1
|
Baeza J, Coons BE, Lin Z, Riley J, Mendoza M, Peranteau WH, Garcia BA. In utero pulse injection of isotopic amino acids quantifies protein turnover rates during murine fetal development. CELL REPORTS METHODS 2024; 4:100713. [PMID: 38412836 PMCID: PMC10921036 DOI: 10.1016/j.crmeth.2024.100713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 12/20/2023] [Accepted: 01/29/2024] [Indexed: 02/29/2024]
Abstract
Protein translational control is critical for ensuring that the fetus develops correctly and that necessary organs and tissues are formed and functional. We developed an in utero method to quantify tissue-specific protein dynamics by monitoring amino acid incorporation into the proteome after pulse injection. Fetuses of pregnant mice were injected with isotopically labeled lysine and arginine via the vitelline vein at various embyonic days, and organs and tissues were harvested. By analyzing the nascent proteome, unique signatures of each tissue were identified by hierarchical clustering. In addition, the quantified proteome-wide turnover rates were calculated between 3.81E-5 and 0.424 h-1. We observed similar protein turnover profiles for analyzed organs (e.g., liver vs. brain); however, their distributions of turnover rates vary significantly. The translational kinetic profiles of developing organs displayed differentially expressed protein pathways and synthesis rates, which correlated with known physiological changes during mouse development.
Collapse
Affiliation(s)
- Josue Baeza
- Department of Biochemistry & Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Barbara E Coons
- The Center for Fetal Research, Division of Pediatric General, Thoracis and Fetal Surgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Zongtao Lin
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - John Riley
- The Center for Fetal Research, Division of Pediatric General, Thoracis and Fetal Surgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Mariel Mendoza
- Department of Biochemistry & Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - William H Peranteau
- The Center for Fetal Research, Division of Pediatric General, Thoracis and Fetal Surgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | - Benjamin A Garcia
- Department of Biochemistry & Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
2
|
Martin B, Suter DM. Gene expression flux analysis reveals specific regulatory modalities of gene expression. iScience 2023; 26:107758. [PMID: 37701574 PMCID: PMC10493597 DOI: 10.1016/j.isci.2023.107758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/02/2023] [Accepted: 08/24/2023] [Indexed: 09/14/2023] Open
Abstract
The level of a given protein is determined by the synthesis and degradation rates of its mRNA and protein. While several studies have quantified the contribution of different gene expression steps in regulating protein levels, these are limited by using equilibrium approximations in out-of-equilibrium biological systems. Here, we introduce gene expression flux analysis to quantitatively dissect the dynamics of the expression level for specific proteins and use it to analyze published transcriptomics and proteomics datasets. Our analysis reveals distinct regulatory modalities shared by sets of genes with clear functional signatures. We also find that protein degradation plays a stronger role than expected in the adaptation of protein levels. These findings suggest that shared regulatory strategies can lead to versatile responses at the protein level and highlight the importance of going beyond equilibrium approximations to dissect the quantitative contribution of different steps of gene expression to protein dynamics.
Collapse
Affiliation(s)
- Benjamin Martin
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - David M. Suter
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
3
|
Baeza J, Coons BE, Lin Z, Riley J, Mendoza M, Peranteau WH, Garcia BA. In utero pulse injection of isotopic amino acids quantifies protein turnover rates during murine fetal development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.18.541242. [PMID: 37293076 PMCID: PMC10245746 DOI: 10.1101/2023.05.18.541242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Protein translational control is highly regulated step in the gene expression program during mammalian development that is critical for ensuring that the fetus develops correctly and that all of the necessary organs and tissues are formed and functional. Defects in protein expression during fetal development can lead to severe developmental abnormalities or premature death. Currently, quantitative techniques to monitor protein synthesis rates in a developing fetus (in utero) are limited. Here, we developed a novel in utero stable isotope labeling approach to quantify tissue-specific protein dynamics of the nascent proteome during mouse fetal development. Fetuses of pregnant C57BL/6J mice were injected with isotopically labeled lysine (Lys8) and arginine (Arg10) via the vitelline vein at various gestational days. After treatment, fetal organs/tissues including brain, liver, lung, and heart were harvested for sample preparation and proteomic analysis. We show that the mean incorporation rate for injected amino acids into all organs was 17.50 ± 0.6%. By analyzing the nascent proteome, unique signatures of each tissue were identified by hierarchical clustering. In addition, the quantified proteome-wide turnover rates (kobs) were calculated between 3.81E-5 and 0.424 hour-1. We observed similar protein turnover profiles for analyzed organs (e.g., liver versus brain), however, their distributions of turnover rates vary significantly. The translational kinetic profiles of developing organs displayed differentially expressed protein pathways and synthesis rates which correlated with known physiological changes during mouse development.
