1
|
Shi H, Zhang W, Cao H, Zhai L, Song Q, Xu J. Identification of Candidate Genes for Cold Tolerance at Seedling Stage by GWAS in Rice ( Oryza sativa L.). BIOLOGY 2024; 13:784. [PMID: 39452093 PMCID: PMC11505075 DOI: 10.3390/biology13100784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 10/26/2024]
Abstract
Due to global climate change, cold temperatures have significantly impacted rice production, resulting in reduced yield and quality. In this study, we investigated two traits related to the cold tolerance (CT) of 1992 diverse rice accessions at the seedling stage. Geng accessions exhibited higher levels of CT compared to xian accessions, with the GJ-tmp subgroup displaying the strongest CT. However, extreme CT accessions were also identified within the xian subspecies. Through GWAS analysis based on the survival rate (SR) and leaf score of cold tolerance (SCT), a total of 29 QTLs associated with CT at the seedling stage were identified, among which four QTLs (qSR3.1a, qSR4.1a, qSR11.1x, and qSR12.1a) were found to be important. Furthermore, five candidate genes (LOC_Os03g44760, LOC_Os04g06900, LOC_Os04g07260, LOC_Os11g40610, and LOC_Os12g10710) along with their favorable haplotypes were identified through gene function annotation and haplotype analysis. Pyramiding multiple favorable haplotypes resulted in a significant improvement in CT performance. Subsequently, three selected accessions (CX534, B236, and IRIS_313-8565), carrying different superior alleles for CT, were selected and recommended for molecular breeding for CT using marker-assisted selection (MAS). The findings from this study provide valuable resources for enhancing rice's ability for CT while laying a foundation for the future cloning of novel genes involved in conferring CT.
Collapse
Affiliation(s)
- Huimin Shi
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China;
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (W.Z.); (H.C.)
| | - Wenyu Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (W.Z.); (H.C.)
| | - Huimin Cao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (W.Z.); (H.C.)
| | - Laiyuan Zhai
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China;
| | - Qingxin Song
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China;
| | - Jianlong Xu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (W.Z.); (H.C.)
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China;
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
| |
Collapse
|
2
|
Xiong J, Wen G, Song J, Liu X, Chen Q, Zhang G, Xiao Y, Liu X, Deng H, Tang W, Wang F, Lu X. Knockout of the Chlorophyll a Oxygenase Gene OsCAO1 Reduces Chilling Tolerance in Rice Seedlings. Genes (Basel) 2024; 15:721. [PMID: 38927664 PMCID: PMC11202714 DOI: 10.3390/genes15060721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Chilling stress is one of the main abiotic factors affecting rice growth and yield. In rice, chlorophyllide a oxygenase encoded by OsCAO1 is responsible for converting chlorophyllide a to chlorophyllide b, playing a crucial role in photosynthesis and thus rice growth. However, little is known about the function of OsCAO1 in chilling stress responses. The presence of the cis-acting element involved in low-temperature responsiveness (LTR) in the OsCAO1 promoter implied that OsCAO1 probably is a cold-responsive gene. The gene expression level of OsCAO1 was usually inhibited by low temperatures during the day and promoted by low temperatures at night. The OsCAO1 knockout mutants generated by the CRISPR-Cas9 technology in rice (Oryza sativa L.) exhibited significantly weakened chilling tolerance at the seedling stage. OsCAO1 dysfunction led to the accumulation of reactive oxygen species and malondialdehyde, an increase in relative electrolyte leakage, and a reduction in antioxidant gene expression under chilling stress. In addition, the functional deficiency of OsCAO1 resulted in more severe damage to chloroplast morphology, such as abnormal grana thylakoid stacking, caused by low temperatures. Moreover, the rice yield was reduced in OsCAO1 knockout mutants. Therefore, the elevated expression of OsCAO1 probably has the potential to increase both rice yield and chilling tolerance simultaneously, providing a strategy to cultivate chilling-tolerant rice varieties with high yields.
Collapse
Affiliation(s)
- Jiayi Xiong
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (J.X.); (G.W.); (J.S.); (X.L.); (Q.C.); (G.Z.); (Y.X.); (X.L.); (H.D.); (F.W.)
- Yuelushan Laboratory, Changsha 410128, China;
| | - Genping Wen
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (J.X.); (G.W.); (J.S.); (X.L.); (Q.C.); (G.Z.); (Y.X.); (X.L.); (H.D.); (F.W.)
- Yuelushan Laboratory, Changsha 410128, China;
| | - Jin Song
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (J.X.); (G.W.); (J.S.); (X.L.); (Q.C.); (G.Z.); (Y.X.); (X.L.); (H.D.); (F.W.)
- Yuelushan Laboratory, Changsha 410128, China;
| | - Xiaoyi Liu
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (J.X.); (G.W.); (J.S.); (X.L.); (Q.C.); (G.Z.); (Y.X.); (X.L.); (H.D.); (F.W.)
- Yuelushan Laboratory, Changsha 410128, China;
| | - Qiuhong Chen
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (J.X.); (G.W.); (J.S.); (X.L.); (Q.C.); (G.Z.); (Y.X.); (X.L.); (H.D.); (F.W.)
- Yuelushan Laboratory, Changsha 410128, China;
| | - Guilian Zhang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (J.X.); (G.W.); (J.S.); (X.L.); (Q.C.); (G.Z.); (Y.X.); (X.L.); (H.D.); (F.W.)
- Yuelushan Laboratory, Changsha 410128, China;
| | - Yunhua Xiao
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (J.X.); (G.W.); (J.S.); (X.L.); (Q.C.); (G.Z.); (Y.X.); (X.L.); (H.D.); (F.W.)
- Yuelushan Laboratory, Changsha 410128, China;
| | - Xiong Liu
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (J.X.); (G.W.); (J.S.); (X.L.); (Q.C.); (G.Z.); (Y.X.); (X.L.); (H.D.); (F.W.)
- Yuelushan Laboratory, Changsha 410128, China;
| | - Huabing Deng
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (J.X.); (G.W.); (J.S.); (X.L.); (Q.C.); (G.Z.); (Y.X.); (X.L.); (H.D.); (F.W.)
- Yuelushan Laboratory, Changsha 410128, China;
| | - Wenbang Tang
- Yuelushan Laboratory, Changsha 410128, China;
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Feng Wang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (J.X.); (G.W.); (J.S.); (X.L.); (Q.C.); (G.Z.); (Y.X.); (X.L.); (H.D.); (F.W.)
- Yuelushan Laboratory, Changsha 410128, China;
| | - Xuedan Lu
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (J.X.); (G.W.); (J.S.); (X.L.); (Q.C.); (G.Z.); (Y.X.); (X.L.); (H.D.); (F.W.)
- Yuelushan Laboratory, Changsha 410128, China;
| |
Collapse
|
3
|
Zhou S, Gao Q, Chen M, Zhang Y, Li J, Guo J, Lu J, Lou Y. Silencing a dehydration-responsive element-binding gene enhances the resistance of plants to a phloem-feeding herbivore. PLANT, CELL & ENVIRONMENT 2023; 46:3090-3101. [PMID: 36788431 DOI: 10.1111/pce.14569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/19/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Herbivore-induced plant defence responses share common components with plant responses to abiotic stresses. However, whether abiotic stress-responsive factors influence the resistance of plants to herbivores by regulating these components remains largely unknown. Here, we cloned a dehydration-responsive element-binding gene in rice, OsDREB1A, and investigated its role in the resistance of rice to the phloem-feeding herbivore, brown planthopper (BPH, Nilaparvata lugens), under normal and low temperatures. We found that OsDREB1A localized to the nucleus, and its transcripts in rice were up-regulated in response to BPH infestation, low temperatures and treatment with methyl jasmonate or salicylic acid. Silencing OsDREB1A changed transcript levels of two defence-related WRKY and two PLD genes, enhanced levels of jasmonic acid (JA), JA-isoleucine and abscisic acid, and decreased the ethylene level in rice; these changes subsequently enhanced the resistance of plants to BPH, especially at 17°C, by decreasing the hatching rate and delaying the development of BPH eggs. Moreover, silencing OsDREB1A increased the growth of rice plants. These findings suggest that OsDREB1A, which positively regulates the resistance of rice to abiotic stresses, negatively regulates the resistance of rice to BPH.
