1
|
Povolo L, Tian W, Vakhrushev SY, Halim A. Global View of Domain-Specific O-Linked Mannose Glycosylation in Glycoengineered Cells. Mol Cell Proteomics 2024; 23:100796. [PMID: 38851451 PMCID: PMC11292533 DOI: 10.1016/j.mcpro.2024.100796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024] Open
Abstract
Protein O-linked mannose (O-Man) glycosylation is an evolutionary conserved posttranslational modification that fulfills important biological roles during embryonic development. Three nonredundant enzyme families, POMT1/POMT2, TMTC1-4, and TMEM260, selectively coordinate the initiation of protein O-Man glycosylation on distinct classes of transmembrane proteins, including α-dystroglycan, cadherins, and plexin receptors. However, a systematic investigation of their substrate specificities is lacking, in part due to the ubiquitous expression of O-Man glycosyltransferases in cells, which precludes analysis of pathway-specific O-Man glycosylation on a proteome-wide scale. Here, we apply a targeted workflow for membrane glycoproteomics across five human cell lines to extensively map O-Man substrates and genetically deconstruct O-Man initiation by individual and combinatorial knockout of O-Man glycosyltransferase genes. We established a human cell library for the analysis of substrate specificities of individual O-Man initiation pathways by quantitative glycoproteomics. Our results identify 180 O-Man glycoproteins, demonstrate new protein targets for the POMT1/POMT2 pathway, and show that TMTC1-4 and TMEM260 pathways widely target distinct Ig-like protein domains of plasma membrane proteins involved in cell-cell and cell-extracellular matrix interactions. The identification of O-Man on Ig-like folds adds further knowledge on the emerging concept of domain-specific O-Man glycosylation which opens for functional studies of O-Man-glycosylated adhesion molecules and receptors.
Collapse
Affiliation(s)
- Lorenzo Povolo
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Weihua Tian
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Sergey Y Vakhrushev
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Adnan Halim
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark.
| |
Collapse
|
2
|
Krishna S, Jung ST, Lee EY. Escherichia coli and Pichia pastoris: microbial cell-factory platform for -full-length IgG production. Crit Rev Biotechnol 2024:1-23. [PMID: 38797692 DOI: 10.1080/07388551.2024.2342969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/18/2024] [Indexed: 05/29/2024]
Abstract
Owing to the unmet demand, the pharmaceutical industry is investigating an alternative host to mammalian cells to produce antibodies for a variety of therapeutic and research applications. Regardless of some disadvantages, Escherichia coli and Pichia pastoris are the preferred microbial hosts for antibody production. Despite the fact that the production of full-length antibodies has been successfully demonstrated in E. coli, which has mostly been used to produce antibody fragments, such as: antigen-binding fragments (Fab), single-chain fragment variable (scFv), and nanobodies. In contrast, Pichia, a eukaryotic microbial host, is mostly used to produce glycosylated full-length antibodies, though hypermannosylated glycan is a major challenge. Advanced strategies, such as the introduction of human-like glycosylation in endotoxin-edited E. coli and cell-free system-based glycosylation, are making progress in creating human-like glycosylation profiles of antibodies in these microbes. This review begins by explaining the structural and functional requirements of antibodies and continues by describing and analyzing the potential of E. coli and P. pastoris as hosts for providing a favorable environment to create a fully functional antibody. In addition, authors compare these microbes on certain features and predict their future in antibody production. Briefly, this review analyzes, compares, and highlights E. coli and P. pastoris as potential hosts for antibody production.
Collapse
Affiliation(s)
- Shyam Krishna
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Sang Taek Jung
- BK21 Graduate Program, Department of Biomedical Sciences, Graduate School, Korea University, Seoul, Republic of Korea
| | - Eun Yeol Lee
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
3
|
O’Riordan N, Jurić V, O’Neill SK, Roche AP, Young PW. A Yeast Modular Cloning (MoClo) Toolkit Expansion for Optimization of Heterologous Protein Secretion and Surface Display in Saccharomyces cerevisiae. ACS Synth Biol 2024; 13:1246-1258. [PMID: 38483353 PMCID: PMC11036508 DOI: 10.1021/acssynbio.3c00743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 04/20/2024]
Abstract
Saccharomyces cerevisiae is an attractive host for the expression of secreted proteins in a biotechnology context. Unfortunately, many heterologous proteins fail to enter, or efficiently progress through, the secretory pathway, resulting in poor yields. Similarly, yeast surface display has become a widely used technique in protein engineering but achieving sufficient levels of surface expression of recombinant proteins is often challenging. Signal peptides (SPs) and translational fusion partners (TFPs) can be used to direct heterologous proteins through the yeast secretory pathway, however, selection of the optimal secretion promoting sequence is largely a process of trial and error. The yeast modular cloning (MoClo) toolkit utilizes type IIS restriction enzymes to facilitate an efficient assembly of expression vectors from standardized parts. We have expanded this toolkit to enable the efficient incorporation of a panel of 16 well-characterized SPs and TFPs and five surface display anchor proteins into S. cerevisiae expression cassettes. The secretion promoting signals are validated by using five different proteins of interest. Comparison of intracellular and secreted protein levels reveals the optimal secretion promoting sequence for each individual protein. Large, protein of interest-specific variations in secretion efficiency are observed. SP sequences are also used with the five surface display anchors, and the combination of SP and anchor protein proves critical for efficient surface display. These observations highlight the value of the described panel of MoClo compatible parts to allow facile screening of SPs and TFPs and anchor proteins for optimal secretion and/or surface display of a given protein of interest in S. cerevisiae.
Collapse
Affiliation(s)
- Nicola
M. O’Riordan
- School
of Biochemistry and Cell Biology, University
College Cork, Cork T12 YN60, Ireland
| | - Vanja Jurić
- School
of Biochemistry and Cell Biology, University
College Cork, Cork T12 YN60, Ireland
- AMBER
Centre, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland
| | - Sarah K. O’Neill
- School
of Biochemistry and Cell Biology, University
College Cork, Cork T12 YN60, Ireland
| | - Aoife P. Roche
- School
of Biochemistry and Cell Biology, University
College Cork, Cork T12 YN60, Ireland
| | - Paul W. Young
- School
of Biochemistry and Cell Biology, University
College Cork, Cork T12 YN60, Ireland
- AMBER
Centre, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland
| |
Collapse
|
4
|
Kshirsagar R, Munhoven A, Tran Nguyen TM, Ehrenhofer-Murray AE. A role for β-1,6- and β-1,3-glucans in kinetochore function in Saccharomyces cerevisiae. Genetics 2024; 226:iyad195. [PMID: 37950911 PMCID: PMC11221361 DOI: 10.1093/genetics/iyad195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/13/2023] Open
Abstract
Chromosome segregation is crucial for the faithful inheritance of DNA to the daughter cells after DNA replication. For this, the kinetochore, a megadalton protein complex, assembles on centromeric chromatin containing the histone H3 variant CENP-A, and provides a physical connection to the microtubules. Here, we report an unanticipated role for enzymes required for β-1,6- and β-1,3-glucan biosynthesis in regulating kinetochore function in Saccharomyces cerevisiae. These carbohydrates are the major constituents of the yeast cell wall. We found that the deletion of KRE6, which encodes a glycosylhydrolase/ transglycosidase required for β-1,6-glucan synthesis, suppressed the centromeric defect of mutations in components of the kinetochore, foremost the NDC80 components Spc24, Spc25, the MIND component Nsl1, and Okp1, a constitutive centromere-associated network protein. Similarly, the absence of Fks1, a β-1,3-glucan synthase, and Kre11/Trs65, a TRAPPII component, suppressed a mutation in SPC25. Genetic analysis indicates that the reduction of intracellular β-1,6- and β-1,3-glucans, rather than the cell wall glucan content, regulates kinetochore function. Furthermore, we found a physical interaction between Kre6 and CENP-A/Cse4 in yeast, suggesting a potential function for Kre6 in glycosylating CENP-A/Cse4 or another kinetochore protein. This work shows a moonlighting function for selected cell wall synthesis proteins in regulating kinetochore assembly, which may provide a mechanism to connect the nutritional status of the cell to cell-cycle progression and chromosome segregation.
Collapse
Affiliation(s)
- Rucha Kshirsagar
- Institut für Biologie, Humboldt-Universität zu Berlin, Philippstr. 13, Rhoda-Erdmann-Haus, 10099 Berlin, Germany
| | - Arno Munhoven
- Institut für Biologie, Humboldt-Universität zu Berlin, Philippstr. 13, Rhoda-Erdmann-Haus, 10099 Berlin, Germany
| | - Tra My Tran Nguyen
- Institut für Biologie, Humboldt-Universität zu Berlin, Philippstr. 13, Rhoda-Erdmann-Haus, 10099 Berlin, Germany
| | - Ann E Ehrenhofer-Murray
- Institut für Biologie, Humboldt-Universität zu Berlin, Philippstr. 13, Rhoda-Erdmann-Haus, 10099 Berlin, Germany
| |
Collapse
|
5
|
Larsen ISB, Povolo L, Zhou L, Tian W, Mygind KJ, Hintze J, Jiang C, Hartill V, Prescott K, Johnson CA, Mullegama SV, McConkie-Rosell A, McDonald M, Hansen L, Vakhrushev SY, Schjoldager KT, Clausen H, Worzfeld T, Joshi HJ, Halim A. The SHDRA syndrome-associated gene TMEM260 encodes a protein-specific O-mannosyltransferase. Proc Natl Acad Sci U S A 2023; 120:e2302584120. [PMID: 37186866 PMCID: PMC10214176 DOI: 10.1073/pnas.2302584120] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/21/2023] [Indexed: 05/17/2023] Open
Abstract
Mutations in the TMEM260 gene cause structural heart defects and renal anomalies syndrome, but the function of the encoded protein remains unknown. We previously reported wide occurrence of O-mannose glycans on extracellular immunoglobulin, plexin, transcription factor (IPT) domains found in the hepatocyte growth factor receptor (cMET), macrophage-stimulating protein receptor (RON), and plexin receptors, and further demonstrated that two known protein O-mannosylation systems orchestrated by the POMT1/2 and transmembrane and tetratricopeptide repeat-containing proteins 1-4 gene families were not required for glycosylation of these IPT domains. Here, we report that the TMEM260 gene encodes an ER-located protein O-mannosyltransferase that selectively glycosylates IPT domains. We demonstrate that disease-causing TMEM260 mutations impair O-mannosylation of IPT domains and that TMEM260 knockout in cells results in receptor maturation defects and abnormal growth of 3D cell models. Thus, our study identifies the third protein-specific O-mannosylation pathway in mammals and demonstrates that O-mannosylation of IPT domains serves critical functions during epithelial morphogenesis. Our findings add a new glycosylation pathway and gene to a growing group of congenital disorders of glycosylation.
