perturbations causing an imbalance in ER proteostasis lead to a potentially lethal condition known as ER stress. In ER stress situations, cell-fate decisions either activate pro-life pathways that reestablish homeostasis or initiate pro-death pathways to prevent further damage to the organism. Understanding the mechanisms underpinning cell-fate decisions in ER stress is critical for crop development and has the potential to enable translation of conserved components to ER stress-related diseases in metazoans. Post-translational modifications (PTMs) of proteins are emerging as key players in cell-fate decisions in situations of imbalanced ER proteostasis. In this review, we address PTMs orchestrating cell-fate decisions in ER stress in plants and provide evidence-based perspectives for where future studies may focus to identify additional PTMs involved in ER stress management.
Collapse
Affiliation(s)
- Ethan Thibault
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, U.S.A
- Department of Plant Biology, Michigan State University, East Lansing, MI, U.S.A
| | - Federica Brandizzi
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, U.S.A
- Department of Plant Biology, Michigan State University, East Lansing, MI, U.S.A
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, U.S.A
| |
Collapse
|
9
|
Justice JL, Reed TJ, Phelan B, Greco TM, Hutton JE, Cristea IM. DNA-PK and ATM drive phosphorylation signatures that antagonistically regulate cytokine responses to herpesvirus infection or DNA damage. Cell Syst 2024; 15:339-361.e8. [PMID: 38593799 PMCID: PMC11098675 DOI: 10.1016/j.cels.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/09/2024] [Accepted: 03/15/2024] [Indexed: 04/11/2024]
Abstract
The DNA-dependent protein kinase, DNA-PK, is an essential regulator of DNA damage repair. DNA-PK-driven phosphorylation events and the activated DNA damage response (DDR) pathways are also components of antiviral intrinsic and innate immune responses. Yet, it is not clear whether and how the DNA-PK response differs between these two forms of nucleic acid stress-DNA damage and DNA virus infection. Here, we define DNA-PK substrates and the signature cellular phosphoproteome response to DNA damage or infection with the nuclear-replicating DNA herpesvirus, HSV-1. We establish that DNA-PK negatively regulates the ataxia-telangiectasia-mutated (ATM) DDR kinase during viral infection. In turn, ATM blocks the binding of DNA-PK and the nuclear DNA sensor IFI16 to viral DNA, thereby inhibiting cytokine responses. However, following DNA damage, DNA-PK enhances ATM activity, which is required for IFN-β expression. These findings demonstrate that the DDR autoregulates cytokine expression through the opposing modulation of DDR kinases.
Collapse
Affiliation(s)
- Joshua L Justice
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | - Tavis J Reed
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | - Brett Phelan
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | - Todd M Greco
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | - Josiah E Hutton
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA.
| |
Collapse
|
10
|
Levin G, Yasmin M, Pieńko T, Yehishalom N, Hanna R, Kleifeld O, Glaser F, Schuster G. The protein phosphorylation landscape in photosystem I of the desert algae Chlorella sp. THE NEW PHYTOLOGIST 2024; 242:544-557. [PMID: 38379464 DOI: 10.1111/nph.19603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/28/2024] [Indexed: 02/22/2024]
Abstract
The phosphorylation of photosystem II (PSII) and its antenna (LHCII) proteins has been studied, and its involvement in state transitions and PSII repair is known. Yet, little is known about the phosphorylation of photosystem I (PSI) and its antenna (LHCI) proteins. Here, we applied proteomics analysis to generate a map of the phosphorylation sites of the PSI-LHCI proteins in Chlorella ohadii cells that were grown under low or extreme high-light intensities (LL and HL). Furthermore, we analyzed the content of oxidized tryptophans and PSI-LHCI protein degradation products in these cells, to estimate the light-induced damage to PSI-LHCI. Our work revealed the phosphorylation of 17 of 22 PSI-LHCI subunits. The analyses detected the extensive phosphorylation of the LHCI subunits Lhca6 and Lhca7, which is modulated by growth light intensity. Other PSI-LHCI subunits were phosphorylated to a lesser extent, including PsaE, where molecular dynamic simulation proposed that a phosphoserine stabilizes ferredoxin binding. Additionally, we show that HL-grown cells accumulate less oxidative damage and degradation products of PSI-LHCI proteins, compared with LL-grown cells. The significant phosphorylation of Lhca6 and Lhca7 at the interface with other LHCI subunits suggests a physiological role during photosynthesis, possibly by altering light-harvesting characteristics and binding of other subunits.
Collapse
Affiliation(s)
- Guy Levin
- Faculty of Biology, Technion, Haifa, 32000, Israel
| | | | - Tomasz Pieńko
- Schulich Faculty of Chemistry, Technion, Haifa, 32000, Israel
| | | | - Rawad Hanna
- Faculty of Biology, Technion, Haifa, 32000, Israel
| | | | - Fabian Glaser
- The Lorry I. Lokey Center for Life Sciences and Engineering, Technion, Haifa, 32000, Israel
| | - Gadi Schuster
- Faculty of Biology, Technion, Haifa, 32000, Israel
- Grand Technion Energy Program, Technion, Haifa, 32000, Israel
| |
Collapse
|
11
|
Rawat SS, Laxmi A. Sugar signals pedal the cell cycle! FRONTIERS IN PLANT SCIENCE 2024; 15:1354561. [PMID: 38562561 PMCID: PMC10982403 DOI: 10.3389/fpls.2024.1354561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/19/2024] [Indexed: 04/04/2024]
Abstract
Cell cycle involves the sequential and reiterative progression of important events leading to cell division. Progression through a specific phase of the cell cycle is under the control of various factors. Since the cell cycle in multicellular eukaryotes responds to multiple extracellular mitogenic cues, its study in higher forms of life becomes all the more important. One such factor regulating cell cycle progression in plants is sugar signalling. Because the growth of organs depends on both cell growth and proliferation, sugars sensing and signalling are key control points linking sugar perception to regulation of downstream factors which facilitate these key developmental transitions. However, the basis of cell cycle control via sugars is intricate and demands exploration. This review deals with the information on sugar and TOR-SnRK1 signalling and how they manoeuvre various events of the cell cycle to ensure proper growth and development.
Collapse
Affiliation(s)
| | - Ashverya Laxmi
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
12
|
Thiaw MRN, Gantet P. The emerging functions of mini zinc finger (MIF) microproteins in seed plants: A minireview. Biochimie 2024; 218:69-75. [PMID: 37722501 DOI: 10.1016/j.biochi.2023.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/20/2023] [Accepted: 09/14/2023] [Indexed: 09/20/2023]
Abstract
Mini zinc fingers constitute a class of microproteins that appeared early in evolution and expanded in seeds plants. In this review, the phylogenetic history, the functions and the mode of action of Mini zinc fingers in plants are reported and discussed. It appears that mini zinc fingers play an important role in the control of plant development. They are involved in the control of cell division and expansion, in the switch between the determinate/indeterminate state of the meristems and in the regulation of vegetative growth and floral organ development. Their biochemical mode of action seems to be diverse. In some studies, it has been reported that mini zinc fingers can directly bind to DNA and activate target gene expression, whereas other studies have shown that they can interact with and inhibit the activity of specific zinc finger homeodomain transcription factors or act as adaptor proteins necessary to aggregate polymeric protein complexes corresponding to chromatin remodelling factors negatively regulating the expression of specific genes. The diversity of mode of action for mini zinc finger microproteins suggests a wider range of biological functions than what has been that described in the literature thus far, and their involvement in the response to biotic and abiotic stresses should be further investigated in future studies.
Collapse
Affiliation(s)
- Marie Rose Ndella Thiaw
- UMR DIADE, Université de Montpellier, IRD, 911 Avenue Agropolis, 34394, cedex 5, Montpellier, France.
| | - Pascal Gantet
- UMR DIADE, Université de Montpellier, IRD, 911 Avenue Agropolis, 34394, cedex 5, Montpellier, France.
| |
Collapse
|
13
|
Waterworth W, Balobaid A, West C. Seed longevity and genome damage. Biosci Rep 2024; 44:BSR20230809. [PMID: 38324350 PMCID: PMC11111285 DOI: 10.1042/bsr20230809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/08/2024] Open
Abstract
Seeds are the mode of propagation for most plant species and form the basis of both agriculture and ecosystems. Desiccation tolerant seeds, representative of most crop species, can survive maturation drying to become metabolically quiescent. The desiccated state prolongs embryo viability and provides protection from adverse environmental conditions, including seasonal periods of drought and freezing often encountered in temperate regions. However, the capacity of the seed to germinate declines over time and culminates in the loss of seed viability. The relationship between environmental conditions (temperature and humidity) and the rate of seed deterioration (ageing) is well defined, but less is known about the biochemical and genetic factors that determine seed longevity. This review will highlight recent advances in our knowledge that provide insight into the cellular stresses and protective mechanisms that promote seed survival, with a focus on the roles of DNA repair and response mechanisms. Collectively, these pathways function to maintain the germination potential of seeds. Understanding the molecular basis of seed longevity provides important new genetic targets for the production of crops with enhanced resilience to changing climates and knowledge important for the preservation of plant germplasm in seedbanks.
Collapse
Affiliation(s)
- Wanda Waterworth
- Centre for Plant Sciences, University of Leeds, Woodhouse Lane, Leeds LS2
9JT, U.K
| | - Atheer Balobaid
- Centre for Plant Sciences, University of Leeds, Woodhouse Lane, Leeds LS2
9JT, U.K
| | - Chris West
- Centre for Plant Sciences, University of Leeds, Woodhouse Lane, Leeds LS2
9JT, U.K
| |
Collapse
|
14
|
Jain D, Schmidt W. Protein Phosphorylation Orchestrates Acclimations of Arabidopsis Plants to Environmental pH. Mol Cell Proteomics 2024; 23:100685. [PMID: 38000714 PMCID: PMC10837763 DOI: 10.1016/j.mcpro.2023.100685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 10/18/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Environment pH (pHe) is a key parameter dictating a surfeit of conditions critical to plant survival and fitness. To elucidate the mechanisms that recalibrate cytoplasmic and apoplastic pH homeostasis, we conducted a comprehensive proteomic/phosphoproteomic inventory of plants subjected to transient exposure to acidic or alkaline pH, an approach that covered the majority of protein-coding genes of the reference plant Arabidopsis thaliana. Our survey revealed a large set-of so far undocumented pHe-dependent phospho-sites, indicative of extensive post-translational regulation of proteins involved in the acclimation to pHe. Changes in pHe altered both electrogenic H+ pumping via P-type ATPases and H+/anion co-transport processes, putatively leading to altered net trans-plasma membrane translocation of H+ ions. In pH 7.5 plants, the transport (but not the assimilation) of nitrogen via NRT2-type nitrate and AMT1-type ammonium transporters was induced, conceivably to increase the cytosolic H+ concentration. Exposure to both acidic and alkaline pH resulted in a marked repression of primary root elongation. No such cessation was observed in nrt2.1 mutants. Alkaline pH decreased the number of root hairs in the wild type but not in nrt2.1 plants, supporting a role of NRT2.1 in developmental signaling. Sequestration of iron into the vacuole via alterations in protein abundance of the vacuolar iron transporter VTL5 was inversely regulated in response to high and low pHe, presumptively in anticipation of associated changes in iron availability. A pH-dependent phospho-switch was also observed for the ABC transporter PDR7, suggesting changes in activity and, possibly, substrate specificity. Unexpectedly, the effect of pHe was not restricted to roots and provoked pronounced changes in the shoot proteome. In both roots and shoots, the plant-specific TPLATE complex components AtEH1 and AtEH2-essential for clathrin-mediated endocytosis-were differentially phosphorylated at multiple sites in response to pHe, indicating that the endocytic cargo protein trafficking is orchestrated by pHe.