Collapse
Affiliation(s)
- Shuxing Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Qing Gao
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Mengting Chen
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Yuebai Zhang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Jiancai Li
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Jingran Guo
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Jing Lu
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Yonggen Lou
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
4
|
Huang P, Ding Z, Duan M, Xiong Y, Li X, Yuan X, Huang J. OsLUX Confers Rice Cold Tolerance as a Positive Regulatory Factor. Int J Mol Sci 2023; 24:ijms24076727. [PMID: 37047700 PMCID: PMC10094877 DOI: 10.3390/ijms24076727] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 04/07/2023] Open
Abstract
During the early seedling stage, rice (Oryza sativa L.) must overcome low-temperature stress. While a few cold-tolerance genes have been characterized, further excavation of cold-resistance genes is still needed. In this study, we identified a cold-induced transcription factor—LUX ARRHYTHMO (LUX)—in rice. OsLUX was found to be specifically expressed in leaf blades and upregulated by both cold stress and circadian rhythm. The full-length OsLUX showed autoactivation activity, and the OsLUX protein localized throughout the entire onion cell. Overexpressing OsLUX resulted in increased cold tolerance and reduced ion leakage under cold-stress conditions during the seedling stage. In contrast, the knockout of OsLUX decreased seedling cold tolerance and showed higher ion leakage compared to the wild type. Furthermore, overexpressing OsLUX upregulated the expression levels of oxidative stress-responsive genes, which improved reactive oxygen species (ROS) scavenging ability and enhanced tolerance to chilling stress. Promoter analysis showed that the OsLUX promoter contains two dehydration-responsive element binding (DREB) motifs at positions −510/−505 (GTCGGa) and −162/−170 (cCACCGccc), which indicated that OsDREB1s and OsDREB2s probably regulate OsLUX expression by binding to the motif to respond to cold stress. Thus, OsLUX may act as a downstream gene of the DREB pathway. These results demonstrate that OsLUX serves as a positive regulatory factor of cold stress and that overexpressing OsLUX could be used in rice breeding programs to enhance abiotic stress tolerance.
Collapse
Affiliation(s)
- Peng Huang
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Zhengquan Ding
- Jiaxing Academy of Agricultural Sciences, Jiaxing 314016, China
| | - Min Duan
- Taizhou Academy Agricultural of Sciences, Taizhou 317000, China
| | - Yi Xiong
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Xinxin Li
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Xi Yuan
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Ji Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
5
|
Yu MM, Wang R, Xia JQ, Li C, Xu QH, Cang J, Wang YY, Zhang D. JA-induced TaMPK6 enhanced the freeze tolerance of Arabidopsis thaliana through regulation of ICE-CBF-COR module and antioxidant enzyme system. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 329:111621. [PMID: 36736462 DOI: 10.1016/j.plantsci.2023.111621] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
Mitogen-activated protein kinases (MAPKs) play important roles in the stress response of plants. However, the function of MPK proteins in freeze-resistance in wheat remains unclear. Dongnongdongmai No.1 (Dn1) is a winter wheat variety with a strong freezing resistance at extremely low temperature. In this study, we demonstrated that TaMPK6 is induced by JA signaling and is involved in the modulation of Dn1 freeze resistance. Overexpression of TaMPK6 in Arabidopsis increased the survival rate of plant at -10 ℃. The scavenging ability of reactive oxygen species (ROS) and the expression of cold-responsive genes CBFs and CORs were significantly enhanced in TaMPK6-overexpressed Arabidopsis, suggesting a role of TaMPK6 in activating the ICE-CBF-COR module and antioxidant enzyme system to resist freezing stress. Furthermore, TaMPK6 is localized in the nucleus and TaMPK6 interacts with TaICE41, TaCBF14, and TaMYC2 proteins, the key components in JA signaling and the ICE-CBF-COR pathway. These results suggest that JA-induced TaMPK6 may regulate freezing-resistance in wheat by interacting with the TaICE41, TaCBF14, and TaMYC2 proteins, which in turn enhances the ICE-CBF-COR pathway. Our study revealed the molecular mechanism of TaMPK6 involvement in the cold resistance pathway in winter wheat under cold stress, which provides a basis for enriching the theory of wheat cold resistance.
Collapse
Affiliation(s)
- Meng-Meng Yu
- College of Life Science, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Rui Wang
- College of Life Science, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Jing-Qiu Xia
- College of Life Science, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Chang Li
- College of Life Science, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Qing-Hua Xu
- College of Life Science, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Jing Cang
- College of Life Science, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Yu-Ying Wang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| | - Da Zhang
- College of Life Science, Northeast Agricultural University, Harbin 150030, Heilongjiang, China.
| |
Collapse
|
6
|
Niu Y, Fan S, Cheng B, Li H, Wu J, Zhao H, Huang Z, Yan F, Qi B, Zhang L, Zhang G. Comparative transcriptomics and co-expression networks reveal cultivar-specific molecular signatures associated with reproductive-stage cold stress in rice. PLANT CELL REPORTS 2023; 42:707-722. [PMID: 36723676 DOI: 10.1007/s00299-023-02984-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
The resistance of Huaidao5 results from the high constitutive expression of tolerance genes, while that of Huaidao9 is due to the cold-induced resistance in flag leaves and panicles. The regulation mechanism of rice seedlings' cold tolerance is relatively clear, and knowledge of its underlying mechanisms at the reproductive stage is limited. We performed differential expression and co-expression network analyses to transcriptomes from panicle and flag leaf tissues of a cold-tolerant cultivar (Huaidao5), and a sensitive cultivar (Huaidao9), under reproductive-stage cold stress. The results revealed that the expression levels of genes in stress-related pathways such as MAPK signaling pathway, diterpenoid biosynthesis, glutathione metabolism, plant-pathogen interaction and plant hormone signal transduction were constitutively highly expressed in Huaidao5, especially in panicles. Moreover, the Hudaidao5's panicle sample-specific (under cold) module contained some genes related to rice yield, such as GW5L, GGC2, SG1 and CTPS1. However, the resistance of Huaidao9 was derived from the induced resistance to cold in flag leaves and panicles. In the flag leaves, the responses included a series of stress response and signal transduction, while in the panicles nitrogen metabolism was severely affected, especially 66 endosperm-specific genes. Through integrating differential expression with co-expression networks, we predicted 161 candidate genes (79 cold-responsive genes common to both cultivars and 82 cold-tolerance genes associated with differences in cold tolerance between cultivars) potentially affecting cold response/tolerance, among which 85 (52.80%) were known to be cold-related genes. Moreover, 52 (65.82%) cold-responsive genes (e.g., TIFY11C, LSK1 and LPA) could be confirmed by previous transcriptome studies and 72 (87.80%) cold-tolerance genes (e.g., APX5, OsFbox17 and OsSTA109) were located within QTLs associated with cold tolerance. This study provides an efficient strategy for further discovery of mechanisms of cold tolerance in rice.
Collapse
Affiliation(s)
- Yuan Niu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Song Fan
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Baoshan Cheng
- Huaiyin Institute of Agricultural Science in Xuhuai Region of Jiangsu Province, Huai'an, 223001, China.
| | - Henan Li
- Shanghai Bioelectronica Limited Liability Company, Shanghai, 200131, China
| | - Jiang Wu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Hongliang Zhao
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Zhiwei Huang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Feiyu Yan
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Bo Qi
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Linqing Zhang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Guoliang Zhang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China.
- State Key Laboratory of Soil and Agricultural Sustainable Development, Nanjing, 210008, China.
- Jiangsu Key Laboratory of Attapulgite Clay Resource Utilization, Huai'an, 223003, China.
| |
Collapse
|
7
|
Dhaliwal LK, Angeles-Shim RB. Cell Membrane Features as Potential Breeding Targets to Improve Cold Germination Ability of Seeds. PLANTS (BASEL, SWITZERLAND) 2022; 11:3400. [PMID: 36501439 PMCID: PMC9738148 DOI: 10.3390/plants11233400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/22/2022] [Accepted: 12/01/2022] [Indexed: 05/13/2023]
Abstract
Cold stress breeding that focuses on the improvement of chilling tolerance at the germination stage is constrained by the complexities of the trait which involves integrated cellular, biochemical, hormonal and molecular responses. Biological membrane serves as the first line of plant defense under stress. Membranes receive cold stress signals and transduce them into intracellular responses. Low temperature stress, in particular, primarily and effectively affects the structure, composition and properties of cell membranes, which ultimately disturbs cellular homeostasis. Under cold stress, maintenance of membrane integrity through the alteration of membrane lipid composition is of prime importance to cope with the stress. This review describes the critical role of cell membranes in cold stress responses as well as the physiological and biochemical manifestations of cold stress in plants. The potential of cell membrane properties as breeding targets in developing strategies to improve cold germination ability is discussed using cotton (Gossypium hirsutum L.) as a model.