Collapse
Affiliation(s)
- Ida Signe Bohse Larsen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200Copenhagen N, Denmark
| | - Lorenzo Povolo
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200Copenhagen N, Denmark
| | - Luping Zhou
- Faculty of Medicine, Institute of Pharmacology, University of Marburg, 35043Marburg, Germany
| | - Weihua Tian
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200Copenhagen N, Denmark
| | - Kasper Johansen Mygind
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200Copenhagen N, Denmark
| | - John Hintze
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200Copenhagen N, Denmark
| | - Chen Jiang
- Faculty of Medicine, Institute of Pharmacology, University of Marburg, 35043Marburg, Germany
| | - Verity Hartill
- Leeds Institute of Medical Research, University of Leeds, St James’ University Hospital, LeedsLS2 9JT, United Kingdom
- Yorkshire Regional Genetics Service, Chapel Allerton Hospital, LeedsLS7 4SA, United Kingdom
| | - Katrina Prescott
- Yorkshire Regional Genetics Service, Chapel Allerton Hospital, LeedsLS7 4SA, United Kingdom
| | - Colin A. Johnson
- Leeds Institute of Medical Research, University of Leeds, St James’ University Hospital, LeedsLS2 9JT, United Kingdom
| | | | - Allyn McConkie-Rosell
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC27710
| | - Marie McDonald
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC27710
| | - Lars Hansen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200Copenhagen N, Denmark
| | - Sergey Y. Vakhrushev
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200Copenhagen N, Denmark
| | - Katrine T. Schjoldager
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200Copenhagen N, Denmark
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200Copenhagen N, Denmark
| | - Thomas Worzfeld
- Faculty of Medicine, Institute of Pharmacology, University of Marburg, 35043Marburg, Germany
- Max-Planck-Institute for Heart and Lung Research, 61231Bad Nauheim, Germany
| | - Hiren J. Joshi
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200Copenhagen N, Denmark
| | - Adnan Halim
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200Copenhagen N, Denmark
| |
Collapse
|
6
|
Yorimitsu T, Sato K. Sec16 and Sed4 interdependently function as interaction and localization partners at ER exit sites. J Cell Sci 2023; 136:308925. [PMID: 37158682 PMCID: PMC10184828 DOI: 10.1242/jcs.261094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/06/2023] [Indexed: 05/10/2023] Open
Abstract
COPII proteins assemble at ER exit sites (ERES) to form transport carriers. The initiation of COPII assembly in the yeast Saccharomyces cerevisiae is triggered by the ER membrane protein Sec12. Sec16, which plays a critical role in COPII organization, localizes to ERES independently of Sec12. However, the mechanism underlying Sec16 localization is poorly understood. Here, we show that a Sec12 homolog, Sed4, is concentrated at ERES and mediates ERES localization of Sec16. We found that the interaction between Sec16 and Sed4 ensures their correct localization to ERES. Loss of the interaction with Sec16 leads to redistribution of Sed4 from the ERES specifically to high-curvature ER areas, such as the tubules and edges of the sheets. The luminal domain of Sed4 mediates this distribution, which is required for Sed4, but not for Sec16, to be concentrated at ERES. We further show that the luminal domain and its O-mannosylation are involved in the self-interaction of Sed4. Our findings provide insight into how Sec16 and Sed4 function interdependently at ERES.
Collapse
Affiliation(s)
- Tomohiro Yorimitsu
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan
| | - Ken Sato
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan
| |
Collapse
|
7
|
Lee B, Jaberi-Lashkari N, Calo E. A unified view of low complexity regions (LCRs) across species. eLife 2022; 11:e77058. [PMID: 36098382 PMCID: PMC9470157 DOI: 10.7554/elife.77058] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Low complexity regions (LCRs) play a role in a variety of important biological processes, yet we lack a unified view of their sequences, features, relationships, and functions. Here, we use dotplots and dimensionality reduction to systematically define LCR type/copy relationships and create a map of LCR sequence space capable of integrating LCR features and functions. By defining LCR relationships across the proteome, we provide insight into how LCR type and copy number contribute to higher order assemblies, such as the importance of K-rich LCR copy number for assembly of the nucleolar protein RPA43 in vivo and in vitro. With LCR maps, we reveal the underlying structure of LCR sequence space, and relate differential occupancy in this space to the conservation and emergence of higher order assemblies, including the metazoan extracellular matrix and plant cell wall. Together, LCR relationships and maps uncover and identify scaffold-client relationships among E-rich LCR-containing proteins in the nucleolus, and revealed previously undescribed regions of LCR sequence space with signatures of higher order assemblies, including a teleost-specific T/H-rich sequence space. Thus, this unified view of LCRs enables discovery of how LCRs encode higher order assemblies of organisms.
Collapse
Affiliation(s)
- Byron Lee
- Department of Biology, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Nima Jaberi-Lashkari
- Department of Biology, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Eliezer Calo
- Department of Biology, Massachusetts Institute of TechnologyCambridgeUnited States
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of TechnologyCambridgeUnited States
| |
Collapse
|
8
|
Pathway engineering facilitates efficient protein expression in Pichia pastoris. Appl Microbiol Biotechnol 2022; 106:5893-5912. [PMID: 36040488 DOI: 10.1007/s00253-022-12139-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/02/2022]
Abstract
Pichia pastoris has been recognized as an important platform for the production of various heterologous proteins in recent years. The strong promoter AOX1, induced by methanol, with the help of the α-pre-pro signal sequence, can lead to a high expression level of extracellular protein. However, this combination was not always efficient, as protein secretion in P. pastoris involves numerous procedures mediated by several cellular proteins, including folding assisted by endoplasmic reticulum (ER) molecular chaperones, degradation through ubiquitination, and an efficient vesicular transport system. Efficient protein expression requires the cooperation of various intracellular pathways. This article summarizes the process of protein secretion, modification, and transportation in P. pastoris. In addition, the roles played by the key proteins in these processes and the corresponding co-expression effects are also listed. It is expected to lay the foundation for the industrial protein production of P. pastoris. KEY POINTS: • Mechanisms of chaperones in protein folding and their co-expression effects are summarized. • Protein glycosylation modifications are comprehensively reviewed. • Current dilemmas in the overall protein secretion pathway of Pichia pastoris and corresponding solutions are demonstrated.
Collapse
|
9
|
Liu S, Kerr ED, Pegg CL, Schulz BL. Proteomics and glycoproteomics of beer and wine. Proteomics 2022; 22:e2100329. [PMID: 35716130 DOI: 10.1002/pmic.202100329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/29/2022] [Accepted: 06/14/2022] [Indexed: 12/14/2022]
Abstract
Beer and wine are fermented beverages that contain abundant proteins released from barley or grapes, and secreted from yeast. These proteins are associated with many quality attributes including turbidity, foamability, effervescence, flavour and colour. Many grape proteins and secreted yeast proteins are glycosylated, and barley proteins can be glycated under the high temperatures in the beer making process. The emergence of high-resolution mass spectrometry has allowed proteomic and glycoproteomic analyses of these complex mixtures of proteins towards understanding their role in determining beer and wine attributes. In this review, we summarise recent studies of proteomic and glycoproteomic analyses of beer and wine including their strategies for mass spectrometry (MS)-based identification, quantification and characterisation of the glyco/proteomes of fermented beverages to control product quality.
Collapse
Affiliation(s)
- Shulei Liu
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Edward D Kerr
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Cassandra L Pegg
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Benjamin L Schulz
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
10
|
Hütte HJ, Tiemann B, Shcherbakova A, Grote V, Hoffmann M, Povolo L, Lommel M, Strahl S, Vakhrushev SY, Rapp E, Buettner FFR, Halim A, Imberty A, Bakker H. A Bacterial Mannose Binding Lectin as a Tool for the Enrichment of C- and O-Mannosylated Peptides. Anal Chem 2022; 94:7329-7338. [PMID: 35549177 DOI: 10.1021/acs.analchem.2c00742] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mass spectrometry (MS) easily detects C-mannosylated peptides from purified proteins but not from complex biological samples. Enrichment of specific glycopeptides by lectin affinity prior to MS analysis has been widely applied to support glycopeptide identification but was until now not available for C-mannosylated peptides. Here, we used the α-mannose-specific Burkholderia cenocepacia lectin A (BC2L-A) and show that, in addition to its previously demonstrated high-mannose N-glycan binding capability, this lectin is able to retain C- and O-mannosylated peptides. Besides testing binding abilities to standard peptides, we applied BC2L-A affinity to enrich C-mannosylated peptides from complex samples of tryptic digests of HEK293 and MCF10A whole cell extracts, which led to the identification of novel C-mannosylation sites. In conclusion, BC2L-A enabled specific enrichment of C- and O-mannosylated peptides and might have superior properties over other mannose binding lectins for this purpose.