Collapse
Affiliation(s)
- Josue Baeza
- Department of Biochemistry & Biophysics, University of Pennsylvania, Philadelphia, PA 19104
- Contributed equally to this work
| | - Barbara E. Coons
- The Center for Fetal Research, Division of Pediatric General, Thoracis and Fetal Surgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104
- Contributed equally to this work
| | - Zongtao Lin
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, MO 63110
| | - John Riley
- The Center for Fetal Research, Division of Pediatric General, Thoracis and Fetal Surgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104
| | - Mariel Mendoza
- Department of Biochemistry & Biophysics, University of Pennsylvania, Philadelphia, PA 19104
| | - William H. Peranteau
- The Center for Fetal Research, Division of Pediatric General, Thoracis and Fetal Surgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104
| | - Benjamin A Garcia
- Department of Biochemistry & Biophysics, University of Pennsylvania, Philadelphia, PA 19104
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, MO 63110
| |
Collapse
|
4
|
Saleh AM, VanDyk TG, Jacobson KR, Khan SA, Calve S, Kinzer-Ursem TL. An Integrative Biology Approach to Quantify the Biodistribution of Azidohomoalanine In Vivo. Cell Mol Bioeng 2023; 16:99-115. [PMID: 37096070 PMCID: PMC10121978 DOI: 10.1007/s12195-023-00760-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/22/2023] [Indexed: 04/26/2023] Open
Abstract
Background Identification and quantitation of newly synthesized proteins (NSPs) are critical to understanding protein dynamics in development and disease. Probing the nascent proteome can be achieved using non-canonical amino acids (ncAAs) to selectively label the NSPs utilizing endogenous translation machinery, which can then be quantitated with mass spectrometry. We have previously demonstrated that labeling the in vivo murine proteome is feasible via injection of azidohomoalanine (Aha), an ncAA and methionine (Met) analog, without the need for Met depletion. Aha labeling can address biological questions wherein temporal protein dynamics are significant. However, accessing this temporal resolution requires a more complete understanding of Aha distribution kinetics in tissues. Results To address these gaps, we created a deterministic, compartmental model of the kinetic transport and incorporation of Aha in mice. Model results demonstrate the ability to predict Aha distribution and protein labeling in a variety of tissues and dosing paradigms. To establish the suitability of the method for in vivo studies, we investigated the impact of Aha administration on normal physiology by analyzing plasma and liver metabolomes following various Aha dosing regimens. We show that Aha administration induces minimal metabolic alterations in mice. Conclusions Our results demonstrate that we can reproducibly predict protein labeling and that the administration of this analog does not significantly alter in vivo physiology over the course of our experimental study. We expect this model to be a useful tool to guide future experiments utilizing this technique to study proteomic responses to stimuli. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-023-00760-4.
Collapse
Affiliation(s)
- Aya M. Saleh
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Dr, West Lafayette, IN 47906 USA
| | - Tyler G. VanDyk
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Dr, West Lafayette, IN 47906 USA
| | - Kathryn R. Jacobson
- Purdue University Interdisciplinary Life Science Program, 155 S. Grant Street, West Lafayette, IN 47907 USA
| | - Shaheryar A. Khan
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Dr, West Lafayette, IN 47906 USA
| | - Sarah Calve
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Dr, West Lafayette, IN 47906 USA
- Purdue University Interdisciplinary Life Science Program, 155 S. Grant Street, West Lafayette, IN 47907 USA
- Paul M. Rady Department of Mechanical Engineering, University of Colorado – Boulder, 1111 Engineering Center, 427 UCB, Boulder, CO 80309 USA
| | - Tamara L. Kinzer-Ursem
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Dr, West Lafayette, IN 47906 USA
- Purdue University Interdisciplinary Life Science Program, 155 S. Grant Street, West Lafayette, IN 47907 USA
| |
Collapse
|
5
|
Fornasiero EF, Savas JN. Determining and interpreting protein lifetimes in mammalian tissues. Trends Biochem Sci 2023; 48:106-118. [PMID: 36163144 PMCID: PMC9868050 DOI: 10.1016/j.tibs.2022.08.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 01/26/2023]
Abstract
The orchestration of protein production and degradation, and the regulation of protein lifetimes, play a central role in the majority of biological processes. Recent advances in proteomics have enabled the estimation of protein half-lives for thousands of proteins in vivo. What is the utility of these measurements, and how can they be leveraged to interpret the proteome changes occurring during development, aging, and disease? This opinion article summarizes leading technical approaches and highlights their strengths and weaknesses. We also disambiguate frequently used terminology, illustrate recent mechanistic insights, and provide guidance for interpreting and validating protein turnover measurements. Overall, protein lifetimes, coupled to estimates of protein levels, are essential for obtaining a deep understanding of mammalian biology and the basic processes defining life itself.
Collapse
Affiliation(s)
- Eugenio F Fornasiero
- Department of Neuro-Sensory Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany.
| | - Jeffrey N Savas
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
6
|
Harmonizing Labeling and Analytical Strategies to Obtain Protein Turnover Rates in Intact Adult Animals. Mol Cell Proteomics 2022; 21:100252. [PMID: 35636728 PMCID: PMC9249856 DOI: 10.1016/j.mcpro.2022.100252] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/29/2022] [Accepted: 05/25/2022] [Indexed: 12/02/2022] Open
Abstract
Changes in the abundance of individual proteins in the proteome can be elicited by modulation of protein synthesis (the rate of input of newly synthesized proteins into the protein pool) or degradation (the rate of removal of protein molecules from the pool). A full understanding of proteome changes therefore requires a definition of the roles of these two processes in proteostasis, collectively known as protein turnover. Because protein turnover occurs even in the absence of overt changes in pool abundance, turnover measurements necessitate monitoring the flux of stable isotope–labeled precursors through the protein pool such as labeled amino acids or metabolic precursors such as ammonium chloride or heavy water. In cells in culture, the ability to manipulate precursor pools by rapid medium changes is simple, but for more complex systems such as intact animals, the approach becomes more convoluted. Individual methods bring specific complications, and the suitability of different methods has not been comprehensively explored. In this study, we compare the turnover rates of proteins across four mouse tissues, obtained from the same inbred mouse strain maintained under identical husbandry conditions, measured using either [13C6]lysine or [2H2]O as the labeling precursor. We show that for long-lived proteins, the two approaches yield essentially identical measures of the first-order rate constant for degradation. For short-lived proteins, there is a need to compensate for the slower equilibration of lysine through the precursor pools. We evaluate different approaches to provide that compensation. We conclude that both labels are suitable, but careful determination of precursor enrichment kinetics in amino acid labeling is critical and has a considerable influence on the numerical values of the derived protein turnover rates. Controlled comparison of heavy water or amino acid labeling for protein turnover. Delays in amino acid precursor labeling mostly affect high turnover proteins Both methods produced similar turnover rates after adjustment of precursor kinetics. Recommendations for analytical workflows for protein turnover studies in animals.