Collapse
Affiliation(s)
- Lakhvir Kaur Dhaliwal
- Department of Plant and Soil Science, Davis College of Agricultural Sciences and Natural Resources, Texas Tech University, Lubbock, TX 79409-2122, USA
| | - Rosalyn B Angeles-Shim
- Department of Plant and Soil Science, Davis College of Agricultural Sciences and Natural Resources, Texas Tech University, Lubbock, TX 79409-2122, USA
| |
Collapse
|
8
|
Khatab AA, Li J, Hu L, Yang J, Fan C, Wang L, Xie G. Global identification of quantitative trait loci and candidate genes for cold stress and chilling acclimation in rice through GWAS and RNA-seq. PLANTA 2022; 256:82. [PMID: 36103054 DOI: 10.1007/s00425-022-03995-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
Associated analysis of GWAS with RNA-seq had detected candidate genes responsible for cold stress and chilling acclimation in rice. Haplotypes of two candidate genes and geographic distribution were analyzed. To explore new candidate genes and genetic resources for cold tolerance improvement in rice, genome-wide association study (GWAS) mapping experiments with 351 rice core germplasms was performed for three traits (survival rate, shoot length and chlorophyll content) under three temperature conditions (normal temperature, cold stress and chilling acclimation), yielding a total of 134 QTLs, of which 54, 59 and 21 QTLs were responsible for normal temperature, cold stress and chilling acclimation conditions, respectively. Integrated analysis of significant SNPs in 134 QTLs further identified 116 QTLs for three temperature treatments, 53, 43 and 18 QTLs responsible for normal temperature, cold stress and chilling acclimation, respectively, and 2 QTLs were responsible for both cold stress and chilling acclimation. Matching differentially expressed genes from RNA-seq to 43 and 18 QTLs for cold stress and chilling acclimation, we identified 69 and 44 trait-associated candidate genes, respectively, to be classified into six and five groups, particularly involved in metabolisms, reactive oxygen species scavenging and hormone signaling. Interestingly, two candidate genes LOC_Os01g04814, encoding a vacuolar protein sorting-associating protein 4B, and LOC_Os01g48440, encoding glycosyltransferase family 43 protein, showed the highest expression levels under chilling acclimation. Haplotype analysis revealed that both genes had a distinctive differentiation with subpopulation. Haplotypes of both genes with more japonica accessions have higher latitude distribution and higher chilling tolerance than the chilling sensitive indica accessions. These findings reveal the new insight into the molecular mechanism and candidate genes for cold stress and chilling acclimation in rice.
Collapse
Affiliation(s)
- Ahmed Adel Khatab
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianguo Li
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| | - Lihua Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
- College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Jiangyi Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
- College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Chuchuan Fan
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lingqiang Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China.
| | - Guosheng Xie
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
9
|
Qing D, Deng G, Pan Y, Gao L, Liang H, Zhou W, Chen W, Li J, Huang J, Gao J, Lu C, Wu H, Liu K, Dai G. ITRAQ-based quantitative proteomic analysis of japonica rice seedling during cold stress. BREEDING SCIENCE 2022; 72:150-168. [PMID: 36275934 PMCID: PMC9522529 DOI: 10.1270/jsbbs.21081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/11/2021] [Indexed: 06/16/2023]
Abstract
Low temperature is one of the important environmental factors that affect rice growth and yield. To better understand the japonica rice responses to cold stress, isobaric tags for a relative and absolute quantification (iTRAQ) labeling-based quantitative proteomics approach was used to detected changes in protein levels. Two-week-old seedlings of the cold tolerant rice variety Kongyu131 were treated at 8°C for 24, 48 and 72 h, then the total proteins were extracted from tissues and used for quantitative proteomics analysis. A total of 5082 proteins were detected for quantitative analysis, of which 289 proteins were significantly regulated, consisting of 169 uniquely up-regulated proteins and 125 uniquely down-regulated proteins in cold stress groups relative to the control group. Functional analysis revealed that most of the regulated proteins are involved in photosynthesis, metabolic pathway, biosynthesis of secondary metabolites and carbon metabolism. Western blot analysis showed that protein regulation was consistent with the iTRAQ data. The corresponding genes of 25 regulated proteins were used for quantitative real time PCR analysis, and the results showed that the mRNA level was not always parallel to the corresponding protein level. The importance of our study is that it provides new insights into cold stress responses in rice with respect to proteomics and provides candidate genes for cold-tolerance rice breeding.
Collapse
Affiliation(s)
- Dongjin Qing
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
- Guangxi Academy of Agricultural Sciences/Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Nanning, China
| | - Guofu Deng
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
| | - Yinghua Pan
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
| | - Lijun Gao
- Guangxi Academy of Agricultural Sciences/Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Nanning, China
| | - Haifu Liang
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
| | - Weiyong Zhou
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
| | - Weiwei Chen
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
| | - Jingcheng Li
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
| | - Juan Huang
- Guangxi Academy of Agricultural Sciences/Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Nanning, China
| | - Ju Gao
- Guangxi Academy of Agricultural Sciences/Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Nanning, China
| | - Chunju Lu
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
| | - Hao Wu
- Guangxi Academy of Agricultural Sciences/Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Nanning, China
| | - Kaiqiang Liu
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
| | - Gaoxing Dai
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
| |
Collapse
|
10
|
Zhang K, Shi W, Zheng X, Liu X, Wang L, Riemann M, Heintz D, Nick P. A rice tubulin tyrosine ligase like 12 regulates phospholipase D activity and tubulin synthesis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 316:111155. [PMID: 35151438 DOI: 10.1016/j.plantsci.2021.111155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/27/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
All plant α-tubulins encode a C-terminal tyrosine. An elusive tubulin tyrosine carboxypeptidase can cleave off, and a tubulin tyrosine ligase (TTL) re-ligate this tyrosine. The biological function of this cycle remains unclear but may correlate with microtubule stability. To get insight into the functional context of this phenomenon, we used cold-induced elimination of microtubules as experimental model. In previous work, we had analysed a rice TTL-like 12 (OsTTLL12), the only potential candidate of plant TTL. To follow the effect of OsTTLL12 upon microtubule responses in vivo, we expressed OsTTLL12-RFP into tobacco BY-2 cells stably overexpressing NtTUA3-GFP. We found that overexpression of OsTTLL12-RFP made microtubules disappear faster in response to cold stress, accompanied with more rapid Ca2+ influx, culminating in reduced cold tolerance. Treatment with different butanols indicated that α-tubulin detyrosination/tyrosination differently interacts with phospholipase D (PLD) dependent signalling. In fact, rice PLDα1 decorated microtubules and increased detyrosinated α-tubulin. Unexpectedly, overexpression of the two proteins (OsTTLL12-RFP, NtTUA3-GFP) mutually regulated the accumulation of their transcripts, leading us to a model, where tubulin detyrosination feeds back upon tubulin transcripts and defines a subset of microtubules for interaction with PLD dependent stress signalling.
Collapse
Affiliation(s)
- Kunxi Zhang
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| | - Wenjing Shi
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Xin Zheng
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| | - Xuan Liu
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| | - Lixin Wang
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Michael Riemann
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| | - Dimitri Heintz
- Plant Imaging and Mass Spectrometry (PIMS), Institut de Biologie Moléculaire des Plantes, Centre National du Recherche Scientifique (CNRS-IBMP), Université de Strasbourg, 12 rue du Général Zimmer, 67084, Strasbourg, France
| | - Peter Nick
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany.
| |
Collapse
|
11
|
Li J, Zhang Z, Chong K, Xu Y. Chilling tolerance in rice: Past and present. JOURNAL OF PLANT PHYSIOLOGY 2022; 268:153576. [PMID: 34875419 DOI: 10.1016/j.jplph.2021.153576] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/21/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
Rice is generally sensitive to chilling stress, which seriously affects growth and yield. Since early in the last century, considerable efforts have been made to understand the physiological and molecular mechanisms underlying the response to chilling stress and improve rice chilling tolerance. Here, we review the research trends and advances in this field. The phenotypic and biochemical changes caused by cold stress and the physiological explanations are briefly summarized. Using published data from the past 20 years, we reviewed the past progress and important techniques in the identification of quantitative trait loci (QTL), novel genes, and cellular pathways involved in rice chilling tolerance. The advent of novel technologies has significantly advanced studies of cold tolerance, and the characterization of QTLs, key genes, and molecular modules have sped up molecular design breeding for cold tolerance in rice varieties. In addition to gene function studies based on overexpression or artificially generated mutants, elucidating natural allelic variation in specific backgrounds is emerging as a novel approach for the study of cold tolerance in rice, and the superior alleles identified using this approach can directly facilitate breeding.
Collapse
Affiliation(s)
- Junhua Li
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Zeyong Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Kang Chong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yunyuan Xu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| |
Collapse
|
12
|
Tan J, Zhou Z, Feng H, Xing J, Niu Y, Deng Z. Data-Independent Acquisition-Based Proteome and Phosphoproteome Profiling Reveals Early Protein Phosphorylation and Dephosphorylation Events in Arabidopsis Seedlings upon Cold Exposure. Int J Mol Sci 2021; 22:ijms222312856. [PMID: 34884660 PMCID: PMC8657928 DOI: 10.3390/ijms222312856] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 01/30/2023] Open
Abstract
Protein phosphorylation plays an important role in mediating signal transduction in cold response in plants. To better understand how plants sense and respond to the early temperature drop, we performed data-independent acquisition (DIA) method-based mass spectrometry analysis to profile the proteome and phosphoproteome of Arabidopsis seedlings upon cold stress in a time-course manner (10, 30 and 120 min of cold treatments). Our results showed the rapid and extensive changes at the phosphopeptide levels, but not at the protein abundance levels, indicating cold-mediated protein phosphorylation and dephosphorylation events. Alteration of over 1200 proteins at phosphopeptide levels were observed within 2 h of cold treatment, including over 140 kinases, over 40 transcriptional factors and over 40 E3 ligases, revealing the complexity of regulation of cold adaption. We summarized cold responsive phosphoproteins involved in phospholipid signaling, cytoskeleton reorganization, calcium signaling, and MAPK cascades. Cold-altered levels of 73 phosphopeptides (mostly novel cold-responsive) representing 62 proteins were validated by parallel reaction monitoring (PRM). In summary, this study furthers our understanding of the molecular mechanisms of cold adaption in plants and strongly supports that DIA coupled with PRM are valuable tools in uncovering early signaling events in plants.