Collapse
Affiliation(s)
- Dharmesh Jain
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung-Hsing University, Taipei, Taiwan; Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, Taiwan; Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Wolfgang Schmidt
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung-Hsing University, Taipei, Taiwan; Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan; Biotechnology Center, National Chung-Hsing University, Taichun, Taiwan; Genome and Systems Biology Degree Program, College of Life Science, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
15
|
Smith MA, Benidickson KH, Plaxton WC. In Vivo Phosphorylation of the Cytosolic Glucose-6-Phosphate Dehydrogenase Isozyme G6PD6 in Phosphate-Resupplied Arabidopsis thaliana Suspension Cells and Seedlings. PLANTS (BASEL, SWITZERLAND) 2023; 13:31. [PMID: 38202338 PMCID: PMC10780934 DOI: 10.3390/plants13010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024]
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) catalyzes the first committed step of the oxidative pentose phosphate pathway (OPPP). Our recent phosphoproteomics study revealed that the cytosolic G6PD6 isozyme became hyperphosphorylated at Ser12, Thr13 and Ser18, 48 h following phosphate (Pi) resupply to Pi-starved (-Pi) Arabidopsis thaliana cell cultures. The aim of the present study was to assess whether G6PD6 phosphorylation also occurs in shoots or roots following Pi resupply to -Pi Arabidopsis seedlings, and to investigate its relationship with G6PD activity. Interrogation of phosphoproteomic databases indicated that N-terminal, multi-site phosphorylation of G6PD6 and its orthologs is quite prevalent. However, the functions of these phosphorylation events remain unknown. Immunoblotting with an anti-(pSer18 phosphosite-specific G6PD6) antibody confirmed that G6PD6 from Pi-resupplied, but not -Pi, Arabidopsis cell cultures or seedlings (i.e., roots) was phosphorylated at Ser18; this correlated with a significant increase in extractable G6PD activity, and biomass accumulation. Peptide kinase assays of Pi-resupplied cell culture extracts indicated that G6PD6 phosphorylation at Ser18 is catalyzed by a Ca2+-dependent protein kinase (CDPK), which correlates with the 'CDPK-like' targeting motif that flanks Ser18. Our results support the hypothesis that N-terminal phosphorylation activates G6PD6 to enhance OPPP flux and thus the production of reducing power (i.e., NADPH) and C-skeletons needed to establish the rapid resumption of growth that ensures Pi-resupply to -Pi Arabidopsis.
Collapse
Affiliation(s)
| | | | - William C. Plaxton
- Department of Biology, Queen’s University, Kingston, ON K7L 3N6, Canada; (M.A.S.); (K.H.B.)
| |
Collapse
|
16
|
Šafranek M, Shumbusho A, Johansen W, Šarkanová J, Voško S, Bokor B, Jásik J, Demko V. Membrane-anchored calpains - hidden regulators of growth and development beyond plants? FRONTIERS IN PLANT SCIENCE 2023; 14:1289785. [PMID: 38173928 PMCID: PMC10762896 DOI: 10.3389/fpls.2023.1289785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024]
Abstract
Calpains are modulatory proteases that modify diverse cellular substrates and play essential roles in eukaryots. The best studied are animal cytosolic calpains. Here, we focus on enigmatic membrane-anchored calpains, their structural and functional features as well as phylogenetic distribution. Based on domain composition, we identified four types of membrane-anchored calpains. Type 1 and 2 show broad phylogenetic distribution among unicellular protists and streptophytes suggesting their ancient evolutionary origin. Type 3 and 4 diversified early and are present in brown algae and oomycetes. The plant DEK1 protein is the only representative of membrane-anchored calpains that has been functionally studied. Here, we present up to date knowledge about its structural features, putative regulation, posttranslational modifications, and biological role. Finally, we discuss potential model organisms and available tools for functional studies of membrane-anchored calpains with yet unknown biological role. Mechanistic understanding of membrane-anchored calpains may provide important insights into fundamental principles of cell polarization, cell fate control, and morphogenesis beyond plants.
Collapse
Affiliation(s)
- Martin Šafranek
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Alain Shumbusho
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Wenche Johansen
- Faculty of Applied Ecology, Agricultural Sciences and Biotechnology, Inland Norway University of Applied Sciences, Hamar, Norway
| | - Júlia Šarkanová
- Comenius University Science Park, Comenius University in Bratislava, Bratislava, Slovakia
| | - Stanislav Voško
- Comenius University Science Park, Comenius University in Bratislava, Bratislava, Slovakia
| | - Boris Bokor
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
- Comenius University Science Park, Comenius University in Bratislava, Bratislava, Slovakia
| | - Ján Jásik
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Viktor Demko
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|
17
|
Herbst J, Nagy SH, Vercauteren I, De Veylder L, Kunze R. The long non-coding RNA LINDA restrains cellular collapse following DNA damage in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1370-1384. [PMID: 37616189 DOI: 10.1111/tpj.16431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/04/2023] [Accepted: 08/12/2023] [Indexed: 08/26/2023]
Abstract
The genomic integrity of every organism is endangered by various intrinsic and extrinsic stresses. To maintain genomic integrity, a sophisticated DNA damage response (DDR) network is activated rapidly after DNA damage. Notably, the fundamental DDR mechanisms are conserved in eukaryotes. However, knowledge about many regulatory aspects of the plant DDR is still limited. Important, yet little understood, regulatory factors of the DDR are the long non-coding RNAs (lncRNAs). In humans, 13 lncRNAs functioning in DDR have been characterized to date, whereas no such lncRNAs have been characterized in plants yet. By meta-analysis, we identified the putative long intergenic non-coding RNA induced by DNA damage (LINDA) that responds strongly to various DNA double-strand break-inducing treatments, but not to replication stress induced by mitomycin C. After DNA damage, LINDA is rapidly induced in an ATM- and SOG1-dependent manner. Intriguingly, the transcriptional response of LINDA to DNA damage is similar to that of its flanking hypothetical protein-encoding gene. Phylogenetic analysis of putative Brassicales and Malvales LINDA homologs indicates that LINDA lncRNAs originate from duplication of a flanking small protein-encoding gene followed by pseudogenization. We demonstrate that LINDA is not only needed for the regulation of this flanking gene but also fine-tuning of the DDR after the occurrence of DNA double-strand breaks. Moreover, Δlinda mutant root stem cells are unable to recover from DNA damage, most likely due to hyper-induced cell death.
Collapse
Affiliation(s)
- Josephine Herbst
- Department of Biology, Chemistry and Pharmacy, Molecular Genetics of Plants, Institute of Biology, Freie Universität Berlin, Berlin, D-14195, Germany
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent, B-9052, Belgium
| | - Solveig Henriette Nagy
- Department of Biology, Chemistry and Pharmacy, Molecular Genetics of Plants, Institute of Biology, Freie Universität Berlin, Berlin, D-14195, Germany
| | - Ilse Vercauteren
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent, B-9052, Belgium
| | - Lieven De Veylder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent, B-9052, Belgium
| | - Reinhard Kunze
- Department of Biology, Chemistry and Pharmacy, Molecular Genetics of Plants, Institute of Biology, Freie Universität Berlin, Berlin, D-14195, Germany
| |
Collapse
|
18
|
Rawat A, Völz R, Sheikh A, Mariappan KG, Kim SK, Rayapuram N, Alwutayd KM, Alidrissi LK, Benhamed M, Blilou I, Hirt H. Salinity stress-induced phosphorylation of INDETERMINATE-DOMAIN 4 (IDD4) by MPK6 regulates plant growth adaptation in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2023; 14:1265687. [PMID: 37881611 PMCID: PMC10595144 DOI: 10.3389/fpls.2023.1265687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 09/25/2023] [Indexed: 10/27/2023]
Abstract
The INDETERMINATE DOMAIN (IDD) family belongs to a group of plant-specific transcription factors that coordinates plant growth/development and immunity. However, the function and mode of action of IDDs during abiotic stress, such as salt, are poorly understood. We used idd4 transgenic lines and screened them under salt stress to find the involvement of IDD4 in salinity stress tolerance The genetic disruption of IDD4 increases salt-tolerance, characterized by sustained plant growth, improved Na+/K+ ratio, and decreased stomatal density/aperture. Yet, IDD4 overexpressing plants were hypersensitive to salt-stress with an increase in stomatal density and pore size. Transcriptomic and ChIP-seq analyses revealed that IDD4 directly controls an important set of genes involved in abiotic stress/salinity responses. Interestingly, using anti-IDD4-pS73 antibody we discovered that IDD4 is specifically phosphorylated at serine-73 by MPK6 in vivo under salinity stress. Analysis of plants expressing the phospho-dead and phospho-mimicking IDD4 versions proved that phosphorylation of IDD4 plays a crucial role in plant transcriptional reprogramming of salt-stress genes. Altogether, we show that salt stress adaption involves MPK6 phosphorylation of IDD4 thereby regulating IDD4 DNA-binding and expression of target genes.
Collapse
Affiliation(s)
- Anamika Rawat
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Ronny Völz
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Arsheed Sheikh
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Kiruthiga G. Mariappan
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Soon-Kap Kim
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Naganand Rayapuram
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Khairiah M. Alwutayd
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Louai K. Alidrissi
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Moussa Benhamed
- Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Orsay, France
| | - Ikram Blilou
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Heribert Hirt
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| |
Collapse
|
19
|
Siqueira JA, Zsögön A, Fernie AR, Nunes-Nesi A, Araújo WL. Does day length matter for nutrient responsiveness? TRENDS IN PLANT SCIENCE 2023; 28:1113-1123. [PMID: 37268488 DOI: 10.1016/j.tplants.2023.04.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/11/2023] [Accepted: 04/24/2023] [Indexed: 06/04/2023]
Abstract
For over 2500 years, considerable agronomic interest has been paid to soil fertility. Both crop domestication and the Green Revolution shifted photoperiodism and the circadian clock in cultivated species, although this contributed to an increase in the demand for chemical fertilisers. Thus, the uptake of nutrients depends on light signalling, whereas diel growth and circadian rhythms are affected by nutrient levels. Here, we argue that day length and circadian rhythms may be central regulators of the uptake and usage of nutrients, also modulating responses to toxic elements (e.g., aluminium and cadmium). Thus, we suggest that knowledge in this area might assist in developing next-generation crops with improved uptake and use efficiency of nutrients.
Collapse
Affiliation(s)
- João Antonio Siqueira
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil.
| | - Agustin Zsögön
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Adriano Nunes-Nesi
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Wagner L Araújo
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil.
| |
Collapse
|
20
|
Jiang D, Berger F. Variation is important: Warranting chromatin function and dynamics by histone variants. CURRENT OPINION IN PLANT BIOLOGY 2023; 75:102408. [PMID: 37399781 DOI: 10.1016/j.pbi.2023.102408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/24/2023] [Accepted: 06/01/2023] [Indexed: 07/05/2023]
Abstract
The chromatin of flowering plants exhibits a wide range of sequence variants of the core and linker histones. Recent studies have demonstrated that specific histone variant enrichment, combined with post-translational modifications (PTMs) of histones, defines distinct chromatin states that impact specific chromatin functions. Chromatin remodelers are emerging as key regulators of histone variant dynamics, contributing to shaping chromatin states and regulating gene transcription in response to environment. Recognizing the histone variants by their specific readers, controlled by histone PTMs, is crucial for maintaining genome and chromatin integrity. In addition, various histone variants have been shown to play essential roles in remodeling chromatin domains to facilitate important programmed transitions throughout the plant life cycle. In this review, we discuss recent findings in this exciting field of research, which holds immense promise for many surprising discoveries related to the evolution of complexity in plant organization through a seemingly simple protein family.