Collapse
Affiliation(s)
- Hermann J Hütte
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Birgit Tiemann
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Aleksandra Shcherbakova
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Valerian Grote
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106 Magdeburg, Germany
| | - Marcus Hoffmann
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106 Magdeburg, Germany
| | - Lorenzo Povolo
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen N, Denmark
| | - Mark Lommel
- Centre for Organismal Studies (COS), Glycobiology, Heidelberg University, Im Neuenheimer Feld 360, 69120 Heidelberg, Germany
| | - Sabine Strahl
- Centre for Organismal Studies (COS), Glycobiology, Heidelberg University, Im Neuenheimer Feld 360, 69120 Heidelberg, Germany
| | - Sergey Y Vakhrushev
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen N, Denmark
| | - Erdmann Rapp
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106 Magdeburg, Germany.,glyXera GmbH, Brenneckestrasse 20, 39120 Magdeburg, Germany
| | - Falk F R Buettner
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Adnan Halim
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen N, Denmark
| | - Anne Imberty
- Université Grenoble Alpes, CNRS, CERMAV, 601 rue de la chimie, 38000 Grenoble, France
| | - Hans Bakker
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| |
Collapse
|
11
|
Feng Y, Jiang H, Li G, He G, Li X. Decreased Expression of Protein O-linked Mannose β 1,2-N-Acetylglucosaminyltransferase 1 Contributes to Alzheimer's Disease-like Pathologies. J Neurophysiol 2022; 127:1067-1074. [PMID: 35320023 DOI: 10.1152/jn.00362.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Alzheimer's disease (AD) is pathologically characterized by senile plaques and neurofibrillary tangles composed of β-amyloid peptide (Aβ) and tau hyperphosphorylation, respectively. Mannosylation, a particular type of post-translational modification, may be involved in the pathogenesis of AD. However, its underlying mechanism remains unclear. Protein O-linked mannose β 1,2-N-acetylglucosaminyltransferase 1 (POMGnT1) catalyzes the formation of the N-acetylglucosamine β-1,2-Man linkage of O-mannosylglycan, which can increase the protein post-translational mannosylation level. The defective POMGnT1 gene leads to the hypomannosylation of proteins, which may cause cognitive decline in aged people. This study aimed to investigate whether POMGnT1 participated in the pathogenesis of AD and explore its underlying role using AD mouse and cell models. In this study, the expression of POMGnT1 was measured in AD models [β-amyloid precursor protein (APP)/presenilin-1 (PS1) transgenic mice, an AD mouse model; N2a cells stably transfected with Swedish mutant APP (N2a/APP), an AD cell model]. The results revealed that the expression of POMGnT1 decreased in AD mouse and cell models. Additionally, POMGnT1-overexpressing N2a/APP cells were built by retroviral transfection. POMGnT1 overexpression may lower Aβ levels by reducing APP production and downregulating β-and γ-secretase activities. It also promoted clearance of Aβ by upregulating insulin-degrading enzymes and ameliorated tau hyperphosphorylation. Hence, it was concluded that POMGnT1 was involved in the pathogenic process of AD. The decreased expression of POMGnT1 contributes to AD-like pathologies.
Collapse
Affiliation(s)
- Yuxue Feng
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hanxiao Jiang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Gongbo Li
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guiqiong He
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Xiaofeng Li
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
12
|
Separovich RJ, Wong MW, Bartolec TK, Hamey JJ, Wilkins MR. Site-specific phosphorylation of histone H3K36 methyltransferase Set2p and demethylase Jhd1p is required for stress responses in Saccharomyces cerevisiae. J Mol Biol 2022; 434:167500. [DOI: 10.1016/j.jmb.2022.167500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 01/17/2022] [Accepted: 02/09/2022] [Indexed: 10/19/2022]
|
13
|
Iannetta AA, Hicks LM. Maximizing Depth of PTM Coverage: Generating Robust MS Datasets for Computational Prediction Modeling. Methods Mol Biol 2022; 2499:1-41. [PMID: 35696073 DOI: 10.1007/978-1-0716-2317-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Post-translational modifications (PTMs) regulate complex biological processes through the modulation of protein activity, stability, and localization. Insights into the specific modification type and localization within a protein sequence can help ascertain functional significance. Computational models are increasingly demonstrated to offer a low-cost, high-throughput method for comprehensive PTM predictions. Algorithms are optimized using existing experimental PTM data, thus accurate prediction performance relies on the creation of robust datasets. Herein, advancements in mass spectrometry-based proteomics technologies to maximize PTM coverage are reviewed. Further, requisite experimental validation approaches for PTM predictions are explored to ensure that follow-up mechanistic studies are focused on accurate modification sites.
Collapse
Affiliation(s)
- Anthony A Iannetta
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Leslie M Hicks
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
14
|
Ata Ö, Ergün BG, Fickers P, Heistinger L, Mattanovich D, Rebnegger C, Gasser B. What makes Komagataella phaffii non-conventional? FEMS Yeast Res 2021; 21:6440159. [PMID: 34849756 PMCID: PMC8709784 DOI: 10.1093/femsyr/foab059] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/23/2021] [Indexed: 12/30/2022] Open
Abstract
The important industrial protein production host Komagataella phaffii (syn Pichia pastoris) is classified as a non-conventional yeast. But what exactly makes K. phaffii non-conventional? In this review, we set out to address the main differences to the 'conventional' yeast Saccharomyces cerevisiae, but also pinpoint differences to other non-conventional yeasts used in biotechnology. Apart from its methylotrophic lifestyle, K. phaffii is a Crabtree-negative yeast species. But even within the methylotrophs, K. phaffii possesses distinct regulatory features such as glycerol-repression of the methanol-utilization pathway or the lack of nitrate assimilation. Rewiring of the transcriptional networks regulating carbon (and nitrogen) source utilization clearly contributes to our understanding of genetic events occurring during evolution of yeast species. The mechanisms of mating-type switching and the triggers of morphogenic phenotypes represent further examples for how K. phaffii is distinguished from the model yeast S. cerevisiae. With respect to heterologous protein production, K. phaffii features high secretory capacity but secretes only low amounts of endogenous proteins. Different to S. cerevisiae, the Golgi apparatus of K. phaffii is stacked like in mammals. While it is tempting to speculate that Golgi architecture is correlated to the high secretion levels or the different N-glycan structures observed in K. phaffii, there is recent evidence against this. We conclude that K. phaffii is a yeast with unique features that has a lot of potential to explore both fundamental research questions and industrial applications.
Collapse
Affiliation(s)
- Özge Ata
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, University of Natural Resources and Life Sciences Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria.,Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190 Vienna, Austria
| | - Burcu Gündüz Ergün
- UNAM-National Nanotechnology Research Center, Bilkent University, Ankara, Turkey.,Biotechnology Research Center, Ministry of Agriculture and Forestry, Ankara, Turkey
| | - Patrick Fickers
- Microbial Processes and Interactions, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liège, Av. de la Faculté 2B, 5030 Gembloux, Belgium
| | - Lina Heistinger
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, University of Natural Resources and Life Sciences Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria.,Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190 Vienna, Austria.,Christian Doppler Laboratory for Innovative Immunotherapeutics, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Diethard Mattanovich
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, University of Natural Resources and Life Sciences Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria.,Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190 Vienna, Austria
| | - Corinna Rebnegger
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, University of Natural Resources and Life Sciences Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria.,Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190 Vienna, Austria.,Christian Doppler Laboratory for Growth-Decoupled Protein Production in Yeast, University of Natural Resources and Life Sciences Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Brigitte Gasser
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, University of Natural Resources and Life Sciences Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria.,Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190 Vienna, Austria.,Biotechnology Research Center, Ministry of Agriculture and Forestry, Ankara, Turkey
| |
Collapse
|
15
|
Zheng J, Liu L, Wei C, Liu B, Jin Q. Characterization of O-mannosylated proteins profiling in bacillus Calmette-Guérin via gel-based and gel-free approaches. IUBMB Life 2021; 74:221-234. [PMID: 34773437 DOI: 10.1002/iub.2578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 09/06/2021] [Accepted: 10/11/2021] [Indexed: 11/08/2022]
Abstract
Posttranslational modifications (PTMs) could influence many aspects of protein behavior and function in organisms. Protein glycosylation is one of the major PTMs observed in bacteria, which is crucial for functional regulations of many prokaryotic and eukaryotic organisms. Mycobacterium bovis bacillus Calmette-Guérin (BCG) vaccine has been recognized as an indispensable tool in the global fight against tuberculosis (TB) worldwide over several decades. Nevertheless, analysis of glycoprotein profiles of BCG has not been clearly investigated. In this study, we performed O-mannosylated protein analysis in BCG bacteria using gel-based and gel-free approaches. In total, 1,670 hexosylated peptides derived from 754 mannosylated proteins were identified. Furthermore, 20 novel protein products supported by 78 unique peptides not annotated in the BCG database were detected. Additionally, the translational start sites of 384 proteins were confirmed, and 78 proteins were validated through the extension of translational start sites based on N-terminus-derived peptides. The bioinformatic analysis of the O-mannosylated proteins was performed and the expression profiles of four randomly selected proteins were validated through Western blotting. A number of proteins involved in metabolic pathways, including the tricarboxylic acid cycle, glycolysis, oxidative phosphorylation, and two-component system, are discussed. Taken together, these results offer the first O-mannosylated protein analysis of a member of mycobacteria reported to date by using complementary gel-based and gel-free approaches. Some of the proteins identified in this study have important roles involved in metabolic pathways, which could provide insight into the immune molecular mechanisms of this recognized vaccine strain.
Collapse
Affiliation(s)
- Jianhua Zheng
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liguo Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Candong Wei
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bo Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qi Jin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
16
|
O-mannosyltransferase MaPmt2 contributes to stress tolerance, cell wall integrity and virulence in Metarhizium acridum. J Invertebr Pathol 2021; 184:107649. [PMID: 34343571 DOI: 10.1016/j.jip.2021.107649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/24/2021] [Accepted: 07/25/2021] [Indexed: 11/22/2022]
Abstract
As a conserved post-translational modification, O-mannosyltransferase families play important roles in many cellular processes. Three subfamilies (MaPmt1, MaPmt2 and MaPmt4) are grouped in Metarhizium acridum according to sequence homology. The functions of MaPmt1 and MaPmt4 have been characterized in M. acridum previously. In this study, the functions of another member belonging to the Pmt2 subfamily, MaPmt2, were identified through RNAi strategy. The three MaPmt2 knockdown mutants showed dramatically decreased expression of MaPmt2. Phenotypic analyses showed that the mutants exhibited decreased tolerances to wet-heat, UV-B irradiation and cell wall perturbing chemicals. Further studies revealed that the mutants presented thinner cell walls observed by transmission electron microscope combined with changed cell wall components. Besides, knockdown of MaPmt2 decelerated conidial germination and decreased conidial yield. Compared with the wild-type strain, the MaPmt2 knockdown mutants caused impaired virulence only by topical inoculation. Results illustrated that the decreased virulence by inoculation could result from the delayed conidial germination on locust wings, reduced appressorium formation, as well as reduced turgor pressure in MaPmt2 knockdown mutants.