Collapse
|
7
|
Sadygov RG. Protein turnover models for LC-MS data of heavy water metabolic labeling. Brief Bioinform 2022; 23:bbab598. [PMID: 35062023 PMCID: PMC8921656 DOI: 10.1093/bib/bbab598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/12/2021] [Accepted: 12/26/2021] [Indexed: 01/23/2023] Open
Abstract
Protein turnover is vital for cellular functioning and is often associated with the pathophysiology of a variety of diseases. Metabolic labeling with heavy water followed by liquid chromatography coupled to mass spectrometry is a powerful tool to study in vivo protein turnover in high throughput and large scale. Heavy water is a cost-effective and easy to use labeling agent. It labels all nonessential amino acids. Due to its toxicity in high concentrations (20% or higher), small enrichments (8% or smaller) of heavy water are used with most organisms. The low concentration results in incomplete labeling of peptides/proteins. Therefore, the data processing is more challenging and requires accurate quantification of labeled and unlabeled forms of a peptide from overlapping mass isotopomer distributions. The work describes the bioinformatics aspects of the analysis of heavy water labeled mass spectral data, available software tools and current challenges and opportunities.
Collapse
Affiliation(s)
- Rovshan G Sadygov
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, 301 University of Blvd, Galveston, TX 77555, USA
| |
Collapse
|
8
|
Swovick K, Firsanov D, Welle KA, Hryhorenko JR, Wise JP, George C, Sformo TL, Seluanov A, Gorbunova V, Ghaemmaghami S. Interspecies Differences in Proteome Turnover Kinetics Are Correlated With Life Spans and Energetic Demands. Mol Cell Proteomics 2021; 20:100041. [PMID: 33639418 PMCID: PMC7950207 DOI: 10.1074/mcp.ra120.002301] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/27/2020] [Accepted: 12/28/2020] [Indexed: 12/21/2022] Open
Abstract
Cells continually degrade and replace damaged proteins. However, the high energetic demand of protein turnover generates reactive oxygen species that compromise the long-term health of the proteome. Thus, the relationship between aging, protein turnover, and energetic demand remains unclear. Here, we used a proteomic approach to measure rates of protein turnover within primary fibroblasts isolated from a number of species with diverse life spans including the longest-lived mammal, the bowhead whale. We show that organismal life span is negatively correlated with turnover rates of highly abundant proteins. In comparison with mice, cells from long-lived naked mole rats have slower rates of protein turnover, lower levels of ATP production, and reduced reactive oxygen species levels. Despite having slower rates of protein turnover, naked mole rat cells tolerate protein misfolding stress more effectively than mouse cells. We suggest that in lieu of a rapid constitutive turnover, long-lived species may have evolved more energetically efficient mechanisms for selective detection and clearance of damaged proteins.
Collapse
Affiliation(s)
- Kyle Swovick
- Department of Biology, University of Rochester, Rochester, New York, USA
| | - Denis Firsanov
- Department of Biology, University of Rochester, Rochester, New York, USA
| | - Kevin A Welle
- Mass Spectrometry Resource Laboratory, University of Rochester, Rochester, New York, USA
| | - Jennifer R Hryhorenko
- Mass Spectrometry Resource Laboratory, University of Rochester, Rochester, New York, USA
| | - John P Wise
- Department of Pharmacology and Toxicology, Wise Laboratory for Environmental and Genetic Toxicology, University of Louisville, Louisville, Kentucky, USA
| | - Craig George
- North Slope Borough Department of Wildlife Management, Barrow, Alaska, USA
| | - Todd L Sformo
- North Slope Borough Department of Wildlife Management, Barrow, Alaska, USA; Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | - Andrei Seluanov
- Department of Biology, University of Rochester, Rochester, New York, USA
| | - Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, New York, USA
| | - Sina Ghaemmaghami
- Department of Biology, University of Rochester, Rochester, New York, USA; Mass Spectrometry Resource Laboratory, University of Rochester, Rochester, New York, USA.
| |
Collapse
|
9
|
Stansfield BN, Brown AD, Stewart CE, Burniston JG. Dynamic Profiling of Protein Mole Synthesis Rates during C2C12 Myoblast Differentiation. Proteomics 2020; 21:e2000071. [PMID: 33068326 DOI: 10.1002/pmic.202000071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 09/17/2020] [Indexed: 11/05/2022]
Abstract
Mole (MSR) and fractional (FSR) synthesis rates of proteins during C2C12 myoblast differentiation are investigated. Myoblast cultures supplemented with D2 O during 0-24 h or 72-96 h of differentiation are analyzed by LC-MS/MS to calculate protein FSR and MSR after samples are spiked with yeast alcohol dehydrogenase (ADH1). Profiling of 153 proteins detected 70 significant (p ≤ 0.05, FDR ≤ 1%) differences in abundance between cell states. Early differentiation is enriched by clusters of ribosomal and heat shock proteins, whereas later differentiation is associated with actin filament binding. The median (first-third quartile) FSR (%/h) during early differentiation 4.1 (2.7-5.3) is approximately twofold greater than later differentiation 1.7 (1.0-2.2), equating to MSR of 0.64 (0.38-1.2) and 0.28 (0.1-0.5) fmol h-1 µg-1 total protein, respectively. MSR corresponds more closely with abundance data and highlights proteins associated with glycolytic processes and intermediate filament protein binding that are not evident among FSR data. Similarly, MSR during early differentiation accounts for 78% of the variation in protein abundance during later differentiation, whereas FSR accounts for 4%. Conclusively, the interpretation of protein synthesis data differs when reported in mole or fractional terms, which has consequences when studying the allocation of cellular resources.