Collapse
Affiliation(s)
- Danhua Jiang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Frédéric Berger
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria.
| |
Collapse
|
21
|
Jeong HW, Ryu TH, Lee HJ, Kim KH, Jeong RD. DNA Damage Triggers the Activation of Immune Response to Viral Pathogens via Salicylic Acid in Plants. THE PLANT PATHOLOGY JOURNAL 2023; 39:449-465. [PMID: 37817492 PMCID: PMC10580055 DOI: 10.5423/ppj.oa.08.2023.0112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 10/12/2023]
Abstract
Plants are challenged by various pathogens throughout their lives, such as bacteria, viruses, fungi, and insects; consequently, they have evolved several defense mechanisms. In addition, plants have developed localized and systematic immune responses due to biotic and abiotic stress exposure. Animals are known to activate DNA damage responses (DDRs) and DNA damage sensor immune signals in response to stress, and the process is well studied in animal systems. However, the links between stress perception and immune response through DDRs remain largely unknown in plants. To determine whether DDRs induce plant resistance to pathogens, Arabidopsis plants were treated with bleomycin, a DNA damage-inducing agent, and the replication levels of viral pathogens and growth of bacterial pathogens were determined. We observed that DDR-mediated resistance was specifically activated against viral pathogens, including turnip crinkle virus (TCV). DDR increased the expression level of pathogenesis-related (PR) genes and the total salicylic acid (SA) content and promoted mitogen-activated protein kinase signaling cascades, including the WRKY signaling pathway in Arabidopsis. Transcriptome analysis further revealed that defense- and SA-related genes were upregulated by DDR. The atm-2atr-2 double mutants were susceptible to TCV, indicating that the main DDR signaling pathway sensors play an important role in plant immune responses. In conclusion, DDRs activated basal immune responses to viral pathogens.
Collapse
Affiliation(s)
- Hwi-Won Jeong
- Department of Applied Biology, Chonnam National University, Gwangju 61185, Korea
| | - Tae Ho Ryu
- Department of Applied Biology, Chonnam National University, Gwangju 61185, Korea
| | - Hyo-Jeong Lee
- Department of Applied Biology, Chonnam National University, Gwangju 61185, Korea
| | - Kook-Hyung Kim
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Rae-Dong Jeong
- Department of Applied Biology, Chonnam National University, Gwangju 61185, Korea
| |
Collapse
|
22
|
Sears RG, Rigoulot SB, Occhialini A, Morgan B, Kakeshpour T, Brabazon H, Barnes CN, Seaberry EM, Jacobs B, Brown C, Yang Y, Schimel TM, Lenaghan SC, Neal Stewart C. Engineered gamma radiation phytosensors for environmental monitoring. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:1745-1756. [PMID: 37224108 PMCID: PMC10440981 DOI: 10.1111/pbi.14072] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/13/2023] [Accepted: 04/24/2023] [Indexed: 05/26/2023]
Abstract
Nuclear energy, already a practical solution for supplying energy on a scale similar to fossil fuels, will likely increase its footprint over the next several decades to meet current climate goals. Gamma radiation is produced during fission in existing nuclear reactors and thus the need to detect leakage from nuclear plants, and effects of such leakage on ecosystems will likely also increase. At present, gamma radiation is detected using mechanical sensors that have several drawbacks, including: (i) limited availability; (ii) reliance on power supply; and (iii) requirement of human presence in dangerous areas. To overcome these limitations, we have developed a plant biosensor (phytosensor) to detect low-dose ionizing radiation. The system utilizes synthetic biology to engineer a dosimetric switch into potato utilizing the plant's native DNA damage response (DDR) machinery to produce a fluorescent output. In this work, the radiation phytosensor was shown to respond to a wide range of gamma radiation exposure (10-80 Grey) producing a reporter signal that was detectable at >3 m. Further, a pressure test of the top radiation phytosensor in a complex mesocosm demonstrated full function of the system in a 'real world' scenario.
Collapse
Affiliation(s)
- Robert G. Sears
- Department of Plant SciencesThe University of TennesseeKnoxvilleTennesseeUSA
- Center for Agricultural Synthetic BiologyThe University of Tennessee, KnoxvilleKnoxvilleTennesseeUSA
| | - Stephen B. Rigoulot
- Department of Plant SciencesThe University of TennesseeKnoxvilleTennesseeUSA
- Center for Agricultural Synthetic BiologyThe University of Tennessee, KnoxvilleKnoxvilleTennesseeUSA
| | - Alessandro Occhialini
- Center for Agricultural Synthetic BiologyThe University of Tennessee, KnoxvilleKnoxvilleTennesseeUSA
- Department of Food ScienceThe University of TennesseeKnoxvilleTennesseeUSA
| | - Britany Morgan
- Department of Plant SciencesThe University of TennesseeKnoxvilleTennesseeUSA
- Center for Agricultural Synthetic BiologyThe University of Tennessee, KnoxvilleKnoxvilleTennesseeUSA
| | - Tayebeh Kakeshpour
- Department of Plant SciencesThe University of TennesseeKnoxvilleTennesseeUSA
- Center for Agricultural Synthetic BiologyThe University of Tennessee, KnoxvilleKnoxvilleTennesseeUSA
| | - Holly Brabazon
- Department of Plant SciencesThe University of TennesseeKnoxvilleTennesseeUSA
- Center for Agricultural Synthetic BiologyThe University of Tennessee, KnoxvilleKnoxvilleTennesseeUSA
| | - Caitlin N. Barnes
- Department of Plant SciencesThe University of TennesseeKnoxvilleTennesseeUSA
- Center for Agricultural Synthetic BiologyThe University of Tennessee, KnoxvilleKnoxvilleTennesseeUSA
| | - Erin M. Seaberry
- Department of Plant SciencesThe University of TennesseeKnoxvilleTennesseeUSA
- Center for Agricultural Synthetic BiologyThe University of Tennessee, KnoxvilleKnoxvilleTennesseeUSA
| | - Brianna Jacobs
- Department of Plant SciencesThe University of TennesseeKnoxvilleTennesseeUSA
- Center for Agricultural Synthetic BiologyThe University of Tennessee, KnoxvilleKnoxvilleTennesseeUSA
| | - Chandler Brown
- Department of Plant SciencesThe University of TennesseeKnoxvilleTennesseeUSA
- Center for Agricultural Synthetic BiologyThe University of Tennessee, KnoxvilleKnoxvilleTennesseeUSA
| | - Yongil Yang
- Department of Plant SciencesThe University of TennesseeKnoxvilleTennesseeUSA
- Center for Agricultural Synthetic BiologyThe University of Tennessee, KnoxvilleKnoxvilleTennesseeUSA
| | - Tayler M. Schimel
- Center for Agricultural Synthetic BiologyThe University of Tennessee, KnoxvilleKnoxvilleTennesseeUSA
- Department of Food ScienceThe University of TennesseeKnoxvilleTennesseeUSA
| | - Scott C. Lenaghan
- Center for Agricultural Synthetic BiologyThe University of Tennessee, KnoxvilleKnoxvilleTennesseeUSA
- Department of Food ScienceThe University of TennesseeKnoxvilleTennesseeUSA
| | - C. Neal Stewart
- Department of Plant SciencesThe University of TennesseeKnoxvilleTennesseeUSA
- Center for Agricultural Synthetic BiologyThe University of Tennessee, KnoxvilleKnoxvilleTennesseeUSA
| |
Collapse
|
23
|
Hawk TE, Piya S, Zadegan SB, Li P, Rice JH, Hewezi T. The soybean immune receptor GmBIR1 regulates host transcriptome, spliceome, and immunity during cyst nematode infection. THE NEW PHYTOLOGIST 2023; 239:2335-2352. [PMID: 37337845 DOI: 10.1111/nph.19087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 05/31/2023] [Indexed: 06/21/2023]
Abstract
BAK1-INTERACTING RECEPTOR LIKE KINASE1 (BIR1) is a negative regulator of various aspects of disease resistance and immune responses. Here, we investigated the functional role of soybean (Glycine max) BIR1 (GmBIR1) during soybean interaction with soybean cyst nematode (SCN, Heterodera glycines) and the molecular mechanism through which GmBIR1 regulates plant immunity. Overexpression of wild-type variant of GmBIR1 (WT-GmBIR1) using transgenic soybean hairy roots significantly increased soybean susceptibility to SCN, whereas overexpression of kinase-dead variant (KD-GmBIR1) significantly increased plant resistance. Transcriptome analysis revealed that genes oppositely regulated in WT-GmBIR1 and KD-GmBIR1 upon SCN infection were enriched primarily in defense and immunity-related functions. Quantitative phosphoproteomic analysis identified 208 proteins as putative substrates of the GmBIR1 signaling pathway, 114 of which were differentially phosphorylated upon SCN infection. In addition, the phosphoproteomic data pointed to a role of the GmBIR1 signaling pathway in regulating alternative pre-mRNA splicing. Genome-wide analysis of splicing events provided compelling evidence supporting a role of the GmBIR1 signaling pathway in establishing alternative splicing during SCN infection. Our results provide novel mechanistic insights into the function of the GmBIR1 signaling pathway in regulating soybean transcriptome and spliceome via differential phosphorylation of splicing factors and regulation of splicing events of pre-mRNA decay- and spliceosome-related genes.
Collapse
Affiliation(s)
- Tracy E Hawk
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Sarbottam Piya
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Sobhan Bahrami Zadegan
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Peitong Li
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - John H Rice
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| |
Collapse
|
24
|
Durut N, Kornienko AE, Schmidt HA, Lettner N, Donà M, Nordborg M, Mittelsten Scheid O. Long noncoding RNAs contribute to DNA damage resistance in Arabidopsis thaliana. Genetics 2023; 225:iyad135. [PMID: 37467473 PMCID: PMC10471225 DOI: 10.1093/genetics/iyad135] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 07/21/2023] Open
Abstract
Efficient repair of DNA lesions is essential for the faithful transmission of genetic information between somatic cells and for genome integrity across generations. Plants have multiple, partially redundant, and overlapping DNA repair pathways, probably due to the less constricted germline and the inevitable exposure to light including higher energy wavelengths. Many proteins involved in DNA repair and their mode of actions are well described. In contrast, a role for DNA damage-associated RNA components, evident from many other organisms, is less well understood. Here, we have challenged young Arabidopsis thaliana plants with two different types of genotoxic stress and performed de novo assembly and transcriptome analysis. We identified three long noncoding RNAs (lncRNAs) that are lowly or not expressed under regular conditions but up-regulated or induced by DNA damage. We generated CRISPR/Cas deletion mutants and found that the absence of the lncRNAs impairs the recovery capacity of the plants from genotoxic stress. The genetic loci are highly conserved among world-wide distributed Arabidopsis accessions and within related species in the Brassicaceae group. Together, these results suggest that the lncRNAs have a conserved function in connection with DNA damage and provide a basis for mechanistic analysis of their role.