Collapse
|
17
|
Domnauer M, Zheng F, Li L, Zhang Y, Chang CE, Unruh JR, Conkright-Fincham J, McCroskey S, Florens L, Zhang Y, Seidel C, Fong B, Schilling B, Sharma R, Ramanathan A, Si K, Zhou C. Proteome plasticity in response to persistent environmental change. Mol Cell 2021; 81:3294-3309.e12. [PMID: 34293321 DOI: 10.1016/j.molcel.2021.06.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/28/2021] [Accepted: 06/22/2021] [Indexed: 01/17/2023]
Abstract
Temperature is a variable component of the environment, and all organisms must deal with or adapt to temperature change. Acute temperature change activates cellular stress responses, resulting in refolding or removal of damaged proteins. However, how organisms adapt to long-term temperature change remains largely unexplored. Here we report that budding yeast responds to long-term high temperature challenge by switching from chaperone induction to reduction of temperature-sensitive proteins and re-localizing a portion of its proteome. Surprisingly, we also find that many proteins adopt an alternative conformation. Using Fet3p as an example, we find that the temperature-dependent conformational difference is accompanied by distinct thermostability, subcellular localization, and, importantly, cellular functions. We postulate that, in addition to the known mechanisms of adaptation, conformational plasticity allows some polypeptides to acquire new biophysical properties and functions when environmental change endures.
Collapse
Affiliation(s)
- Matthew Domnauer
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, USA; USC Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Ave., Los Angeles, CA 90191, USA
| | - Fan Zheng
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, USA
| | - Liying Li
- UCSF, 1550 Fourth St, RH490 San Francisco, CA 94158, USA
| | - Yanxiao Zhang
- Ludwig Institute for Cancer Research, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Catherine E Chang
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, USA
| | - Jay R Unruh
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | | | - Scott McCroskey
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Laurence Florens
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Ying Zhang
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Christopher Seidel
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Benjamin Fong
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, USA
| | - Birgit Schilling
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, USA; USC Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Ave., Los Angeles, CA 90191, USA
| | - Rishi Sharma
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, USA
| | - Arvind Ramanathan
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, USA; Institute for Stem Cell Science and Regenerative Medicine GKVK, Bengaluru, Karnataka 560065, India
| | - Kausik Si
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | - Chuankai Zhou
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, USA; USC Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Ave., Los Angeles, CA 90191, USA.
| |
Collapse
|
18
|
Preisler SS, Wiuf AD, Friis M, Kjaergaard L, Hurd M, Becares ER, Nurup CN, Bjoerkskov FB, Szathmáry Z, Gourdon PE, Calloe K, Klaerke DA, Gotfryd K, Pedersen PA. Saccharomyces cerevisiae as a superior host for overproduction of prokaryotic integral membrane proteins. Curr Res Struct Biol 2021; 3:51-71. [PMID: 34235486 PMCID: PMC8244417 DOI: 10.1016/j.crstbi.2021.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 01/02/2023] Open
Abstract
Integral membrane proteins (IMPs) constitute ~30% of all proteins encoded by the genome of any organism and Escherichia coli remains the first-choice host for recombinant production of prokaryotic IMPs. However, the expression levels of prokaryotic IMPs delivered by this bacterium are often low and overproduced targets often accumulate in inclusion bodies. The targets are therefore often discarded to avoid an additional and inconvenient refolding step in the purification protocol. Here we compared expression of five prokaryotic (bacterial and archaeal) IMP families in E. coli and Saccharomyces cerevisiae. We demonstrate that our S. cerevisiae-based production platform is superior in expression of four investigated IMPs, overall being able to deliver high quantities of active target proteins. Surprisingly, in case of the family of zinc transporters (Zrt/Irt-like proteins, ZIPs), S. cerevisiae rescued protein expression that was undetectable in E. coli. We also demonstrate the effect of localization of the fusion tag on expression yield and sample quality in detergent micelles. Lastly, we present a road map to achieve the most efficient expression of prokaryotic IMPs in our yeast platform. Our findings demonstrate the great potential of S. cerevisiae as host for high-throughput recombinant overproduction of bacterial and archaeal IMPs for downstream biophysical characterization. S. cerevisiae is superior to E. coli in expressing correctly folded and active IMPs. S. cerevisiae completely rescues the expression of the family of zinc transporters. Localization of the fusion tag affects expression yields and protein quality. We provide a roadmap to efficient expression of prokaryotic IMPs in S. cerevisiae.
Collapse
Affiliation(s)
- Sarah Spruce Preisler
- Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen, OE, Denmark
| | - Anders Drabaek Wiuf
- Membrane Protein Structural Biology Group, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Maersk Tower 7-9, DK 2200, Copenhagen N, Denmark
| | - Marc Friis
- Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen, OE, Denmark
| | - Lasse Kjaergaard
- Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen, OE, Denmark
| | - Molly Hurd
- University of Copenhagen, Department of Veterinary and Animal Sciences, Dyrlaegevej 100, Frederiksberg, DK, 1870, Denmark
| | - Eva Ramos Becares
- Membrane Protein Structural Biology Group, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Maersk Tower 7-9, DK 2200, Copenhagen N, Denmark
| | - Casper Normann Nurup
- Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen, OE, Denmark
| | | | - Zsófia Szathmáry
- Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen, OE, Denmark
| | - Pontus Emanuel Gourdon
- Membrane Protein Structural Biology Group, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Maersk Tower 7-9, DK 2200, Copenhagen N, Denmark
| | - Kirstine Calloe
- University of Copenhagen, Department of Veterinary and Animal Sciences, Dyrlaegevej 100, Frederiksberg, DK, 1870, Denmark
| | - Dan A Klaerke
- University of Copenhagen, Department of Veterinary and Animal Sciences, Dyrlaegevej 100, Frederiksberg, DK, 1870, Denmark
| | - Kamil Gotfryd
- Membrane Protein Structural Biology Group, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Maersk Tower 7-9, DK 2200, Copenhagen N, Denmark
| | - Per Amstrup Pedersen
- Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen, OE, Denmark
| |
Collapse
|
19
|
Chiapparino A, Grbavac A, Jonker HR, Hackmann Y, Mortensen S, Zatorska E, Schott A, Stier G, Saxena K, Wild K, Schwalbe H, Strahl S, Sinning I. Functional implications of MIR domains in protein O-mannosylation. eLife 2020; 9:61189. [PMID: 33357379 PMCID: PMC7759382 DOI: 10.7554/elife.61189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/08/2020] [Indexed: 12/13/2022] Open
Abstract
Protein O-mannosyltransferases (PMTs) represent a conserved family of multispanning endoplasmic reticulum membrane proteins involved in glycosylation of S/T-rich protein substrates and unfolded proteins. PMTs work as dimers and contain a luminal MIR domain with a β-trefoil fold, which is susceptive for missense mutations causing α-dystroglycanopathies in humans. Here, we analyze PMT-MIR domains by an integrated structural biology approach using X-ray crystallography and NMR spectroscopy and evaluate their role in PMT function in vivo. We determine Pmt2- and Pmt3-MIR domain structures and identify two conserved mannose-binding sites, which are consistent with general β-trefoil carbohydrate-binding sites (α, β), and also a unique PMT2-subfamily exposed FKR motif. We show that conserved residues in site α influence enzyme processivity of the Pmt1-Pmt2 heterodimer in vivo. Integration of the data into the context of a Pmt1-Pmt2 structure and comparison with homologous β-trefoil – carbohydrate complexes allows for a functional description of MIR domains in protein O-mannosylation.
Collapse
Affiliation(s)
| | - Antonija Grbavac
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Hendrik Ra Jonker
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University, Frankfurt am Main, Germany
| | - Yvonne Hackmann
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Sofia Mortensen
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Ewa Zatorska
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Andrea Schott
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Gunter Stier
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Krishna Saxena
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University, Frankfurt am Main, Germany
| | - Klemens Wild
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University, Frankfurt am Main, Germany
| | - Sabine Strahl
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Irmgard Sinning
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| |
Collapse
|
20
|
Riley NM, Bertozzi CR, Pitteri SJ. A Pragmatic Guide to Enrichment Strategies for Mass Spectrometry-Based Glycoproteomics. Mol Cell Proteomics 2020; 20:100029. [PMID: 33583771 PMCID: PMC8724846 DOI: 10.1074/mcp.r120.002277] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 12/26/2022] Open
Abstract
Glycosylation is a prevalent, yet heterogeneous modification with a broad range of implications in molecular biology. This heterogeneity precludes enrichment strategies that can be universally beneficial for all glycan classes. Thus, choice of enrichment strategy has profound implications on experimental outcomes. Here we review common enrichment strategies used in modern mass spectrometry-based glycoproteomic experiments, including lectins and other affinity chromatographies, hydrophilic interaction chromatography and its derivatives, porous graphitic carbon, reversible and irreversible chemical coupling strategies, and chemical biology tools that often leverage bioorthogonal handles. Interest in glycoproteomics continues to surge as mass spectrometry instrumentation and software improve, so this review aims to help equip researchers with the necessary information to choose appropriate enrichment strategies that best complement these efforts.
Collapse
Affiliation(s)
- Nicholas M Riley
- Department of Chemistry, Stanford University, Stanford, California, USA.
| | - Carolyn R Bertozzi
- Department of Chemistry, Stanford University, Stanford, California, USA; Howard Hughes Medical Institute, Stanford, California, USA
| | - Sharon J Pitteri
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, California, USA.
| |
Collapse
|
21
|
Wen Z, Tian H, Xia Y, Jin K. MaPmt1, a protein O-mannosyltransferase, contributes to virulence through governing the appressorium turgor pressure in Metarhizium acridum. Fungal Genet Biol 2020; 145:103480. [DOI: 10.1016/j.fgb.2020.103480] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/19/2020] [Accepted: 10/23/2020] [Indexed: 12/24/2022]
|
22
|
Manjón E, Brás NF, García-Estévez I, Escribano-Bailón MT. Cell Wall Mannoproteins from Yeast Affect Salivary Protein-Flavanol Interactions through Different Molecular Mechanisms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:13459-13468. [PMID: 32153192 DOI: 10.1021/acs.jafc.9b08083] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
It is known that interactions between wine flavanols and salivary proline-rich proteins (PRPs) are one of the main factors responsible for wine astringency. The addition of commercial yeast mannoproteins (MPs) to wines has been pointed to as a possible tool to modulate the excessive astringency due to a lack of phenolic maturity at harvest time that might occur as a consequence of global climate change. The aim of this work was to study by isothermal titration calorimetry and molecular dynamics simulation the molecular mechanisms by which mannoproteins could modulate astringency elicited by tannins and if it can be influenced by mannoprotein composition. Results obtained indicate that the MPs assayed had an important impact on astringency through the formation of ternary aggregates with different solubilities or by preventing the flavanol-PRP interaction by a competitive mechanism, although in a different strength, depending on the size and the compositional characteristic of the mannoprotein.