Collapse
Affiliation(s)
- Ben N Stansfield
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Tom Reilly Building, Byrom Street, Liverpool, L3 3AF, UK
| | - Alexander D Brown
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Tom Reilly Building, Byrom Street, Liverpool, L3 3AF, UK
| | - Claire E Stewart
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Tom Reilly Building, Byrom Street, Liverpool, L3 3AF, UK
| | - Jatin G Burniston
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Tom Reilly Building, Byrom Street, Liverpool, L3 3AF, UK
| |
Collapse
|
10
|
Abstract
Promiscuous mating by females leads to competition between males for fertilization success. When fertilization is internal, this means that rival males’ sperm must compete within the female reproductive tract to reach the eggs. Males of diverse species deposit a mating plug during copulation, which is hypothesized to assist in the race for fertilization following multiple mating. Here, we tested this by using stable isotope labeling to discriminate the ejaculates of competing male voles in direct competition. This revealed that the mating plug simultaneously inhibits the sperm of rival males while promoting transport of a male’s own sperm, both of which are beneficial in the competition for fertilizations. Mating plugs are produced by many sexually reproducing animals and are hypothesized to promote male fertilization success under promiscuous mating. However, tests of this hypothesis have been constrained by an inability to discriminate ejaculates of different males in direct competition. Here, we use stable isotope labeling in vivo and proteomics to achieve this in a promiscuous rodent, Myodes glareolus. We show that, although the first male’s plug is usually dislodged, it can be retained throughout the second male’s copulation. Retained plugs did not completely block rival sperm but did significantly limit their numbers. Differences in the number of each male’s sperm progressing through the female reproductive tract were also explained by natural variation in the size of mating plugs and reproductive accessory glands from which major plug proteins originate. Relative sperm numbers in turn predicted the relative fertilization success of rival males. Our application of stable isotopes to label ejaculates resolves a longstanding debate by revealing how rodent mating plugs promote fertilization success under competitive conditions. This approach opens new opportunities to reveal cryptic mechanisms of postcopulatory sexual selection among diverse animal taxa.
Collapse
|
11
|
Daurio NA, Zhou H, Chen Y, Sheth PR, Imbriglio JE, McLaren DG, Tawa P, Rachdaoui N, Previs MJ, Kasumov T, O’Neil J, Previs SF. Examining Targeted Protein Degradation from Physiological and Analytical Perspectives: Enabling Translation between Cells and Subjects. ACS Chem Biol 2020; 15:2623-2635. [PMID: 32930572 DOI: 10.1021/acschembio.0c00380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The ability to target specific proteins for degradation may open a new door toward developing therapeutics. Although effort in chemistry is essential for advancing this modality, i.e., one needs to generate proteolysis targeting chimeras (bifunctional molecules, also referred to as PROTACS) or "molecular glues" to accelerate protein degradation, we suspect that investigations could also benefit by directing attention toward physiological regulation surrounding protein homeostasis, including the methods that can be used to examine changes in protein kinetics. This perspective will first consider some metabolic scenarios that might be of importance when one aims to change protein abundance by increasing protein degradation. Specifically, could protein turnover impact the apparent outcome? We will then outline how to study protein dynamics by coupling stable isotope tracer methods with mass spectrometry-based detection; since the experimental conditions could have a dramatic effect on protein turnover, special attention is directed toward the application of methods for quantifying protein kinetics using in vitro and in vivo models. Our goal is to present key concepts that should enable mechanistically informed studies which test targeted protein degradation strategies.
Collapse
Affiliation(s)
- Natalie A. Daurio
- Merck & Co., Inc, 2000 Galloping Hill Rd, Kenilworth, New Jersey 07033, United States
| | - Haihong Zhou
- Merck & Co., Inc, 2000 Galloping Hill Rd, Kenilworth, New Jersey 07033, United States
| | - Ying Chen
- Merck & Co., Inc, 2000 Galloping Hill Rd, Kenilworth, New Jersey 07033, United States
| | - Payal R. Sheth
- Merck & Co., Inc, 2000 Galloping Hill Rd, Kenilworth, New Jersey 07033, United States
| | - Jason E. Imbriglio
- Merck & Co., Inc, 2000 Galloping Hill Rd, Kenilworth, New Jersey 07033, United States
| | - David G. McLaren
- Merck & Co., Inc, 2000 Galloping Hill Rd, Kenilworth, New Jersey 07033, United States
| | - Paul Tawa
- Merck & Co., Inc, 2000 Galloping Hill Rd, Kenilworth, New Jersey 07033, United States
| | - Nadia Rachdaoui
- Department of Animal Sciences, Rutgers, the State University of New Jersey, New Brunswick, New Jersey 08901, United States
| | - Michael J. Previs
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont 05454, United States
| | - Takhar Kasumov
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio 44272, United States
| | - Jennifer O’Neil
- Merck & Co., Inc, 2000 Galloping Hill Rd, Kenilworth, New Jersey 07033, United States
| | - Stephen F. Previs
- Merck & Co., Inc, 2000 Galloping Hill Rd, Kenilworth, New Jersey 07033, United States
| |
Collapse
|
12
|
Stead CA, Hesketh SJ, Bennett S, Sutherland H, Jarvis JC, Lisboa PJ, Burniston JG. Fractional Synthesis Rates of Individual Proteins in Rat Soleus and Plantaris Muscles. Proteomes 2020; 8:proteomes8020010. [PMID: 32403418 PMCID: PMC7356555 DOI: 10.3390/proteomes8020010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 12/14/2022] Open
Abstract
Differences in the protein composition of fast- and slow-twitch muscle may be maintained by different rates of protein turnover. We investigated protein turnover rates in slow-twitch soleus and fast-twitch plantaris of male Wistar rats (body weight 412 ± 69 g). Animals were assigned to four groups (n = 3, in each), including a control group (0 d) and three groups that received deuterium oxide (D2O) for either 10 days, 20 days or 30 days. D2O administration was initiated by an intraperitoneal injection of 20 μL of 99% D2O-saline per g body weight, and maintained by provision of 4% (v/v) D2O in the drinking water available ad libitum. Soluble proteins from harvested muscles were analysed by liquid chromatography–tandem mass spectrometry and identified against the SwissProt database. The enrichment of D2O and rate constant (k) of protein synthesis was calculated from the abundance of peptide mass isotopomers. The fractional synthesis rate (FSR) of 44 proteins in soleus and 34 proteins in plantaris spanned from 0.58%/day (CO1A1: Collagen alpha-1 chain) to 5.40%/day NDRG2 (N-myc downstream-regulated gene 2 protein). Eight out of 18 proteins identified in both muscles had a different FSR in soleus than in plantaris (p < 0.05).