Collapse
Affiliation(s)
- Jinjuan Tan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.T.); (Z.Z.); (H.F.); (Y.N.)
| | - Zhongjing Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.T.); (Z.Z.); (H.F.); (Y.N.)
| | - Hanqian Feng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.T.); (Z.Z.); (H.F.); (Y.N.)
| | - Jiayun Xing
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China;
| | - Yujie Niu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.T.); (Z.Z.); (H.F.); (Y.N.)
| | - Zhiping Deng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.T.); (Z.Z.); (H.F.); (Y.N.)
- Correspondence:
| |
Collapse
|
13
|
Convergence and Divergence: Signal Perception and Transduction Mechanisms of Cold Stress in Arabidopsis and Rice. PLANTS 2021; 10:plants10091864. [PMID: 34579397 PMCID: PMC8473081 DOI: 10.3390/plants10091864] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/06/2021] [Accepted: 09/06/2021] [Indexed: 12/18/2022]
Abstract
Cold stress, including freezing stress and chilling stress, is one of the major environmental factors that limit the growth and productivity of plants. As a temperate dicot model plant species, Arabidopsis develops a capability to freezing tolerance through cold acclimation. The past decades have witnessed a deep understanding of mechanisms underlying cold stress signal perception, transduction, and freezing tolerance in Arabidopsis. In contrast, a monocot cereal model plant species derived from tropical and subtropical origins, rice, is very sensitive to chilling stress and has evolved a different mechanism for chilling stress signaling and response. In this review, the authors summarized the recent progress in our understanding of cold stress response mechanisms, highlighted the convergent and divergent mechanisms between Arabidopsis and rice plasma membrane cold stress perceptions, calcium signaling, phospholipid signaling, MAPK cascade signaling, ROS signaling, and ICE-CBF regulatory network, as well as light-regulated signal transduction system. Genetic engineering approaches of developing freezing tolerant Arabidopsis and chilling tolerant rice were also reviewed. Finally, the future perspective of cold stress signaling and tolerance in rice was proposed.
Collapse
|
14
|
Cao H, Gong R, Yuan S, Su Y, Lv W, Zhou Y, Zhang Q, Deng X, Tong P, Liang S, Wang X, Hong Y. Phospholipase Dα6 and phosphatidic acid regulate gibberellin signaling in rice. EMBO Rep 2021; 22:e51871. [PMID: 34396669 DOI: 10.15252/embr.202051871] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 06/07/2021] [Accepted: 07/22/2021] [Indexed: 11/09/2022] Open
Abstract
Phospholipase D (PLD) hydrolyzes membrane lipids to produce phosphatidic acid (PA), a lipid mediator involved in various cellular and physiological processes. Here, we show that PLDα6 and PA regulate the distribution of GIBBERELLIN (GA)-INSENSITIVE DWARF1 (GID1), a soluble gibberellin receptor in rice. PLDα6-knockout (KO) plants display less sensitivity to GA than WT, and PA restores the mutant to a normal GA response. PA binds to GID1, as documented by liposome binding, fat immunoblotting, and surface plasmon resonance. Arginines 79 and 82 of GID1 are two key amino acid residues required for PA binding and also for GID1's nuclear localization. The loss of PLDα6 impedes GA-induced nuclear localization of GID1. In addition, PLDα6-KO plants attenuated GA-induced degradation of the DELLA protein SLENDER RICE1 (SLR1). These data suggest that PLDα6 and PA positively mediate GA signaling in rice via PA binding to GID1 and promotion of its nuclear translocation.
Collapse
Affiliation(s)
- Huasheng Cao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China.,The Rice Research Institute of Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Rong Gong
- The Rice Research Institute of Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Shu Yuan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Yuan Su
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO, USA.,Donald Danforth Plant Science Center, St. Louis, MO, USA
| | - Weixin Lv
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Yimeng Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Qingqing Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Xianjun Deng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Pan Tong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Shihu Liang
- The Rice Research Institute of Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xuemin Wang
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO, USA.,Donald Danforth Plant Science Center, St. Louis, MO, USA
| | - Yueyun Hong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
15
|
Zhao Z, Tang S, Zhang Y, Yue J, Xu J, Tang W, Sun Y, Wang R, Diao X, Zhang B. Evolutionary analysis and functional characterization of SiBRI1 as a Brassinosteroid receptor gene in foxtail millet. BMC PLANT BIOLOGY 2021; 21:291. [PMID: 34167462 PMCID: PMC8223282 DOI: 10.1186/s12870-021-03081-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/28/2021] [Indexed: 06/13/2023]
Abstract
Brassinosteroids (BRs) play important roles in plant growth and development. Although BR receptors have been intensively studied in Arabidopsis, those in foxtail millet remain largely unknown. Here, we show that the BR signaling function of BRASSINOSTEROID INSENSITIVE 1 (BRI1) is conserved between Arabidopsis and foxtail millet, a new model species for C4 and Panicoideae grasses. We identified four putative BR receptor genes in the foxtail millet genome: SiBRI1, SiBRI1-LIKE RECEPTOR KINASE 1 (SiBRL1), SiBRL2 and SiBRL3. Phylogenetic analysis was used to classify the BR receptors in dicots and monocots into three branches. Analysis of their expression patterns by quantitative real-time PCR (qRT-PCR) showed that these receptors were ubiquitously expressed in leaves, stems, dark-grown seedlings, roots and non-flowering spikelets. GFP fusion experiments verified that SiBRI1 localized to the cell membrane. We also explored the SiBRI1 function in Arabidopsis through complementation experiments. Ectopic overexpression of SiBRI1 in an Arabidopsis BR receptor loss-of-function mutant, bri1-116, mostly reversed the developmental defects of the mutant. When SiBRI1 was overexpressed in foxtail millet, the plants showed a drooping leaf phenotype and root development inhibition, lateral root initiation inhibition, and the expression of BR synthesis genes was inhibited. We further identified BRI1-interacting proteins by immunoprecipitation (IP)-mass spectrometry (MS). Our results not only demonstrate that SiBRI1 plays a conserved role in BR signaling in foxtail millet but also provide insight into the molecular mechanism of SiBRI1.
Collapse
Affiliation(s)
- Zhiying Zhao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Sha Tang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yiming Zhang
- College of Life Sciences, Langfang Normal University, Langfang, 065000, China
| | - Jingjing Yue
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Jiaqi Xu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Wenqiang Tang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Yanxiang Sun
- College of Life Sciences, Langfang Normal University, Langfang, 065000, China
| | - Ruiju Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Xianmin Diao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
- Foxtail Millet Improvement Center of China, Institute of Millet Crops, Hebei Academy of Agricultural and Forestry Science, Shijiazhuang, 050031, China.
| | - Baowen Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, 050024, China.
| |
Collapse
|
16
|
Bai LWD, Liu J, Dai LF, Deng QW, Chen YL, Xie JK, Luo XD. Identification and characterisation of cold stress-related proteins in Oryza rufipogon at the seedling stage using label-free quantitative proteomic analysis. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:542-555. [PMID: 33487217 DOI: 10.1071/fp20046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
In this study, label-free quantitative proteomics were used to study cold stress-related proteins in Dongxiang wild rice (Oryza rufipogon Griff., DWR) and cold sensitive cultivated rice 'Xieqingzao B'(Oryza sativa L. ssp. indica cv., XB). The results demonstrated the presence of 101 and 216 differentially expressed proteins (DEPs) were detected in DWR and XB, respectively, after cold stress. Bioinformatics analysis showed that DWR and XB differed significantly in their ability to scavenge reactive oxygen species (ROS) and regulate energy metabolism. Of the 101 DEPs of DWR, 46 DEPs related to differential expressed genes were also detected by transcriptome analysis. And 13 out of 101 DEPs were located in previous cold related quantitative trait loci (QTL). Quantitative real-time PCR analysis indicated that protein expression and transcription patterns were not similar in XB and DWR. Protein-protein interaction (PPI) network was constituted using the DEPs of DWR and XB, and the following three centre proteins were identified: Q8H3I3, Q9LDN2, and Q2QXR8. Next, we selected a centre protein and two of the 37 DEPs with high levels of differential expression (fold change ≥ 2) were used for cloning and prokaryotic expression. We found that Q5Z9Q8 could significantly improve the cold tolerance of Escherichia coli.
