1
|
Aboulache BL, Hoitsma NM, Luger K. Phosphorylation regulates the chromatin remodeler SMARCAD1 in nucleosome binding, ATP hydrolysis, and histone exchange. J Biol Chem 2024:107893. [PMID: 39424143 DOI: 10.1016/j.jbc.2024.107893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/13/2024] [Accepted: 10/03/2024] [Indexed: 10/21/2024] Open
Abstract
Maintaining the dynamic structure of chromatin is critical for regulating the cellular processes that require access to the DNA template, such as DNA damage repair, transcription, and replication. Histone chaperones and ATP-dependent chromatin remodeling factors facilitate transitions in chromatin structure by assembling and positioning nucleosomes through a variety of enzymatic activities. SMARCAD1 is a unique chromatin remodeler that combines the ATP-dependent ability to exchange histones, with the chaperone-like activity of nucleosome deposition. We have shown previously that phosphorylated SMARCAD1 exhibits reduced binding to nucleosomes. However, it is unknown how phosphorylation affects SMARCAD1's ability to perform its various enzymatic activities. Here we use mutational analysis, activity assays, and mass spectrometry, to probe SMARCAD1 regulation and to investigate the role of its flexible N-terminal region. We show that phosphorylation affects SMARCAD1 binding to nucleosomes, DNA, and histones H2A-H2B as well as ATP hydrolysis and histone exchange. Conversely, we report only a marginal effect of phosphorylation for histone H3-H4 binding and nucleosome assembly. In addition, the SMARCAD1 N-terminal region is revealed to be critical for nucleosome assembly and histone exchange. Together, this work examines the intricacies of how phosphorylation governs SMARCAD1 activity and provides insight into its complex regulation and diverse activities.
Collapse
Affiliation(s)
- Briana L Aboulache
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado; Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Nicole M Hoitsma
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado; Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Karolin Luger
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado; Howard Hughes Medical Institute, Chevy Chase, Maryland.
| |
Collapse
|
2
|
Hernandez-Huertas L, Moreno-Sanchez I, Crespo-Cuadrado J, Vargas-Baco A, da Silva Pescador G, Santos-Pereira JM, Bazzini AA, Moreno-Mateos MA. CRISPR-RfxCas13d screening uncovers Bckdk as a post-translational regulator of the maternal-to-zygotic transition in teleosts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.22.595167. [PMID: 38826327 PMCID: PMC11142190 DOI: 10.1101/2024.05.22.595167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
The Maternal-to-Zygotic transition (MZT) is a reprograming process encompassing zygotic genome activation (ZGA) and the clearance of maternally-provided mRNAs. While some factors regulating MZT have been identified, there are thousands of maternal RNAs whose function has not been ascribed yet. Here, we have performed a proof-of-principle CRISPR-RfxCas13d maternal screening targeting mRNAs encoding protein kinases and phosphatases in zebrafish and identified Bckdk as a novel post-translational regulator of MZT. Bckdk mRNA knockdown caused epiboly defects, ZGA deregulation, H3K27ac reduction and a partial impairment of miR-430 processing. Phospho-proteomic analysis revealed that Phf10/Baf45a, a chromatin remodeling factor, is less phosphorylated upon Bckdk depletion. Further, phf10 mRNA knockdown also altered ZGA and Phf10 constitutively phosphorylated rescued the developmental defects observed after bckdk mRNA depletion. Altogether, our results demonstrate the competence of CRISPR-RfxCas13d screenings to uncover new regulators of early vertebrate development and shed light on the post-translational control of MZT mediated by protein phosphorylation.
Collapse
Affiliation(s)
- Luis Hernandez-Huertas
- Andalusian Center for Developmental Biology (CABD), Pablo de Olavide University/CSIC/Junta de Andalucía, Ctra. Utrera Km.1, 41013, Seville, Spain
- Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide University, Ctra. Utrera Km.1, 41013, Seville, Spain
| | - Ismael Moreno-Sanchez
- Andalusian Center for Developmental Biology (CABD), Pablo de Olavide University/CSIC/Junta de Andalucía, Ctra. Utrera Km.1, 41013, Seville, Spain
- Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide University, Ctra. Utrera Km.1, 41013, Seville, Spain
| | - Jesús Crespo-Cuadrado
- Andalusian Center for Developmental Biology (CABD), Pablo de Olavide University/CSIC/Junta de Andalucía, Ctra. Utrera Km.1, 41013, Seville, Spain
| | - Ana Vargas-Baco
- Andalusian Center for Developmental Biology (CABD), Pablo de Olavide University/CSIC/Junta de Andalucía, Ctra. Utrera Km.1, 41013, Seville, Spain
- Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide University, Ctra. Utrera Km.1, 41013, Seville, Spain
| | | | - José M. Santos-Pereira
- Andalusian Center for Developmental Biology (CABD), Pablo de Olavide University/CSIC/Junta de Andalucía, Ctra. Utrera Km.1, 41013, Seville, Spain
| | - Ariel A. Bazzini
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO 64110, USA
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, USA
| | - Miguel A. Moreno-Mateos
- Andalusian Center for Developmental Biology (CABD), Pablo de Olavide University/CSIC/Junta de Andalucía, Ctra. Utrera Km.1, 41013, Seville, Spain
- Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide University, Ctra. Utrera Km.1, 41013, Seville, Spain
| |
Collapse
|
3
|
Coates HW, Nguyen TB, Du X, Olzomer EM, Farrell R, Byrne FL, Yang H, Brown AJ. The constitutively active form of a key cholesterol synthesis enzyme is lipid droplet-localized and upregulated in endometrial cancer tissues. J Biol Chem 2024; 300:107232. [PMID: 38537696 PMCID: PMC11061744 DOI: 10.1016/j.jbc.2024.107232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 03/18/2024] [Indexed: 04/26/2024] Open
Abstract
Cholesterol is essential for both normal cell viability and cancer cell proliferation. Aberrant activity of squalene monooxygenase (SM, also known as squalene epoxidase), the rate-limiting enzyme of the committed cholesterol synthesis pathway, is accordingly implicated in a growing list of cancers. We previously reported that hypoxia triggers the truncation of SM to a constitutively active form, thus preserving sterol synthesis during oxygen shortfalls. Here, we show SM truncation is upregulated and correlates with the magnitude of hypoxia in endometrial cancer tissues, supporting the in vivo relevance of our earlier work. To further investigate the pathophysiological consequences of SM truncation, we examined its lipid droplet-localized pool using complementary immunofluorescence and cell fractionation approaches and found that it exclusively comprises the truncated enzyme. This partitioning is facilitated by the loss of an endoplasmic reticulum-embedded region at the SM N terminus, whereas the catalytic domain containing membrane-associated C-terminal helices is spared. Moreover, we determined multiple amphipathic helices contribute to the lipid droplet localization of truncated SM. Taken together, our results expand on the striking differences between the two forms of SM and suggest upregulated truncation may contribute to SM-related oncogenesis.
Collapse
Affiliation(s)
- Hudson W Coates
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, New South Wales, Australia
| | - Tina B Nguyen
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, New South Wales, Australia
| | - Ximing Du
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, New South Wales, Australia
| | - Ellen M Olzomer
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, New South Wales, Australia
| | - Rhonda Farrell
- Chris O'Brien Lifehouse, Camperdown, New South Wales, Australia; Prince of Wales Private Hospital, Randwick, New South Wales, Australia
| | - Frances L Byrne
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, New South Wales, Australia
| | - Hongyuan Yang
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, New South Wales, Australia
| | - Andrew J Brown
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, New South Wales, Australia.
| |
Collapse
|
4
|
Aleshina YA, Aleshin VA. Evolutionary Changes in Primate Glutamate Dehydrogenases 1 and 2 Influence the Protein Regulation by Ligands, Targeting and Posttranslational Modifications. Int J Mol Sci 2024; 25:4341. [PMID: 38673928 PMCID: PMC11050691 DOI: 10.3390/ijms25084341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
There are two paralogs of glutamate dehydrogenase (GDH) in humans encoded by the GLUD1 and GLUD2 genes as a result of a recent retroposition during the evolution of primates. The two human GDHs possess significantly different regulation by allosteric ligands, which is not fully characterized at the structural level. Recent advances in identification of the GDH ligand binding sites provide a deeper perspective on the significance of the accumulated substitutions within the two GDH paralogs. In this review, we describe the evolution of GLUD1 and GLUD2 after the duplication event in primates using the accumulated sequencing and structural data. A new gibbon GLUD2 sequence questions the indispensability of ancestral R496S and G509A mutations for GLUD2 irresponsiveness to GTP, providing an alternative with potentially similar regulatory features. The data of both GLUD1 and GLUD2 evolution not only confirm substitutions enhancing GLUD2 mitochondrial targeting, but also reveal a conserved mutation in ape GLUD1 mitochondrial targeting sequence that likely reduces its transport to mitochondria. Moreover, the information of GDH interactors, posttranslational modification and subcellular localization are provided for better understanding of the GDH mutations. Medically significant point mutations causing deregulation of GDH are considered from the structural and regulatory point of view.
Collapse
Affiliation(s)
- Yulia A. Aleshina
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov First Moscow State Medical University, 119435 Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Vasily A. Aleshin
- Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Department of Biochemistry, Sechenov First Moscow State Medical University, 119048 Moscow, Russia
| |
Collapse
|
5
|
Stephenson EH, Higgins JMG. Pharmacological approaches to understanding protein kinase signaling networks. Front Pharmacol 2023; 14:1310135. [PMID: 38164473 PMCID: PMC10757940 DOI: 10.3389/fphar.2023.1310135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024] Open
Abstract
Protein kinases play vital roles in controlling cell behavior, and an array of kinase inhibitors are used successfully for treatment of disease. Typical drug development pipelines involve biological studies to validate a protein kinase target, followed by the identification of small molecules that effectively inhibit this target in cells, animal models, and patients. However, it is clear that protein kinases operate within complex signaling networks. These networks increase the resilience of signaling pathways, which can render cells relatively insensitive to inhibition of a single kinase, and provide the potential for pathway rewiring, which can result in resistance to therapy. It is therefore vital to understand the properties of kinase signaling networks in health and disease so that we can design effective multi-targeted drugs or combinations of drugs. Here, we outline how pharmacological and chemo-genetic approaches can contribute to such knowledge, despite the known low selectivity of many kinase inhibitors. We discuss how detailed profiling of target engagement by kinase inhibitors can underpin these studies; how chemical probes can be used to uncover kinase-substrate relationships, and how these tools can be used to gain insight into the configuration and function of kinase signaling networks.
Collapse
Affiliation(s)
| | - Jonathan M. G. Higgins
- Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Newcastle uponTyne, United Kingdom
| |
Collapse
|
6
|
Manousakis E, Miralles CM, Esquerda MG, Wright RHG. CDKN1A/p21 in Breast Cancer: Part of the Problem, or Part of the Solution? Int J Mol Sci 2023; 24:17488. [PMID: 38139316 PMCID: PMC10743848 DOI: 10.3390/ijms242417488] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Cyclin-dependent kinase inhibitor 1A (Cip1/Waf1/CDKN1A/p21) is a well-established protein, primarily recognised for its pivotal role in the cell cycle, where it induces cell cycle arrest by inhibiting the activity of cyclin-dependent kinases (CDKs). Over the years, extensive research has shed light on various additional mechanisms involving CDKN1A/p21, implicating it in processes such as apoptosis, DNA damage response (DDR), and the regulation of stem cell fate. Interestingly, p21 can function either as an oncogene or as a tumour suppressor in these contexts. Complicating matters further, the expression of CDKN1A/p21 is elevated in certain tumour types while downregulated in others. In this comprehensive review, we provide an overview of the multifaceted functions of CDKN1A/p21, present clinical data pertaining to cancer patients, and delve into potential strategies for targeting CDKN1A/p21 as a therapeutic approach to cancer. Manipulating CDKN1A/p21 shows great promise for therapy given its involvement in multiple cancer hallmarks, such as sustained cell proliferation, the renewal of cancer stem cells (CSCs), epithelial-mesenchymal transition (EMT), cell migration, and resistance to chemotherapy. Given the dual role of CDKN1A/p21 in these processes, a more in-depth understanding of its specific mechanisms of action and its regulatory network is imperative to establishing successful therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | - Roni H. G. Wright
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195 Barcelona, Spain
| |
Collapse
|
7
|
Gao C, Zhu H, Gong P, Wu C, Xu X, Zhu X. The functions of FOXP transcription factors and their regulation by post-translational modifications. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194992. [PMID: 37797785 DOI: 10.1016/j.bbagrm.2023.194992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/26/2023] [Accepted: 09/30/2023] [Indexed: 10/07/2023]
Abstract
The forkhead box subfamily P (FOXP) of transcription factors, consisting of FOXP1, FOXP2, FOXP3, and FOXP4, is involved in the regulation of multisystemic functioning. Disruption of the transcriptional activity of FOXP proteins leads to neurodevelopmental disorders and immunological diseases, as well as the suppression or promotion of carcinogenesis. The transcriptional activities of FOXP proteins are directly or indirectly regulated by diverse post-translational modifications, including phosphorylation, ubiquitination, SUMOylation, acetylation, O-GlcNAcylation, and methylation. Here, we discuss how post-translational modifications modulate the multiple functions of FOXP proteins and examine the implications for tumorigenesis and cancer therapy.