Collapse
Affiliation(s)
- Connor A. Stead
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK; (C.A.S.); (S.J.H.); (S.B.); (H.S.); (J.C.J.)
| | - Stuart J. Hesketh
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK; (C.A.S.); (S.J.H.); (S.B.); (H.S.); (J.C.J.)
| | - Samuel Bennett
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK; (C.A.S.); (S.J.H.); (S.B.); (H.S.); (J.C.J.)
| | - Hazel Sutherland
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK; (C.A.S.); (S.J.H.); (S.B.); (H.S.); (J.C.J.)
| | - Jonathan C. Jarvis
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK; (C.A.S.); (S.J.H.); (S.B.); (H.S.); (J.C.J.)
| | - Paulo J. Lisboa
- Department of Applied Mathematics, Liverpool John Moores University, Liverpool L3 3AF, UK;
| | - Jatin G. Burniston
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK; (C.A.S.); (S.J.H.); (S.B.); (H.S.); (J.C.J.)
- Correspondence: ; Tel.: +44-(0)-151-904-6265
| |
Collapse
|
13
|
Basisty N, Holtz A, Schilling B. Accumulation of "Old Proteins" and the Critical Need for MS-based Protein Turnover Measurements in Aging and Longevity. Proteomics 2020; 20:e1800403. [PMID: 31408259 PMCID: PMC7015777 DOI: 10.1002/pmic.201800403] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/31/2019] [Indexed: 12/31/2022]
Abstract
Aging and age-related diseases are accompanied by proteome remodeling and progressive declines in cellular machinery required to maintain protein homeostasis (proteostasis), such as autophagy, ubiquitin-mediated degradation, and protein synthesis. While many studies have focused on capturing changes in proteostasis, the identification of proteins that evade these cellular processes has recently emerged as an approach to studying the aging proteome. With advances in proteomic technology, it is possible to monitor protein half-lives and protein turnover at the level of individual proteins in vivo. For large-scale studies, these technologies typically include the use of stable isotope labeling coupled with MS and comprehensive assessment of protein turnover rates. Protein turnover studies have revealed groups of highly relevant long-lived proteins (LLPs), such as the nuclear pore complexes, extracellular matrix proteins, and protein aggregates. Here, the role of LLPs during aging and age-related diseases and the methods used to identify and quantify their changes are reviewed. The methods available to conduct studies of protein turnover, used in combination with traditional proteomic methods, will enable the field to perform studies in a systems biology context, as changes in proteostasis may not be revealed in studies that solely measure differential protein abundances.
Collapse
Affiliation(s)
| | - Anja Holtz
- The Buck Institute for Research on AgingNovatoCAUSA
| | | |
Collapse
|
14
|
Arike L, Seiman A, van der Post S, Rodriguez Piñeiro AM, Ermund A, Schütte A, Bäckhed F, Johansson MEV, Hansson GC. Protein Turnover in Epithelial Cells and Mucus along the Gastrointestinal Tract Is Coordinated by the Spatial Location and Microbiota. Cell Rep 2020; 30:1077-1087.e3. [PMID: 31995731 PMCID: PMC6996021 DOI: 10.1016/j.celrep.2019.12.068] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/09/2019] [Accepted: 12/17/2019] [Indexed: 02/07/2023] Open
Abstract
The gastrointestinal tract is covered by a single layer of epithelial cells that, together with the mucus layers, protect the underlying tissue from microbial invasion. The epithelium has one of the highest turnover rates in the body. Using stable isotope labeling, high-resolution mass spectrometry, and computational analysis, we report a comprehensive dataset of the turnover of more than 3,000 and the expression of more than 5,000 intestinal epithelial cell proteins, analyzed under conventional and germ-free conditions across five different segments in mouse intestine. The median protein half-life is shorter in the small intestine than in the colon. Differences in protein turnover rates along the intestinal tract can be explained by distinct physiological and immune-related functions between the small and large intestine. An absence of microbiota results in an approximately 1 day longer protein half-life in germ-free animals. Dataset of protein turnover rate and expression along the mice intestinal tract Protein turnover rate is slower in colon than in small intestine Median protein half-life is 1 day longer in germ-free mice
Collapse
Affiliation(s)
- Liisa Arike
- Department of Medical Biochemistry, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Andrus Seiman
- Centre of Food and Fermentation Technologies, Akadeemia tee 15a, 12618 Tallinn, Estonia
| | - Sjoerd van der Post
- Department of Medical Biochemistry, University of Gothenburg, 405 30 Gothenburg, Sweden
| | | | - Anna Ermund
- Department of Medical Biochemistry, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - André Schütte
- Department of Medical Biochemistry, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Fredrik Bäckhed
- Department of Molecular and Clinical Medicine, University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Malin E V Johansson
- Department of Medical Biochemistry, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Gunnar C Hansson
- Department of Medical Biochemistry, University of Gothenburg, 405 30 Gothenburg, Sweden.
| |
Collapse
|
15
|
Lehmann S, Hirtz C, Vialaret J, Ory M, Combes GG, Corre ML, Badiou S, Cristol JP, Hanon O, Cornillot E, Bauchet L, Gabelle A, Colinge J. In Vivo Large-Scale Mapping of Protein Turnover in Human Cerebrospinal Fluid. Anal Chem 2019; 91:15500-15508. [PMID: 31730336 DOI: 10.1021/acs.analchem.9b03328] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The extraction of accurate physiological parameters from clinical samples provides a unique perspective to understand disease etiology and evolution, including under therapy. We introduce a new methodologic framework to map patient proteome dynamics in vivo, either proteome-wide or in large targeted panels. We applied it to ventricular cerebrospinal fluid (CSF) and could determine the turnover parameters of almost 200 proteins, whereas a handful were known previously. We covered a large number of neuron biology- and immune system-related proteins, including many biomarkers and drug targets. This first large data set unraveled a significant relationship between turnover and protein origin that relates to our ability to investigate organ physiology with protein-labeling strategy specifics. Our data constitute the first draft of CSF proteome dynamics as well as a repertoire of peptides for the community to design new analyses. The disclosed methods apply to other fluids or tissues provided sequential sample collection can be performed. We show that the proposed mathematical modeling applies to other analytical methods in the field.