Collapse
Affiliation(s)
- Li-Wei-Dan Bai
- College of Life Science, Jiangxi Normal University, Nanchang 330022, PR China
| | - Jian Liu
- College of Life Science, Jiangxi Normal University, Nanchang 330022, PR China
| | - Liang-Fang Dai
- College of Life Science, Jiangxi Normal University, Nanchang 330022, PR China
| | - Qian-Wen Deng
- College of Life Science, Jiangxi Normal University, Nanchang 330022, PR China
| | - Ya-Ling Chen
- College of Life Science, Jiangxi Normal University, Nanchang 330022, PR China
| | - Jian-Kun Xie
- College of Life Science, Jiangxi Normal University, Nanchang 330022, PR China; and Corresponding authors. ;
| | - Xiang-Dong Luo
- College of Life Science, Jiangxi Normal University, Nanchang 330022, PR China; and Corresponding authors. ;
| |
Collapse
|
17
|
Liu Y, Liu X, Wang X, Gao K, Qi W, Ren H, Hu H, Sun D, Bai J, Zheng S. Heterologous expression of heat stress-responsive AtPLC9 confers heat tolerance in transgenic rice. BMC PLANT BIOLOGY 2020; 20:514. [PMID: 33176681 PMCID: PMC7656764 DOI: 10.1186/s12870-020-02709-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND As global warming becomes increasingly severe, it is urgent that we enhance the heat tolerance of crops. We previously reported that Arabidopsis thaliana PHOSPHOINOSITIDE-SPECIFIC PHOSPHOLIPASE C9 (AtPLC9) promotes heat tolerance. RESULTS In this study, we ectopically expressed AtPLC9 in rice to examine its potential to improve heat tolerance in this important crop. Whereas AtPLC9 did not improve rice tolerance to salt, drought or cold, transgenic rice did exhibit greater heat tolerance than the wild type. High-throughput RNA-seq revealed extensive and dynamic transcriptome reprofiling in transgenic plants after heat stress. Moreover, the expression of some transcription factors and calcium ion-related genes showed specific upregulation in transgenic rice after heat stress, which might contribute to the enhanced heat tolerance. CONCLUSIONS This study provides preliminary guidance for using AtPLC9 to improve heat tolerance in cereal crops and, more broadly, highlights that heterologous transformation can assist with molecular breeding.
Collapse
Affiliation(s)
- Yuliang Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Xinye Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Xue Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Kang Gao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Weiwei Qi
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Huimin Ren
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Haorui Hu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
- Shijiazhuang No.1 High School, Pingan North Street, Shijiazhuang, 050010, China
| | - Daye Sun
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Jiaoteng Bai
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China.
- South 2nd ring east road 20, Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang, 050016, China.
| | - Shuzhi Zheng
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China.
- South 2nd ring east road 20, Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang, 050016, China.
| |
Collapse
|
18
|
Kovács T, Ahres M, Pálmai T, Kovács L, Uemura M, Crosatti C, Galiba G. Decreased R:FR Ratio in Incident White Light Affects the Composition of Barley Leaf Lipidome and Freezing Tolerance in a Temperature-Dependent Manner. Int J Mol Sci 2020; 21:ijms21207557. [PMID: 33066276 PMCID: PMC7593930 DOI: 10.3390/ijms21207557] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/29/2020] [Accepted: 10/08/2020] [Indexed: 02/06/2023] Open
Abstract
In cereals, C-repeat binding factor genes have been defined as key components of the light quality-dependent regulation of frost tolerance by integrating phytochrome-mediated light and temperature signals. This study elucidates the differences in the lipid composition of barley leaves illuminated with white light or white light supplemented with far-red light at 5 or 15 °C. According to LC-MS analysis, far-red light supplementation increased the amount of monogalactosyldiacylglycerol species 36:6, 36:5, and 36:4 after 1 day at 5 °C, and 10 days at 15 °C resulted in a perturbed content of 38:6 species. Changes were observed in the levels of phosphatidylethanolamine, and phosphatidylserine under white light supplemented with far-red light illumination at 15 °C, whereas robust changes were observed in the amount of several phosphatidylserine species at 5 °C. At 15 °C, the amount of some phosphatidylglycerol species increased as a result of white light supplemented with far-red light illumination after 1 day. The ceramide (42:2)-3 content increased regardless of the temperature. The double-bond index of phosphatidylglycerol, phosphatidylserine, phosphatidylcholine ceramide together with total double-bond index changed when the plant was grown at 15 °C as a function of white light supplemented with far-red light. white light supplemented with far-red light increased the monogalactosyldiacylglycerol/diacylglycerol ratio as well. The gene expression changes are well correlated with the alterations in the lipidome.
Collapse
Affiliation(s)
- Terézia Kovács
- Biological Research Centre, Institute of Plant Biology, H-6701 Szeged, Hungary;
- Department of Plant Biology, University of Szeged, 6720 Szeged, Hungary
- Correspondence:
| | - Mohamed Ahres
- Centre for Agricultural Research, Agricultural Institute, 2462 Martonvásár, Hungary; (M.A.); (T.P.); (G.G.)
- Festetics Doctoral School, Georgikon Campus, Szent István University, H-2100 Gödöllő, Hungary
| | - Tamás Pálmai
- Centre for Agricultural Research, Agricultural Institute, 2462 Martonvásár, Hungary; (M.A.); (T.P.); (G.G.)
| | - László Kovács
- Biological Research Centre, Institute of Plant Biology, H-6701 Szeged, Hungary;
| | - Matsuo Uemura
- Department of Plant-Bioscience, Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan;
| | - Cristina Crosatti
- CREA Research Centre for Genomics and Bioinformatics, Fiorenzuola d’Arda, 29017 San Protaso, Italy;
| | - Gabor Galiba
- Centre for Agricultural Research, Agricultural Institute, 2462 Martonvásár, Hungary; (M.A.); (T.P.); (G.G.)
- Festetics Doctoral School, Georgikon Campus, Szent István University, H-2100 Gödöllő, Hungary
| |
Collapse
|
19
|
Lu X, Zhou Y, Fan F, Peng J, Zhang J. Coordination of light, circadian clock with temperature: The potential mechanisms regulating chilling tolerance in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:737-760. [PMID: 31243851 DOI: 10.1111/jipb.12852] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 06/19/2019] [Indexed: 06/09/2023]
Abstract
Rice (Oryza sativa L.) is a major staple food crop for over half of the world's population. As a crop species originated from the subtropics, rice production is hampered by chilling stress. The genetic mechanisms of rice responses to chilling stress have attracted much attention, focusing on chilling-related gene mining and functional analyses. Plants have evolved sophisticated regulatory systems to respond to chilling stress in coordination with light signaling pathway and internal circadian clock. However, in rice, information about light-signaling pathways and circadian clock regulation and their roles in chilling tolerance remains elusive. Further investigation into the regulatory network of chilling tolerance in rice is needed, as knowledge of the interaction between temperature, light, and circadian clock dynamics is limited. Here, based on phenotypic analysis of transgenic and mutant rice lines, we delineate the relevant genes with important regulatory roles in chilling tolerance. In addition, we discuss the potential coordination mechanism among temperature, light, and circadian clock in regulating chilling response and tolerance of rice, and provide perspectives for the ongoing chilling signaling network research in rice.
Collapse
Affiliation(s)
- Xuedan Lu
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, School of Agriculture, Hunan Agricultural University, Changsha, 410128, China
| | - Yan Zhou
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, School of Agriculture, Hunan Agricultural University, Changsha, 410128, China
| | - Fan Fan
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, School of Agriculture, Hunan Agricultural University, Changsha, 410128, China
| | - JunHua Peng
- Huazhi Rice Bio-tech Company Ltd., Changsha, 410128, China
| | - Jian Zhang
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, School of Agriculture, Hunan Agricultural University, Changsha, 410128, China
- Huazhi Rice Bio-tech Company Ltd., Changsha, 410128, China
| |
Collapse
|
20
|
Liang SM, Kuang JF, Ji SJ, Chen QF, Deng W, Min T, Shan W, Chen JY, Lu WJ. The membrane lipid metabolism in horticultural products suffering chilling injury. FOOD QUALITY AND SAFETY 2020. [DOI: 10.1093/fqsafe/fyaa001] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AbstractHorticultural commodities suffer chilling injury following exposure to extremely low temperatures, which results in visible symptoms and considerable quality loss. Therefore, it is of significance to understand the mechanism of this physiological disorder and to develop effective strategies to control it. Chilling stress causes alteration in structure and function of the plasma membrane, which is assumed to be the primary event in response to cold stress. During this process, the membrane lipid metabolism plays a pivotal role in membrane fluidity and stability. In this review, we summarized the possible roles of membrane lipid metabolism in the development of chilling injury, having the potential for developing effective strategies to alleviate chilling injury in horticultural products under refrigerated storage in practice.