Collapse
Affiliation(s)
- Congwen Gao
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong 518060, China; College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China
| | - Honglin Zhu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong 518060, China
| | - Peng Gong
- Department of General Surgery & Institute of Precision Diagnosis and Treatment of Gastrointestinal Tumors & Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University Medical School, Shenzhen, Guangdong 518060, China
| | - Chen Wu
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China
| | - Xingzhi Xu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong 518060, China.
| | - Xuefei Zhu
- Department of General Surgery & Institute of Precision Diagnosis and Treatment of Gastrointestinal Tumors & Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University Medical School, Shenzhen, Guangdong 518060, China.
| |
Collapse
|
8
|
Hao W, Zhang H, Hong P, Zhang X, Zhao X, Ma L, Qiu X, Ping H, Lu D, Yin Y. Critical role of VHL/BICD2/STAT1 axis in crystal-associated kidney disease. Cell Death Dis 2023; 14:680. [PMID: 37833251 PMCID: PMC10575931 DOI: 10.1038/s41419-023-06185-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 09/28/2023] [Indexed: 10/15/2023]
Abstract
Nephrolithiasis is highly prevalent and associated with the increased risk of kidney cancer. The tumor suppressor von Hippel-Lindau (VHL) is critical for renal cancer development, however, its role in kidney stone disease has not been fully elucidated until now. Here we reported VHL expression was upregulated in renal epithelial cells upon exposure to crystal. Utilizing Vhl+/mu mouse model, depletion of VHL exacerbated kidney inflammatory injury during nephrolithiasis. Conversely, overexpression of VHL limited crystal-induced lipid peroxidation and ferroptosis in a BICD2-depdendent manner. Mechanistically, VHL interacted with the cargo adaptor BICD2 and promoted itsd K48-linked poly-ubiquitination, consequently resulting in the proteasomal degradation of BICD2. Through promoting STAT1 nuclear translocation, BICD2 facilitated IFNγ signaling transduction and enhanced IFNγ-mediated suppression of cystine/glutamate antiporter system Xc-, eventually increasing cell sensitivity to ferroptosis. Moreover, we found that the BRAF inhibitor impaired the association of VHL with BICD2 through triggering BICD2 phosphorylation, ultimately causing severe ferroptosis and nephrotoxicity. Collectively, our results uncover the important role of VHL/BICD2/STAT1 axis in crystal kidney injury and provide a potential therapeutic target for treatment and prevention of renal inflammation and drug-induced nephrotoxicity.
Collapse
Affiliation(s)
- Wenyan Hao
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, PR China
| | - Hongxian Zhang
- Department of Urology, Peking University Third Hospital, Beijing, 100191, PR China
| | - Peng Hong
- Department of Urology, Peking University Third Hospital, Beijing, 100191, PR China
| | - Xin Zhang
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, PR China
| | - Xuyang Zhao
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, PR China
| | - Lulin Ma
- Department of Urology, Peking University Third Hospital, Beijing, 100191, PR China
| | - Xiaoyan Qiu
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191, PR China
| | - Hao Ping
- Department of Urology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, PR China.
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University and Capital Medical University, Beijing Tongren Hospital, Beijing, 100730, PR China.
| | - Dan Lu
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, PR China.
| | - Yuxin Yin
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, PR China.
| |
Collapse
|
9
|
Veth TS, Francavilla C, Heck AJR, Altelaar M. Elucidating Fibroblast Growth Factor-Induced Kinome Dynamics Using Targeted Mass Spectrometry and Dynamic Modeling. Mol Cell Proteomics 2023; 22:100594. [PMID: 37328066 PMCID: PMC10368922 DOI: 10.1016/j.mcpro.2023.100594] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/02/2023] [Accepted: 06/12/2023] [Indexed: 06/18/2023] Open
Abstract
Fibroblast growth factors (FGFs) are paracrine or endocrine signaling proteins that, activated by their ligands, elicit a wide range of health and disease-related processes, such as cell proliferation and the epithelial-to-mesenchymal transition. The detailed molecular pathway dynamics that coordinate these responses have remained to be determined. To elucidate these, we stimulated MCF-7 breast cancer cells with either FGF2, FGF3, FGF4, FGF10, or FGF19. Following activation of the receptor, we quantified the kinase activity dynamics of 44 kinases using a targeted mass spectrometry assay. Our system-wide kinase activity data, supplemented with (phospho)proteomics data, reveal ligand-dependent distinct pathway dynamics, elucidate the involvement of not earlier reported kinases such as MARK, and revise some of the pathway effects on biological outcomes. In addition, logic-based dynamic modeling of the kinome dynamics further verifies the biological goodness-of-fit of the predicted models and reveals BRAF-driven activation upon FGF2 treatment and ARAF-driven activation upon FGF4 treatment.
Collapse
Affiliation(s)
- Tim S Veth
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Chiara Francavilla
- Division of Molecular and Cellular Function, School of Biological Science, and Manchester Breast Centre, Manchester Cancer Research Centre, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, Manchester, UK
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands.
| |
Collapse
|
10
|
Li Y, Zhu J, Yu Z, Li H, Jin X. The role of Lamin B2 in human diseases. Gene 2023; 870:147423. [PMID: 37044185 DOI: 10.1016/j.gene.2023.147423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/02/2023] [Accepted: 04/05/2023] [Indexed: 04/14/2023]
Abstract
Lamin B2 (LMNB2), on the inner side of the nuclear envelope, constitutes the nuclear skeleton by connecting with other nuclear proteins. LMNB2 is involved in a wide range of nuclear functions, including DNA replication and stability, regulation of chromatin, and nuclear stiffness. Moreover, LMNB2 regulates several cellular processes, such as tissue development, cell cycle, cellular proliferation and apoptosis, chromatin localization and stability, and DNA methylation. Besides, the influence of abnormal expression and mutations of LMNB2 has been gradually discovered in cancers and laminopathies. Therefore, this review summarizes the recent advances of LMNB2-associated biological roles in physiological or pathological conditions, with a particular emphasis on cancers and laminopathies, as well as the potential mechanism of LMNB2 in related cancers.
Collapse
Affiliation(s)
- Yuxuan Li
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo University, Ningbo, Zhejiang 315040, P.R. China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Jie Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo University, Ningbo, Zhejiang 315040, P.R. China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Zongdong Yu
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo University, Ningbo, Zhejiang 315040, P.R. China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Hong Li
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo University, Ningbo, Zhejiang 315040, P.R. China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China.
| | - Xiaofeng Jin
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo University, Ningbo, Zhejiang 315040, P.R. China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China.
| |
Collapse
|
11
|
Zhang Z, Wang Z, Liu Y, Zhao L, Fu W. Stromal Interaction Molecule 1 (STIM1) is a Potential Prognostic Biomarker and Correlates with Immune Infiltrates in Solid Tumors. J Environ Pathol Toxicol Oncol 2023; 42:11-30. [PMID: 36749087 DOI: 10.1615/jenvironpatholtoxicoloncol.2022043693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Increasing evidence has shown that stromal interaction molecule 1 (STIM1), a key subunit of store-operated Ca2+ entry (SOCE), is closely associated with tumor growth, development, and metastasis. However, there is no report of a comprehensive assessment of STIM1 in pan-cancer. This study aimed to perform a general analysis of STIM1 in human tumors, including its molecular characteristics, functional mechanisms, clinical significance, and immune infiltrates correlation based on pan-cancer data from The Cancer Genome Atlas (TCGA). Gene expression analysis was investigated using TCGA RNA-seq data, the Tumor Immune Estimation Resource (TIMER). Phosphorylation analysis was undertaken using the Clinical Proteomic Tumor Analysis Consortium (CP-TAC) and the PhosphoNET database. Genetic alterations of STIM1 were analyzed using cBioPortal. Prognostic analysis was via the R package "survival" function and the Kaplan-Meier plotter. Functional enrichment analysis was via by the R package "cluster Profiler" function. The association between STIM1 and tumor-infiltrating immune cells and immune markers was by the R package "GSVA" function and TIMER. STIM1 was differentially expressed and associated with distinct clinical stages in multiple tumors. The phosphorylation of STIM1 at S673 is highly expressed in clear cell renal carcinoma and lung adenocarcinoma tumors compared to normal tissues. STIM1 genetic alterations correlate with poor prognosis in several tumors, including ovarian cancer and lung squamous cell carcinomas. High STIM1 expression is associated with good or poor prognosis across diverse tumors. Overall survival (OS) analysis indicated that STIM1 is a favorable prognostic factor for patients with BRCA, KIRC, LIHC, LUAD, OV, SARC, and UCEC, and is a risk prognostic factor for BLCA, KIRP, STAD, and UVM. There is a close correlation between STIM1 expression and immune cell infiltration, immune-regulated genes, chemokines, and immune checkpoints in a variety of tumors. STIM1 functions differently in diverse tumors, playing an oncogenic or antitumor role. Moreover, It may serve as a prognostic biomarker and an immunotherapy target across multiple tumors.
Collapse
Affiliation(s)
- Zichao Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Department of General Surgery, First Hospital of Tsinghua University, Beijing 100016, China
| | - Zhihui Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Department of General Surgery, Wuhan Central Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Yumeng Liu
- Department of General Surgery, First Hospital of Tsinghua University, Beijing 100016, China
| | - Li Zhao
- Department of General Surgery, First Hospital of Tsinghua University, Beijing 100016, China
| | - Weihua Fu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
12
|
Phosphorylation of the Human DNA Glycosylase NEIL2 Is Affected by Oxidative Stress and Modulates Its Activity. Antioxidants (Basel) 2023; 12:antiox12020355. [PMID: 36829914 PMCID: PMC9952225 DOI: 10.3390/antiox12020355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/25/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
The DNA glycosylase NEIL2 plays a central role in maintaining genome integrity, in particular during oxidative stress, by recognizing oxidized base lesions and initiating repair of these via the base excision repair (BER) pathway. Post-translational modifications are important molecular switches that regulate and coordinate the BER pathway, and thereby enable a rapid and fine-tuned response to DNA damage. Here, we report for the first time that human NEIL2 is regulated by phosphorylation. We demonstrate that NEIL2 is phosphorylated by the two kinases cyclin-dependent kinase 5 (CDK5) and protein kinase C (PKC) in vitro and in human SH-SY5Y neuroblastoma cells. The phosphorylation of NEIL2 by PKC causes a substantial reduction in NEIL2 repair activity, while CDK5 does not directly alter the enzymatic activity of NEIL2 in vitro, suggesting distinct modes of regulating NEIL2 function by the two kinases. Interestingly, we show a rapid dephosphorylation of NEIL2 in response to oxidative stress in SH-SY5Y cells. This points to phosphorylation as an important modulator of NEIL2 function in this cellular model, not least during oxidative stress.
Collapse
|
13
|
Vauthier V, Lasserre A, Morel M, Versapuech M, Berlioz-Torrent C, Zamborlini A, Margottin-Goguet F, Matkovic R. HUSH-mediated HIV silencing is independent of TASOR phosphorylation on threonine 819. Retrovirology 2022; 19:23. [PMID: 36309692 PMCID: PMC9618200 DOI: 10.1186/s12977-022-00610-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 10/16/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND TASOR, a component of the HUSH repressor epigenetic complex, and SAMHD1, a cellular triphosphohydrolase (dNTPase), are both anti-HIV proteins antagonized by HIV-2/SIVsmm Viral protein X. As a result, the same viral protein is able to relieve two different blocks along the viral life cell cycle, one at the level of reverse transcription, by degrading SAMHD1, the other one at the level of proviral expression, by degrading TASOR. Phosphorylation of SAMHD1 at T592 has been shown to downregulate its antiviral activity. The discovery that T819 in TASOR was lying within a SAMHD1 T592-like motif led us to ask whether TASOR is phosphorylated on this residue and whether this post-translational modification could regulate its repressive activity. RESULTS Using a specific anti-phospho-antibody, we found that TASOR is phosphorylated at T819, especially in cells arrested in early mitosis by nocodazole. We provide evidence that the phosphorylation is conducted by a Cyclin/CDK1 complex, like that of SAMHD1 at T592. While we could not detect TASOR in quiescent CD4 + T cells, TASOR and its phosphorylated form are present in activated primary CD4 + T lymphocytes. In addition, TASOR phosphorylation appears to be independent from TASOR repressive activity. Indeed, on the one hand, nocodazole barely reactivates HIV-1 in the J-Lat A1 HIV-1 latency model despite TASOR T819 phosphorylation. On the other hand, etoposide, a second cell cycle arresting drug, reactivates latent HIV-1, without concomitant TASOR phosphorylation. Furthermore, overexpression of wt TASOR or T819A or T819E similarly represses gene expression driven by an HIV-1-derived LTR promoter. Finally, while TASOR is degraded by HIV-2 Vpx, TASOR phosphorylation is prevented by HIV-1 Vpr, likely as a consequence of HIV-1 Vpr-mediated-G2 arrest. CONCLUSIONS Altogether, we show that TASOR phosphorylation occurs in vivo on T819. This event does not appear to correlate with TASOR-mediated HIV-1 silencing. We speculate that TASOR phosphorylation is related to a role of TASOR during cell cycle progression.