Collapse
Affiliation(s)
- Nathalie Durut
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Aleksandra E Kornienko
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Heiko A Schmidt
- Center for Integrative Bioinformatics Vienna (CIBIV), Max Perutz Labs, University of Vienna and Medical University of Vienna, Vienna BioCenter (VBC), Dr. Bohr Gasse 9, 1030 Vienna, Austria
| | - Nicole Lettner
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Mattia Donà
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Magnus Nordborg
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Ortrun Mittelsten Scheid
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr Gasse 3, 1030 Vienna, Austria
| |
Collapse
|
25
|
Cutolo EA, Caferri R, Guardini Z, Dall'Osto L, Bassi R. Analysis of state 1-state 2 transitions by genome editing and complementation reveals a quenching component independent from the formation of PSI-LHCI-LHCII supercomplex in Arabidopsis thaliana. Biol Direct 2023; 18:49. [PMID: 37612770 PMCID: PMC10463614 DOI: 10.1186/s13062-023-00406-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/07/2023] [Indexed: 08/25/2023] Open
Abstract
BACKGROUND The light-harvesting antennae of photosystem (PS) I and PSII are pigment-protein complexes responsible of the initial steps of sunlight conversion into chemical energy. In natural environments plants are constantly confronted with the variability of the photosynthetically active light spectrum. PSII and PSI operate in series but have different optimal excitation wavelengths. The prompt adjustment of light absorption by photosystems is thus crucial to ensure efficient electron flow needed to sustain downstream carbon fixing reactions. Fast structural rearrangements equilibrate the partition of excitation pressure between PSII and PSI following the enrichment in the red (PSII-favoring) or far-red (PSI-favoring) spectra. Redox imbalances trigger state transitions (ST), a photoacclimation mechanism which involves the reversible phosphorylation/dephosphorylation of light harvesting complex II (LHCII) proteins by the antagonistic activities of the State Transition 7 (STN7) kinase/TAP38 phosphatase enzyme pair. During ST, a mobile PSII antenna pool associates with PSI increasing its absorption cross section. LHCII consists of assorted trimeric assemblies of Lhcb1, Lhcb2 and Lhcb3 protein isoforms (LHCII), several being substrates of STN7. However, the precise roles of Lhcb phosphorylation during ST remain largely elusive. RESULTS We inactivated the complete Lhcb1 and Lhcb2 gene clades in Arabidopsis thaliana and reintroduced either wild type Lhcb1.3 and Lhcb2.1 isoforms, respectively, or versions lacking N-terminal phosphorylatable residues proposed to mediate state transitions. While the substitution of Lhcb2.1 Thr-40 prevented the formation of the PSI-LHCI-LHCII complex, replacement of Lhcb1.3 Thr-38 did not affect the formation of this supercomplex, nor did influence the amplitude or kinetics of PSII fluorescence quenching upon state 1-state 2 transition. CONCLUSIONS Phosphorylation of Lhcb2 Thr-40 by STN7 alone accounts for ≈ 60% of PSII fluorescence quenching during state transitions. Instead, the presence of Thr-38 phosphosite in Lhcb1.3 was not required for the formation of the PSI-LHCI-LHCII supercomplex nor for re-equilibration of the plastoquinone redox state. The Lhcb2 phosphomutant was still capable of ≈ 40% residual fluorescence quenching, implying that a yet uncharacterized, STN7-dependent, component of state transitions, which is unrelated to Lhcb2 Thr-40 phosphorylation and to the formation of the PSI-LHCI-LHCII supercomplex, contributes to the equilibration of the PSI/PSII excitation pressure upon plastoquinone over-reduction.
Collapse
Affiliation(s)
- Edoardo Andrea Cutolo
- Laboratory of Photosynthesis and Bioenergy, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134, Verona, Italy
| | - Roberto Caferri
- Laboratory of Photosynthesis and Bioenergy, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134, Verona, Italy
| | - Zeno Guardini
- Laboratory of Photosynthesis and Bioenergy, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134, Verona, Italy
| | - Luca Dall'Osto
- Laboratory of Photosynthesis and Bioenergy, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134, Verona, Italy
| | - Roberto Bassi
- Laboratory of Photosynthesis and Bioenergy, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134, Verona, Italy.
- Accademia Nazionale dei Lincei, Palazzo Corsini, Via Della Lungara, 10, 00165, Rome, Italy.
| |
Collapse
|
26
|
Elshobaky A, Lillo C, Hodén KP, Kataya ARA. Protein-Protein Interactions and Quantitative Phosphoproteomic Analysis Reveal Potential Mitochondrial Substrates of Protein Phosphatase 2A-B'ζ Holoenzyme. PLANTS (BASEL, SWITZERLAND) 2023; 12:2586. [PMID: 37447147 DOI: 10.3390/plants12132586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023]
Abstract
Protein phosphatase 2A (PP2A) is a heterotrimeric conserved serine/threonine phosphatase complex that includes catalytic, scaffolding, and regulatory subunits. The 3 A subunits, 17 B subunits, and 5 C subunits that are encoded by the Arabidopsis genome allow 255 possible PP2A holoenzyme combinations. The regulatory subunits are crucial for substrate specificity and PP2A complex localization and are classified into the B, B', and B" non-related families in land plants. In Arabidopsis, the close homologs B'η, B'θ, B'γ, and B'ζ are further classified into a subfamily of B' called B'η. Previous studies have suggested that mitochondrial targeted PP2A subunits (B'ζ) play a role in energy metabolism and plant innate immunity. Potentially, the PP2A-B'ζ holoenzyme is involved in the regulation of the mitochondrial succinate/fumarate translocator, and it may affect the enzymes involved in energy metabolism. To investigate this hypothesis, the interactions between PP2A-B'ζ and the enzymes involved in the mitochondrial energy flow were investigated using bimolecular fluorescence complementation in tobacco and onion cells. Interactions were confirmed between the B'ζ subunit and the Krebs cycle proteins succinate/fumarate translocator (mSFC1), malate dehydrogenase (mMDH2), and aconitase (ACO3). Additional putative interacting candidates were deduced by comparing the enriched phosphoproteomes of wild type and B'ζ mutants: the mitochondrial regulator Arabidopsis pentatricopeptide repeat 6 (PPR6) and the two metabolic enzymes phosphoenolpyruvate carboxylase (PPC3) and phosphoenolpyruvate carboxykinase (PCK1). Overall, this study identifies potential PP2A substrates and highlights the role of PP2A in regulating energy metabolism in mitochondria.
Collapse
Affiliation(s)
- Ahmed Elshobaky
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, N-4036 Stavanger, Norway
- Botany Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Cathrine Lillo
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, N-4036 Stavanger, Norway
| | - Kristian Persson Hodén
- Department of Plant Biology, Uppsala BioCenter, Linnéan Center for Plant Biology, Swedish University of Agricultural Sciences, P.O. Box 7080, 75007 Uppsala, Sweden
| | - Amr R A Kataya
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, N-4036 Stavanger, Norway
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
27
|
Kilburn R, Fedosejevs ET, Mehta D, Soleimani F, Ghahremani M, Monaghan J, Thelen JJ, Uhrig RG, Snedden WA, Plaxton WC. Substrate profiling of the Arabidopsis Ca 2+-dependent protein kinase AtCPK4 and its Ricinus communis ortholog RcCDPK1. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 331:111675. [PMID: 36931565 DOI: 10.1016/j.plantsci.2023.111675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 03/10/2023] [Accepted: 03/12/2023] [Indexed: 06/18/2023]
Abstract
AtCPK4 and AtCPK11 are Arabidopsis thaliana Ca2+-dependent protein kinase (CDPK) paralogs that have been reported to positively regulate abscisic acid (ABA) signal transduction by phosphorylating ABA-responsive transcription factor-4 (AtABF4). By contrast, RcCDPK1, their closest Ricinus communis ortholog, participates in the control of anaplerotic carbon flux in developing castor oil seeds by catalyzing inhibitory phosphorylation of bacterial-type phosphoenolpyruvate carboxylase at Ser451. LC-MS/MS revealed that AtCPK4 and RcCDPK1 transphosphorylated several common, conserved residues of AtABF4 and its castor ortholog, TRANSCRIPTION FACTOR RESPONSIBLE FOR ABA REGULATON. Arabidopsis atcpk4/atcpk11 mutants displayed an ABA-insensitive phenotype that corroborated the involvement of AtCPK4/11 in ABA signaling. A kinase-client assay was employed to identify additional AtCPK4/RcCDPK1 targets. Both CDPKs were separately incubated with a library of 2095 peptides representative of Arabidopsis protein phosphosites; five overlapping targets were identified including PLANT INTRACELLULAR RAS-GROUP-RELATED LEUCINE-RICH REPEAT PROTEIN-9 (AtPIRL9) and the E3-ubiquitin ligase ARABIDOPSIS TOXICOS EN LEVADURA 6 (AtATL6). AtPIRL9 and AtATL6 residues phosphorylated by AtCPK4/RcCDPK1 conformed to a CDPK recognition motif that was conserved amongst their respective orthologs. Collectively, this study provides evidence for novel AtCPK4/RcCDPK1 substrates, which may help to expand regulatory networks linked to Ca2+- and ABA-signaling, immune responses, and central carbon metabolism.
Collapse
Affiliation(s)
- Ryan Kilburn
- Department of Biology, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | - Eric T Fedosejevs
- Department of Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, 1201 Rollins Street, Columbia, MO 65211, USA
| | - Devang Mehta
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, Alberta, Canada T6G 2E9
| | - Faranak Soleimani
- Department of Biology, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | - Mina Ghahremani
- Department of Biology, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | - Jacqueline Monaghan
- Department of Biology, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | - Jay J Thelen
- Department of Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, 1201 Rollins Street, Columbia, MO 65211, USA
| | - R Glen Uhrig
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, Alberta, Canada T6G 2E9
| | - Wayne A Snedden
- Department of Biology, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | - William C Plaxton
- Department of Biology, Queen's University, Kingston, Ontario, Canada K7L 3N6.
| |
Collapse
|
28
|
Martignago D, da Silveira Falavigna V, Lombardi A, Gao H, Korwin Kurkowski P, Galbiati M, Tonelli C, Coupland G, Conti L. The bZIP transcription factor AREB3 mediates FT signalling and floral transition at the Arabidopsis shoot apical meristem. PLoS Genet 2023; 19:e1010766. [PMID: 37186640 PMCID: PMC10212096 DOI: 10.1371/journal.pgen.1010766] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/25/2023] [Accepted: 04/27/2023] [Indexed: 05/17/2023] Open
Abstract
The floral transition occurs at the shoot apical meristem (SAM) in response to favourable external and internal signals. Among these signals, variations in daylength (photoperiod) act as robust seasonal cues to activate flowering. In Arabidopsis, long-day photoperiods stimulate production in the leaf vasculature of a systemic florigenic signal that is translocated to the SAM. According to the current model, FLOWERING LOCUS T (FT), the main Arabidopsis florigen, causes transcriptional reprogramming at the SAM, so that lateral primordia eventually acquire floral identity. FT functions as a transcriptional coregulator with the bZIP transcription factor FD, which binds DNA at specific promoters. FD can also interact with TERMINAL FLOWER 1 (TFL1), a protein related to FT that acts as a floral repressor. Thus, the balance between FT-TFL1 at the SAM influences the expression levels of floral genes targeted by FD. Here, we show that the FD-related bZIP transcription factor AREB3, which was previously studied in the context of phytohormone abscisic acid signalling, is expressed at the SAM in a spatio-temporal pattern that strongly overlaps with FD and contributes to FT signalling. Mutant analyses demonstrate that AREB3 relays FT signals redundantly with FD, and the presence of a conserved carboxy-terminal SAP motif is required for downstream signalling. AREB3 shows unique and common patterns of expression with FD, and AREB3 expression levels are negatively regulated by FD thus forming a compensatory feedback loop. Mutations in another bZIP, FDP, further aggravate the late flowering phenotypes of fd areb3 mutants. Therefore, multiple florigen-interacting bZIP transcription factors have redundant functions in flowering at the SAM.