Collapse
Affiliation(s)
- Elvira Manjón
- Grupo de Investigación en Polifenoles (GIP), Departamento de Química Analítica, Nutrición y Bromatología, Facultad de Farmacia, Universidad de Salamanca, Salamanca E37007, España
| | - Natércia F Brás
- UCIBIO, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Ignacio García-Estévez
- Grupo de Investigación en Polifenoles (GIP), Departamento de Química Analítica, Nutrición y Bromatología, Facultad de Farmacia, Universidad de Salamanca, Salamanca E37007, España
| | - M Teresa Escribano-Bailón
- Grupo de Investigación en Polifenoles (GIP), Departamento de Química Analítica, Nutrición y Bromatología, Facultad de Farmacia, Universidad de Salamanca, Salamanca E37007, España
| |
Collapse
|
23
|
Wang D, Baudys J, Bundy JL, Solano M, Keppel T, Barr JR. Comprehensive Analysis of the Glycan Complement of SARS-CoV-2 Spike Proteins Using Signature Ions-Triggered Electron-Transfer/Higher-Energy Collisional Dissociation (EThcD) Mass Spectrometry. Anal Chem 2020; 92:14730-14739. [PMID: 33064451 PMCID: PMC7586457 DOI: 10.1021/acs.analchem.0c03301] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/06/2020] [Indexed: 01/08/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to a global pandemic of coronavirus disease 2019 (COVID-19). The spike protein expressed on the surface of this virus is highly glycosylated and plays an essential role during the process of infection. We conducted a comprehensive mass spectrometric analysis of the N-glycosylation profiles of the SARS-CoV-2 spike proteins using signature ions-triggered electron-transfer/higher-energy collision dissociation (EThcD) mass spectrometry. The patterns of N-glycosylation within the recombinant ectodomain and S1 subunit of the SARS-CoV-2 spike protein were characterized using this approach. Significant variations were observed in the distribution of glycan types as well as the specific individual glycans on the modification sites of the ectodomain and subunit proteins. The relative abundance of sialylated glycans in the S1 subunit compared to the full-length protein could indicate differences in the global structure and function of these two species. In addition, we compared N-glycan profiles of the recombinant spike proteins produced from different expression systems, including human embryonic kidney (HEK 293) cells and Spodoptera frugiperda (SF9) insect cells. These results provide useful information for the study of the interactions of SARS-CoV-2 viral proteins and for the development of effective vaccines and therapeutics.
Collapse
Affiliation(s)
- Dongxia Wang
- Division of Laboratory
Sciences,
National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway, Northeast, Atlanta, Georgia 30341, United States
| | - Jakub Baudys
- Division of Laboratory
Sciences,
National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway, Northeast, Atlanta, Georgia 30341, United States
| | - Jonathan L. Bundy
- Division of Laboratory
Sciences,
National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway, Northeast, Atlanta, Georgia 30341, United States
| | - Maria Solano
- Division of Laboratory
Sciences,
National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway, Northeast, Atlanta, Georgia 30341, United States
| | - Theodore Keppel
- Division of Laboratory
Sciences,
National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway, Northeast, Atlanta, Georgia 30341, United States
| | - John R. Barr
- Division of Laboratory
Sciences,
National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway, Northeast, Atlanta, Georgia 30341, United States
| |
Collapse
|
24
|
Global view of human protein glycosylation pathways and functions. Nat Rev Mol Cell Biol 2020; 21:729-749. [PMID: 33087899 DOI: 10.1038/s41580-020-00294-x] [Citation(s) in RCA: 572] [Impact Index Per Article: 143.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2020] [Indexed: 02/07/2023]
Abstract
Glycosylation is the most abundant and diverse form of post-translational modification of proteins that is common to all eukaryotic cells. Enzymatic glycosylation of proteins involves a complex metabolic network and different types of glycosylation pathways that orchestrate enormous amplification of the proteome in producing diversity of proteoforms and its biological functions. The tremendous structural diversity of glycans attached to proteins poses analytical challenges that limit exploration of specific functions of glycosylation. Major advances in quantitative transcriptomics, proteomics and nuclease-based gene editing are now opening new global ways to explore protein glycosylation through analysing and targeting enzymes involved in glycosylation processes. In silico models predicting cellular glycosylation capacities and glycosylation outcomes are emerging, and refined maps of the glycosylation pathways facilitate genetic approaches to address functions of the vast glycoproteome. These approaches apply commonly available cell biology tools, and we predict that use of (single-cell) transcriptomics, genetic screens, genetic engineering of cellular glycosylation capacities and custom design of glycoprotein therapeutics are advancements that will ignite wider integration of glycosylation in general cell biology.
Collapse
|
25
|
Radoman B, Grünwald-Gruber C, Schmelzer B, Zavec D, Gasser B, Altmann F, Mattanovich D. The Degree and Length of O-Glycosylation of Recombinant Proteins Produced in Pichia pastoris Depends on the Nature of the Protein and the Process Type. Biotechnol J 2020; 16:e2000266. [PMID: 32975831 DOI: 10.1002/biot.202000266] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/09/2020] [Indexed: 12/16/2022]
Abstract
The methylotrophic yeast Pichia pastoris is known as an efficient host for the production of heterologous proteins. While N-linked protein glycosylation is well characterized in P. pastoris there is less knowledge of the patterns of O-glycosylation. O-glycans produced by P. pastoris consist of short linear mannose chains, which in the case of recombinant biopharmaceuticals can trigger an immune response in humans. This study aims to reveal the influence of different cultivation strategies on O-mannosylation profiles in P. pastoris. Sixteen different model proteins, produced by different P. pastoris strains, are analyzed for their O-glycosylation profile. Based on the obtained data, human serum albumin (HSA) is chosen to be produced in fast and slow growth fed batch fermentations by using common promoters, PGAP and PAOX1 . After purification and protein digestion, glycopeptides are analyzed by LC/ESI-MS. In the samples expressed with PGAP it is found that the degree of glycosylation is slightly higher when a slow growth rate is used, regardless of the efficiency of the producing strain. The highest glycosylation intensity is observed in HSA produced with PAOX1 . The results indicate that the O-glycosylation level is markedly higher when the protein is produced in a methanol-based expression system.
Collapse
Affiliation(s)
- Bojana Radoman
- Austrian Centre of Industrial Biotechnology (ACIB), Vienna, 1190, Austria.,Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Vienna, 1190, Austria
| | - Clemens Grünwald-Gruber
- Department of Chemistry, BOKU-University of Natural Resources and Life Sciences, Vienna, 1190, Austria
| | - Bernhard Schmelzer
- Austrian Centre of Industrial Biotechnology (ACIB), Vienna, 1190, Austria.,Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Vienna, 1190, Austria
| | - Domen Zavec
- Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Vienna, 1190, Austria
| | - Brigitte Gasser
- Austrian Centre of Industrial Biotechnology (ACIB), Vienna, 1190, Austria.,Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Vienna, 1190, Austria
| | - Friedrich Altmann
- Austrian Centre of Industrial Biotechnology (ACIB), Vienna, 1190, Austria.,Department of Chemistry, BOKU-University of Natural Resources and Life Sciences, Vienna, 1190, Austria
| | - Diethard Mattanovich
- Austrian Centre of Industrial Biotechnology (ACIB), Vienna, 1190, Austria.,Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Vienna, 1190, Austria
| |
Collapse
|
26
|
Kjeldsen T, Hogendorf WFJ, Tornøe CW, Anderson J, Hubalek F, Stidsen CE, Sorensen JL, Hoeg-Jensen T. Dually Reactive Long Recombinant Linkers for Bioconjugations as an Alternative to PEG. ACS OMEGA 2020; 5:19827-19833. [PMID: 32803078 PMCID: PMC7424725 DOI: 10.1021/acsomega.0c02712] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/22/2020] [Indexed: 06/11/2023]
Abstract
Covalent cross-linking of biomolecules can be useful in pursuit of tissue targeting or dual targeting of two receptors on cell surfaces for avidity effects. Long linkers (>10 kDa) can be advantageous for such purposes, and poly(ethylene glycol) (PEG) linkers are most commonly used due to the high aqueous solubility of PEG and its relative inertness toward biological targets. However, PEG is non-biodegradable, and available PEG linkers longer than 5 kDa are heterogeneous (polydisperse), which means that conjugates based on such materials will be mixtures. We describe here recombinant linkers of distinct lengths, which can be expressed in yeast, which are polar, and which carry orthogonal reactivity at each end of the linker, thus allowing chemoselective cross-linking of proteins. A conjugate between insulin and either of the two trypsin inhibitor peptides/proteins exemplifies the technology, using a GQAP-based linker of molecular weight of 17 848, having one amine at the N-terminal, and one Cys, at the C-terminal. Notably, yeast-based expression systems typically give products with mixed disulfides when expressing proteins that are equipped with one unpaired Cys, namely, mixed disulfides with glutathione, free Cys amino acid, and/or a protein homodimer. To obtain a homogeneous linker, we worked out conditions for transforming the linker with mixed disulfides into a linker with a homogeneous disulfide, using excess 4-mercaptophenylacetic acid. Subsequently, the N-terminal amine of the linker was transformed into an azide, and the C-terminal Cys disulfide was reduced to a free thiol and reacted with halo-acetyl insulin. The N-terminal azide was finally conjugated to either of the two types of alkyne-containing trypsin inhibitor peptides/proteins. This reaction sequence allowed the cross-linked proteins to carry internal disulfides, as no reduction step was needed after protein conjugations. The insulin-trypsin inhibitor conjugates were shown to be stabilized toward enzymatic digestions and to have partially retained binding to the insulin receptor.