Collapse
Affiliation(s)
- Virginie Vauthier
- Université Paris Cité, CNRS, INSERM, Institut Cochin, 22 Rue Méchain, 75014, Paris, France
| | - Angélique Lasserre
- Université Paris Cité, CNRS, INSERM, Institut Cochin, 22 Rue Méchain, 75014, Paris, France
| | - Marina Morel
- Université Paris Cité, CNRS, INSERM, Institut Cochin, 22 Rue Méchain, 75014, Paris, France
| | - Margaux Versapuech
- Université Paris Cité, CNRS, INSERM, Institut Cochin, 22 Rue Méchain, 75014, Paris, France
| | | | - Alessia Zamborlini
- Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases, Université Paris-Saclay, Inserm, CEA, IMVA-HB/IDMIT), Fontenay-Aux-Roses, France
| | | | - Roy Matkovic
- Université Paris Cité, CNRS, INSERM, Institut Cochin, 22 Rue Méchain, 75014, Paris, France.
| |
Collapse
|
14
|
Romano D, García-Gutiérrez L, Aboud N, Duffy DJ, Flaherty KT, Frederick DT, Kolch W, Matallanas D. Proteasomal down-regulation of the proapoptotic MST2 pathway contributes to BRAF inhibitor resistance in melanoma. Life Sci Alliance 2022; 5:5/10/e202201445. [PMID: 36038253 PMCID: PMC9434705 DOI: 10.26508/lsa.202201445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 08/15/2022] [Accepted: 08/19/2022] [Indexed: 11/25/2022] Open
Abstract
The loss of MST2 pathway protein expression in BRAF inhibitor resistant melanoma cells is due to ubiquitination and subsequent proteasomal degradation and prevents MST2-mediated apoptosis. The RAS-RAF-MEK-ERK pathway is hyperactivated in most malignant melanomas, and mutations in BRAF or NRAS account for most of these cases. BRAF inhibitors (BRAFi) are highly efficient for treating patients with BRAFV600E mutations, but tumours frequently acquire resistance within a few months. Multiple resistance mechanisms have been identified, due to mutations or network adaptations that revive ERK signalling. We have previously shown that RAF proteins inhibit the MST2 proapoptotic pathway in a kinase-independent fashion. Here, we have investigated the role of the MST2 pathway in mediating resistance to BRAFi. We show that the BRAFV600E mutant protein, but not the wild-type BRAF protein, binds to MST2 inhibiting its proapoptotic signalling. Down-regulation of MST2 reduces BRAFi-induced apoptosis. In BRAFi-resistant cell lines, MST2 pathway proteins are down-regulated by ubiquitination and subsequent proteasomal degradation rendering cells refractory to MST2 pathway–induced apoptosis. Restoration of apoptosis can be achieved by increasing MST2 pathway protein expression using proteasome inhibitors. In summary, we show that the MST2 pathway plays a role in the acquisition of BRAFi resistance in melanoma.
Collapse
Affiliation(s)
- David Romano
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland
| | | | - Nourhan Aboud
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland
| | - David J Duffy
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland.,Department of Biology/Whitney Laboratory for Marine Bioscience, University of Florida, Gainesville, FL, USA
| | | | | | - Walter Kolch
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland .,Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - David Matallanas
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
15
|
Tellier M, Zaborowska J, Neve J, Nojima T, Hester S, Fournier M, Furger A, Murphy S. CDK9 and PP2A regulate RNA polymerase II transcription termination and coupled RNA maturation. EMBO Rep 2022; 23:e54520. [PMID: 35980303 PMCID: PMC9535751 DOI: 10.15252/embr.202154520] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 07/13/2022] [Accepted: 07/21/2022] [Indexed: 12/03/2022] Open
Abstract
CDK9 is a kinase critical for the productive transcription of protein-coding genes by RNA polymerase II (pol II). As part of P-TEFb, CDK9 phosphorylates the carboxyl-terminal domain (CTD) of pol II and elongation factors, which allows pol II to elongate past the early elongation checkpoint (EEC) encountered soon after initiation. We show that, in addition to halting pol II at the EEC, loss of CDK9 activity causes premature termination of transcription across the last exon, loss of polyadenylation factors from chromatin, and loss of polyadenylation of nascent transcripts. Inhibition of the phosphatase PP2A abrogates the premature termination and loss of polyadenylation caused by CDK9 inhibition, indicating that this kinase/phosphatase pair regulates transcription elongation and RNA processing at the end of protein-coding genes. We also confirm the splicing factor SF3B1 as a target of CDK9 and show that SF3B1 in complex with polyadenylation factors is lost from chromatin after CDK9 inhibition. These results emphasize the important roles that CDK9 plays in coupling transcription elongation and termination to RNA maturation downstream of the EEC.
Collapse
Affiliation(s)
- Michael Tellier
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| | | | - Jonathan Neve
- Department of BiochemistryUniversity of OxfordOxfordUK
| | - Takayuki Nojima
- Medical Institute of BioregulationKyushu UniversityFukuokaJapan
| | - Svenja Hester
- Department of BiochemistryUniversity of OxfordOxfordUK
| | | | - Andre Furger
- Department of BiochemistryUniversity of OxfordOxfordUK
| | - Shona Murphy
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| |
Collapse
|
16
|
Crowl S, Jordan BT, Ahmed H, Ma CX, Naegle KM. KSTAR: An algorithm to predict patient-specific kinase activities from phosphoproteomic data. Nat Commun 2022; 13:4283. [PMID: 35879309 PMCID: PMC9314348 DOI: 10.1038/s41467-022-32017-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 07/13/2022] [Indexed: 01/09/2023] Open
Abstract
Kinase inhibitors as targeted therapies have played an important role in improving cancer outcomes. However, there are still considerable challenges, such as resistance, non-response, patient stratification, polypharmacology, and identifying combination therapy where understanding a tumor kinase activity profile could be transformative. Here, we develop a graph- and statistics-based algorithm, called KSTAR, to convert phosphoproteomic measurements of cells and tissues into a kinase activity score that is generalizable and useful for clinical pipelines, requiring no quantification of the phosphorylation sites. In this work, we demonstrate that KSTAR reliably captures expected kinase activity differences across different tissues and stimulation contexts, allows for the direct comparison of samples from independent experiments, and is robust across a wide range of dataset sizes. Finally, we apply KSTAR to clinical breast cancer phosphoproteomic data and find that there is potential for kinase activity inference from KSTAR to complement the current clinical diagnosis of HER2 status in breast cancer patients.
Collapse
Affiliation(s)
- Sam Crowl
- grid.27755.320000 0000 9136 933XUniversity of Virginia, Department of Biomedical Engineering and the Center for Public Health Genomics, Charlottesville, VA 22903 USA
| | - Ben T. Jordan
- grid.27755.320000 0000 9136 933XUniversity of Virginia, Department of Biomedical Engineering and the Center for Public Health Genomics, Charlottesville, VA 22903 USA
| | - Hamza Ahmed
- grid.27755.320000 0000 9136 933XUniversity of Virginia, Department of Biomedical Engineering and the Center for Public Health Genomics, Charlottesville, VA 22903 USA
| | - Cynthia X. Ma
- grid.4367.60000 0001 2355 7002Department of Medicine and Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63108 USA
| | - Kristen M. Naegle
- grid.27755.320000 0000 9136 933XUniversity of Virginia, Department of Biomedical Engineering and the Center for Public Health Genomics, Charlottesville, VA 22903 USA
| |
Collapse
|
17
|
Zhang ZD, Wen B, Li DJ, Deng DX, Wu XD, Cheng YW, Liao LD, Long L, Dong G, Xu LY, Li EM. AKT serine/threonine kinase 2-mediated phosphorylation of fascin threonine 403 regulates esophageal cancer progression. Int J Biochem Cell Biol 2022; 145:106188. [PMID: 35219877 DOI: 10.1016/j.biocel.2022.106188] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 02/05/2023]
Abstract
Fascin is the main actin-bundling protein in filopodia and is highly expressed in metastatic tumor cells. The overexpression of Fascin has been associated with poor clinical prognosis and metastatic progression. Post-translational modifications of Fascin, such as phosphorylation, can affect the proliferation and invasion of tumor cells by regulating the actin-bundling activity of Fascin. However, the phosphorylation sites of Fascin and their corresponding kinases require further exploration. In the current study, we identified novel phosphorylation of Fascin Threonine 403 (Fascin-T403) mediated by AKT serine/threonine kinase 2 (AKT2), which was studied using mass spectrometry data from esophageal cancer tissues (iProX database: IPX0002501000). A molecular dynamics simulation revealed that Fascin-Threonine 403 phosphorylation (Fascin-T403D) had a distinct spatial structure and correlation of amino acid residues, which was different from that of the wild type (Fascin-WT). Low-speed centrifugation assay results showed that Fascin-T403D affected actin cross-linking. To investigate whether Fascin-T403D affected the function of esophageal cancer cells, either Fascin-WT or Fascin-T403D were rescued in Fascin-knockout or siRNA cell lines. We observed that Fascin-T403D could suppress the biological behavior of esophageal cancer cells, including filopodia formation, cell proliferation, and migration. Co-immunoprecipitation (Co-IP) and Duolink in situ proximity ligation assay (PLA) were performed to measure the interaction between Fascin and AKT2. Using in vitro and in vivo kinase assays, we confirmed that AKT2, but not AKT1 or AKT3, is an upstream kinase of Fascin Threonine 403. Taken together, the AKT2-catalyzed phosphorylation of Fascin Threonine 403 suppressed esophageal cancer cell behavior, actin-bundling activity, and filopodia formation.
Collapse
Affiliation(s)
- Zhi-Da Zhang
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Bing Wen
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, China.
| | - Da-Jia Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, China.
| | - Dan-Xia Deng
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, China; Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, Guangdong, China.
| | - Xiao-Dong Wu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, China; Institute of Basic Medical Science, Medical Bioinformatics Center, Shantou University Medical College, Shantou 515041, Guangdong, China.
| | - Yin-Wei Cheng
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, China; Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, Guangdong, China; Institute of Basic Medical Science, Cancer Research Center, Shantou University Medical College, Shantou 515041, Guangdong, China.
| | - Lian-Di Liao
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, China; Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, Guangdong, China.
| | - Lin Long
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, China; Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, Guangdong, China; Institute of Basic Medical Science, Cancer Research Center, Shantou University Medical College, Shantou 515041, Guangdong, China.
| | - Geng Dong
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, China; Institute of Basic Medical Science, Medical Bioinformatics Center, Shantou University Medical College, Shantou 515041, Guangdong, China.
| | - Li-Yan Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, Guangdong, China
- Institute of Basic Medical Science, Cancer Research Center, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - En-Min Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, China
| |
Collapse
|
18
|
Pons ML, Loftus N, Vialaret J, Moreau S, Lehmann S, Hirtz C. Proteomics Challenges for the Assessment of Synuclein Proteoforms as Clinical Biomarkers in Parkinson’s Disease. Front Aging Neurosci 2022; 14:818606. [PMID: 35431896 PMCID: PMC9009522 DOI: 10.3389/fnagi.2022.818606] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
Parkinson’s disease is a complex neurodegenerative disorder resulting in a multifaceted clinical presentation which includes bradykinesia combined with either rest tremor, rigidity, or both, as well as many non-motor symptoms. The motor features of the disorder are associated with the pathological form of alpha synuclein aggregates and fibrils in Lewy bodies and loss of dopaminergic neurons in the substantia nigra. Parkinson’s disease is increasingly considered as a group of underlying disorders with unique genetic, biological, and molecular abnormalities that are likely to respond differentially to a given therapeutic approach. For this reason, it is clinically challenging to treat and at present, no therapy can slow down or arrest the progression of Parkinson’s disease. There is a clear unmet clinical need to develop reliable diagnostic and prognostic biomarkers. When disease-modifying treatments become available, prognostic biomarkers are required to support a definitive diagnosis and clinical intervention during the long prodromal period as no clinical implications or symptoms are observed. Robust diagnostic biomarkers would also be useful to monitor treatment response. Potential biomarkers for the sporadic form of Parkinson’s disease have mostly included synuclein species (monomer, oligomer, phosphorylated, Lewy Body enriched fraction and isoforms). In this review, we consider the analysis of synuclein and its proteoforms in biological samples using proteomics techniques (immunoassay and mass spectrometry) applied to neurodegenerative disease research.