Collapse
Affiliation(s)
- Damiano Martignago
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | | | | | - He Gao
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | | | - Massimo Galbiati
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - Chiara Tonelli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - George Coupland
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Lucio Conti
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
29
|
Yu Z, Kim HJ, Dernburg AF. ATM signaling modulates cohesin behavior in meiotic prophase and proliferating cells. Nat Struct Mol Biol 2023; 30:436-450. [PMID: 36879153 PMCID: PMC10113158 DOI: 10.1038/s41594-023-00929-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 01/25/2023] [Indexed: 03/08/2023]
Abstract
Cohesins are ancient and ubiquitous regulators of chromosome architecture and function, but their diverse roles and regulation remain poorly understood. During meiosis, chromosomes are reorganized as linear arrays of chromatin loops around a cohesin axis. This unique organization underlies homolog pairing, synapsis, double-stranded break induction, and recombination. We report that axis assembly in Caenorhabditis elegans is promoted by DNA-damage response (DDR) kinases that are activated at meiotic entry, even in the absence of DNA breaks. Downregulation of the cohesin-destabilizing factor WAPL-1 by ATM-1 promotes axis association of cohesins containing the meiotic kleisins COH-3 and COH-4. ECO-1 and PDS-5 also contribute to stabilizing axis-associated meiotic cohesins. Further, our data suggest that cohesin-enriched domains that promote DNA repair in mammalian cells also depend on WAPL inhibition by ATM. Thus, DDR and Wapl seem to play conserved roles in cohesin regulation in meiotic prophase and proliferating cells.
Collapse
Affiliation(s)
- Zhouliang Yu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,California Institute for Quantitative Biosciences, Berkeley, CA, USA
| | - Hyung Jun Kim
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Abby F Dernburg
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA. .,Howard Hughes Medical Institute, Chevy Chase, MD, USA. .,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA. .,California Institute for Quantitative Biosciences, Berkeley, CA, USA.
| |
Collapse
|
30
|
Pan T, Gao S, Cui X, Wang L, Yan S. APC/CCDC20 targets SCFFBL17 to activate replication stress responses in Arabidopsis. THE PLANT CELL 2023; 35:910-923. [PMID: 36503931 PMCID: PMC9940874 DOI: 10.1093/plcell/koac360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
DNA replication stress threatens genome stability and affects plant growth and development. How plants resolve replication stress is poorly understood. The protein kinase WEE1-mediated cell cycle arrest is required for replication stress responses. The E3 ubiquitin ligases anaphase-promoting complex/cyclosome (APC/C) and Skp1/Cullin 1/F-box (SCF) are essential regulators of the cell cycle. Here, we show that APC/CCDC20 mediates the degradation of SCFFBL17 during replication stress responses in Arabidopsis thaliana. Biochemically, WEE1 interacts with and phosphorylates the APC/C co-activator APC10, which enhances the interaction between F-BOX-LIKE17 (FBL17) and CELL DIVISION CYCLE 20 (CDC20), an activator of APC/C. Both APC10 and CDC20 are required for the polyubiquitination and degradation of FBL17. Genetically, silencing CDC20 or APC10 confers plant hypersensitivity to replication stress, which is suppressed by loss of FBL17. Collectively, our study suggests that WEE1 activates APC/C to inhibit FBL17, providing insight into replication stress responses in plants.
Collapse
Affiliation(s)
- Ting Pan
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen 518000, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Shan Gao
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen 518000, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Xiaoyu Cui
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen 518000, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Lili Wang
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen 518000, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Shunping Yan
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen 518000, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| |
Collapse
|
31
|
Khan A, Waqas M, Tufail M, Halim SA, Murad W, Ahmad SU, Faheem M, Uddin J, Khalid A, Abdalla AN, Khan A, Al-Harrasi A. In silico scanning of structural and functional deleterious nsSNPs in Arabidopsis thaliana's SOG1 protein, using molecular dynamic simulation approaches. J Biomol Struct Dyn 2023; 41:11629-11646. [PMID: 36734218 DOI: 10.1080/07391102.2023.2174187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 01/02/2023] [Indexed: 02/04/2023]
Abstract
Suppressor of gamma response 1 (SOG1) is a member of the NAC domain family transcription factors of the DNA damage response (DDR) signaling in the plant's genome. SOG1 is directly involved in transcriptional response to DNA damage, cell cycle checkpoints and ATR or ATM-mediated activation of the DNA damage responses and repair functioning in programmed cell death and regulation of end reduplication. Different mutations in the SOG1 protein lead to severe diseases and, ultimately, cell death. Single nucleotide polymorphisms (SNPs) are an important type of genetic alteration that cause different diseases or programmed cell death. The current study applied different computational approaches to Arabidopsis thaliana L. SOG1 protein to identify the potential deleterious nsSNPs and monitor their impact on the structure, function and protein stability. Various bioinformatics tools were applied to analyze the retrieved 34 nsSNPs and interestingly extracted four deleterious nsSNPs, that is, ensvath13968004 (Q166L), tmp18998388 (P159L), ensvath01103049 (K199N) and tmp18998295 (Y190F). For example, homology modeling, conservation and conformational analysis of the mutant's models were considered to scrutinize the deviations of these variants from the native SOG1 structure. All atoms molecular dynamic simulation confirmed the significance of these mutations on the protein stability, residual and structural conformation, compactness, surface conformation, dominant motion, Gibbs free energy distribution and dynamic effects. Similarly, protein-protein interaction revealed that SOG1 operates as a hub-linking cluster of various proteins, and any changes in the SOG1 might result in the disassociation of several signal transduction cascades.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Asif Khan
- Laboratory of Phytochemistry, Department of Botany, University of São Paulo, São Paulo, Brazil
| | - Muhammad Waqas
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
- Department of Biotechnology and Genetic Engineering, Hazara University Mansehra, Dhodial, Pakistan
| | - Muhammad Tufail
- Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sobia Ahsan Halim
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| | - Waheed Murad
- Department of Botany, Abdul Wali Khan University Mardan, Pakistan
| | - Syed Umair Ahmad
- Department of Bioinformatics, Hazara University, Mansehra, Dhodial, Pakistan
| | - Muhammad Faheem
- Department of Biological Sciences, National University of Medical Sciences, The Mall, Rawalpindi, Pakistan
| | - Jalal Uddin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan, Saudi Arabia
- Medicinal and Aromatic Plants and Traditional Medicine Research Institute, National Center for Research, Khartoum, Sudan
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| |
Collapse
|
32
|
Freytag C, Garda T, Kónya Z, M-Hamvas M, Tóth-Várady B, Juhász GP, Ujlaky-Nagy L, Kelemen A, Vasas G, Máthé C. B" and C subunits of PP2A regulate the levels of reactive oxygen species and superoxide dismutase activities in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 195:182-192. [PMID: 36640685 DOI: 10.1016/j.plaphy.2022.12.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/14/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
The serine-threonine protein phosphatases PP2A regulate many cellular processes, however their role in oxidative stress responses and defence is less known. We show the involvement of its C (catalytic) and B" (a regulatory) subunits. The c3c4 (C subunit) and fass (B") subunit mutants and Col wt of Arabidopsis were used. Controls and treatments with the PP2A inhibitor microcystin-LR (MCY-LR) and reactive oxygen species (ROS) inducer diquat (DQ) were employed. ROS levels of primary roots were largely genotype dependent and both C and B" subunit mutants had increased sensitivity to MCY-LR and DQ indicating the involvement of these subunits in oxidative stress induction. Superoxide dismutases (SOD), mainly the Cu/Zn-SOD isoform, as key enzymes involved in ROS scavenging are also showing altered (mostly increased) activities in both c3c4 and fass mutants and have opposite relations to ROS induction. This indicates that the two types of subunits involved have partially different regulatory roles. In relation to this, control and MCY-LR/DQ treated B" subunit mutants were proven to have altered levels of phosphorylation of histone H2AX. γH2AX, the phosphorylated form indicates double stranded DNA damage during oxidative stress. Overall we point out the probable pivotal role of several PP2A subunits in the regulation of oxidative stress responses in plants and pave the way for future research to reveal the signaling pathways involved.
Collapse
Affiliation(s)
- Csongor Freytag
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Hungary.
| | - Tamás Garda
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Hungary.
| | - Zoltán Kónya
- Department of Medical Chemisty, Faculty of Medicine, University of Debrecen, Hungary.
| | - Márta M-Hamvas
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Hungary.
| | - Balázs Tóth-Várady
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Hungary.
| | - Gabriella Petra Juhász
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Hungary.
| | - László Ujlaky-Nagy
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Hungary.
| | - Adrienn Kelemen
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Hungary.
| | - Gábor Vasas
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Hungary.
| | - Csaba Máthé
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Hungary.
| |
Collapse
|
33
|
Szurman-Zubrzycka M, Jędrzejek P, Szarejko I. How Do Plants Cope with DNA Damage? A Concise Review on the DDR Pathway in Plants. Int J Mol Sci 2023; 24:ijms24032404. [PMID: 36768727 PMCID: PMC9916837 DOI: 10.3390/ijms24032404] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 01/27/2023] Open
Abstract
DNA damage is induced by many factors, some of which naturally occur in the environment. Because of their sessile nature, plants are especially exposed to unfavorable conditions causing DNA damage. In response to this damage, the DDR (DNA damage response) pathway is activated. This pathway is highly conserved between eukaryotes; however, there are some plant-specific DDR elements, such as SOG1-a transcription factor that is a central DDR regulator in plants. In general, DDR signaling activates transcriptional and epigenetic regulators that orchestrate the cell cycle arrest and DNA repair mechanisms upon DNA damage. The cell cycle halts to give the cell time to repair damaged DNA before replication. If the repair is successful, the cell cycle is reactivated. However, if the DNA repair mechanisms fail and DNA lesions accumulate, the cell enters the apoptotic pathway. Thereby the proper maintenance of DDR is crucial for plants to survive. It is particularly important for agronomically important species because exposure to environmental stresses causing DNA damage leads to growth inhibition and yield reduction. Thereby, gaining knowledge regarding the DDR pathway in crops may have a huge agronomic impact-it may be useful in breeding new cultivars more tolerant to such stresses. In this review, we characterize different genotoxic agents and their mode of action, describe DDR activation and signaling and summarize DNA repair mechanisms in plants.