Collapse
|
27
|
Zhao G, Xu Y, Ouyang H, Luo Y, Sun S, Wang Z, Yang J, Jin C. Protein O-mannosylation affects protein secretion, cell wall integrity and morphogenesis in Trichoderma reesei. Fungal Genet Biol 2020; 144:103440. [PMID: 32758529 DOI: 10.1016/j.fgb.2020.103440] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 07/23/2020] [Accepted: 07/29/2020] [Indexed: 10/23/2022]
Abstract
Protein O-mannosyltransferases (PMTs) initiate O-mannosylation of proteins in the ER. Trichoderma reesei strains displayed a single representative of each PMT subfamily, Trpmt1, Trpmt2 and Trpmt4. In this work, two knockout strains ΔTrpmt1and ΔTrpmt4were obtained. Both mutants showed retarded growth, defective cell walls, reduced conidiation and decreased protein secretion. Additionally, the ΔTrpmt1strain displayed a thermosensitive growth phenotype, while the ΔTrpmt4 strain showed abnormal polarity. Meanwhile, OETrpmt2 strain, in which the Trpmt2 was over-expressed, exhibited increased conidiation, enhanced protein secretion and abnormal polarity. Using a lectin enrichment method and MS/MS analysis, 173 O-glycoproteins, 295 O-glycopeptides and 649 O-mannosylation sites were identified as the targets of PMTs in T. reesei. These identified O-mannoproteins are involved in various physiological processes such as protein folding, sorting, transport, quality control and secretion, as well as cell wall integrity and polarity. By comparing proteins identified in the mutants and its parent strain, the potential specific protein substrates of PMTs were identified. Based on our results, TrPMT1 is specifically involved inO-mannosylation of intracellular soluble proteins and secreted proteins, specially glycosidases. TrPMT2 is involved inO-mannosylation of secreted proteins and GPI-anchor proteins, and TrPMT4 mainly modifies multiple transmembrane proteins. The TrPMT1-TrPMT4 complex is responsible for O-mannosylation of proteins involved in cell wall integrity. Overexpression of TrPMT2 enhances protein secretion, which might be a new strategy to improve expression efficiency in T. reesei.
Collapse
Affiliation(s)
- Guangya Zhao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yueqiang Xu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing, China
| | - Haomiao Ouyang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuanming Luo
- Public Technology Service Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shutao Sun
- Public Technology Service Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhongfu Wang
- College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Jinghua Yang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Cheng Jin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing, China; National Engineering Research Center for Non-food Bio-refinery, Guangxi Academy of Sciences, Nanning 530007, Guangxi, China.
| |
Collapse
|
28
|
Roohvand F, Ehsani P, Abdollahpour-Alitappeh M, Shokri M, Kossari N. Biomedical applications of yeasts - a patent view, part two: era of humanized yeasts and expanded applications. Expert Opin Ther Pat 2020; 30:609-631. [PMID: 32529867 DOI: 10.1080/13543776.2020.1781816] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Yeast humanization, ranging from a simple point mutation to substitution of yeast gene(s) or even a complete pathway by human counterparts has enormously expanded yeast biomedical applications. AREAS COVERED General and patent-oriented insights into the application of native and humanized yeasts for production of human glycoproteins (gps) and antibodies (Abs), toxicity/mutagenicity assays, treatments of gastrointestinal (GI) disorders and potential drug delivery as a probiotic (with emphasis on Saccharomyces bulardii) and studies on human diseases/cancers and screening effective drugs. EXPERT OPINION Humanized yeasts cover the classical advantageous features of a 'microbial eukaryote' together with advanced human cellular processes. These unique characteristics would permit their use in the production of functional and stable therapeutic gps and Abs in lower prices compared to mammalian (CHO) production-based systems. Availability of yeasts humanized for cytochrome P450 s will expand their application in metabolism-related chemical toxicity assays. Engineered S. bulardii for expression of human proteins might expand its application by synergistically combining the probiotic activity with the treatment of metabolic diseases such as phenylketonuria via GI-delivery. Yeast models of human diseases will facilitate rapid functional/phenotypic characterization of the disease-producing mutant genes and screening of the therapeutic compounds using yeast-based high-throughput research techniques (Yeast one/two hybrid systems) and viability assays.
Collapse
Affiliation(s)
- Farzin Roohvand
- Department of Virology, Pasteur Institute of Iran , Tehran, Iran
| | - Parastoo Ehsani
- Department of Molecular Biology, Pasteur Institute of Iran , Tehran, Iran
| | | | - Mehdi Shokri
- ; Department of Dental Biomaterials, School of Dentistry, Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Niloufar Kossari
- ; Universite de Versailles, Service de ne 'phrologie-transplantation re'nale, Hopital Foch, 40 rue Worth, Suresnes , Paris, France
| |
Collapse
|
29
|
Chen XL, Liu C, Tang B, Ren Z, Wang GL, Liu W. Quantitative proteomics analysis reveals important roles of N-glycosylation on ER quality control system for development and pathogenesis in Magnaporthe oryzae. PLoS Pathog 2020; 16:e1008355. [PMID: 32092131 PMCID: PMC7058352 DOI: 10.1371/journal.ppat.1008355] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 03/05/2020] [Accepted: 01/27/2020] [Indexed: 11/27/2022] Open
Abstract
Genetic studies have shown essential functions of N-glycosylation during infection of the plant pathogenic fungi, however, systematic roles of N-glycosylation in fungi is still largely unknown. Biological analysis demonstrated N-glycosylated proteins were widely present at different development stages of Magnaporthe oryzae and especially increased in the appressorium and invasive hyphae. A large-scale quantitative proteomics analysis was then performed to explore the roles of N-glycosylation in M. oryzae. A total of 559 N-glycosites from 355 proteins were identified and quantified at different developmental stages. Functional classification to the N-glycosylated proteins revealed N-glycosylation can coordinate different cellular processes for mycelial growth, conidium formation, and appressorium formation. N-glycosylation can also modify key components in N-glycosylation, O-glycosylation and GPI anchor pathways, indicating intimate crosstalk between these pathways. Interestingly, we found nearly all key components of the endoplasmic reticulum quality control (ERQC) system were highly N-glycosylated in conidium and appressorium. Phenotypic analyses to the gene deletion mutants revealed four ERQC components, Gls1, Gls2, GTB1 and Cnx1, are important for mycelial growth, conidiation, and invasive hyphal growth in host cells. Subsequently, we identified the Gls1 N-glycosite N497 was important for invasive hyphal growth and partially required for conidiation, but didn’t affect colony growth. Mutation of N497 resulted in reduction of Gls1 in protein level, and localization from ER into the vacuole, suggesting N497 is important for protein stability of Gls1. Our study showed a snapshot of the N-glycosylation landscape in plant pathogenic fungi, indicating functions of this modification in cellular processes, developments and pathogenesis. The fungal pathogen Magnaporthe oryzae can cause rice blast and wheat blast diseases, which threatens worldwide food production. During infection, M. oryzae follows a sequence of distinct developmental stages adapted to survival and invasion of the host environment. M. oryzae attaches onto the host by the conidium, and then develops an appressorium to breach the host cuticle. After penetrating, it forms invasive hyphae to quickly spread in the host cells. Numerous genetic studies have focused on the mechanisms underlying each step in the infection process, but systemic approaches are needed for a broader, integrated understanding of regulatory events during M. oryzae pathogenesis. Many infection-related signaling events are regulated through post-translational protein modifications within the pathogen. N-linked glycosylation, in which a glycan moiety is added to the amide group of an asparagine residue, is an abundant modification known to be essential for M. oryzae infection. In this study, we employed a quantitative proteomics analysis to unravel the overall regulatory mechanisms of N-glycosylation at different developmental stages of M. oryzae. We detected changes in N-glycosylation levels at 559 glycosylated residues (N-glycosites) in 355 proteins during different stages, and determined that the ER quality control system is elaborately regulated by N-glycosylation. The insights gained will help us to better understand the regulatory mechanisms of infection in pathogenic fungi. These findings may be also important for developing novel strategies for fungal disease control.
Collapse
Affiliation(s)
- Xiao-Lin Chen
- The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Caiyun Liu
- The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Bozeng Tang
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
| | - Zhiyong Ren
- The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Guo-Liang Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Plant Pathology, Ohio State University, Columbus, Ohio, United States of America
| | - Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
30
|
Affiliation(s)
| | | | - Ronghu Wu
- School of Chemistry and Biochemistry and the Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
31
|
Xu Y, Zhou H, Zhao G, Yang J, Luo Y, Sun S, Wang Z, Li S, Jin C. Genetical and O-glycoproteomic analyses reveal the roles of three protein O-mannosyltransferases in phytopathogen Fusarium oxysporum f.sp. cucumerinum. Fungal Genet Biol 2020; 134:103285. [DOI: 10.1016/j.fgb.2019.103285] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 09/08/2019] [Accepted: 10/17/2019] [Indexed: 02/05/2023]
|
32
|
Seifert GJ. On the Potential Function of Type II Arabinogalactan O-Glycosylation in Regulating the Fate of Plant Secretory Proteins. FRONTIERS IN PLANT SCIENCE 2020; 11:563735. [PMID: 33013983 PMCID: PMC7511660 DOI: 10.3389/fpls.2020.563735] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/24/2020] [Indexed: 05/04/2023]
Abstract
In a plant-specific mode of protein glycosylation, various sugars and glycans are attached to hydroxyproline giving rise to a variety of diverse O-glycoproteins. The sub-family of arabinogalactan proteins is implicated in a multitude of biological functions, however, the mechanistic role of O-glycosylation on AGPs by type II arabinogalactans is largely elusive. Some models suggest roles of the O-glycans such as in ligand-receptor interactions and as localized calcium ion store. Structurally different but possibly analogous types of protein O-glycosylation exist in animal and yeast models and roles for O-glycans were suggested in determining the fate of O-glycoproteins by affecting intracellular sorting or proteolytic activation and degradation. At present, only few examples exist that describe how the fate of artificial and endogenous arabinogalactan proteins is affected by O-glycosylation with type II arabinogalactans. In addition to other roles, these glycans might act as a molecular determinant for cellular localization and protein lifetime of many endogenous proteins.
Collapse
|
33
|
Phung TK, Zacchi LF, Schulz BL. DIALib: an automated ion library generator for data independent acquisition mass spectrometry analysis of peptides and glycopeptides. Mol Omics 2020; 16:100-112. [DOI: 10.1039/c9mo00125e] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Data Independent Acquisition (DIA) Mass Spectrometry (MS) workflows allow unbiased measurement of all detectable peptides from complex proteomes, but require ion libraries for interrogation of peptides of interest.