Collapse
Affiliation(s)
- Marie-Laure Pons
- IRMB-PPC, INM, CHU Montpellier, INSERM, CNRS, Université de Montpellier, Montpellier, France
- Shimadzu Corporation, Duisburg, Germany
- *Correspondence: Marie-Laure Pons,
| | - Neil Loftus
- Shimadzu Corporation, Manchester, United Kingdom
| | - Jerome Vialaret
- IRMB-PPC, INM, CHU Montpellier, INSERM, CNRS, Université de Montpellier, Montpellier, France
| | | | - Sylvain Lehmann
- IRMB-PPC, INM, CHU Montpellier, INSERM, CNRS, Université de Montpellier, Montpellier, France
| | - Christophe Hirtz
- IRMB-PPC, INM, CHU Montpellier, INSERM, CNRS, Université de Montpellier, Montpellier, France
| |
Collapse
|
19
|
Balinda HU, Sedgwick A, D'Souza-Schorey C. Mechanisms underlying melanoma invasion as a consequence of MLK3 loss. Exp Cell Res 2022; 415:113106. [DOI: 10.1016/j.yexcr.2022.113106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 11/27/2022]
|
20
|
Janostiak R, Torres-Sanchez A, Posas F, de Nadal E. Understanding Retinoblastoma Post-Translational Regulation for the Design of Targeted Cancer Therapies. Cancers (Basel) 2022; 14:cancers14051265. [PMID: 35267571 PMCID: PMC8909233 DOI: 10.3390/cancers14051265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 01/05/2023] Open
Abstract
Simple Summary Rb1 is a regulator of cell cycle progression and genomic stability. This review focuses on post-translational modifications, their effect on Rb1 interactors, and their role in intracellular signaling in the context of cancer development. Finally, we highlight potential approaches to harness these post-translational modifications to design novel effective anticancer therapies. Abstract The retinoblastoma protein (Rb1) is a prototypical tumor suppressor protein whose role was described more than 40 years ago. Together with p107 (also known as RBL1) and p130 (also known as RBL2), the Rb1 belongs to a family of structurally and functionally similar proteins that inhibits cell cycle progression. Given the central role of Rb1 in regulating proliferation, its expression or function is altered in most types of cancer. One of the mechanisms underlying Rb-mediated cell cycle inhibition is the binding and repression of E2F transcription factors, and these processes are dependent on Rb1 phosphorylation status. However, recent work shows that Rb1 is a convergent point of many pathways and thus the regulation of its function through post-translational modifications is more complex than initially expected. Moreover, depending on the context, downstream signaling can be both E2F-dependent and -independent. This review seeks to summarize the most recent research on Rb1 function and regulation and discuss potential avenues for the design of novel cancer therapies.
Collapse
Affiliation(s)
- Radoslav Janostiak
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain; (R.J.); (A.T.-S.)
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Ariadna Torres-Sanchez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain; (R.J.); (A.T.-S.)
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Francesc Posas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain; (R.J.); (A.T.-S.)
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
- Correspondence: (F.P.); (E.d.N.); Tel.: +34-93-403-4810 (F.P.); +34-93-403-9895 (E.d.N.)
| | - Eulàlia de Nadal
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain; (R.J.); (A.T.-S.)
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
- Correspondence: (F.P.); (E.d.N.); Tel.: +34-93-403-4810 (F.P.); +34-93-403-9895 (E.d.N.)
| |
Collapse
|
21
|
Landscape of the oncogenic role of fatty acid synthase in human tumors. Aging (Albany NY) 2021; 13:25106-25137. [PMID: 34879004 PMCID: PMC8714155 DOI: 10.18632/aging.203730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/24/2021] [Indexed: 11/25/2022]
Abstract
Background: Identifying a unique and common regulatory pathway that drives tumorigenesis in cancers is crucial to foster the development of effective treatments. However, a systematic analysis of fatty acid synthase across pan-cancers has not been carried out. Methods: We investigated the oncogenic roles of fatty acid synthase in 33 cancers based on the cancer genome atlas and gene expression omnibus. Results: Fatty acid synthase is profoundly expressed in most cancers and is an important factor in predicting the outcome of cancer patients. Further, the level of S207 phosphorylation was found to be improved in several neoplasms (e.g., colon cancer). Fatty acid synthase expression is related to tumor-infiltrating immune cells in tumors (e.g., CD8+ T-cell infiltration level in cervical squamous cell carcinoma). Moreover, hormone receptor binding- and fatty acid metabolic process-associated pathways are involved in the functional mechanisms of fatty acid synthase. Conclusions: This study provides a complete understanding of the oncogenic role of fatty acid synthase in human tumors.
Collapse
|
22
|
Regulation of the EphA2 receptor intracellular region by phosphomimetic negative charges in the kinase-SAM linker. Nat Commun 2021; 12:7047. [PMID: 34857764 PMCID: PMC8639986 DOI: 10.1038/s41467-021-27343-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 11/11/2021] [Indexed: 11/22/2022] Open
Abstract
Eph receptor tyrosine kinases play a key role in cell-cell communication. Lack of structural information on the entire multi-domain intracellular region of any Eph receptor has hindered understanding of their signaling mechanisms. Here, we use integrative structural biology to investigate the structure and dynamics of the EphA2 intracellular region. EphA2 promotes cancer malignancy through a poorly understood non-canonical form of signaling involving serine/threonine phosphorylation of the linker connecting its kinase and SAM domains. We show that accumulation of multiple linker negative charges, mimicking phosphorylation, induces cooperative changes in the EphA2 intracellular region from more closed to more extended conformations and perturbs the EphA2 juxtamembrane segment and kinase domain. In cells, linker negative charges promote EphA2 oligomerization. We also identify multiple kinases catalyzing linker phosphorylation. Our findings suggest multiple effects of linker phosphorylation on EphA2 signaling and imply that coordination of different kinases is necessary to promote EphA2 non-canonical signaling. Eph receptor tyrosine kinases and their ephrin ligands mediate cell-cell communication. Here, the authors assess the structure and dynamics of the EphA2 intracellular region and uncover complex effects of phosphorylation within the linker region between EphA2 kinase and SAM domains.
Collapse
|
23
|
Mitochondrial HSP70 Chaperone System-The Influence of Post-Translational Modifications and Involvement in Human Diseases. Int J Mol Sci 2021; 22:ijms22158077. [PMID: 34360841 PMCID: PMC8347752 DOI: 10.3390/ijms22158077] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 01/25/2023] Open
Abstract
Since their discovery, heat shock proteins (HSPs) have been identified in all domains of life, which demonstrates their importance and conserved functional role in maintaining protein homeostasis. Mitochondria possess several members of the major HSP sub-families that perform essential tasks for keeping the organelle in a fully functional and healthy state. In humans, the mitochondrial HSP70 chaperone system comprises a central molecular chaperone, mtHSP70 or mortalin (HSPA9), which is actively involved in stabilizing and importing nuclear gene products and in refolding mitochondrial precursor proteins, and three co-chaperones (HSP70-escort protein 1-HEP1, tumorous imaginal disc protein 1-TID-1, and Gro-P like protein E-GRPE), which regulate and accelerate its protein folding functions. In this review, we summarize the roles of mitochondrial molecular chaperones with particular focus on the human mtHsp70 and its co-chaperones, whose deregulated expression, mutations, and post-translational modifications are often considered to be the main cause of neurological disorders, genetic diseases, and malignant growth.
Collapse
|
24
|
Ogata K, Tsai CF, Ishihama Y. Nanoscale Solid-Phase Isobaric Labeling for Multiplexed Quantitative Phosphoproteomics. J Proteome Res 2021; 20:4193-4202. [PMID: 34292731 DOI: 10.1021/acs.jproteome.1c00444] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We established a workflow for highly sensitive multiplexed quantitative phosphoproteomics using a nanoscale solid-phase tandem mass tag (TMT) labeling reactor. Phosphopeptides were first enriched by titanium oxide chromatography and then labeled with isobaric TMT reagents in a StageTip packed with hydrophobic polymer-based sorbents. We found that TMT-labeled singly phosphorylated peptides tend to flow through the titanium oxide column. Therefore, TMT labeling should be performed after the enrichment step from tryptic peptides, resulting in the need for microscale reactions with small amounts of phosphopeptides. Using an optimized protocol for tens to hundreds of nanograms of phosphopeptides, we obtained a nearly 10-fold increase in sensitivity compared to the conventional solution-based TMT protocol. We demonstrate that this nanoscale phosphoproteomics protocol works for 50 μg of HeLa proteins treated with selumetinib, and we successfully quantified the selumetinib-regulated phosphorylated sites on a proteome scale. The MS raw data files have been deposited with the ProteomeXchange Consortium via the jPOST partner repository (https://jpostdb.org) with the data set identifier PXD025536.
Collapse
Affiliation(s)
- Kosuke Ogata
- Department of Molecular & Cellular BioAnalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Chia-Feng Tsai
- Department of Molecular & Cellular BioAnalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Yasushi Ishihama
- Department of Molecular & Cellular BioAnalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan.,Laboratory of Clinical and Analytical Chemistry, National Institute of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan
| |
Collapse
|
25
|
Hepowit NL, Kolbe CC, Zelle SR, Latz E, MacGurn JA. Regulation of ubiquitin and ubiquitin-like modifiers by phosphorylation. FEBS J 2021; 289:4797-4810. [PMID: 34214249 PMCID: PMC9271371 DOI: 10.1111/febs.16101] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/28/2021] [Accepted: 07/01/2021] [Indexed: 12/31/2022]
Abstract
The regulatory influence of ubiquitin is vast, encompassing all cellular processes, by virtue of its central roles in protein degradation, membrane trafficking, and cell signaling. But how does ubiquitin, a 76 amino acid peptide, carry out such diverse, complex functions in eukaryotic cells? Part of the answer is rooted in the high degree of complexity associated with ubiquitin polymers, which can be 'read' and processed differently depending on topology and cellular context. However, recent evidence indicates that post-translational modifications on ubiquitin itself enhance the complexity of the ubiquitin code. Here, we review recent discoveries related to the regulation of the ubiquitin code by phosphorylation. We summarize what is currently known about phosphorylation of ubiquitin at Ser65, Ser57, and Thr12, and we discuss the potential for phosphoregulation of ubiquitin at other sites. We also discuss accumulating evidence that ubiquitin-like modifiers, such as SUMO, are likewise regulated by phosphorylation. A complete understanding of these regulatory codes and their complex lexicon will require dissection of mechanisms that govern phosphorylation of ubiquitin and ubiquitin-like proteins, particularly in the context of cellular stress and disease.
Collapse
Affiliation(s)
- Nathaniel L Hepowit
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Carl-Christian Kolbe
- Institute of Innate Immunity, University Hospital Bonn, University of Bonn, Germany
| | - Sarah R Zelle
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Eicke Latz
- Institute of Innate Immunity, University Hospital Bonn, University of Bonn, Germany.,German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Infectious Diseases & Immunology, UMass Medical School, Worcester, MA, USA.,Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jason A MacGurn
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
26
|
Llorente-González C, González-Rodríguez M, Vicente-Manzanares M. Targeting cytoskeletal phosphorylation in cancer. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2021; 2:292-308. [PMID: 36046434 PMCID: PMC9400739 DOI: 10.37349/etat.2021.00047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/01/2021] [Indexed: 11/19/2022] Open
Abstract
Phosphorylation of cytoskeletal proteins regulates the dynamics of polymerization, stability, and disassembly of the different types of cytoskeletal polymers. These control the ability of cells to migrate and divide. Mutations and alterations of the expression levels of multiple protein kinases are hallmarks of most forms of cancer. Thus, altered phosphorylation of cytoskeletal proteins is observed in most cancer cells. These alterations potentially control the ability of cancer cells to divide, invade and form distal metastasis. This review highlights the emergent role of phosphorylation in the control of the function of the different cytoskeletal polymers in cancer cells. It also addresses the potential effect of targeted inhibitors in the normalization of cytoskeletal function.