Collapse
|
34
|
Reiter B, Rosenhammer L, Marino G, Geimer S, Leister D, Rühle T. CGL160-mediated recruitment of the coupling factor CF1 is required for efficient thylakoid ATP synthase assembly, photosynthesis, and chloroplast development in Arabidopsis. THE PLANT CELL 2023; 35:488-509. [PMID: 36250886 PMCID: PMC9806626 DOI: 10.1093/plcell/koac306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Chloroplast ATP synthases consist of a membrane-spanning coupling factor (CFO) and a soluble coupling factor (CF1). It was previously demonstrated that CONSERVED ONLY IN THE GREEN LINEAGE160 (CGL160) promotes the formation of plant CFO and performs a similar function in the assembly of its c-ring to that of the distantly related bacterial Atp1/UncI protein. Here, we show that in Arabidopsis (Arabidopsis thaliana) the N-terminal portion of CGL160 (AtCGL160N) is required for late steps in CF1-CFO assembly. In plants that lacked AtCGL160N, CF1-CFO content, photosynthesis, and chloroplast development were impaired. Loss of AtCGL160N did not perturb c-ring formation, but led to a 10-fold increase in the numbers of stromal CF1 subcomplexes relative to that in the wild type. Co-immunoprecipitation and protein crosslinking assays revealed an association of AtCGL160 with CF1 subunits. Yeast two-hybrid assays localized the interaction to a stretch of AtCGL160N that binds to the DELSEED-containing CF1-β subdomain. Since Atp1 of Synechocystis (Synechocystis sp. PCC 6803) could functionally replace the membrane domain of AtCGL160 in Arabidopsis, we propose that CGL160 evolved from a cyanobacterial ancestor and acquired an additional function in the recruitment of a soluble CF1 subcomplex, which is critical for the modulation of CF1-CFO activity and photosynthesis.
Collapse
Affiliation(s)
- Bennet Reiter
- Plant Molecular Biology Faculty of Biology I, Ludwig-Maximilians-Universität Munich, D-82152 Planegg-Martinsried, Germany
| | - Lea Rosenhammer
- Plant Molecular Biology Faculty of Biology I, Ludwig-Maximilians-Universität Munich, D-82152 Planegg-Martinsried, Germany
| | - Giada Marino
- Plant Molecular Biology Faculty of Biology I, Ludwig-Maximilians-Universität Munich, D-82152 Planegg-Martinsried, Germany
| | - Stefan Geimer
- Zellbiologie/Elektronenmikroskopie NW I/B1, Universität Bayreuth, 95447 Bayreuth, Germany
| | - Dario Leister
- Plant Molecular Biology Faculty of Biology I, Ludwig-Maximilians-Universität Munich, D-82152 Planegg-Martinsried, Germany
| | | |
Collapse
|
35
|
Zhao X, Zhang T, Bai L, Zhao S, Guo Y, Li Z. CKL2 mediates the crosstalk between abscisic acid and brassinosteroid signaling to promote swift growth recovery after stress in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:64-81. [PMID: 36282494 DOI: 10.1111/jipb.13397] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
Plants must adapt to the constantly changing environment. Adverse environmental conditions trigger various defensive responses, including growth inhibition mediated by phytohormone abscisic acid (ABA). When the stress recedes, plants must transit rapidly from stress defense to growth recovery, but the underlying mechanisms by which plants switch promptly and accurately between stress resistance and growth are poorly understood. Here, using quantitative phosphoproteomics strategy, we discovered that early ABA signaling activates upstream components of brassinosteroid (BR) signaling through CASEIN KINASE 1-LIKE PROTEIN 2 (CKL2). Further investigations showed that CKL2 interacts with and phosphorylates BRASSINOSTEROID INSENSITIVE1 (BRI1), the main BR receptor, to maintain the basal activity of the upstream of BR pathway in plants exposed to continuous stress conditions. When stress recedes, the elevated phosphorylation of BRI1 by CKL2 contributes to the swift reactivation of BR signaling, which results in quick growth recovery. These results suggest that CKL2 plays a critical regulatory role in the rapid switch between growth and stress resistance. Our evidence expands the understanding of how plants modulate stress defense and growth by integrating ABA and BR signaling cascades.
Collapse
Affiliation(s)
- Xiaoyun Zhao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Tianren Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Li Bai
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Shuangshuang Zhao
- Key Laboratory of Plant Stress, Life Science College, Shandong Normal University, Jinan, 250014, China
| | - Yan Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhen Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
36
|
Fan T, Kang H, Wu D, Zhu X, Huang L, Wu J, Zhu Y. Arabidopsis γ-H2A.X-INTERACTING PROTEIN participates in DNA damage response and safeguards chromatin stability. Nat Commun 2022; 13:7942. [PMID: 36572675 PMCID: PMC9792525 DOI: 10.1038/s41467-022-35715-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Upon the occurrence of DNA double strand breaks (DSB), the proximal histone variant H2A.X is phosphorylated as γ-H2A.X, a critical signal for consequent DSB signaling and repair pathways. Although γ-H2A.X-triggered DNA damage response (DDR) has been well-characterized in yeast and animals, the corresponding pathways in plant DDR are less well understood. Here, we show that an Arabidopsis protein γ-H2A.X-INTERACTING PROTEIN (XIP) can interact with γ-H2A.X. Its C-terminal dual-BRCT-like domain contributes to its specific interaction with γ-H2A.X. XIP-deficient seedlings display smaller meristems, inhibited growth, and higher sensitivity to DSB-inducing treatment. Loss-of-function in XIP causes transcriptome changes mimicking wild-type plants subject to replicative or genotoxic stresses. After genotoxic bleomycin treatment, more proteins with upregulated phosphorylation modifications, more DNA fragments and cell death were found in xip mutants. Moreover, XIP physically interacts with RAD51, the key recombinase in homologous recombination (HR), and somatic HR frequency is significantly reduced in xip mutants. Collectively, XIP participates in plant response to DSB and contributes to chromatin stability.
Collapse
Affiliation(s)
- Tianyi Fan
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Huijia Kang
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438 China ,grid.8547.e0000 0001 0125 2443Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Di Wu
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Xinyu Zhu
- grid.12527.330000 0001 0662 3178Department of Chemical Engineering (Tanwei College), Tsinghua University, Beijing, China
| | - Lin Huang
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Jiabing Wu
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Yan Zhu
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438 China
| |
Collapse
|
37
|
Sampadi B, Vermeulen S, Mišovic B, Boei JJ, Batth TS, Chang JG, Paulsen MT, Magnuson B, Schimmel J, Kool H, Olie CS, Everts B, Vertegaal ACO, Olsen JV, Ljungman M, Jeggo PA, Mullenders LHF, Vrieling H. Divergent Molecular and Cellular Responses to Low and High-Dose Ionizing Radiation. Cells 2022; 11:cells11233794. [PMID: 36497055 PMCID: PMC9739411 DOI: 10.3390/cells11233794] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Cancer risk after ionizing radiation (IR) is assumed to be linear with the dose; however, for low doses, definite evidence is lacking. Here, using temporal multi-omic systems analyses after a low (LD; 0.1 Gy) or a high (HD; 1 Gy) dose of X-rays, we show that, although the DNA damage response (DDR) displayed dose proportionality, many other molecular and cellular responses did not. Phosphoproteomics uncovered a novel mode of phospho-signaling via S12-PPP1R7, and large-scale dephosphorylation events that regulate mitotic exit control in undamaged cells and the G2/M checkpoint upon IR in a dose-dependent manner. The phosphoproteomics of irradiated DNA double-strand breaks (DSBs) repair-deficient cells unveiled extended phospho-signaling duration in either a dose-dependent (DDR signaling) or independent (mTOR-ERK-MAPK signaling) manner without affecting signal magnitude. Nascent transcriptomics revealed the transcriptional activation of genes involved in NRF2-regulated antioxidant defense, redox-sensitive ERK-MAPK signaling, glycolysis and mitochondrial function after LD, suggesting a prominent role for reactive oxygen species (ROS) in molecular and cellular responses to LD exposure, whereas DDR genes were prominently activated after HD. However, how and to what extent the observed dose-dependent differences in molecular and cellular responses may impact cancer development remain unclear, as the induction of chromosomal damage was found to be dose-proportional (10-200 mGy).
Collapse
Affiliation(s)
- Bharath Sampadi
- Department of Human Genetics, Leiden University Medical Center, 2333ZC Leiden, The Netherlands
- Correspondence: (B.S.); (H.V.)
| | - Sylvia Vermeulen
- Department of Human Genetics, Leiden University Medical Center, 2333ZC Leiden, The Netherlands
| | - Branislav Mišovic
- Department of Human Genetics, Leiden University Medical Center, 2333ZC Leiden, The Netherlands
| | - Jan J. Boei
- Department of Human Genetics, Leiden University Medical Center, 2333ZC Leiden, The Netherlands
| | - Tanveer S. Batth
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Science, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Jer-Gung Chang
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333ZC Leiden, The Netherlands
| | - Michelle T. Paulsen
- Department of Radiation Oncology, Rogel Cancer Center and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Brian Magnuson
- Department of Radiation Oncology, Rogel Cancer Center and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Joost Schimmel
- Department of Human Genetics, Leiden University Medical Center, 2333ZC Leiden, The Netherlands
| | - Hanneke Kool
- Department of Human Genetics, Leiden University Medical Center, 2333ZC Leiden, The Netherlands
| | - Cyriel S. Olie
- Department of Human Genetics, Leiden University Medical Center, 2333ZC Leiden, The Netherlands
| | - Bart Everts
- Department of Parasitology, Leiden University Medical Center, 2333ZA Leiden, The Netherlands
| | - Alfred C. O. Vertegaal
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333ZC Leiden, The Netherlands
| | - Jesper V. Olsen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Science, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Mats Ljungman
- Department of Radiation Oncology, Rogel Cancer Center and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Penny A. Jeggo
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN1 9RQ, UK
| | - Leon H. F. Mullenders
- Department of Human Genetics, Leiden University Medical Center, 2333ZC Leiden, The Netherlands
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya 464-8601, Japan
| | - Harry Vrieling
- Department of Human Genetics, Leiden University Medical Center, 2333ZC Leiden, The Netherlands
- Correspondence: (B.S.); (H.V.)
| |
Collapse
|
38
|
de Luxán-Hernández C, Lohmann J, Tranque E, Chumova J, Binarova P, Salinas J, Weingartner M. MDF is a conserved splicing factor and modulates cell division and stress response in Arabidopsis. Life Sci Alliance 2022; 6:6/1/e202201507. [PMID: 36265897 PMCID: PMC9585968 DOI: 10.26508/lsa.202201507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 02/05/2023] Open
Abstract
The coordination of cell division with stress response is essential for maintaining genome stability in plant meristems. Proteins involved in pre-mRNA splicing are important for these processes in animal and human cells. Based on its homology to the splicing factor SART1, which is implicated in the control of cell division and genome stability in human cells, we analyzed if MDF has similar functions in plants. We found that MDF associates with U4/U6.U5 tri-snRNP proteins and is essential for correct splicing of 2,037 transcripts. Loss of MDF function leads to cell division defects and cell death in meristems and was associated with up-regulation of stress-induced genes and down-regulation of mitotic regulators. In addition, the mdf-1 mutant is hypersensitive to DNA damage treatment supporting its role in coordinating stress response with cell division. Our analysis of a dephosphomutant of MDF suggested how its protein activity might be controlled. Our work uncovers the conserved function of a plant splicing factor and provides novel insight into the interplay of pre-mRNA processing and genome stability in plants.