Collapse
Affiliation(s)
- Shu-min Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Post-harvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou
| | - Jian-fei Kuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Post-harvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou
| | - Shu-juan Ji
- College of Food, Shenyang Agricultural University, Shenyang City
| | - Qin-fang Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou
| | - Wei Deng
- School of Life Science, Chongqing University, Chongqing
| | - Ting Min
- College of Food Science & Engineering, Wuhan Polytechnic University, China
| | - Wei Shan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Post-harvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou
| | - Jian-ye Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Post-harvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou
| | - Wang-jin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Post-harvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou
| |
Collapse
|
21
|
Wang J, Fang R, Yuan L, Yuan G, Zhao M, Zhu S, Hou J, Chen G, Wang C. Response of photosynthetic capacity and antioxidative system of chloroplast in two wucai ( Brassica campestris L.) genotypes against chilling stress. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:219-232. [PMID: 32158130 PMCID: PMC7036399 DOI: 10.1007/s12298-019-00743-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 08/05/2019] [Accepted: 12/03/2019] [Indexed: 05/07/2023]
Abstract
Chilling stress during the growing season could cause a series of changes in wucai (Brassica campestris L.). WS-1 (chilling-tolerant genotype) and Ta2 (chilling-sensitive genotype) were sampled in present study to explore the chilling tolerance mechanisms. Our results indicated that photosynthetic parameters exhibited lower level in Ta2 than in WS-1 under chilling stress. The rapid chlorophyll fluorescence dynamics curve showed that chilling resulted in a greater inactivation of photosystem II reaction center in Ta2. Reactive oxygen species and malondialdehyde content of chloroplast in Ta2 were higher than WS-1. The ascorbate-glutathione cycle in chloroplast of WS-1 played a more crucial role than Ta2, which was confirmed by higher activities of antioxidant enzymes including Ascorbate peroxidase, Glutathione reductase, Monodehydroascorbate reductase and Dehydroascorbate reductase and higher content of AsA and GSH. In addition, the ultrastructure of chloroplasts in Ta2 was more severely damaged. After low temperature stress, the shape of starch granules in Ta2 changed from elliptical to round and the volume became larger than that of WS-1. The thylakoid structure of Ta2 also became dispersed from the original tight arrangement. Combined with our previous study under heat stress, WS-1 can tolerant both chilling stress and heat stress, which was partly due to a stable photosynthetic system and the higher active antioxidant system in plants, in comparison to Ta2.
Collapse
Affiliation(s)
- Jie Wang
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University, Hefei, 230036 China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, Hefei, 230036 China
| | - Rou Fang
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University, Hefei, 230036 China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, Hefei, 230036 China
| | - Lingyun Yuan
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University, Hefei, 230036 China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, Hefei, 230036 China
- Wanjiang Vegetable Industrial Technology Institute, Maanshan, 243000 Anhui China
| | - Guoqin Yuan
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University, Hefei, 230036 China
| | - Mengru Zhao
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University, Hefei, 230036 China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, Hefei, 230036 China
| | - Shidong Zhu
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University, Hefei, 230036 China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, Hefei, 230036 China
- Wanjiang Vegetable Industrial Technology Institute, Maanshan, 243000 Anhui China
| | - Jinfeng Hou
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University, Hefei, 230036 China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, Hefei, 230036 China
- Wanjiang Vegetable Industrial Technology Institute, Maanshan, 243000 Anhui China
| | - Guohu Chen
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University, Hefei, 230036 China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, Hefei, 230036 China
| | - Chenggang Wang
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University, Hefei, 230036 China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, Hefei, 230036 China
- Wanjiang Vegetable Industrial Technology Institute, Maanshan, 243000 Anhui China
| |
Collapse
|
22
|
Zhou H, Wang X, Huo C, Wang H, An Z, Sun D, Liu J, Tang W, Zhang B. A Quantitative Proteomics Study of Early Heat-Regulated Proteins by Two-Dimensional Difference Gel Electrophoresis Identified OsUBP21 as a Negative Regulator of Heat Stress Responses in Rice. Proteomics 2019; 19:e1900153. [PMID: 31491808 DOI: 10.1002/pmic.201900153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 08/10/2019] [Indexed: 12/11/2022]
Abstract
To understand the early heat shock (HS)-regulated cellular responses that influence the tolerance of rice plant to high environmental temperatures, two-dimensional difference gel electrophoresis (2D-DIGE) is performed to explore the early HS-regulated proteome. Multiple proteins that show abundance changes after 1 and 5 min of HS treatment are identified. Of the early HS-regulated proteins identified, the abundance of a ubiquitin-specific protease, OsUBP21, and its Arabidopsis homolog, AtUBP13, is found to be upregulated by 5 min of HS treatment. Further, knocking the expression of OsUBP21 or AtUBP13 down or out increases the tolerance of rice and Arabidopsis plants to HS stress, suggesting that the function of these ubiquitin-specific proteases in regulating plant HS responses is conserved between monocots and dicots. 2D-DIGE showed a group of proteins are differentially regulated in wild-type and ubp21 mutant after 30 min of HS treatment. Among these proteins, 11 are found to interact directly with OsUBP21; thus, they may be targets of OsUBP21. Future analyses of the roles of these OsUBP21-interacting proteins in plant HS responses will help reveal the protein ubiquitination/deubiquitination-regulated cellular responses induced by HS in rice.
Collapse
Affiliation(s)
- Hangfan Zhou
- Hebei Collaboration Innovation Center for Cell Signaling; Key Laboratory of Molecular and Cellular Biology of Ministry of Education; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Xiaolong Wang
- Hebei Collaboration Innovation Center for Cell Signaling; Key Laboratory of Molecular and Cellular Biology of Ministry of Education; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Chenmin Huo
- College of Biological Science and Engineering, Hebei University of Economics and Business, Shijiazhuang, Hebei, 050061, China
| | - Hui Wang
- Hebei Collaboration Innovation Center for Cell Signaling; Key Laboratory of Molecular and Cellular Biology of Ministry of Education; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Zhichao An
- Hebei Collaboration Innovation Center for Cell Signaling; Key Laboratory of Molecular and Cellular Biology of Ministry of Education; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Daye Sun
- Hebei Collaboration Innovation Center for Cell Signaling; Key Laboratory of Molecular and Cellular Biology of Ministry of Education; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Jingze Liu
- Hebei Collaboration Innovation Center for Cell Signaling; Key Laboratory of Molecular and Cellular Biology of Ministry of Education; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Wenqiang Tang
- Hebei Collaboration Innovation Center for Cell Signaling; Key Laboratory of Molecular and Cellular Biology of Ministry of Education; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Baowen Zhang
- Hebei Collaboration Innovation Center for Cell Signaling; Key Laboratory of Molecular and Cellular Biology of Ministry of Education; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| |
Collapse
|
23
|
Yamaguchi T, Yamakawa H, Nakata M, Kuroda M, Hakata M. Suppression of phospholipase D genes improves chalky grain production by high temperature during the grain-filling stage in rice. Biosci Biotechnol Biochem 2019; 83:1102-1110. [DOI: 10.1080/09168451.2019.1580137] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
ABSTRACT
High temperature (HT) during the grain developing stage causes deleterious effects on rice quality resulting in mature grains with a chalky appearance. Phospholipase D (PLD) plays an important role in plants, including responses to environmental stresses. OsPLDα1, α3 and β2-knockdown (KD) plants showed decreased production of chalky grains at HT. HT ripening increased H2O2 accumulated in the developing grains. However, the increase was canceled by the knockdown of OsPLDβ2. Expression levels of OsCATA which is one of three rice catalase genes, in developing grains of OsPLDβ2-KD plants at 10 DAF were increased compared with that in vector-controls in HT growth conditions. Overexpression of OsCATA markedly suppressed the production of chalky grains in HT growth conditions. These results suggested that OsPLDβ2 functions as a negative regulator of the induction of OsCATA and is involved in the production of chalky grains in HT growth conditions.
Collapse
Affiliation(s)
| | | | - Masaru Nakata
- Central Region Agricultural Research Center, NARO, Joetsu, Japan
| | - Masaharu Kuroda
- Central Region Agricultural Research Center, NARO, Joetsu, Japan
| | - Makoto Hakata
- Central Region Agricultural Research Center, NARO, Joetsu, Japan
| |
Collapse
|
24
|
Kong XM, Zhou Q, Luo F, Wei BD, Wang YJ, Sun HJ, Zhao YB, Ji SJ. Transcriptome analysis of harvested bell peppers (Capsicum annuum L.) in response to cold stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 139:314-324. [PMID: 30927694 DOI: 10.1016/j.plaphy.2019.03.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/27/2019] [Accepted: 03/23/2019] [Indexed: 05/22/2023]
Abstract
Bell peppers are valued for their plentiful vitamin C and nutritional content. Pepper fruits are susceptible to cold storage, which leads to chilling injury (CI); however, the crucial metabolic product and molecular basis response to cold stress have not been elucidated definitely yet. To comprehensively understand the gene regulation network and CI mechanisms in response to cold stress on a molecular level, we performed high-throughput RNA-Seq analysis to investigate genome-wide expression profiles in bell peppers at different storage temperatures (4 °C and 10 °C). A total of 61.55 Gb of clean data were produced; 3863 differentially expressed genes (DEGs) including 1669 up-regulated and 2194 down-regulated were annotated and classified between the CI group and control. Together, a total of 41 cold-induced transcription factor families comprising 250 transcription factors (TFs) were identified. Notably, numerous DEGs involved in biomembrane stability, dehydration and osmoregulation, and plant hormone signal transduction processes were discovered. The transcriptional level of 20 DEGs was verified by reverse transcription quantitative polymerase chain reaction (RT-qPCR). Our results present transcriptome profiles of bell peppers in response to cold stress; the data obtained may be useful for the identification of key candidate genes and elucidation of the mechanisms underlying membrane damage during chilling injury.