Collapse
Affiliation(s)
- Clara Llorente-González
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain
| | - Marta González-Rodríguez
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007
| | - Miguel Vicente-Manzanares
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
27
|
Kervin TA, Overduin M. Regulation of the Phosphoinositide Code by Phosphorylation of Membrane Readers. Cells 2021; 10:cells10051205. [PMID: 34069055 PMCID: PMC8156045 DOI: 10.3390/cells10051205] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/07/2021] [Accepted: 05/09/2021] [Indexed: 02/07/2023] Open
Abstract
The genetic code that dictates how nucleic acids are translated into proteins is well known, however, the code through which proteins recognize membranes remains mysterious. In eukaryotes, this code is mediated by hundreds of membrane readers that recognize unique phosphatidylinositol phosphates (PIPs), which demark organelles to initiate localized trafficking and signaling events. The only superfamily which specifically detects all seven PIPs are the Phox homology (PX) domains. Here, we reveal that throughout evolution, these readers are universally regulated by the phosphorylation of their PIP binding surfaces based on our analysis of existing and modelled protein structures and phosphoproteomic databases. These PIP-stops control the selective targeting of proteins to organelles and are shown to be key determinants of high-fidelity PIP recognition. The protein kinases responsible include prominent cancer targets, underscoring the critical role of regulated membrane readership.
Collapse
|
28
|
ERK1/2: An Integrator of Signals That Alters Cardiac Homeostasis and Growth. BIOLOGY 2021; 10:biology10040346. [PMID: 33923899 PMCID: PMC8072600 DOI: 10.3390/biology10040346] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/24/2022]
Abstract
Integration of cellular responses to extracellular cues is essential for cell survival and adaptation to stress. Extracellular signal-regulated kinase (ERK) 1 and 2 serve an evolutionarily conserved role for intracellular signal transduction that proved critical for cardiomyocyte homeostasis and cardiac stress responses. Considering the importance of ERK1/2 in the heart, understanding how these kinases operate in both normal and disease states is critical. Here, we review the complexity of upstream and downstream signals that govern ERK1/2-dependent regulation of cardiac structure and function. Particular emphasis is given to cardiomyocyte hypertrophy as an outcome of ERK1/2 activation regulation in the heart.
Collapse
|
29
|
Lepore Signorile M, Grossi V, Di Franco S, Forte G, Disciglio V, Fasano C, Sanese P, De Marco K, Susca FC, Mangiapane LR, Nicotra A, Di Carlo G, Dituri F, Giannelli G, Ingravallo G, Canettieri G, Stassi G, Simone C. Pharmacological targeting of the novel β-catenin chromatin-associated kinase p38α in colorectal cancer stem cell tumorspheres and organoids. Cell Death Dis 2021; 12:316. [PMID: 33767160 PMCID: PMC7994846 DOI: 10.1038/s41419-021-03572-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 02/22/2021] [Accepted: 03/01/2021] [Indexed: 02/01/2023]
Abstract
The prognosis of locally advanced colorectal cancer (CRC) is currently unsatisfactory. This is mainly due to drug resistance, recurrence, and subsequent metastatic dissemination, which are sustained by the cancer stem cell (CSC) population. The main driver of the CSC gene expression program is Wnt signaling, and previous reports indicate that Wnt3a can activate p38 MAPK. Besides, p38 was shown to feed into the canonical Wnt/β-catenin pathway. Here we show that patient-derived locally advanced CRC stem cells (CRC-SCs) are characterized by increased expression of p38α and are "addicted" to its kinase activity. Of note, we found that stage III CRC patients with high p38α levels display reduced disease-free and progression-free survival. Extensive molecular analysis in patient-derived CRC-SC tumorspheres and APCMin/+ mice intestinal organoids revealed that p38α acts as a β-catenin chromatin-associated kinase required for the regulation of a signaling platform involved in tumor proliferation, metastatic dissemination, and chemoresistance in these CRC model systems. In particular, the p38α kinase inhibitor ralimetinib, which has already entered clinical trials, promoted sensitization of patient-derived CRC-SCs to chemotherapeutic agents commonly used for CRC treatment and showed a synthetic lethality effect when used in combination with the MEK1 inhibitor trametinib. Taken together, these results suggest that p38α may be targeted in CSCs to devise new personalized CRC treatment strategies.
Collapse
Affiliation(s)
- Martina Lepore Signorile
- Medical Genetics, National Institute for Gastroenterology, IRCCS 'S. de Bellis' Research Hospital, 70013, Castellana Grotte (Ba), Italy
| | - Valentina Grossi
- Medical Genetics, National Institute for Gastroenterology, IRCCS 'S. de Bellis' Research Hospital, 70013, Castellana Grotte (Ba), Italy.
| | - Simone Di Franco
- Cellular & Molecular Pathophysiology Laboratory, Department of Surgical & Oncological Sciences, University of Palermo, 90127, Palermo, Italy
| | - Giovanna Forte
- Medical Genetics, National Institute for Gastroenterology, IRCCS 'S. de Bellis' Research Hospital, 70013, Castellana Grotte (Ba), Italy
| | - Vittoria Disciglio
- Medical Genetics, National Institute for Gastroenterology, IRCCS 'S. de Bellis' Research Hospital, 70013, Castellana Grotte (Ba), Italy
| | - Candida Fasano
- Medical Genetics, National Institute for Gastroenterology, IRCCS 'S. de Bellis' Research Hospital, 70013, Castellana Grotte (Ba), Italy
| | - Paola Sanese
- Medical Genetics, National Institute for Gastroenterology, IRCCS 'S. de Bellis' Research Hospital, 70013, Castellana Grotte (Ba), Italy
| | - Katia De Marco
- Medical Genetics, National Institute for Gastroenterology, IRCCS 'S. de Bellis' Research Hospital, 70013, Castellana Grotte (Ba), Italy
| | - Francesco Claudio Susca
- Medical Genetics, Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari Aldo Moro, 70124, Bari, Italy
| | - Laura Rosa Mangiapane
- Cellular & Molecular Pathophysiology Laboratory, Department of Surgical & Oncological Sciences, University of Palermo, 90127, Palermo, Italy
| | - Annalisa Nicotra
- Cellular & Molecular Pathophysiology Laboratory, Department of Surgical & Oncological Sciences, University of Palermo, 90127, Palermo, Italy
| | - Gabriella Di Carlo
- Department of Emergency and Organ Transplantation, Operating Unit of Pathological Anatomy, University of Bari Aldo Moro, 70124, Bari, Italy
| | - Francesco Dituri
- Personalized Medicine, National Institute for Gastroenterology, IRCCS 'S. de Bellis' Research Hospital, 70013, Castellana Grotte (Ba), Italy
| | - Gianluigi Giannelli
- Personalized Medicine, National Institute for Gastroenterology, IRCCS 'S. de Bellis' Research Hospital, 70013, Castellana Grotte (Ba), Italy
| | - Giuseppe Ingravallo
- Department of Emergency and Organ Transplantation, Operating Unit of Pathological Anatomy, University of Bari Aldo Moro, 70124, Bari, Italy
| | - Gianluca Canettieri
- Department of Molecular Medicine, Sapienza University of Rome, 00161, Rome, Italy
| | - Giorgio Stassi
- Cellular & Molecular Pathophysiology Laboratory, Department of Surgical & Oncological Sciences, University of Palermo, 90127, Palermo, Italy
| | - Cristiano Simone
- Medical Genetics, National Institute for Gastroenterology, IRCCS 'S. de Bellis' Research Hospital, 70013, Castellana Grotte (Ba), Italy.
- Medical Genetics, Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari Aldo Moro, 70124, Bari, Italy.
| |
Collapse
|
30
|
Reichlmeir M, Elias L, Schulte D. Posttranslational Modifications in Conserved Transcription Factors: A Survey of the TALE-Homeodomain Superclass in Human and Mouse. Front Cell Dev Biol 2021; 9:648765. [PMID: 33768097 PMCID: PMC7985065 DOI: 10.3389/fcell.2021.648765] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 02/09/2021] [Indexed: 11/30/2022] Open
Abstract
Transcription factors (TFs) guide effector proteins like chromatin-modifying or -remodeling enzymes to distinct sites in the genome and thereby fulfill important early steps in translating the genome’s sequence information into the production of proteins or functional RNAs. TFs of the same family are often highly conserved in evolution, raising the question of how proteins with seemingly similar structure and DNA-binding properties can exert physiologically distinct functions or respond to context-specific extracellular cues. A good example is the TALE superclass of homeodomain-containing proteins. All TALE-homeodomain proteins share a characteristic, 63-amino acid long homeodomain and bind to similar sequence motifs. Yet, they frequently fulfill non-redundant functions even in domains of co-expression and are subject to regulation by different signaling pathways. Here we provide an overview of posttranslational modifications that are associated with murine and human TALE-homeodomain proteins and discuss their possible importance for the biology of these TFs.
Collapse
Affiliation(s)
- Marina Reichlmeir
- Institute of Neurology (Edinger Institute), University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Lena Elias
- Institute of Neurology (Edinger Institute), University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Dorothea Schulte
- Institute of Neurology (Edinger Institute), University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| |
Collapse
|
31
|
The ERK mitogen-activated protein kinase signaling network: the final frontier in RAS signal transduction. Biochem Soc Trans 2021; 49:253-267. [PMID: 33544118 DOI: 10.1042/bst20200507] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/30/2020] [Accepted: 01/08/2021] [Indexed: 12/11/2022]
Abstract
The RAF-MEK-ERK mitogen-activated protein kinase (MAPK) cascade is aberrantly activated in a diverse set of human cancers and the RASopathy group of genetic developmental disorders. This protein kinase cascade is one of the most intensely studied cellular signaling networks and has been frequently targeted by the pharmaceutical industry, with more than 30 inhibitors either approved or under clinical evaluation. The ERK-MAPK cascade was originally depicted as a serial and linear, unidirectional pathway that relays extracellular signals, such as mitogenic stimuli, through the cytoplasm to the nucleus. However, we now appreciate that this three-tiered protein kinase cascade is a central core of a complex network with dynamic signaling inputs and outputs and autoregulatory loops. Despite our considerable advances in understanding the ERK-MAPK network, the ability of cancer cells to adapt to the inhibition of key nodes reveals a level of complexity that remains to be fully understood. In this review, we summarize important developments in our understanding of the ERK-MAPK network and identify unresolved issues for ongoing and future study.
Collapse
|
32
|
Finamore F, Ucciferri N, Signore G, Cecchettini A, Ceccherini E, Vitiello M, Poliseno L, Rocchiccioli S. Proteomics pipeline for phosphoenrichment and its application on a human melanoma cell model. Talanta 2020; 220:121381. [PMID: 32928406 DOI: 10.1016/j.talanta.2020.121381] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 07/02/2020] [Accepted: 07/04/2020] [Indexed: 11/25/2022]
Abstract
Cell signalling is tightly regulated by post-translational modification of proteins. Among them, phosphorylation is one of the most interesting and important. Identifying phosphorylation sites on proteins is challenging and requires strategies for pre-separation and enrichment of the phosphorylated species. We applied four different methods for phospho-enrichment involving TiO2 and IMAC matrix to human melanoma cell lysates of starved A375 induced for 1 h with 1% FBS. Comparison of protocol efficiency was evaluated through peptide concentration, sulphur and phosphorus content and peptide analysis by LC-MS in the collected fractions. Our results underlined that each single method is not sufficient for a comprehensive phosphoproteome analysis. In fact, each methodology permits to identify only a fraction of the phosphoproteome contained in a whole cell lysate. The selection of the most efficient protocols and a combination of two phospho-enrichment methods allowed the assessment of this workflow able to pinpoint the main actors in the phospho-proteome cascade of A375 human melanoma cells treated with Vemurafenib.
Collapse
Affiliation(s)
- Francesco Finamore
- Institute of Clinical Physiology, CNR, via Moruzzi 1, Pisa, 56124, Italy
| | - Nadia Ucciferri
- Institute of Clinical Physiology, CNR, via Moruzzi 1, Pisa, 56124, Italy
| | - Giovanni Signore
- NEST, Scuola Normale Superiore, Piazza San Silvestro 12, Pisa, 56127, Italy; Fondazione Pisana per la Scienza ONLUS, via Ferruccio Giovannini 13, San Giuliano Terme, 56017, Italy
| | - Antonella Cecchettini
- Institute of Clinical Physiology, CNR, via Moruzzi 1, Pisa, 56124, Italy; Dept of Clinical and Experimental Medicine, Pisa University, via Volta 4, 56126, Pisa, Italy
| | - Elisa Ceccherini
- Institute of Clinical Physiology, CNR, via Moruzzi 1, Pisa, 56124, Italy
| | - Marianna Vitiello
- Institute of Clinical Physiology, CNR, via Moruzzi 1, Pisa, 56124, Italy; Oncogenomics Unit, ISPRO, via Moruzzi 1, Pisa, 56124, Italy
| | - Laura Poliseno
- Institute of Clinical Physiology, CNR, via Moruzzi 1, Pisa, 56124, Italy; Oncogenomics Unit, ISPRO, via Moruzzi 1, Pisa, 56124, Italy
| | | |
Collapse
|
33
|
Karuna M P, Witte L, Linnemannstoens K, Choezom D, Danieli-Mackay A, Honemann-Capito M, Gross JC. Phosphorylation of Ykt6 SNARE Domain Regulates Its Membrane Recruitment and Activity. Biomolecules 2020; 10:biom10111560. [PMID: 33207719 PMCID: PMC7696345 DOI: 10.3390/biom10111560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/17/2022] Open
Abstract
Sensitive factor attachment protein receptors (SNARE) proteins are important mediators of protein trafficking that regulate the membrane fusion of specific vesicle populations and their target organelles. The SNARE protein Ykt6 lacks a transmembrane domain and attaches to different organelle membranes. Mechanistically, Ykt6 activity is thought to be regulated by a conformational change from a closed cytosolic form to an open membrane-bound form, yet the mechanism that regulates this transition is unknown. We identified phosphorylation sites in the SNARE domain of Ykt6 that mediate Ykt6 membrane recruitment and are essential for cellular growth. Using proximity-dependent labeling and membrane fractionation, we found that phosphorylation regulates Ykt6 conversion from a closed to an open conformation. This conformational switch recruits Ykt6 to several organelle membranes, where it functionally regulates the trafficking of Wnt proteins and extracellular vesicle secretion in a concentration-dependent manner. We propose that phosphorylation of its SNARE domain leads to a conformational switch from a cytosolic, auto-inhibited Ykt6 to an active SNARE at different membranes.