Collapse
Affiliation(s)
| | - Julia Lohmann
- Institute of Plant Sciences and Microbiology, University of Hamburg, Hamburg, Germany
| | - Eduardo Tranque
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas “Margarita Salas” (CSIC), Madrid, Spain
| | - Jana Chumova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Pavla Binarova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Julio Salinas
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas “Margarita Salas” (CSIC), Madrid, Spain
| | - Magdalena Weingartner
- Institute of Plant Sciences and Microbiology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
39
|
Pfister B, Shields JM, Kockmann T, Grossmann J, Abt MR, Stadler M, Zeeman SC. Tuning heterologous glucan biosynthesis in yeast to understand and exploit plant starch diversity. BMC Biol 2022; 20:207. [PMID: 36153520 PMCID: PMC9509603 DOI: 10.1186/s12915-022-01408-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/13/2022] [Indexed: 11/30/2022] Open
Abstract
Background Starch, a vital plant-derived polysaccharide comprised of branched glucans, is essential in nutrition and many industrial applications. Starch is often modified post-extraction to alter its structure and enhance its functionality. Targeted metabolic engineering of crops to produce valuable and versatile starches requires knowledge of the relationships between starch biosynthesis, structure, and properties, but systematic studies to obtain this knowledge are difficult to conduct in plants. Here we used Saccharomyces cerevisiae as a testbed to dissect the functions of plant starch biosynthetic enzymes and create diverse starch-like polymers. Results We explored yeast promoters and terminators to tune the expression levels of the starch-biosynthesis machinery from Arabidopsis thaliana. We systematically modulated the expression of each starch synthase (SS) together with a branching enzyme (BE) in yeast. Protein quantification by parallel reaction monitoring (targeted proteomics) revealed unexpected effects of glucan biosynthesis on protein abundances but showed that the anticipated broad range of SS/BE enzyme ratios was maintained during the biosynthetic process. The different SS/BE ratios clearly influenced glucan structure and solubility: The higher the SS/BE ratio, the longer the glucan chains and the more glucans were partitioned into the insoluble fraction. This effect was irrespective of the SS isoform, demonstrating that the elongation/branching ratio controls glucan properties separate from enzyme specificity. Conclusions Our results provide a quantitative framework for the in silico design of improved starch biosynthetic processes in plants. Our study also exemplifies a workflow for the rational tuning of a complex pathway in yeast, starting from the selection and evaluation of expression modules to multi-gene assembly and targeted protein monitoring during the biosynthetic process. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01408-x.
Collapse
|
40
|
Shibata M, Favero DS, Takebayashi R, Takebayashi A, Kawamura A, Rymen B, Hosokawa Y, Sugimoto K. Trihelix transcription factors GTL1 and DF1 prevent aberrant root hair formation in an excess nutrient condition. THE NEW PHYTOLOGIST 2022; 235:1426-1441. [PMID: 35713645 PMCID: PMC9544051 DOI: 10.1111/nph.18255] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Root hair growth is tuned in response to the environment surrounding plants. While most previous studies focused on the enhancement of root hair growth during nutrient starvation, few studies investigated the root hair response in the presence of excess nutrients. We report that the post-embryonic growth of wild-type Arabidopsis plants is strongly suppressed with increasing nutrient availability, particularly in the case of root hair growth. We further used gene expression profiling to analyze how excess nutrient availability affects root hair growth, and found that RHD6 subfamily genes, which are positive regulators of root hair growth, are downregulated in this condition. However, defects in GTL1 and DF1, which are negative regulators of root hair growth, cause frail and swollen root hairs to form when excess nutrients are supplied. Additionally, we observed that the RHD6 subfamily genes are mis-expressed in gtl1-1 df1-1. Furthermore, overexpression of RSL4, an RHD6 subfamily gene, induces swollen root hairs in the face of a nutrient overload, while mutation of RSL4 in gtl1-1 df1-1 restore root hair swelling phenotype. In conclusion, our data suggest that GTL1 and DF1 prevent unnecessary root hair formation by repressing RSL4 under excess nutrient conditions.
Collapse
Affiliation(s)
| | - David S. Favero
- RIKEN Center for Sustainable Resource ScienceYokohama230‐0045Japan
| | - Ryu Takebayashi
- Division of Materials Science, Graduate School of Science and TechnologyNara Institute of Science and TechnologyIkoma630‐0192Japan
| | | | - Ayako Kawamura
- RIKEN Center for Sustainable Resource ScienceYokohama230‐0045Japan
| | - Bart Rymen
- RIKEN Center for Sustainable Resource ScienceYokohama230‐0045Japan
- KU Leuven Plant Institute (LPI)KU LeuvenKasteelpark Arenberg 31LeuvenB‐3001Belgium
| | - Yoichiroh Hosokawa
- Division of Materials Science, Graduate School of Science and TechnologyNara Institute of Science and TechnologyIkoma630‐0192Japan
| | - Keiko Sugimoto
- RIKEN Center for Sustainable Resource ScienceYokohama230‐0045Japan
- Department of Biological SciencesUniversity of TokyoTokyo119‐0033Japan
| |
Collapse
|
41
|
Differentiated function and localisation of SPO11-1 and PRD3 on the chromosome axis during meiotic DSB formation in Arabidopsis thaliana. PLoS Genet 2022; 18:e1010298. [PMID: 35857772 PMCID: PMC9342770 DOI: 10.1371/journal.pgen.1010298] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 08/01/2022] [Accepted: 06/16/2022] [Indexed: 11/19/2022] Open
Abstract
During meiosis, DNA double-strand breaks (DSBs) occur throughout the genome, a subset of which are repaired to form reciprocal crossovers between chromosomes. Crossovers are essential to ensure balanced chromosome segregation and to create new combinations of genetic variation. Meiotic DSBs are formed by a topoisomerase-VI-like complex, containing catalytic (e.g. SPO11) proteins and auxiliary (e.g. PRD3) proteins. Meiotic DSBs are formed in chromatin loops tethered to a linear chromosome axis, but the interrelationship between DSB-promoting factors and the axis is not fully understood. Here, we study the localisation of SPO11-1 and PRD3 during meiosis, and investigate their respective functions in relation to the chromosome axis. Using immunocytogenetics, we observed that the localisation of SPO11-1 overlaps relatively weakly with the chromosome axis and RAD51, a marker of meiotic DSBs, and that SPO11-1 recruitment to chromatin is genetically independent of the axis. In contrast, PRD3 localisation correlates more strongly with RAD51 and the chromosome axis. This indicates that PRD3 likely forms a functional link between SPO11-1 and the chromosome axis to promote meiotic DSB formation. We also uncovered a new function of SPO11-1 in the nucleation of the synaptonemal complex protein ZYP1. We demonstrate that chromosome co-alignment associated with ZYP1 deposition can occur in the absence of DSBs, and is dependent on SPO11-1, but not PRD3. Lastly, we show that the progression of meiosis is influenced by the presence of aberrant chromosomal connections, but not by the absence of DSBs or synapsis. Altogether, our study provides mechanistic insights into the control of meiotic DSB formation and reveals diverse functional interactions between SPO11-1, PRD3 and the chromosome axis. Most eukaryotes rely on the formation of gametes with half the number of chromosomes for sexual reproduction. Meiosis is a specialised type of cell division essential for the transition between a diploid and a haploid stage during gametogenesis. In early meiosis, programmed-DNA double strand breaks (DSBs) occur across the genome. These DSBs are processed by a set of proteins and the broken ends are repaired using the genetic information from the homologous chromosomes. These reciprocal exchanges of information between two chromosomes are called crossovers. Crossovers physical link chromosomes in pairs which is essential to ensure their correct segregation during the two rounds of meiotic division. Crossovers are also essential for the creation of genetic diversity as they break genetic linkages to form novel allelic blocks. The formation of DSBs is not completely understood in plants. Here we studied the function of SPO11-1 and PRD3, two proteins involved in the formation of DSBs in Arabidopsis. We discovered functional differences in their respective mode of recruitment to the chromosomes, their interactions with proteins forming the chromosome core and their roles in chromosome co-alignment. These indicate that, although SPO11-1 and PRD3 share a role in the formation of DSBs, the two proteins have additional and distinct roles beside DSB formation.
Collapse
|
42
|
Siqueira JA, Wakin T, Batista-Silva W, Silva JCF, Vicente MH, Silva JC, Clarindo WR, Zsögön A, Peres LEP, De Veylder L, Fernie AR, Nunes-Nesi A, Araújo WL. A long and stressful day: Photoperiod shapes aluminium tolerance in plants. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128704. [PMID: 35313159 DOI: 10.1016/j.jhazmat.2022.128704] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/06/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
Aluminium (Al), a limiting factor for crop productivity in acidic soils (pH ≤ 5.5), imposes drastic constraints for food safety in developing countries. The major mechanisms that allow plants to cope with Al involve manipulations of organic acids metabolism and DNA-checkpoints. When assumed individually both approaches have been insufficient to overcome Al toxicity. On analysing the centre of origin of most cultivated plants, we hypothesised that day-length seems to be a pivotal agent modulating Al tolerance across distinct plant species. We observed that with increasing distance from the Equator, Al tolerance decreases, suggesting a relationship with the photoperiod. We verified that long-day (LD) species are generally more Al-sensitive than short-day (SD) species, whereas genetic conversion of tomato for SD growth habit boosts Al tolerance. Reduced Al tolerance correlates with DNA-checkpoint activation under LD. Furthermore, DNA-checkpoint-related genes are under positive selection in Arabidopsis accessions from regions with shorter days, suggesting that photoperiod act as a selective barrier for Al tolerance. A diel regulation and genetic diversity affect Al tolerance, suggesting that day-length orchestrates Al tolerance. Altogether, photoperiodic control of Al tolerance might contribute to solving the historical obstacle that imposes barriers for developing countries to reach a sustainable agriculture.
Collapse
Affiliation(s)
- João Antonio Siqueira
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| | - Thiago Wakin
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| | - Willian Batista-Silva
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| | - José Cleydson F Silva
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| | - Matheus H Vicente
- Laboratory of Hormonal Control of Plant Development. Departamento de Ciências Biológicas (LCB), Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, SP 13418-900, Brazil
| | - Jéssica C Silva
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| | - Wellington R Clarindo
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| | - Agustin Zsögön
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| | - Lazaro E P Peres
- Laboratory of Hormonal Control of Plant Development. Departamento de Ciências Biológicas (LCB), Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, SP 13418-900, Brazil
| | - Lieven De Veylder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium; VIB Center for Plant Systems Biology, Ghent B-9052, Belgium
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil.
| |
Collapse
|
43
|
G-Protein Phosphorylation: Aspects of Binding Specificity and Function in the Plant Kingdom. Int J Mol Sci 2022; 23:ijms23126544. [PMID: 35742988 PMCID: PMC9224535 DOI: 10.3390/ijms23126544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 11/22/2022] Open
Abstract
Plant survival depends on adaptive mechanisms that constantly rely on signal recognition and transduction. The predominant class of signal discriminators is receptor kinases, with a vast member composition in plants. The transduction of signals occurs in part by a simple repertoire of heterotrimeric G proteins, with a core composed of α-, β-, and γ-subunits, together with a 7-transmembrane Regulator G Signaling (RGS) protein. With a small repertoire of G proteins in plants, phosphorylation by receptor kinases is critical in regulating the active state of the G-protein complex. This review describes the in vivo detected phosphosites in plant G proteins and conservation scores, and their in vitro corresponding kinases. Furthermore, recently described outcomes, including novel arrestin-like internalization of RGS and a non-canonical phosphorylation switching mechanism that drives G-protein plasticity, are discussed.