Collapse
Affiliation(s)
- Sylvain Lehmann
- CHU de Montpellier , 34295 Montpellier , France.,IRMB, INSERM, Laboratoire de Biochimie Protéomique Clinique , 34295 Montpellier , France.,Université de Montpellier , 34090 Montpellier , France
| | - Christophe Hirtz
- CHU de Montpellier , 34295 Montpellier , France.,IRMB, INSERM, Laboratoire de Biochimie Protéomique Clinique , 34295 Montpellier , France.,Université de Montpellier , 34090 Montpellier , France
| | - Jérôme Vialaret
- CHU de Montpellier , 34295 Montpellier , France.,IRMB, INSERM, Laboratoire de Biochimie Protéomique Clinique , 34295 Montpellier , France
| | - Maxence Ory
- Institut de Recherche en Cancérologie de Montpellier, INSERM , 34298 Montpellier , France
| | - Guillaume Gras Combes
- Université de Montpellier , 34090 Montpellier , France.,Hôpital Gui de Chauliac, Service de Neurochirurgie , CHU de Montpellier , 34295 Montpellier , France.,INSERM U1051 , 34295 Montpellier , France
| | - Marine Le Corre
- Université de Montpellier , 34090 Montpellier , France.,Hôpital Gui de Chauliac, Service de Neurochirurgie , CHU de Montpellier , 34295 Montpellier , France.,INSERM U1051 , 34295 Montpellier , France
| | - Stéphanie Badiou
- Université de Montpellier , 34090 Montpellier , France.,Département de Biochimie et Hormonologie , CHU de Montpellier , 34295 Montpellier , France.,PhyMedExp , Université de Montpellier, INSERM, CNRS , 34090 Montpellier , France
| | - Jean-Paul Cristol
- Université de Montpellier , 34090 Montpellier , France.,Département de Biochimie et Hormonologie , CHU de Montpellier , 34295 Montpellier , France.,PhyMedExp , Université de Montpellier, INSERM, CNRS , 34090 Montpellier , France
| | - Olivier Hanon
- Service de Gériatrie , Hôpital Broca (AP-HP) , 75013 Paris , France.,Université Paris Descartes, Sorbonne Paris Cité , 75006 Paris , France
| | - Emmanuel Cornillot
- Université de Montpellier , 34090 Montpellier , France.,Institut de Recherche en Cancérologie de Montpellier, INSERM , 34298 Montpellier , France
| | - Luc Bauchet
- Université de Montpellier , 34090 Montpellier , France.,Hôpital Gui de Chauliac, Service de Neurochirurgie , CHU de Montpellier , 34295 Montpellier , France.,INSERM U1051 , 34295 Montpellier , France
| | - Audrey Gabelle
- Université de Montpellier , 34090 Montpellier , France.,Centre Mémoire de Ressources et de Recherche Languedoc-Roussillon , 34295 Montpellier , France.,Hôpital Gui de Chauliac , CHU de Montpellier , 34295 Montpellier , France
| | - Jacques Colinge
- Université de Montpellier , 34090 Montpellier , France.,Institut de Recherche en Cancérologie de Montpellier, INSERM , 34298 Montpellier , France.,Institut Régional du Cancer de Montpellier , 34298 Montpellier , France
| |
Collapse
|
16
|
Angel TE, Naylor BC, Price JC, Evans C, Szapacs M. Improved Sensitivity for Protein Turnover Quantification by Monitoring Immonium Ion Isotopologue Abundance. Anal Chem 2019; 91:9732-9740. [PMID: 31259532 DOI: 10.1021/acs.analchem.9b01329] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We describe an analytical strategy allowing for the direct quantification of stable isotope label incorporation in newly synthesized proteins following administration of the stable isotope tracer deuterium oxide. We present a demonstration of coupling high-resolution mass spectrometry, metabolic stable isotope labeling, and MS/MS-based isotopologue quantification for the measurement of protein turnover. Stable isotope labeling with deuterium oxide, followed by immonium ion isotopologue quantification, is a more sensitive strategy for determining protein fractional synthesis rates compared to peptide centric mass isotopomer distribution analysis approaches when labeling time and/or stable isotope tracer exposure is limited and, as such, offers a great advantage for human studies.
Collapse
Affiliation(s)
- Thomas E Angel
- In-vitro/In-vivo Translation Platform Group , GlaxoSmithKline , 1250 S Collegeville Road , Collegeville , Pennsylvania 19426 , United States
| | - Bradley C Naylor
- Department of Chemistry and Biochemistry , Brigham Young University , Provo , Utah 84604 , United States
| | - John C Price
- Department of Chemistry and Biochemistry , Brigham Young University , Provo , Utah 84604 , United States
| | - Christopher Evans
- In-vitro/In-vivo Translation Platform Group , GlaxoSmithKline , 1250 S Collegeville Road , Collegeville , Pennsylvania 19426 , United States
| | - Matthew Szapacs
- In-vitro/In-vivo Translation Platform Group , GlaxoSmithKline , 1250 S Collegeville Road , Collegeville , Pennsylvania 19426 , United States
| |
Collapse
|
17
|
Cobley JN, Sakellariou GK, Husi H, McDonagh B. Proteomic strategies to unravel age-related redox signalling defects in skeletal muscle. Free Radic Biol Med 2019; 132:24-32. [PMID: 30219702 DOI: 10.1016/j.freeradbiomed.2018.09.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/22/2018] [Accepted: 09/12/2018] [Indexed: 01/06/2023]
Abstract
Increased oxidative damage and disrupted redox signalling are consistently associated with age-related loss of skeletal muscle mass and function. Redox signalling can directly regulate biogenesis and degradation pathways and indirectly via activation of key transcription factors. Contracting skeletal muscle fibres endogenously generate free radicals (e.g. superoxide) and non-radical derivatives (e.g. hydrogen peroxide). Exercise induced redox signalling can promote beneficial adaptive responses that are disrupted by age-related redox changes. Identifying and quantifying the redox signalling pathways responsible for successful adaptation to exercise makes skeletal muscle an attractive physiological model for redox proteomic approaches. Site specific identification of the redox modification and quantification of site occupancy in the context of protein abundance remains a crucial concept for redox proteomics approaches. Notwithstanding, the technical limitations associated with skeletal muscle for proteomic analysis, we discuss current approaches for the identification and quantification of transient and stable redox modifications that have been employed to date in ageing research. We also discuss recent developments in proteomic approaches in skeletal muscle and potential implications and opportunities for investigating disrupted redox signalling in skeletal muscle ageing.