Collapse
Affiliation(s)
- Pradhipa Karuna M
- Hematology and Oncology, University Medical Center Goettingen, 37077 Goettingen, Germany; (P.K.M.); (L.W.); (K.L.); (D.C.); (A.D.-M.); (M.H.-C.)
- Developmental Biochemistry, University Medical Center Goettingen, 37077 Goettingen, Germany
| | - Leonie Witte
- Hematology and Oncology, University Medical Center Goettingen, 37077 Goettingen, Germany; (P.K.M.); (L.W.); (K.L.); (D.C.); (A.D.-M.); (M.H.-C.)
- Developmental Biochemistry, University Medical Center Goettingen, 37077 Goettingen, Germany
| | - Karen Linnemannstoens
- Hematology and Oncology, University Medical Center Goettingen, 37077 Goettingen, Germany; (P.K.M.); (L.W.); (K.L.); (D.C.); (A.D.-M.); (M.H.-C.)
- Developmental Biochemistry, University Medical Center Goettingen, 37077 Goettingen, Germany
| | - Dolma Choezom
- Hematology and Oncology, University Medical Center Goettingen, 37077 Goettingen, Germany; (P.K.M.); (L.W.); (K.L.); (D.C.); (A.D.-M.); (M.H.-C.)
- Developmental Biochemistry, University Medical Center Goettingen, 37077 Goettingen, Germany
| | - Adi Danieli-Mackay
- Hematology and Oncology, University Medical Center Goettingen, 37077 Goettingen, Germany; (P.K.M.); (L.W.); (K.L.); (D.C.); (A.D.-M.); (M.H.-C.)
- Developmental Biochemistry, University Medical Center Goettingen, 37077 Goettingen, Germany
| | - Mona Honemann-Capito
- Hematology and Oncology, University Medical Center Goettingen, 37077 Goettingen, Germany; (P.K.M.); (L.W.); (K.L.); (D.C.); (A.D.-M.); (M.H.-C.)
- Developmental Biochemistry, University Medical Center Goettingen, 37077 Goettingen, Germany
| | - Julia Christina Gross
- Hematology and Oncology, University Medical Center Goettingen, 37077 Goettingen, Germany; (P.K.M.); (L.W.); (K.L.); (D.C.); (A.D.-M.); (M.H.-C.)
- Developmental Biochemistry, University Medical Center Goettingen, 37077 Goettingen, Germany
- HMU Health and Medical University Potsdam, 14471 Potsdam, Germany
- Correspondence:
| |
Collapse
|
34
|
Sürmen MG, Sürmen S, Ali A, Musharraf SG, Emekli N. Phosphoproteomic strategies in cancer research: a minireview. Analyst 2020; 145:7125-7149. [PMID: 32996481 DOI: 10.1039/d0an00915f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Understanding the cellular processes is central to comprehend disease conditions and is also true for cancer research. Proteomic studies provide significant insight into cancer mechanisms and aid in the diagnosis and prognosis of the disease. Phosphoproteome is one of the most studied complements of the whole proteome given its importance in the understanding of cellular processes such as signaling and regulations. Over the last decade, several new methods have been developed for phosphoproteome analysis. A significant amount of these efforts pertains to cancer research. The current use of powerful analytical instruments in phosphoproteomic approaches has paved the way for deeper and sensitive investigations. However, these methods and techniques need further improvements to deal with challenges posed by the complexity of samples and scarcity of phosphoproteins in the whole proteome, throughput and reproducibility. This review aims to provide a comprehensive summary of the variety of steps used in phosphoproteomic methods applied in cancer research including the enrichment and fractionation strategies. This will allow researchers to evaluate and choose a better combination of steps for their phosphoproteome studies.
Collapse
Affiliation(s)
- Mustafa Gani Sürmen
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Saime Sürmen
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Arslan Ali
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| | - Syed Ghulam Musharraf
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| | - Nesrin Emekli
- Department of Medical Biochemistry, Faculty of Medicine, Istanbul Medipol University, Istanbul, Turkey
| |
Collapse
|
35
|
Flem-Karlsen K, Fodstad Ø, Nunes-Xavier CE. B7-H3 Immune Checkpoint Protein in Human Cancer. Curr Med Chem 2020; 27:4062-4086. [PMID: 31099317 DOI: 10.2174/0929867326666190517115515] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 04/29/2019] [Accepted: 05/04/2019] [Indexed: 02/07/2023]
Abstract
B7-H3 belongs to the B7 family of immune checkpoint proteins, which are important regulators of the adaptive immune response and emerging key players in human cancer. B7-H3 is a transmembrane protein expressed on the surface of tumor cells, antigen presenting cells, natural killer cells, tumor endothelial cells, but can also be present in intra- and extracellular vesicles. Additionally, B7-H3 may be present as a circulating soluble isoform in serum and other body fluids. B7-H3 is overexpressed in a variety of tumor types, in correlation with poor prognosis. B7-H3 is a promising new immunotherapy target for anti-cancer immune response, as well as a potential biomarker. Besides its immunoregulatory role, B7-H3 has intrinsic pro-tumorigenic activities related to enhanced cell proliferation, migration, invasion, angiogenesis, metastatic capacity and anti-cancer drug resistance. B7-H3 has also been found to regulate key metabolic enzymes, promoting the high glycolytic capacity of cancer cells. B7-H3 receptors are still not identified, and little is known about the molecular mechanisms underlying B7-H3 functions. Here, we review the current knowledge on the involvement of B7-H3 in human cancer.
Collapse
Affiliation(s)
- Karine Flem-Karlsen
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway.,Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Øystein Fodstad
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway.,Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Caroline E Nunes-Xavier
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
| |
Collapse
|
36
|
Wigington CP, Roy J, Damle NP, Yadav VK, Blikstad C, Resch E, Wong CJ, Mackay DR, Wang JT, Krystkowiak I, Bradburn DA, Tsekitsidou E, Hong SH, Kaderali MA, Xu SL, Stearns T, Gingras AC, Ullman KS, Ivarsson Y, Davey NE, Cyert MS. Systematic Discovery of Short Linear Motifs Decodes Calcineurin Phosphatase Signaling. Mol Cell 2020; 79:342-358.e12. [PMID: 32645368 DOI: 10.1016/j.molcel.2020.06.029] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 03/24/2020] [Accepted: 05/26/2020] [Indexed: 12/17/2022]
Abstract
Short linear motifs (SLiMs) drive dynamic protein-protein interactions essential for signaling, but sequence degeneracy and low binding affinities make them difficult to identify. We harnessed unbiased systematic approaches for SLiM discovery to elucidate the regulatory network of calcineurin (CN)/PP2B, the Ca2+-activated phosphatase that recognizes LxVP and PxIxIT motifs. In vitro proteome-wide detection of CN-binding peptides, in vivo SLiM-dependent proximity labeling, and in silico modeling of motif determinants uncovered unanticipated CN interactors, including NOTCH1, which we establish as a CN substrate. Unexpectedly, CN shows SLiM-dependent proximity to centrosomal and nuclear pore complex (NPC) proteins-structures where Ca2+ signaling is largely uncharacterized. CN dephosphorylates human and yeast NPC proteins and promotes accumulation of a nuclear transport reporter, suggesting conserved NPC regulation by CN. The CN network assembled here provides a resource to investigate Ca2+ and CN signaling and demonstrates synergy between experimental and computational methods, establishing a blueprint for examining SLiM-based networks.
Collapse
Affiliation(s)
| | - Jagoree Roy
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Nikhil P Damle
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Vikash K Yadav
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| | - Cecilia Blikstad
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| | - Eduard Resch
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch for Translational Medicine and Pharmacology TMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Cassandra J Wong
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| | - Douglas R Mackay
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Jennifer T Wang
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Izabella Krystkowiak
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | - Su Hyun Hong
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | - Malika Amyn Kaderali
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | - Shou-Ling Xu
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | - Tim Stearns
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, M5S 3H7 ON, Canada
| | - Katharine S Ullman
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Ylva Ivarsson
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| | - Norman E Davey
- Division of Cancer Biology, The Institute of Cancer Research, 237 Fullham Road, London SW3 6JB, UK
| | - Martha S Cyert
- Department of Biology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
37
|
Zuhra K, Augsburger F, Majtan T, Szabo C. Cystathionine-β-Synthase: Molecular Regulation and Pharmacological Inhibition. Biomolecules 2020; 10:E697. [PMID: 32365821 PMCID: PMC7277093 DOI: 10.3390/biom10050697] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/11/2022] Open
Abstract
Cystathionine-β-synthase (CBS), the first (and rate-limiting) enzyme in the transsulfuration pathway, is an important mammalian enzyme in health and disease. Its biochemical functions under physiological conditions include the metabolism of homocysteine (a cytotoxic molecule and cardiovascular risk factor) and the generation of hydrogen sulfide (H2S), a gaseous biological mediator with multiple regulatory roles in the vascular, nervous, and immune system. CBS is up-regulated in several diseases, including Down syndrome and many forms of cancer; in these conditions, the preclinical data indicate that inhibition or inactivation of CBS exerts beneficial effects. This article overviews the current information on the expression, tissue distribution, physiological roles, and biochemistry of CBS, followed by a comprehensive overview of direct and indirect approaches to inhibit the enzyme. Among the small-molecule CBS inhibitors, the review highlights the specificity and selectivity problems related to many of the commonly used "CBS inhibitors" (e.g., aminooxyacetic acid) and provides a comprehensive review of their pharmacological actions under physiological conditions and in various disease models.
Collapse
Affiliation(s)
- Karim Zuhra
- Chair of Pharmacology, Section of Medicine, University of Fribourg, 1702 Fribourg, Switzerland; (K.Z.); (F.A.)
| | - Fiona Augsburger
- Chair of Pharmacology, Section of Medicine, University of Fribourg, 1702 Fribourg, Switzerland; (K.Z.); (F.A.)
| | - Tomas Majtan
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, 1702 Fribourg, Switzerland; (K.Z.); (F.A.)
| |
Collapse
|
38
|
Chi Y, Carter JH, Swanger J, Mazin AV, Moritz RL, Clurman BE. A novel landscape of nuclear human CDK2 substrates revealed by in situ phosphorylation. SCIENCE ADVANCES 2020; 6:eaaz9899. [PMID: 32494624 PMCID: PMC7164936 DOI: 10.1126/sciadv.aaz9899] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/23/2020] [Indexed: 05/03/2023]
Abstract
Cyclin-dependent kinase 2 (CDK2) controls cell division and is central to oncogenic signaling. We used an "in situ" approach to identify CDK2 substrates within nuclei isolated from cells expressing CDK2 engineered to use adenosine 5'-triphosphate analogs. We identified 117 candidate substrates, ~40% of which are known CDK substrates. Previously unknown candidates were validated to be CDK2 substrates, including LSD1, DOT1L, and Rad54. The identification of many chromatin-associated proteins may have been facilitated by labeling conditions that preserved nuclear architecture and physiologic CDK2 regulation by endogenous cyclins. Candidate substrates include proteins that regulate histone modifications, chromatin, transcription, and RNA/DNA metabolism. Many of these proteins also coexist in multi-protein complexes, including epigenetic regulators, that may provide new links between cell division and other cellular processes mediated by CDK2. In situ phosphorylation thus revealed candidate substrates with a high validation rate and should be readily applicable to other nuclear kinases.