Collapse
Affiliation(s)
- Toan K. Phung
- School of Chemistry and Molecular Biosciences
- The University of Queensland
- St Lucia
- Australia
| | - Lucia F. Zacchi
- ARC Training Centre for Biopharmaceutical Innovation
- The University of Queensland
- St. Lucia
- Australia
| | - Benjamin L. Schulz
- School of Chemistry and Molecular Biosciences
- The University of Queensland
- St Lucia
- Australia
- ARC Training Centre for Biopharmaceutical Innovation
| |
Collapse
|
34
|
Castells-Ballester J, Rinis N, Kotan I, Gal L, Bausewein D, Kats I, Zatorska E, Kramer G, Bukau B, Schuldiner M, Strahl S. Translational Regulation of Pmt1 and Pmt2 by Bfr1 Affects Unfolded Protein O-Mannosylation. Int J Mol Sci 2019; 20:ijms20246220. [PMID: 31835530 PMCID: PMC6940804 DOI: 10.3390/ijms20246220] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 12/15/2022] Open
Abstract
O-mannosylation is implicated in protein quality control in Saccharomyces cerevisiae due to the attachment of mannose to serine and threonine residues of un- or misfolded proteins in the endoplasmic reticulum (ER). This process also designated as unfolded protein O-mannosylation (UPOM) that ends futile folding cycles and saves cellular resources is mainly mediated by protein O-mannosyltransferases Pmt1 and Pmt2. Here we describe a genetic screen for factors that influence O-mannosylation in yeast, using slow-folding green fluorescent protein (GFP) as a reporter. Our screening identifies the RNA binding protein brefeldin A resistance factor 1 (Bfr1) that has not been linked to O-mannosylation and ER protein quality control before. We find that Bfr1 affects O-mannosylation through changes in Pmt1 and Pmt2 protein abundance but has no effect on PMT1 and PMT2 transcript levels, mRNA localization to the ER membrane or protein stability. Ribosome profiling reveals that Bfr1 is a crucial factor for Pmt1 and Pmt2 translation thereby affecting unfolded protein O-mannosylation. Our results uncover a new level of regulation of protein quality control in the secretory pathway.
Collapse
Affiliation(s)
- Joan Castells-Ballester
- Centre for Organismal Studies (COS), Glycobiology, Heidelberg University, D-69120 Heidelberg, Germany; (J.C.-B.); (N.R.); (D.B.); (E.Z.)
| | - Natalie Rinis
- Centre for Organismal Studies (COS), Glycobiology, Heidelberg University, D-69120 Heidelberg, Germany; (J.C.-B.); (N.R.); (D.B.); (E.Z.)
| | - Ilgin Kotan
- Center for Molecular Biology of Heidelberg University (ZMBH), German Cancer Research Center (DKFZ), ZMBH-DKFZ Alliance, D-69120 Heidelberg, Germany; (I.K.); (I.K.); (G.K.); (B.B.)
| | - Lihi Gal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel; (L.G.); (M.S.)
| | - Daniela Bausewein
- Centre for Organismal Studies (COS), Glycobiology, Heidelberg University, D-69120 Heidelberg, Germany; (J.C.-B.); (N.R.); (D.B.); (E.Z.)
- spm—Safety Projects & More GmbH, D-69493 Hirschberg a. d. Bergstraße, Germany
| | - Ilia Kats
- Center for Molecular Biology of Heidelberg University (ZMBH), German Cancer Research Center (DKFZ), ZMBH-DKFZ Alliance, D-69120 Heidelberg, Germany; (I.K.); (I.K.); (G.K.); (B.B.)
| | - Ewa Zatorska
- Centre for Organismal Studies (COS), Glycobiology, Heidelberg University, D-69120 Heidelberg, Germany; (J.C.-B.); (N.R.); (D.B.); (E.Z.)
| | - Günter Kramer
- Center for Molecular Biology of Heidelberg University (ZMBH), German Cancer Research Center (DKFZ), ZMBH-DKFZ Alliance, D-69120 Heidelberg, Germany; (I.K.); (I.K.); (G.K.); (B.B.)
| | - Bernd Bukau
- Center for Molecular Biology of Heidelberg University (ZMBH), German Cancer Research Center (DKFZ), ZMBH-DKFZ Alliance, D-69120 Heidelberg, Germany; (I.K.); (I.K.); (G.K.); (B.B.)
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel; (L.G.); (M.S.)
| | - Sabine Strahl
- Centre for Organismal Studies (COS), Glycobiology, Heidelberg University, D-69120 Heidelberg, Germany; (J.C.-B.); (N.R.); (D.B.); (E.Z.)
- Correspondence: ; Tel.: +49-6221-54-6286
| |
Collapse
|
35
|
Chen Z, Huang J, Li L. Recent advances in mass spectrometry (MS)-based glycoproteomics in complex biological samples. Trends Analyt Chem 2019; 118:880-892. [PMID: 31579312 PMCID: PMC6774629 DOI: 10.1016/j.trac.2018.10.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Protein glycosylation plays a key role in various biological processes and disease-related pathological progression. Mass spectrometry (MS)-based glycoproteomics is a powerful approach that provides a system-wide profiling of the glycoproteome in a high-throughput manner. There have been numerous significant technological advances in this field, including improved glycopeptide enrichment, hybrid fragmentation techniques, emerging specialized software packages, and effective quantitation strategies, as well as more dedicated workflows. With increasingly sophisticated glycoproteomics tools on hand, researchers have extensively adapted this approach to explore different biological systems both in terms of in-depth glycoproteome profiling and comparative glycoproteome analysis. Quantitative glycoproteomics enables researchers to discover novel glycosylation-based biomarkers in various diseases with potential to offer better sensitivity and specificity for disease diagnosis. In this review, we present recent methodological developments in MS-based glycoproteomics and highlight its utility and applications in answering various questions in complex biological systems.
Collapse
Affiliation(s)
- Zhengwei Chen
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Junfeng Huang
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53705, USA
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
36
|
Chen Z, Huang J, Li L. Recent advances in mass spectrometry (MS)-based glycoproteomics in complex biological samples. Trends Analyt Chem 2019. [PMID: 31579312 DOI: 10.1016/jtrac.2018.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
Protein glycosylation plays a key role in various biological processes and disease-related pathological progression. Mass spectrometry (MS)-based glycoproteomics is a powerful approach that provides a system-wide profiling of the glycoproteome in a high-throughput manner. There have been numerous significant technological advances in this field, including improved glycopeptide enrichment, hybrid fragmentation techniques, emerging specialized software packages, and effective quantitation strategies, as well as more dedicated workflows. With increasingly sophisticated glycoproteomics tools on hand, researchers have extensively adapted this approach to explore different biological systems both in terms of in-depth glycoproteome profiling and comparative glycoproteome analysis. Quantitative glycoproteomics enables researchers to discover novel glycosylation-based biomarkers in various diseases with potential to offer better sensitivity and specificity for disease diagnosis. In this review, we present recent methodological developments in MS-based glycoproteomics and highlight its utility and applications in answering various questions in complex biological systems.
Collapse
Affiliation(s)
- Zhengwei Chen
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Junfeng Huang
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53705, USA
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
37
|
Xiao H, Sun F, Suttapitugsakul S, Wu R. Global and site-specific analysis of protein glycosylation in complex biological systems with Mass Spectrometry. MASS SPECTROMETRY REVIEWS 2019; 38:356-379. [PMID: 30605224 PMCID: PMC6610820 DOI: 10.1002/mas.21586] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 11/27/2018] [Indexed: 05/16/2023]
Abstract
Protein glycosylation is ubiquitous in biological systems and plays essential roles in many cellular events. Global and site-specific analysis of glycoproteins in complex biological samples can advance our understanding of glycoprotein functions and cellular activities. However, it is extraordinarily challenging because of the low abundance of many glycoproteins and the heterogeneity of glycan structures. The emergence of mass spectrometry (MS)-based proteomics has provided us an excellent opportunity to comprehensively study proteins and their modifications, including glycosylation. In this review, we first summarize major methods for glycopeptide/glycoprotein enrichment, followed by the chemical and enzymatic methods to generate a mass tag for glycosylation site identification. We next discuss the systematic and quantitative analysis of glycoprotein dynamics. Reversible protein glycosylation is dynamic, and systematic study of glycoprotein dynamics helps us gain insight into glycoprotein functions. The last part of this review focuses on the applications of MS-based proteomics to study glycoproteins in different biological systems, including yeasts, plants, mice, human cells, and clinical samples. Intact glycopeptide analysis is also included in this section. Because of the importance of glycoproteins in complex biological systems, the field of glycoproteomics will continue to grow in the next decade. Innovative and effective MS-based methods will exponentially advance glycoscience, and enable us to identify glycoproteins as effective biomarkers for disease detection and drug targets for disease treatment. © 2019 Wiley Periodicals, Inc. Mass Spec Rev 9999: XX-XX, 2019.
Collapse
Affiliation(s)
- Haopeng Xiao
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta 30332 Georgia
| | - Fangxu Sun
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta 30332 Georgia
| | - Suttipong Suttapitugsakul
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta 30332 Georgia
| | - Ronghu Wu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta 30332 Georgia
| |
Collapse
|
38
|
Cell surface display of proteins on filamentous fungi. Appl Microbiol Biotechnol 2019; 103:6949-6972. [PMID: 31359105 DOI: 10.1007/s00253-019-10026-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 07/11/2019] [Accepted: 07/15/2019] [Indexed: 12/14/2022]
Abstract
Protein display approaches have been useful to endow the cell surface of yeasts with new catalytic activities so that they can act as enhanced whole-cell biocatalysts. Despite their biotechnological potential, protein display technologies remain poorly developed for filamentous fungi. The lignocellulolytic character of some of them coupled to the cell surface biosynthesis of valuable molecules by a single or a cascade of several displayed enzymes is an appealing prospect. Cell surface protein display consists in the co-translational fusion of a functional protein (passenger) to an anchor one, usually a cell-wall-resident protein. The abundance, spacing, and local environment of the displayed enzymes-determined by the relationship of the anchor protein with the structure and dynamics of the engineered cell wall-are factors that influence the performance of display-based biocatalysts. The development of protein display strategies in filamentous fungi could be based on the field advances in yeasts; however, the unique composition, structure, and biology of filamentous fungi cell walls require the customization of the approach to those microorganisms. In this prospective review, the cellular bases, the design principles, and the available tools to foster the development of cell surface protein display technologies in filamentous fungi are discussed.