Collapse
Affiliation(s)
- James N Cobley
- Free Radical Laboratory, Departments of Diabetes and Cardiovascular Sciences, Centre for Health Sciences, University of the Highlands and Islands, Inverness IV2 3JH, UK
| | | | - Holger Husi
- Free Radical Laboratory, Departments of Diabetes and Cardiovascular Sciences, Centre for Health Sciences, University of the Highlands and Islands, Inverness IV2 3JH, UK
| | - Brian McDonagh
- Discipline of Physiology, School of Medicine, NUI Galway, Ireland.
| |
Collapse
|
18
|
Angi M, Kalirai H, Prendergast S, Simpson D, Hammond DE, Madigan MC, Beynon RJ, Coupland SE. In-depth proteomic profiling of the uveal melanoma secretome. Oncotarget 2018; 7:49623-49635. [PMID: 27391064 PMCID: PMC5226534 DOI: 10.18632/oncotarget.10418] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/09/2016] [Indexed: 12/23/2022] Open
Abstract
Uveal melanoma (UM), the most common primary intraocular tumour in adults, is characterised by a high frequency of metastases to the liver, typically with a fatal outcome. Proteins secreted from cancer cells (‘secretome’) are biologically important molecules thought to contribute to tumour progression. We examined the UM secretome by applying a label-free nanoLCMS/MS proteomic approach to profile proteins secreted into culture media by primary UM tumours with a high− (HR; n = 11) or low− (LR; n = 4) metastatic risk, compared to normal choroidal melanocytes (NCM) from unaffected post-mortem eyes. Across the three groups, 1843 proteins were identified at a 1% false discovery rate; 758 of these by at least 3 unique peptides, and quantified. The majority (539/758, 71%) of proteins were classified as secreted either by classical (144, 19%), non-classical (43, 6%) or exosomal (352, 46%) mechanisms. Bioinformatic analyzes showed that the secretome composition reflects biological differences and similarities of the samples. Ingenuity® pathway analysis of the secreted protein dataset identified abundant proteins involved in cell proliferation-, growth- and movement. Hepatic fibrosis/hepatic stellate cell activation and the mTORC1-S6K signalling axis were among the most differentially regulated biological processes in UM as compared with NCM. Further analysis of proteins upregulated ≥ 2 in HR-UM only, identified exosomal proteins involved in extracellular matrix remodelling and cancer cell migration/invasion; as well as classically secreted proteins, possibly representing novel biomarkers of metastatic disease. In conclusion, UM secretome analysis identifies novel proteins and pathways that may contribute to metastatic development at distant sites, particularly in the liver.
Collapse
Affiliation(s)
- Martina Angi
- Liverpool Ocular Oncology Research Group, Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Helen Kalirai
- Liverpool Ocular Oncology Research Group, Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Samuel Prendergast
- Liverpool Ocular Oncology Research Group, Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Deborah Simpson
- Centre for Proteome Research, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Dean E Hammond
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Michele C Madigan
- School of Optometry, University of New South Wales, New South Wales, Australia.,Save Sight Institute, Ophthalmology, University of Sydney, New South Wales, Australia
| | - Robert J Beynon
- Centre for Proteome Research, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Sarah E Coupland
- Liverpool Ocular Oncology Research Group, Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| |
Collapse
|
19
|
Swovick K, Welle KA, Hryhorenko JR, Seluanov A, Gorbunova V, Ghaemmaghami S. Cross-species Comparison of Proteome Turnover Kinetics. Mol Cell Proteomics 2018; 17:580-591. [PMID: 29321186 PMCID: PMC5880112 DOI: 10.1074/mcp.ra117.000574] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Indexed: 12/22/2022] Open
Abstract
The constitutive process of protein turnover plays a key role in maintaining cellular homeostasis. Recent technological advances in mass spectrometry have enabled the measurement of protein turnover kinetics across the proteome. However, it is not known if turnover kinetics of individual proteins are highly conserved or if they have evolved to meet the physiological demands of individual species. Here, we conducted systematic analyses of proteome turnover kinetics in primary dermal fibroblasts isolated from eight different rodent species. Our results highlighted two trends in the variability of proteome turnover kinetics across species. First, we observed a decrease in cross-species correlation of protein degradation rates as a function of evolutionary distance. Second, we observed a negative correlation between global protein turnover rates and maximum lifespan of the species. We propose that by reducing the energetic demands of continuous protein turnover, long-lived species may have evolved to lessen the generation of reactive oxygen species and the corresponding oxidative damage over their extended lifespans.