Collapse
Affiliation(s)
- Yong Chi
- Divisions of Clinical Research and Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N. Seattle, WA 98109, USA
- Institute for Systems Biology, 401 Terry Avenue, N. Seattle, WA 98109, USA
| | - John H. Carter
- Division of Hematology/Medical Oncology, Oregon Health & Science University School of Medicine, 3181 S.W. Sam Jackson Park Rd., Portland, OR 97239-3098, USA
| | - Jherek Swanger
- Divisions of Clinical Research and Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N. Seattle, WA 98109, USA
| | - Alexander V. Mazin
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, 245 N 15th Street, Philadelphia, PA 19102-1192, USA
| | - Robert L. Moritz
- Institute for Systems Biology, 401 Terry Avenue, N. Seattle, WA 98109, USA
| | - Bruce E. Clurman
- Divisions of Clinical Research and Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N. Seattle, WA 98109, USA
- Corresponding author.
| |
Collapse
|
39
|
Marcinkowski M, Pilžys T, Garbicz D, Steciuk J, Zugaj D, Mielecki D, Sarnowski TJ, Grzesiuk E. Human and Arabidopsis alpha-ketoglutarate-dependent dioxygenase homolog proteins-New players in important regulatory processes. IUBMB Life 2020; 72:1126-1144. [PMID: 32207231 DOI: 10.1002/iub.2276] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/20/2020] [Accepted: 03/08/2020] [Indexed: 12/31/2022]
Abstract
The family of AlkB homolog (ALKBH) proteins, the homologs of Escherichia coli AlkB 2-oxoglutarate (2OG), and Fe(II)-dependent dioxygenase are involved in a number of important regulatory processes in eukaryotic cells including repair of alkylation lesions in DNA, RNA, and nucleoprotein complexes. There are nine human and thirteen Arabidopsis thaliana ALKBH proteins described, which exhibit diversified functions. Among them, human ALKBH5 and FaT mass and Obesity-associated (FTO) protein and Arabidopsis ALKBH9B and ALKBH10B have been recognized as N6 methyladenine (N6 meA) demethylases, the most abundant posttranscriptional modification in mRNA. The FTO protein is reported to be associated with obesity and type 2 diabetes, and involved in multiple other processes, while ALKBH5 is induced by hypoxia. Arabidopsis ALKBH9B is an N6 meA demethylase influencing plant susceptibility to viral infections via m6 A/A ratio control in viral RNA. ALKBH10B has been discovered to be a functional Arabidopsis homolog of FTO; thus, it is also an RNA N6 meA demethylase involved in plant flowering and several other regulatory processes including control of metabolism. High-throughput mass spectrometry showed multiple sites of human ALKBH phosphorylation. In the case of FTO, the type of modified residue decides about the further processing of the protein. This modification may result in subsequent protein ubiquitination and proteolysis, or in the blocking of these processes. However, the impact of phosphorylation on the other ALKBH function and their downstream pathways remains nearly unexplored in both human and Arabidopsis. Therefore, the investigation of evolutionarily conserved functions of ALKBH proteins and their regulatory impact on important cellular processes is clearly called for.
Collapse
Affiliation(s)
- Michał Marcinkowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Tomaš Pilžys
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Damian Garbicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Jaroslaw Steciuk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Dorota Zugaj
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Damian Mielecki
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Tomasz J Sarnowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Elżbieta Grzesiuk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
40
|
Santana-Codina N, Chandhoke AS, Yu Q, Małachowska B, Kuljanin M, Gikandi A, Stańczak M, Gableske S, Jedrychowski MP, Scott DA, Aguirre AJ, Fendler W, Gray NS, Mancias JD. Defining and Targeting Adaptations to Oncogenic KRASG12C Inhibition Using Quantitative Temporal Proteomics. Cell Rep 2020; 30:4584-4599.e4. [DOI: 10.1016/j.celrep.2020.03.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 02/04/2020] [Accepted: 03/07/2020] [Indexed: 02/07/2023] Open
|
41
|
Elguoshy A, Hirao Y, Yamamoto K, Xu B, Kinoshita N, Mitsui T, Yamamoto T. Utilization of the Proteome Data Deposited in SRMAtlas for Validating the Existence of the Human Missing Proteins in GPM. J Proteome Res 2019; 18:4197-4205. [PMID: 31646870 DOI: 10.1021/acs.jproteome.9b00355] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Human Proteome Project (HPP) has made great efforts to clarify the existing evidence of human proteins since 2012. However, according to the recent release of neXtProt (2019-1), approximately 10% of all human genes still have inadequate or no experimental evidence of their translation at the protein level. They were categorized as missing proteins (PE2-PE4). To further the goal of HPP, we developed a two-step bioinformatic strategy addressing the utilization of the SRMAtlas synthetic peptides corresponding to the missing proteins as an exclusive reference in order to explore their natural counterparts within GPM. In the first step, we searched the GPM for the non-nested SRMAtlas peptides corresponding to the missing proteins, taking under consideration only those detected via ≥2 non-nested unitypic/proteotypic peptides "Stranded peptides" with length ≥9 amino acids in the same proteomic study. As a result, 51 missing proteins were newly detected in 35 different proteomic studies. In the second step, we validated these newly detected missing proteins based on matching the spectra of their synthetic and natural peptides in SRMAtlas and GPM, respectively. The results showed that 23 of the missing proteins with ≥2 non-nested peptides were validated by careful spectral matching.
Collapse
Affiliation(s)
- Amr Elguoshy
- Biofluid and Biomarker Center, Graduate School of Medical and Dental Sciences , Niigata University , Niigata 950-2181 , Japan.,Graduate School of Science and Technology , Niigata University , Niigata 950-2181 , Japan.,Biotechnology Department, Faculty of Agriculture , Al-Azhar University , Cairo 11651 , Egypt
| | - Yoshitoshi Hirao
- Biofluid and Biomarker Center, Graduate School of Medical and Dental Sciences , Niigata University , Niigata 950-2181 , Japan
| | - Keiko Yamamoto
- Biofluid and Biomarker Center, Graduate School of Medical and Dental Sciences , Niigata University , Niigata 950-2181 , Japan
| | - Bo Xu
- Biofluid and Biomarker Center, Graduate School of Medical and Dental Sciences , Niigata University , Niigata 950-2181 , Japan
| | - Naohiko Kinoshita
- Biofluid and Biomarker Center, Graduate School of Medical and Dental Sciences , Niigata University , Niigata 950-2181 , Japan.,Department of Health Informatics , Niigata University of Health and Welfare , Niigata 950-3102 , Japan
| | - Toshiaki Mitsui
- Graduate School of Science and Technology , Niigata University , Niigata 950-2181 , Japan
| | - Tadashi Yamamoto
- Biofluid and Biomarker Center, Graduate School of Medical and Dental Sciences , Niigata University , Niigata 950-2181 , Japan.,Department of Clinical Laboratory , Shinrakuen Hospital , Niigata 950-2087 , Japan
| |
Collapse
|
42
|
Taylor CA, Cormier KW, Keenan SE, Earnest S, Stippec S, Wichaidit C, Juang YC, Wang J, Shvartsman SY, Goldsmith EJ, Cobb MH. Functional divergence caused by mutations in an energetic hotspot in ERK2. Proc Natl Acad Sci U S A 2019; 116:15514-15523. [PMID: 31296562 PMCID: PMC6681740 DOI: 10.1073/pnas.1905015116] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The most frequent extracellular signal-regulated kinase 2 (ERK2) mutation occurring in cancers is E322K (E-K). ERK2 E-K reverses a buried charge in the ERK2 common docking (CD) site, a region that binds activators, inhibitors, and substrates. Little is known about the cellular consequences associated with this mutation, other than apparent increases in tumor resistance to pathway inhibitors. ERK2 E-K, like the mutation of the preceding aspartate (ERK2 D321N [D-N]) known as the sevenmaker mutation, causes increased activity in cells and evades inactivation by dual-specificity phosphatases. As opposed to findings in cancer cells, in developmental assays in Drosophila, only ERK2 D-N displays a significant gain of function, revealing mutation-specific phenotypes. The crystal structure of ERK2 D-N is indistinguishable from that of wild-type protein, yet this mutant displays increased thermal stability. In contrast, the crystal structure of ERK2 E-K reveals profound structural changes, including disorder in the CD site and exposure of the activation loop phosphorylation sites, which likely account for the decreased thermal stability of the protein. These contiguous mutations in the CD site of ERK2 are both required for docking interactions but lead to unpredictably different functional outcomes. Our results suggest that the CD site is in an energetically strained configuration, and this helps drive conformational changes at distal sites on ERK2 during docking interactions.
Collapse
Affiliation(s)
- Clinton A Taylor
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390
| | - Kevin W Cormier
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390
| | - Shannon E Keenan
- Department of Chemical and Biological Engineering, Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544
| | - Svetlana Earnest
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390
| | - Steve Stippec
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390
| | - Chonlarat Wichaidit
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390
| | - Yu-Chi Juang
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390
| | - Junmei Wang
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390
| | - Stanislav Y Shvartsman
- Department of Chemical and Biological Engineering, Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544
| | | | - Melanie H Cobb
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390;
| |
Collapse
|
43
|
Global view of the RAF-MEK-ERK module and its immediate downstream effectors. Sci Rep 2019; 9:10865. [PMID: 31350469 PMCID: PMC6659682 DOI: 10.1038/s41598-019-47245-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 07/09/2019] [Indexed: 12/22/2022] Open
Abstract
Small molecule inhibitors of BRAF and MEK have proven effective at inhibiting tumor growth in melanoma patients, however this efficacy is limited due to the almost universal development of drug resistance. To provide advanced insight into the signaling responses that occur following kinase inhibition we have performed quantitative (phospho)-proteomics of human melanoma cells treated with either dabrafenib, a BRAF inhibitor; trametinib, a MEK inhibitor or SCH772984, an ERK inhibitor. Over nine experiments we identified 7827 class I phosphorylation sites on 4960 proteins. This included 54 phosphorylation sites that were significantly down-modulated after exposure to all three inhibitors, 34 of which have not been previously reported. Functional analysis of these novel ERK targets identified roles for them in GTPase activity and regulation, apoptosis and cell-cell adhesion. Comparison of the results presented here with previously reported phosphorylation sites downstream of ERK showed a limited degree of overlap suggesting that ERK signaling responses may be highly cell line and cue specific. In addition we identified 26 phosphorylation sites that were only responsive to dabrafenib. We provide further orthogonal experimental evidence for 3 of these sites in human embryonic kidney cells over-expressing BRAF as well as further computational insights using KinomeXplorer. The validated phosphorylation sites were found to be involved in actin regulation, which has been proposed as a novel mechanism for inhibiting resistance development. These results would suggest that the linearity of the BRAF-MEK-ERK module is at least context dependent.
Collapse
|
44
|
Phosphorylation mapping of Laminin β1-chain: Kinases in association with active sites. J Biosci 2019. [DOI: 10.1007/s12038-019-9871-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
45
|
Verrou KM, Galliou PA, Papaioannou M, Koliakos G. Phosphorylation mapping of Laminin β1-chain: Kinases in association with active sites. J Biosci 2019; 44:55. [PMID: 31180068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Laminins are a major constituent of the extracellular matrix (ECM). Laminin-111, the most extensively studied laminin isoform, consists of the α1, the β1 and the γ1 chain, and is involved in many cellular processes, like adhesion, migration and differentiation. Given the regulatory role of phosphorylation in protein function, it is important to identify the phosphorylation sites of human laminin β1-chain sequence (LAMB1). Therefore, we computationally predicted all possible phosphorylation sites in LAMB1. For the first time, we identified the possibly responsible kinases for already in vitro experimentally observed phosphorylated residues in LAMB1. All known functional (active) sites of LAMB1, were recorded after an extensive literature search and combined with the experimentally observed and our predicted phosphorylated residues. This generated a detailed phosphorylation map of LAMB1. Five kinases (PKA, PKC, CKII, CKI and GPCR1) were indicated important, while the role of PKA, PKC and CKII, kinases known for ectophosphorylation activity, was highlighted. The activity of PKA and PKC was associated with the active site RIQNLLKITNLRIKFVKLHTLGDNLLDS. Also, predicted phosphorylations inside two amyloidogenic (DSITKYFQMSLE, VILQHSAADIAR) and two anti-cancerous (YIGSR and PDSGR) sites suggested a possible role in the development of the corresponding diseases.