Collapse
|
44
|
Tan T, Li Y, Tang B, Chen Y, Chen X, Xie Q, Hu Z, Chen G. Knockout of SlALKBH2 weakens the DNA damage repair ability of tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 319:111266. [PMID: 35487670 DOI: 10.1016/j.plantsci.2022.111266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/01/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
During the growth and evolution of plants, genomic DNA is subject to constant assault from endogenous and environmental DNA damage compounds, which will result in mutagenic or genotoxic covalent adducts. Whether for prokaryotes, eukaryotes or even viruses, maintaining genome integrity is critical for the continuation of life. Escherichia coli and mammals have evolved the AlkB family of Fe(II)/alpha-ketoglutarate-dependent dioxygenases that repair DNA alkylation damage. We identified a functional homologue with EsAlkB and HsALKBH2 in tomatoes, and named it SlALKBH2. In our study, the SlALKBH2 knockout mutant showed hypersensitivity to the DNA mutagen MMS and displayed more severe growth abnormalities than wild-type plants under mutagen treatment, such as slow growth, leaf deformation and early senescence. Additionally, genes with high transcriptional activity, such as rDNA, have increased methylation under MMS treatment. In conclusion, this study shows that the tomato SlALKBH2 gene may play an important role in ensuring the integrity of the genome.
Collapse
Affiliation(s)
- Tingting Tan
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Yangyang Li
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Boyan Tang
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Yating Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Xinru Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Qiaoli Xie
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Zongli Hu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Guoping Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| |
Collapse
|
45
|
Foroozani M, Holder DH, Deal RB. Histone Variants in the Specialization of Plant Chromatin. ANNUAL REVIEW OF PLANT BIOLOGY 2022; 73:149-172. [PMID: 35167758 PMCID: PMC9133179 DOI: 10.1146/annurev-arplant-070221-050044] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The basic unit of chromatin, the nucleosome, is an octamer of four core histone proteins (H2A, H2B, H3, and H4) and serves as a fundamental regulatory unit in all DNA-templated processes. The majority of nucleosome assembly occurs during DNA replication when these core histones are produced en masse to accommodate the nascent genome. In addition, there are a number of nonallelic sequence variants of H2A and H3 in particular, known as histone variants, that can be incorporated into nucleosomes in a targeted and replication-independent manner. By virtue of their sequence divergence from the replication-coupled histones, these histone variants can impart unique properties onto the nucleosomes they occupy and thereby influence transcription and epigenetic states, DNA repair, chromosome segregation, and other nuclear processes in ways that profoundly affect plant biology. In this review, we discuss the evolutionary origins of these variants in plants, their known roles in chromatin, and their impacts on plant development and stress responses. We focus on the individual and combined roles of histone variants in transcriptional regulation within euchromatic and heterochromatic genome regions. Finally, we highlight gaps in our understanding of plant variants at the molecular, cellular, and organismal levels, and we propose new directions for study in the field of plant histone variants.
Collapse
Affiliation(s)
| | - Dylan H Holder
- Department of Biology, Emory University, Atlanta, Georgia, USA;
- Graduate Program in Genetics and Molecular Biology, Emory University, Atlanta, Georgia, USA
| | - Roger B Deal
- Department of Biology, Emory University, Atlanta, Georgia, USA;
| |
Collapse
|
46
|
Siqueira JA, Silva MF, Wakin T, Nunes-Nesi A, Araújo WL. Metabolic and DNA checkpoints for the enhancement of Al tolerance. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128366. [PMID: 35168102 DOI: 10.1016/j.jhazmat.2022.128366] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/04/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Acidic soils are a major limiting factor for food production in many developing countries. High concentrations of soluble Al cations, particularly Al3+, inhibit cell division and root elongation in plants. Al3+ damages several biomolecules, including DNA, impairing gene expression and cell cycle progression. Notably, the loss-of-function mutants of DNA checkpoints may mediate Al tolerance. Furthermore, mitochondrial organic acids play key roles in neutralizing Al3+ within the cell and around the rhizosphere. Here, we provide knowledge synthesis on interactions between checkpoints related to mitochondrial organic acid homeostasis and DNA integrity mediating Al tolerance in land plants. These interactions, coupled with remarkable advances in tools related to metabolism and cell cycle, may facilitate the development of next-generation productive crops under Al toxicity.
Collapse
Affiliation(s)
- João Antonio Siqueira
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Marcelle Ferreira Silva
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Thiago Wakin
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil.
| |
Collapse
|
47
|
Shedding Light on the Role of Phosphorylation in Plant Autophagy. FEBS Lett 2022; 596:2172-2185. [DOI: 10.1002/1873-3468.14352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/30/2022] [Accepted: 04/04/2022] [Indexed: 11/07/2022]
|
48
|
Iantcheva A, Zhiponova M, Revalska M, Heyman J, Dincheva I, Badjakov I, De Geyter N, Boycheva I, Goormachtig S, De Veylder L. A common F-box gene regulates the leucine homeostasis of Medicago truncatula and Arabidopsis thaliana. PROTOPLASMA 2022; 259:277-290. [PMID: 33973099 DOI: 10.1007/s00709-021-01662-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
The F-box domain is a conserved structural protein motif that most frequently interacts with the SKP1 protein, the core of the SCFs (SKP1-CULLIN-F-box protein ligase) E3 ubiquitin protein ligases. As part of the SCF complexes, the various F-box proteins recruit substrates for degradation through ubiquitination. In this study, we functionally characterized an F-box gene (MtF-box) identified earlier in a population of Tnt1 retrotransposon-tagged mutants of Medicago truncatula and its Arabidopsis thaliana homolog (AtF-box) using gain- and loss-of-function plants. We highlighted the importance of MtF-box in leaf development of M. truncatula. Protein-protein interaction analyses revealed the 2-isopropylmalate synthase (IPMS) protein as a common interactor partner of MtF-box and AtF-box, being a key enzyme in the biosynthesis pathway of the branched-chain amino acid leucine. For further detailed analysis, we focused on AtF-box and its role during the cell division cycle. Based on this work, we suggest a mechanism for the role of the studied F-box gene in regulation of leucine homeostasis, which is important for growth.
Collapse
Affiliation(s)
- Anelia Iantcheva
- AgroBioInstitute, Agricultural Academy, Blvd. Dragan Tsankov 8, 1164, Sofia, Bulgaria.
| | - Miroslava Zhiponova
- Department of Plant Physiology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 8 Dragan Tsankov blvd., 1164, Sofia, Bulgaria
| | - Miglena Revalska
- AgroBioInstitute, Agricultural Academy, Blvd. Dragan Tsankov 8, 1164, Sofia, Bulgaria
| | - Jefri Heyman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium
| | - Ivayla Dincheva
- AgroBioInstitute, Agricultural Academy, Blvd. Dragan Tsankov 8, 1164, Sofia, Bulgaria
| | - Ilian Badjakov
- AgroBioInstitute, Agricultural Academy, Blvd. Dragan Tsankov 8, 1164, Sofia, Bulgaria
| | - Nathan De Geyter
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium
| | - Irina Boycheva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bl. 21, 1113, Sofia, Bulgaria
| | - Sofie Goormachtig
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium
| | - Lieven De Veylder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium
| |
Collapse
|
49
|
Matiolli CC, Soares RC, Alves HLS, Abreu IA. Turning the Knobs: The Impact of Post-translational Modifications on Carbon Metabolism. FRONTIERS IN PLANT SCIENCE 2022; 12:781508. [PMID: 35087551 PMCID: PMC8787203 DOI: 10.3389/fpls.2021.781508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Plants rely on the carbon fixed by photosynthesis into sugars to grow and reproduce. However, plants often face non-ideal conditions caused by biotic and abiotic stresses. These constraints impose challenges to managing sugars, the most valuable plant asset. Hence, the precise management of sugars is crucial to avoid starvation under adverse conditions and sustain growth. This review explores the role of post-translational modifications (PTMs) in the modulation of carbon metabolism. PTMs consist of chemical modifications of proteins that change protein properties, including protein-protein interaction preferences, enzymatic activity, stability, and subcellular localization. We provide a holistic view of how PTMs tune resource distribution among different physiological processes to optimize plant fitness.
Collapse
|
50
|
Xavier LR, Almeida FA, Pinto VB, Passamani LZ, Santa-Catarina C, de Souza Filho GA, Mooney BP, Thelen JJ, Silveira V. Integrative proteomics and phosphoproteomics reveals phosphorylation networks involved in the maintenance and expression of embryogenic competence in sugarcane callus. JOURNAL OF PLANT PHYSIOLOGY 2022; 268:153587. [PMID: 34906795 DOI: 10.1016/j.jplph.2021.153587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/14/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
Plant embryogenic cell culture allows mass propagation and genetic manipulation, but the mechanisms that determine the fate of these totipotent cells in somatic embryos have not yet been elucidated. Here, we performed label-free quantitative proteomics and phosphoproteomics analyses to determine signaling events related to sugarcane somatic embryo differentiation, especially those related to protein phosphorylation. Embryogenic calli were compared at multiplication (EC0, dedifferentiated cells) and after 14 days of maturation (EC14, onset of embryo differentiation). Metabolic pathway analysis showed enriched lysine degradation and starch/sucrose metabolism proteins during multiplication, whereas the differentiation of somatic embryos was found to involve the enrichment of energy metabolism, including the TCA cycle and oxidative phosphorylation. Multiplication-related phosphoproteins were associated with transcriptional regulation, including SNF1 kinase homolog 10 (KIN10), SEUSS (SEU), and LEUNIG_HOMOLOG (LUH). The regulation of multiple light harvesting complex photosystem II proteins and phytochrome interacting factor 3-LIKE 5 were predicted to promote bioenergetic metabolism and carbon fixation during the maturation stage. A motif analysis revealed 15 phosphorylation motifs. The [D-pS/T-x-D] motif was overrepresented during somatic embryo differentiation. A protein-protein network analysis predicted interactions among SNF1-related protein kinase 2 (SnRK2), abscisic acid-responsive element-binding factor 2 (ABF2), and KIN10, which indicated the role of these proteins in embryogenic competence. The predicted interactions between TOPLESS (TPL) and histone deacetylase 19 (HD19) may be involved in posttranslational protein regulation during somatic embryo differentiation. These results reveal the protein regulation dynamics of somatic embryogenesis and new players in somatic embryo differentiation, including their predicted phosphorylation motifs and phosphosites.
Collapse
Affiliation(s)
- Lucas R Xavier
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego, 2000, Campos dos Goytacazes, RJ, 28013-602, Campos dos Goytacazes, RJ, Brazil; Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, UENF, Av. Alberto Lamego, 2000, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Felipe A Almeida
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego, 2000, Campos dos Goytacazes, RJ, 28013-602, Campos dos Goytacazes, RJ, Brazil; Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, UENF, Av. Alberto Lamego, 2000, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Vitor B Pinto
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego, 2000, Campos dos Goytacazes, RJ, 28013-602, Campos dos Goytacazes, RJ, Brazil; Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, UENF, Av. Alberto Lamego, 2000, Campos dos Goytacazes, RJ, 28013-602, Brazil.
| | - Lucas Z Passamani
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego, 2000, Campos dos Goytacazes, RJ, 28013-602, Campos dos Goytacazes, RJ, Brazil; Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, UENF, Av. Alberto Lamego, 2000, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | | | - Gonçalo A de Souza Filho
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego, 2000, Campos dos Goytacazes, RJ, 28013-602, Campos dos Goytacazes, RJ, Brazil; Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, UENF, Av. Alberto Lamego, 2000, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Brian P Mooney
- Department of Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, 1201 Rollins Street, 65211, Columbia, MO, USA
| | - Jay J Thelen
- Department of Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, 1201 Rollins Street, 65211, Columbia, MO, USA
| | - Vanildo Silveira
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego, 2000, Campos dos Goytacazes, RJ, 28013-602, Campos dos Goytacazes, RJ, Brazil; Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, UENF, Av. Alberto Lamego, 2000, Campos dos Goytacazes, RJ, 28013-602, Brazil.
| |
Collapse
|