Collapse
Affiliation(s)
- Kyle Swovick
- From the ‡Department of Biology, University of Rochester, NY
| | - Kevin A Welle
- §University of Rochester Mass Spectrometry Resource Laboratory, NY
| | | | - Andrei Seluanov
- From the ‡Department of Biology, University of Rochester, NY
| | - Vera Gorbunova
- From the ‡Department of Biology, University of Rochester, NY
| | - Sina Ghaemmaghami
- From the ‡Department of Biology, University of Rochester, NY; .,§University of Rochester Mass Spectrometry Resource Laboratory, NY
| |
Collapse
|
20
|
Integrated omics dissection of proteome dynamics during cardiac remodeling. Nat Commun 2018; 9:120. [PMID: 29317621 PMCID: PMC5760723 DOI: 10.1038/s41467-017-02467-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 11/29/2017] [Indexed: 11/08/2022] Open
Abstract
Transcript abundance and protein abundance show modest correlation in many biological models, but how this impacts disease signature discovery in omics experiments is rarely explored. Here we report an integrated omics approach, incorporating measurements of transcript abundance, protein abundance, and protein turnover to map the landscape of proteome remodeling in a mouse model of pathological cardiac hypertrophy. Analyzing the hypertrophy signatures that are reproducibly discovered from each omics data type across six genetic strains of mice, we find that the integration of transcript abundance, protein abundance, and protein turnover data leads to 75% gain in discovered disease gene candidates. Moreover, the inclusion of protein turnover measurements allows discovery of post-transcriptional regulations across diverse pathways, and implicates distinct disease proteins not found in steady-state transcript and protein abundance data. Our results suggest that multi-omics investigations of proteome dynamics provide important insights into disease pathogenesis in vivo.
Collapse
|
21
|
Martin-Perez M, Villén J. Determinants and Regulation of Protein Turnover in Yeast. Cell Syst 2017; 5:283-294.e5. [PMID: 28918244 DOI: 10.1016/j.cels.2017.08.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 04/02/2017] [Accepted: 08/09/2017] [Indexed: 10/18/2022]
Abstract
Protein turnover maintains the recycling needs of the proteome, and its malfunction has been linked to aging and age-related diseases. However, not all proteins turnover equally, and the factors that contribute to accelerate or slow down turnover are mostly unknown. We measured turnover rates for 3,160 proteins in exponentially growing yeast and analyzed their dependence on physical, functional, and genetic properties. We found that functional characteristics, including protein localization, complex membership, and connectivity, have greater effect on turnover than sequence elements. We also found that protein turnover and mRNA turnover are correlated. Analysis under nutrient perturbation and osmotic stress revealed that protein turnover highly depends on cellular state and is faster when proteins are being actively used. Finally, stress-induced changes in protein and transcript abundance correlated with changes in protein turnover. This study provides a resource of protein turnover rates and principles to understand the recycling needs of the proteome under basal conditions and perturbation.
Collapse
Affiliation(s)
- Miguel Martin-Perez
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Judit Villén
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
22
|
HSPA5 Gene encoding Hsp70 chaperone BiP in the endoplasmic reticulum. Gene 2017; 618:14-23. [PMID: 28286085 DOI: 10.1016/j.gene.2017.03.005] [Citation(s) in RCA: 181] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 02/28/2017] [Accepted: 03/06/2017] [Indexed: 01/07/2023]
Abstract
The HSPA5 gene encodes the binding immunoglobulin protein (BiP), an Hsp70 family chaperone localized in the ER lumen. As a highly conserved molecular chaperone, BiP assists in a wide range of folding processes via its two structural domains, a nucleotide-binding domain (NBD) and substrate-binding domain (SBD). BiP is also an essential component of the translocation machinery for protein import into the ER, a regulator for Ca2+ homeostasis in the ER, as well as a facilitator of ER-associated protein degradation (ERAD) via retrograde transportation of aberrant proteins across the ER membrane. When unfolded/misfolded proteins in the ER overwhelm the capacity of protein folding machinery, BiP can initiate the unfolded protein response (UPR), decrease unfolded/misfolded protein load, induce autophagy, and crosstalk with apoptosis machinery to assist in the cell survival decision. Post-translational modifications (PTMs) of BiP have been shown to regulate BiP's activity, turnover, and availability upon different extrinsic or intrinsic stimuli. As a master regulator of ER function, BiP is associated with cancer, cardiovascular disease, neurodegenerative disease, and immunological diseases. BiP has been targeted in cancer therapies and shows promise for application in other relevant diseases.
Collapse
|
23
|
Holman SW, Hammond DE, Simpson DM, Waters J, Hurst JL, Beynon RJ. Protein turnover measurement using selected reaction monitoring-mass spectrometry (SRM-MS). PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2016; 374:rsta.2015.0362. [PMID: 27644981 PMCID: PMC5031629 DOI: 10.1098/rsta.2015.0362] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/23/2016] [Indexed: 05/28/2023]
Abstract
Protein turnover represents an important mechanism in the functioning of cells, with deregulated synthesis and degradation of proteins implicated in many diseased states. Therefore, proteomics strategies to measure turnover rates with high confidence are of vital importance to understanding many biological processes. In this study, the more widely used approach of non-targeted precursor ion signal intensity (MS1) quantification is compared with selected reaction monitoring (SRM), a data acquisition strategy that records data for specific peptides, to determine if improved quantitative data would be obtained using a targeted quantification approach. Using mouse liver as a model system, turnover measurement of four tricarboxylic acid cycle proteins was performed using both MS1 and SRM quantification strategies. SRM outperformed MS1 in terms of sensitivity and selectivity of measurement, allowing more confident determination of protein turnover rates. SRM data are acquired using cheaper and more widely available tandem quadrupole mass spectrometers, making the approach accessible to a larger number of researchers than MS1 quantification, which is best performed on high mass resolution instruments. SRM acquisition is ideally suited to focused studies where the turnover of tens of proteins is measured, making it applicable in determining the dynamics of proteins complexes and complete metabolic pathways.This article is part of the themed issue 'Quantitative mass spectrometry'.
Collapse
Affiliation(s)
- Stephen W Holman
- Centre for Proteome Research, Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - Dean E Hammond
- Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | - Deborah M Simpson
- Centre for Proteome Research, Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - John Waters
- Mammalian Behaviour and Evolution Group, Department of Evolution, Ecology and Behaviour, Institute of Integrative Biology, University of Liverpool, Leahurst Campus, Neston CH64 7TE, UK
| | - Jane L Hurst
- Mammalian Behaviour and Evolution Group, Department of Evolution, Ecology and Behaviour, Institute of Integrative Biology, University of Liverpool, Leahurst Campus, Neston CH64 7TE, UK
| | - Robert J Beynon
- Centre for Proteome Research, Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| |
Collapse
|