Collapse
Affiliation(s)
- Kleio-Maria Verrou
- Laboratory of Biological Chemistry, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | | | | | | |
Collapse
|
46
|
Harding RJ, Loppnau P, Ackloo S, Lemak A, Hutchinson A, Hunt B, Holehouse AS, Ho JC, Fan L, Toledo-Sherman L, Seitova A, Arrowsmith CH. Design and characterization of mutant and wildtype huntingtin proteins produced from a toolkit of scalable eukaryotic expression systems. J Biol Chem 2019; 294:6986-7001. [PMID: 30842263 PMCID: PMC6497952 DOI: 10.1074/jbc.ra118.007204] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/19/2019] [Indexed: 12/11/2022] Open
Abstract
The gene mutated in individuals with Huntington's disease (HD) encodes the 348-kDa huntingtin (HTT) protein. Pathogenic HD CAG-expansion mutations create a polyglutamine (polyQ) tract at the N terminus of HTT that expands above a critical threshold of ∼35 glutamine residues. The effect of these HD mutations on HTT is not well understood, in part because it is difficult to carry out biochemical, biophysical, and structural studies of this large protein. To facilitate such studies, here we have generated expression constructs for the scalable production of HTT in multiple eukaryotic expression systems. Our set of HTT expression clones comprised both N- and C-terminally FLAG-tagged HTT constructs with polyQ lengths representative of the general population, HD patients, and juvenile HD patients, as well as the more extreme polyQ expansions used in some HD tissue and animal models. Our expression system yielded milligram quantities of pure recombinant HTT protein, including many of the previously mapped post-translational modifications. We characterized both apo and HTT-HTT-associated protein 40 (HAP40) complex samples produced with this HD resource, demonstrating that this toolkit can be used to generate physiologically meaningful HTT complexes. We further demonstrate that these resources can produce sufficient material for protein-intensive experiments, such as small-angle X-ray scattering, providing biochemical insight into full-length HTT protein structure. The work outlined and the tools generated here lay a foundation for further biochemical and structural work on the HTT protein and for studying its functional interactions with other biomolecules.
Collapse
Affiliation(s)
- Rachel J Harding
- From the Structural Genomics Consortium, University of Toronto, Ontario M5G 1L7, Canada,
| | - Peter Loppnau
- From the Structural Genomics Consortium, University of Toronto, Ontario M5G 1L7, Canada
| | - Suzanne Ackloo
- From the Structural Genomics Consortium, University of Toronto, Ontario M5G 1L7, Canada
| | - Alexander Lemak
- the Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Ashley Hutchinson
- From the Structural Genomics Consortium, University of Toronto, Ontario M5G 1L7, Canada
| | - Brittany Hunt
- From the Structural Genomics Consortium, University of Toronto, Ontario M5G 1L7, Canada
| | - Alex S Holehouse
- the Department of Biomedical Engineering and Center for Biological Systems Engineering, Washington University in Saint Louis, Saint Louis, Missouri 63130
| | - Jolene C Ho
- From the Structural Genomics Consortium, University of Toronto, Ontario M5G 1L7, Canada
| | - Lixin Fan
- the Basic Science Program, Frederick National Laboratory for Cancer Research, SAXS Core of NCI, National Institutes of Health, Frederick, Maryland 21701, and
| | | | - Alma Seitova
- From the Structural Genomics Consortium, University of Toronto, Ontario M5G 1L7, Canada
| | - Cheryl H Arrowsmith
- From the Structural Genomics Consortium, University of Toronto, Ontario M5G 1L7, Canada,
- the Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| |
Collapse
|
47
|
Marranci A, D'Aurizio R, Vencken S, Mero S, Guzzolino E, Rizzo M, Pitto L, Pellegrini M, Chiorino G, Greene CM, Poliseno L. Systematic evaluation of the microRNAome through miR-CATCHv2.0 identifies positive and negative regulators of BRAF-X1 mRNA. RNA Biol 2019; 16:865-878. [PMID: 30929607 DOI: 10.1080/15476286.2019.1600934] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Here we present miR-CATCHv2.0, an implemented experimental method that allows the identification of the microRNA species directly bound to an RNA of interest. After cross-linking of microRNA::RNA::Ago2 complexes using formaldehyde, the RNA is fragmented using sonication and then subjected to affinity purification using two sets of biotinylated tiling probes (ODD and EVEN). Finally, enriched microRNA species are retrieved by means of small RNA sequencing coupled with an ad hoc analytical workflow. In BRAFV600E mutant A375 melanoma cells, miR-CATCHv2.0 allowed us to identify 20 microRNAs that target X1, the most abundant isoform of BRAF mRNA. These microRNAs fall into different functional classes, according to the effect that they exert (decrease/increase in BRAFV600E mRNA and protein levels) and to the mechanism they use to achieve it (destabilization/stabilization of X1 mRNA or decrease/increase in its translation). microRNA-induced variations in BRAFV600E protein levels are most of the times coupled to consistent variations in pMEK levels, in melanoma cell proliferation in vitro and in sensitivity to the BRAF inhibitor vemurafenib in a xenograft model in zebrafish. However, microRNAs exist that uncouple the degree of activation of the ERK pathway from the levels of BRAFV600E protein. Our study proposes miR-CATCHv2.0 as an effective tool for the identification of direct microRNA-target interactions and, by using such a tool, unveils the complexity of the post-transcriptional regulation to which BRAFV600E and the ERK pathway are subjected in melanoma cells.
Collapse
Affiliation(s)
- Andrea Marranci
- a Institute of Clinical Physiology , CNR , Pisa , Italy.,b Oncogenomics Unit, Core Research Laboratory , ISPRO , Pisa , Italy.,c Signal Transduction Unit, Core Research Laboratory , ISPRO , Siena , Italy
| | | | - Sebastian Vencken
- e Department of Clinical Microbiology , Royal College of Surgeon in Ireland , Dublin , Ireland
| | - Serena Mero
- a Institute of Clinical Physiology , CNR , Pisa , Italy.,b Oncogenomics Unit, Core Research Laboratory , ISPRO , Pisa , Italy
| | | | - Milena Rizzo
- a Institute of Clinical Physiology , CNR , Pisa , Italy
| | - Letizia Pitto
- a Institute of Clinical Physiology , CNR , Pisa , Italy
| | | | - Giovanna Chiorino
- f Cancer Genomics Lab , Fondazione Edo ed Elvo Tempia , Biella , Italy
| | - Catherine M Greene
- e Department of Clinical Microbiology , Royal College of Surgeon in Ireland , Dublin , Ireland
| | - Laura Poliseno
- a Institute of Clinical Physiology , CNR , Pisa , Italy.,b Oncogenomics Unit, Core Research Laboratory , ISPRO , Pisa , Italy
| |
Collapse
|
48
|
Signals Getting Crossed in the Entanglement of Redox and Phosphorylation Pathways: Phosphorylation of Peroxiredoxin Proteins Sparks Cell Signaling. Antioxidants (Basel) 2019; 8:antiox8020029. [PMID: 30678096 PMCID: PMC6406269 DOI: 10.3390/antiox8020029] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/16/2019] [Accepted: 01/18/2019] [Indexed: 12/13/2022] Open
Abstract
Reactive oxygen and nitrogen species have cell signaling properties and are involved in a multitude of processes beyond redox homeostasis. The peroxiredoxin (Prdx) proteins are highly sensitive intracellular peroxidases that can coordinate cell signaling via direct reactive species scavenging or by acting as a redox sensor that enables control of binding partner activity. Oxidation of the peroxidatic cysteine residue of Prdx proteins are the classical post-translational modification that has been recognized to modulate downstream signaling cascades, but increasing evidence supports that dynamic changes to phosphorylation of Prdx proteins is also an important determinant in redox signaling. Phosphorylation of Prdx proteins affects three-dimensional structure and function to coordinate cell proliferation, wound healing, cell fate and lipid signaling. The advent of large proteomic datasets has shown that there are many opportunities to understand further how phosphorylation of Prdx proteins fit into intracellular signaling cascades in normal or malignant cells and that more research is necessary. This review summarizes the Prdx family of proteins and details how post-translational modification by kinases and phosphatases controls intracellular signaling.
Collapse
|
49
|
Guca E, Suñol D, Ruiz L, Konkol A, Cordero J, Torner C, Aragon E, Martin-Malpartida P, Riera A, Macias MJ. TGIF1 homeodomain interacts with Smad MH1 domain and represses TGF-β signaling. Nucleic Acids Res 2018; 46:9220-9235. [PMID: 30060237 PMCID: PMC6158717 DOI: 10.1093/nar/gky680] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/17/2018] [Indexed: 12/16/2022] Open
Abstract
TGIF1 is a multifunctional protein that represses TGF-β-activated transcription by interacting with Smad2-Smad4 complexes. We found that the complex structure of TGIF1-HD bound to the TGACA motif revealed a combined binding mode that involves the HD core and the major groove, on the one hand, and the amino-terminal (N-term) arm and the minor groove of the DNA, on the other. We also show that TGIF1-HD interacts with the MH1 domain of Smad proteins, thereby indicating that TGIF1-HD is also a protein-binding domain. Moreover, the formation of the HD-MH1 complex partially hinders the DNA-binding site of the complex, preventing the efficient interaction of TGIF1-HD with DNA. We propose that the binding of the TGIF1 C-term to the Smad2-MH2 domain brings both the HD and MH1 domain into close proximity. This local proximity facilitates the interaction of these DNA-binding domains, thus strengthening the formation of the protein complex versus DNA binding. Once the protein complex has been formed, the TGIF1-Smad system would be released from promoters/enhancers, thereby illustrating one of the mechanisms used by TGIF1 to exert its function as an active repressor of Smad-induced TGF-β signaling.
Collapse
Affiliation(s)
- Ewelina Guca
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, Barcelona 08028, Spain
| | - David Suñol
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, Barcelona 08028, Spain
| | - Lidia Ruiz
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, Barcelona 08028, Spain
| | - Agnieszka Konkol
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, Barcelona 08028, Spain
| | - Jorge Cordero
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, Barcelona 08028, Spain
| | - Carles Torner
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, Barcelona 08028, Spain
| | - Eric Aragon
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, Barcelona 08028, Spain
| | - Pau Martin-Malpartida
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, Barcelona 08028, Spain
| | - Antoni Riera
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, Barcelona 08028, Spain
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - Maria J Macias
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, Barcelona 08028, Spain
- ICREA, Passeig Lluís Companys 23, 08010-Barcelona, Spain
- To whom correspondence should be addressed. Tel: +34 934037189;
| |
Collapse
|
50
|
Dikshit A, Jin YJ, Degan S, Hwang J, Foster MW, Li CY, Zhang JY. UBE2N Promotes Melanoma Growth via MEK/FRA1/SOX10 Signaling. Cancer Res 2018; 78:6462-6472. [PMID: 30224375 DOI: 10.1158/0008-5472.can-18-1040] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 08/16/2018] [Accepted: 09/12/2018] [Indexed: 12/18/2022]
Abstract
UBE2N is a K63-specific ubiquitin conjugase linked to various immune disorders and cancer. Here, we demonstrate that UBE2N and its partners UBE2V1 and UBE2V2 are highly expressed in malignant melanoma. Silencing of UBE2N and its partners significantly decreased melanoma cell proliferation and subcutaneous tumor growth. This was accompanied by increased expression of E-cadherin, p16, and MC1R and decreased expression of melanoma malignancy markers including SOX10, Nestin, and ABCB5. Mass spectrometry-based phosphoproteomic analysis revealed that UBE2N loss resulted in distinct alterations to the signaling landscape: MEK/ERK signaling was impaired, FRA1 and SOX10 gene regulators were downregulated, and p53 and p16 tumor suppressors were upregulated. Similar to inhibition of UBE2N and MEK, silencing FRA1 decreased SOX10 expression and cell proliferation. Conversely, exogenous expression of active FRA1 increased pMEK and SOX10 expression, and restored anchorage-independent cell growth of cells with UBE2N loss. Systemic delivery of NSC697923, a small-molecule inhibitor of UBE2N, significantly decreased melanoma xenograft growth. These data indicate that UBE2N is a novel regulator of the MEK/FRA1/SOX10 signaling cascade and is indispensable for malignant melanoma growth. Our findings establish the basis for targeting UBE2N as a potential treatment strategy for melanoma.Significance: These findings identify ubiquitin conjugase UBE2N and its variant partners as novel regulators of MAPK signaling and potential therapeutic targets in melanoma. Cancer Res; 78(22); 6462-72. ©2018 AACR.
Collapse
Affiliation(s)
- Anushka Dikshit
- Department of Dermatology, Duke University Medical Center, Durham, North Carolina
| | - Yingai J Jin
- Department of Dermatology, Duke University Medical Center, Durham, North Carolina
| | - Simone Degan
- Department of Dermatology, Duke University Medical Center, Durham, North Carolina
| | - Jihwan Hwang
- Department of Dermatology, Duke University Medical Center, Durham, North Carolina
| | - Matthew W Foster
- Duke Proteomics and Metabolomics Shared Resource, Duke University, Durham, North Carolina
| | - Chuan-Yuan Li
- Department of Dermatology, Duke University Medical Center, Durham, North Carolina
| | - Jennifer Y Zhang
- Department of Dermatology, Duke University Medical Center, Durham, North Carolina.
| |
Collapse
|