Collapse
Affiliation(s)
- Xi-Man Kong
- Department of Food Science, Shenyang Agricultural University, Shenyang, 110866, PR China.
| | - Qian Zhou
- Department of Food Science, Shenyang Agricultural University, Shenyang, 110866, PR China.
| | - Feng Luo
- Department of Food Science, Shenyang Agricultural University, Shenyang, 110866, PR China.
| | - Bao-Dong Wei
- Department of Food Science, Shenyang Agricultural University, Shenyang, 110866, PR China.
| | - Ya-Juan Wang
- Department of Food Science, Shenyang Agricultural University, Shenyang, 110866, PR China.
| | - Hua-Jun Sun
- Department of Food Science, Shenyang Agricultural University, Shenyang, 110866, PR China.
| | - Ying-Bo Zhao
- Department of Food Science, Shenyang Agricultural University, Shenyang, 110866, PR China.
| | - Shu-Juan Ji
- Department of Food Science, Shenyang Agricultural University, Shenyang, 110866, PR China.
| |
Collapse
|
25
|
Takáč T, Novák D, Šamaj J. Recent Advances in the Cellular and Developmental Biology of Phospholipases in Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:362. [PMID: 31024579 PMCID: PMC6459882 DOI: 10.3389/fpls.2019.00362] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 03/08/2019] [Indexed: 05/05/2023]
Abstract
Phospholipases (PLs) are lipid-hydrolyzing enzymes known to have diverse signaling roles during plant abiotic and biotic stress responses. They catalyze lipid remodeling, which is required to generate rapid responses of plants to environmental cues. Moreover, they produce second messenger molecules, such as phosphatidic acid (PA) and thus trigger or modulate signaling cascades that lead to changes in gene expression. The roles of phospholipases in plant abiotic and biotic stress responses have been intensively studied. Nevertheless, emerging evidence suggests that they also make significant contributions to plants' cellular and developmental processes. In this mini review, we summarized recent advances in the study of the cellular and developmental roles of phospholipases in plants.
Collapse
Affiliation(s)
| | | | - Jozef Šamaj
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| |
Collapse
|
26
|
Takáč T, Pechan T, Šamajová O, Šamaj J. Proteomic Analysis of Arabidopsis pldα 1 Mutants Revealed an Important Role of Phospholipase D Alpha 1 in Chloroplast Biogenesis. FRONTIERS IN PLANT SCIENCE 2019; 10:89. [PMID: 30833950 PMCID: PMC6388422 DOI: 10.3389/fpls.2019.00089] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/21/2019] [Indexed: 05/13/2023]
Abstract
Phospholipase D alpha 1 (PLDα1) is a phospholipid hydrolyzing enzyme playing multiple regulatory roles in stress responses of plants. Its signaling activity is mediated by phosphatidic acid (PA) production, capacity to bind, and modulate G-protein complexes or by interaction with other proteins. This work presents a quantitative proteomic analysis of two T-DNA insertion pldα1 mutants of Arabidopsis thaliana. Remarkably, PLDα1 knockouts caused differential regulation of many proteins forming protein complexes, while PLDα1 might be required for their stability. Almost one third of differentially abundant proteins (DAPs) in pldα1 mutants are implicated in metabolism and RNA binding. Latter functional class comprises proteins involved in translation, RNA editing, processing, stability, and decay. Many of these proteins, including those regulating chloroplast protein import and protein folding, share common functions in chloroplast biogenesis and leaf variegation. Consistently, pldα1 mutants showed altered level of TIC40 (a major regulator of protein import into chloroplast), differential accumulation of photosynthetic protein complexes and changed chloroplast sizes as revealed by immunoblotting, blue-native electrophoresis, and microscopic analyses, respectively. Our proteomic analysis also revealed that genetic depletion of PLDα1 also affected proteins involved in cell wall architecture, redox homeostasis, and abscisic acid signaling. Taking together, PLDα1 appears as a protein integrating cytosolic and plastidic protein translations, plastid protein degradation, and protein import into chloroplast in order to regulate chloroplast biogenesis in Arabidopsis.
Collapse
Affiliation(s)
- Tomáš Takáč
- Faculty of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Olomouc, Czechia
| | - Tibor Pechan
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi Agricultural and Forestry Experiment Station, Mississippi State University, Starkville, MS, United States
| | - Olga Šamajová
- Faculty of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Olomouc, Czechia
| | - Jozef Šamaj
- Faculty of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Olomouc, Czechia
- *Correspondence: Jozef Šamaj
| |
Collapse
|
27
|
Shot-Gun Proteomic Analysis on Roots of Arabidopsis pldα1 Mutants Suggesting the Involvement of PLDα1 in Mitochondrial Protein Import, Vesicular Trafficking and Glucosinolate Biosynthesis. Int J Mol Sci 2018; 20:ijms20010082. [PMID: 30587782 PMCID: PMC6337374 DOI: 10.3390/ijms20010082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/19/2018] [Accepted: 12/21/2018] [Indexed: 12/14/2022] Open
Abstract
Phospholipase Dα1 (PLDα1) belongs to phospholipases, a large phospholipid hydrolyzing protein family. PLDα1 has a substrate preference for phosphatidylcholine leading to enzymatic production of phosphatidic acid, a lipid second messenger with multiple cellular functions. PLDα1 itself is implicated in biotic and abiotic stress responses. Here, we present a shot-gun differential proteomic analysis on roots of two Arabidopsis pldα1 mutants compared to the wild type. Interestingly, PLDα1 deficiency leads to altered abundances of proteins involved in diverse processes related to membrane transport including endocytosis and endoplasmic reticulum-Golgi transport. PLDα1 may be involved in the stability of attachment sites of endoplasmic reticulum to the plasma membrane as suggested by increased abundance of synaptotagmin 1, which was validated by immunoblotting and whole-mount immunolabelling analyses. Moreover, we noticed a robust abundance alterations of proteins involved in mitochondrial import and electron transport chain. Notably, the abundances of numerous proteins implicated in glucosinolate biosynthesis were also affected in pldα1 mutants. Our results suggest a broader biological involvement of PLDα1 than anticipated thus far, especially in the processes such as endomembrane transport, mitochondrial protein import and protein quality control, as well as glucosinolate biosynthesis.
Collapse
|
28
|
Chu M, Li J, Zhang J, Shen S, Li C, Gao Y, Zhang S. AtCaM4 interacts with a Sec14-like protein, PATL1, to regulate freezing tolerance in Arabidopsis in a CBF-independent manner. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:5241-5253. [PMID: 30124909 DOI: 10.1093/jxb/ery278] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/28/2018] [Indexed: 05/25/2023]
Abstract
Calmodulin (CaM), a multifunctional Ca2+ sensor, mediates multiple reactions involved in regulation of plant growth and responses to environmental stress. In this study, we found that AtCaM4 plays a negative role in freezing tolerance in Arabidopsis. The deletion of AtCaM4 resulted in enhanced freezing tolerance in cam4 mutant plants. Although AtCaM4 and AtCaM1 were cold-induced isoforms, cam4/cam1Ri double-mutant and cam4 single-mutant plants exhibited similar improvements in freezing tolerance, indicating that AtCaM4 plays major role. Furthermore, we found that AtCaM4 may influence freezing tolerance in a C-repeat binding factor (CBF)-independent manner as cold-induced expression patterns of CBFs did not change in the cam4/cam1Ri mutant. In addition, among the cold-responsive (COR) genes detected, KIN1, COR15b, and COR8.6 exhibited clearly enhanced expression over the long term in cam4/cam1Ri mutant plants exposed to cold stress. Using immunoprecipitation and mass spectrometry, we identified multiple candidate AtCaM4-interacting proteins. Co-immunoprecipitation assays confirmed the interaction of AtCaM4 with PATL1 in vivo and a phenotype analysis showed that patl1 mutant plants exhibited enhanced freezing tolerance. Thus, we conclude that AtCaM4 negatively regulates freezing tolerance in Arabidopsis by interacting with the novel CaM-binding protein PATL1.
Collapse
Affiliation(s)
- Mingxue Chu
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei, P.R. China
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Hebei, P.R. China
- Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, Hebei, P.R. China
| | - Jiaojiao Li
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei, P.R. China
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Hebei, P.R. China
- Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, Hebei, P.R. China
| | - Jingyu Zhang
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei, P.R. China
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Hebei, P.R. China
- Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, Hebei, P.R. China
| | - Sufen Shen
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei, P.R. China
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Hebei, P.R. China
- Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, Hebei, P.R. China
| | - Cuina Li
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei, P.R. China
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Hebei, P.R. China
- Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, Hebei, P.R. China
| | - Yingjie Gao
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei, P.R. China
| | - Suqiao Zhang
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei, P.R. China
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Hebei, P.R. China
- Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, Hebei, P.R. China
| |
Collapse
|
29
|
Guo X, Liu D, Chong K. Cold signaling in plants: Insights into mechanisms and regulation. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:745-756. [PMID: 30094919 DOI: 10.1111/jipb.12706] [Citation(s) in RCA: 268] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 08/08/2018] [Indexed: 05/18/2023]
Abstract
To survive under cold temperatures plants must be able to perceive a cold signal and transduce it into downstream components that induce appropriate defense mechanisms. In addition to inducing adaptive defenses, such as the production of osmotic factors to prevent freezing and the reprogramming of transcriptional pathways, cold temperatures induce changes in plant growth and development which can affect the plant life cycle. In this review, we summarize recent progress in characterizing cold-related genes and the pathways that allow transduction of the cold signal in plants, focusing primarily on studies in Arabidopsis thaliana and rice (Oryza sativa). We summarize cold perception and signal transduction from the plasma membrane to the nucleus, which involves cold sensors, calcium signals, calcium-binding proteins, mitogen-activated protein kinase cascades, and the C-repeat binding factor/dehydration-responsive element binding pathways, as well as trehalose metabolism. Finally, we describe the balance between plant organogenesis and cold tolerance mechanisms in rice. This review encapsulates the known cold signaling factors in plants and provides perspectives for ongoing cold signaling research.
Collapse
Affiliation(s)
- Xiaoyu Guo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongfeng Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Kang Chong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
30
|
OsMAPK3 Phosphorylates OsbHLH002/OsICE1 and Inhibits Its Ubiquitination to Activate OsTPP1 and Enhances Rice Chilling Tolerance. Dev Cell 2018; 43:731-743.e5. [PMID: 29257952 DOI: 10.1016/j.devcel.2017.11.016] [Citation(s) in RCA: 201] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/17/2017] [Accepted: 11/19/2017] [Indexed: 11/20/2022]
Abstract
Improvement of chilling tolerance is a major target in rice breeding. The signaling pathways regulating chilling consist of complex networks, including key transcription factors and their targets. However, it remains largely unknown how transcription factors are activated by chilling stress. Here, we report that the transcription factor OsbHLH002/OsICE1 is phosphorylated by OsMAPK3 under chilling stress. The osbhlh002-1 knockout mutant and antisense transgenic plants showed chilling hypersensitivity, whereas OsbHLH002-overexpressing plants exhibited enhanced chilling tolerance. OsbHLH002 can directly target OsTPP1, which encodes a key enzyme for trehalose biosynthesis. OsMAPK3 interacts with OsbHLH002 to prevent its ubiquitination by the E3 ligase OsHOS1. Under chilling stress, active OsMAPK3 phosphorylates OsbHLH002, leading to accumulation of phospho-OsbHLH002, which promotes OsTPP1 expression and increases trehalose content and resistance to chilling damage. Taken together, these results indicate that OsbHLH002 is phosphorylated by OsMAPK3, which enhances OsbHLH002 activation to its target OsTPP1 during chilling stress.
Collapse
|
31
|
Marla SR, Shiva S, Welti R, Liu S, Burke JJ, Morris GP. Comparative Transcriptome and Lipidome Analyses Reveal Molecular Chilling Responses in Chilling-Tolerant Sorghums. THE PLANT GENOME 2017; 10. [PMID: 29293808 DOI: 10.3835/plantgenome2017.03.0025] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Chilling temperatures (0 to 15°C) are a major constraint for temperate cultivation of tropical-origin crops, including the cereal crop sorghum ( [L.] Moench). Northern Chinese sorghums have adapted to early-season chilling, but molecular mechanisms of chilling tolerance are unknown. We used RNA sequencing of seedlings to compare the chilling-responsive transcriptomes of a chilling-tolerant Chinese accession with a chilling-sensitive US reference line, and mass spectrometry to compare chilling-responsive lipidomes of four chilling-tolerant Chinese accessions with two US reference lines. Comparative transcriptomics revealed chilling-induced up-regulation of cold-response regulator C-repeat binding factor (CBF) transcription factor and genes involved in reactive oxygen detoxification, jasmonic acid (JA) biosynthesis, and lipid remodeling phospholipase Dα1 (α) gene in the chilling-tolerant Chinese line. Lipidomics revealed conserved chilling-induced increases in lipid unsaturation, as well as lipid remodeling of photosynthetic membranes that is specific to chilling-tolerant Chinese accessions. Our results point to CBF-mediated transcriptional regulation, galactolipid and phospholipid remodeling, and JA as potential molecular mechanisms underlying chilling adaptation in Chinese sorghums. These molecular systems underlying chilling response could be targeted in molecular breeding for chilling tolerance.
Collapse
|
32
|
Integrating cell biology and proteomic approaches in plants. J Proteomics 2017; 169:165-175. [DOI: 10.1016/j.jprot.2017.04.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/29/2017] [Accepted: 04/18/2017] [Indexed: 11/22/2022]
|
33
|
Simicevic J, Deplancke B. Transcription factor proteomics-Tools, applications, and challenges. Proteomics 2017; 17. [DOI: 10.1002/pmic.201600317] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/18/2016] [Accepted: 11/11/2016] [Indexed: 11/12/2022]
Affiliation(s)
- Jovan Simicevic
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences; Ecole Polytechnique Fédérale de Lausanne (EPFL), and Swiss Institute of Bioinformatics; Lausanne Switzerland
- LimmaTech Biologics AG; Schlieren Switzerland
| | - Bart Deplancke
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences; Ecole Polytechnique Fédérale de Lausanne (EPFL), and Swiss Institute of Bioinformatics; Lausanne Switzerland
| |
Collapse
|
34
|
Ji T, Li S, Huang M, Di Q, Wang X, Wei M, Shi Q, Li Y, Gong B, Yang F. Overexpression of Cucumber Phospholipase D alpha Gene ( CsPLDα) in Tobacco Enhanced Salinity Stress Tolerance by Regulating Na +-K + Balance and Lipid Peroxidation. FRONTIERS IN PLANT SCIENCE 2017; 8:499. [PMID: 28439282 PMCID: PMC5383712 DOI: 10.3389/fpls.2017.00499] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/22/2017] [Indexed: 05/21/2023]
Abstract
Plant phospholipase D (PLD), which can hydrolyze membrane phospholipids to produce phosphatidic acid (PA), a secondary signaling molecule, has been proposed to function in diverse plant stress responses. In this research, we characterized the roles of the cucumber phospholipase D alpha gene (PLDα, GenBank accession number EF363796) in growth and tolerance to short- and long-term salt stress in transgenic tobacco (Nicotiana tabacum). Fresh and dry weights of roots, PLD activity and content, mitogen activated protein kinase (MAPK) gene expression, Na+-K+ homeostasis, expression of genes encoding ion exchange, reactive oxygen species (ROS) metabolism and osmotic adjustment substances were investigated in wild type (WT) and CsPLDα-overexpression tobacco lines grown under short- and long-term high salt (250 mM) stress. Under short-term stress (5 h), in both overexpression lines, the PA content, and the expression levels of MAPK and several genes related to ion exchange (NtNHX1, NtNKT1, NtHAK1, NtNHA1, NtVAG1), were promoted by high PLD activity. Meanwhile, the Na+/K+ ratio decreased. Under long-term stress (16 days), ROS scavenging systems (superoxide dismutase, peroxidase, catalase, ascorbate peroxidase activities) in leaves of transgenic lines were more active than those in WT plants. Meanwhile, the contents of proline, soluble sugar, and soluble protein significantly increased. In contrast, the contents of O2•- and H2O2, the electrolytic leakage and the accumulation of malondialdehyde in leaves significantly decreased. The root fresh and dry weights of the overexpression lines increased significantly. Na+-K+ homeostasis had the same trend as under the short-term treatment. These findings suggested that CsPLDα-produced PA can activate the downstream signals' adaptive response to alleviate the damage of salt stress, and the main strategies for adaptation to salt stress are the accumulation of osmoprotective compounds, maintaining Na+-K+ homeostasis and the scavenging of ROS, which function in the osmotic balancing and structural stabilization of membranes.
Collapse
Affiliation(s)
- Tuo Ji
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural UniversityTai’an, China
| | - Shuzhen Li
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural UniversityTai’an, China
| | - Meili Huang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural UniversityTai’an, China
| | - Qinghua Di
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural UniversityTai’an, China
| | - Xiufeng Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural UniversityTai’an, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), Ministry of AgricultureTai’an, China
| | - Min Wei
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural UniversityTai’an, China
| | - Qinghua Shi
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural UniversityTai’an, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), Ministry of AgricultureTai’an, China
| | - Yan Li
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural UniversityTai’an, China
| | - Biao Gong
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural UniversityTai’an, China
| | - Fengjuan Yang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural UniversityTai’an, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), Ministry of AgricultureTai’an, China
- *Correspondence: Fengjuan Yang,
| |
Collapse
|