Collapse
|
39
|
Larsen ISB, Narimatsu Y, Clausen H, Joshi HJ, Halim A. Multiple distinct O-Mannosylation pathways in eukaryotes. Curr Opin Struct Biol 2019; 56:171-178. [PMID: 30999272 DOI: 10.1016/j.sbi.2019.03.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/26/2019] [Accepted: 03/01/2019] [Indexed: 12/29/2022]
Abstract
Protein O-mannosylation (O-Man), originally discovered in yeast five decades ago, is an important post-translational modification (PTM) conserved from bacteria to humans, but not found in plants or nematodes. Until recently, the homologous family of ER-located protein O-mannosyl transferases (PMT1-7 in yeast; POMT1/POMT2 in humans), were the only known enzymes involved in directing O-Man biosynthesis in eukaryotes. However, recent studies demonstrate the existence of multiple distinct O-Man glycosylation pathways indicating that the genetic and biosynthetic regulation of O-Man in eukaryotes is more complex than previously envisioned. Introduction of sensitive glycoproteomics strategies provided an expansion of O-Man glycoproteomes in eukaryotes (yeast and mammalian cell lines) leading to the discovery of O-Man glycosylation on important mammalian cell adhesion (cadherin superfamily) and signaling (plexin family) macromolecules, and to the discovery of unique nucleocytoplasmic O-Man glycosylation in yeast. It is now evident that eukaryotes have multiple distinct O-Man glycosylation pathways including: i) the classical PMT1-7 and POMT1/POMT2 pathway conserved in all eukaryotes apart from plants; ii) a yet uncharacterized nucleocytoplasmic pathway only found in yeast; iii) an ER-located pathway directed by the TMTC1-4 genes found in metazoans and protists and primarily dedicated to the cadherin superfamily; and iv) a yet uncharacterized pathway found in metazoans primarily dedicated to plexins. O-Man glycosylation is thus emerging as a much more widespread and evolutionary diverse PTM with complex genetic and biosynthetic regulation. While deficiencies in the POMT1/POMT2 O-Man pathway underlie muscular dystrophies, the TMTC1-4 pathway appear to be involved in distinct congenital disorders with neurodevelopmental phenotypes. Here, we review and discuss the recent discoveries of the new non-classical O-Man glycosylation pathways, their substrates, functions and roles in disease.
Collapse
Affiliation(s)
- Ida Signe Bohse Larsen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Yoshiki Narimatsu
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Hiren J Joshi
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark.
| | - Adnan Halim
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark.
| |
Collapse
|
40
|
Bando-Campos G, Juárez-López D, Román-González SA, Castillo-Rodal AI, Olvera C, López-Vidal Y, Arreguín-Espinosa R, Espitia C, Trujillo-Roldán MA, Valdez-Cruz NA. Recombinant O-mannosylated protein production (PstS-1) from Mycobacterium tuberculosis in Pichia pastoris (Komagataella phaffii) as a tool to study tuberculosis infection. Microb Cell Fact 2019; 18:11. [PMID: 30660186 PMCID: PMC6339365 DOI: 10.1186/s12934-019-1059-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 01/10/2019] [Indexed: 02/06/2023] Open
Abstract
Background Pichia pastoris (syn. Komagataella phaffii) is one of the most highly utilized eukaryotic expression systems for the production of heterologous glycoproteins, being able to perform both N- and O-mannosylation. In this study, we present the expression in P. pastoris of an O-mannosylated recombinant version of the 38 kDa glycolipoprotein PstS-1 from Mycobacterium tuberculosis (Mtb), that is similar in primary structure to the native secreted protein. Results The recombinant PstS-1 (rPstS-1) was produced without the native lipidation signal. Glycoprotein expression was under the control of the methanol-inducible promoter pAOX1, with secretion being directed by the α-mating factor secretion signal. Production of rPstS-1 was carried out in baffled shake flasks (BSFs) and controlled bioreactors. A production up to ~ 46 mg/L of the recombinant protein was achieved in both the BSFs and the bioreactors. The recombinant protein was recovered from the supernatant and purified in three steps, achieving a preparation with 98% electrophoretic purity. The primary and secondary structures of the recombinant protein were characterized, as well as its O-mannosylation pattern. Furthermore, a cross-reactivity analysis using serum antibodies from patients with active tuberculosis demonstrated recognition of the recombinant glycoprotein, indirectly indicating the similarity between the recombinant PstS-1 and the native protein from Mtb. Conclusions rPstS-1 (98.9% sequence identity, O-mannosylated, and without tags) was produced and secreted by P. pastoris, demonstrating that this yeast is a useful cell factory that could also be used to produce other glycosylated Mtb antigens. The rPstS-1 could be used as a tool for studying the role of this molecule during Mtb infection, and to develop and improve vaccines or kits based on the recombinant protein for serodiagnosis. Electronic supplementary material The online version of this article (10.1186/s12934-019-1059-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Giroshi Bando-Campos
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP. 70228, CP. 04510, Ciudad de México, Mexico
| | - Daniel Juárez-López
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP. 70228, CP. 04510, Ciudad de México, Mexico
| | - Sergio A Román-González
- Unidad de Proteómica, Instituto Nacional de Medicina Genómica (INMEGEN), Periférico Sur 4809, Col. Arenal Tepepan, Tlalpan, C.P. 14610, Ciudad de México, Mexico
| | - Antonia I Castillo-Rodal
- Programa de Inmunología Molecular Microbiana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), 04510, Ciudad de México, Mexico
| | - Clarita Olvera
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología UNAM, Av. Universidad 2001 Chamilpa, Cuernavaca, Morelos, Mexico
| | - Yolanda López-Vidal
- Programa de Inmunología Molecular Microbiana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), 04510, Ciudad de México, Mexico
| | - Roberto Arreguín-Espinosa
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad Universitaria, Apdo, Postal 70250, C.P. 04510, México City, Mexico
| | - Clara Espitia
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Mauricio A Trujillo-Roldán
- Programa de Investigación de Producción de Biomoléculas, Unidad de Bioprocesos, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP. 70228, CP. 04510, Ciudad de México, Mexico
| | - Norma A Valdez-Cruz
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP. 70228, CP. 04510, Ciudad de México, Mexico.
| |
Collapse
|
41
|
Castells-Ballester J, Zatorska E, Meurer M, Neubert P, Metschies A, Knop M, Strahl S. Monitoring Protein Dynamics in Protein O-Mannosyltransferase Mutants In Vivo by Tandem Fluorescent Protein Timers. Molecules 2018; 23:E2622. [PMID: 30322079 PMCID: PMC6222916 DOI: 10.3390/molecules23102622] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/05/2018] [Accepted: 10/09/2018] [Indexed: 12/27/2022] Open
Abstract
For proteins entering the secretory pathway, a major factor contributing to maturation and homeostasis is glycosylation. One relevant type of protein glycosylation is O-mannosylation, which is essential and evolutionarily-conserved in fungi, animals, and humans. Our recent proteome-wide study in the eukaryotic model organism Saccharomyces cerevisiae revealed that more than 26% of all proteins entering the secretory pathway receive O-mannosyl glycans. In a first attempt to understand the impact of O-mannosylation on these proteins, we took advantage of a tandem fluorescent timer (tFT) reporter to monitor different aspects of protein dynamics. We analyzed tFT-reporter fusions of 137 unique O-mannosylated proteins, mainly of the secretory pathway and the plasma membrane, in mutants lacking the major protein O-mannosyltransferases Pmt1, Pmt2, or Pmt4. In these three pmtΔ mutants, a total of 39 individual proteins were clearly affected, and Pmt-specific substrate proteins could be identified. We observed that O-mannosylation may cause both enhanced and diminished protein abundance and/or stability when compromised, and verified our findings on the examples of Axl2-tFT and Kre6-tFT fusion proteins. The identified target proteins are a valuable resource towards unraveling the multiple functions of O-mannosylation at the molecular level.
Collapse
Affiliation(s)
| | - Ewa Zatorska
- Centre for Organismal Studies (COS), Heidelberg University, 69120 Heidelberg, Germany.
| | - Matthias Meurer
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, 69120 Heidelberg, Germany.
| | - Patrick Neubert
- Centre for Organismal Studies (COS), Heidelberg University, 69120 Heidelberg, Germany.
| | - Anke Metschies
- Centre for Organismal Studies (COS), Heidelberg University, 69120 Heidelberg, Germany.
| | - Michael Knop
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, 69120 Heidelberg, Germany.
- Deutsches Krebsforschungszentrum (DKFZ), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany.
| | - Sabine Strahl
- Centre for Organismal Studies (COS), Heidelberg University, 69120 Heidelberg, Germany.
| |
Collapse
|
42
|
Xiao H, Chen W, Smeekens JM, Wu R. An enrichment method based on synergistic and reversible covalent interactions for large-scale analysis of glycoproteins. Nat Commun 2018; 9:1692. [PMID: 29703890 PMCID: PMC5923262 DOI: 10.1038/s41467-018-04081-3] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 03/28/2018] [Indexed: 01/28/2023] Open
Abstract
Protein glycosylation is ubiquitous in biological systems and essential for cell survival. However, the heterogeneity of glycans and the low abundance of many glycoproteins complicate their global analysis. Chemical methods based on reversible covalent interactions between boronic acid and glycans have great potential to enrich glycopeptides, but the binding affinity is typically not strong enough to capture low-abundance species. Here, we develop a strategy using dendrimer-conjugated benzoboroxole to enhance the glycopeptide enrichment. We test the performance of several boronic acid derivatives, showing that benzoboroxole markedly increases glycopeptide coverage from human cell lysates. The enrichment is further improved by conjugating benzoboroxole to a dendrimer, which enables synergistic benzoboroxole–glycan interactions. This robust and simple method is highly effective for sensitive glycoproteomics analysis, especially capturing low-abundance glycopeptides. Importantly, the enriched glycopeptides remain intact, making the current method compatible with mass-spectrometry-based approaches to identify glycosylation sites and glycan structures. Understanding the functions of protein glycosylation critically depends on methods to efficiently enrich glycoproteins from complex samples. Here, the authors develop a strategy using dendrimer-conjugated benzoboroxole to enhance glycopeptide enrichment, providing the basis for more comprehensive glycoprotein analyses.
Collapse
Affiliation(s)
- Haopeng Xiao
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA.,The Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Weixuan Chen
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA.,The Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Johanna M Smeekens
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA.,The Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Ronghu Wu
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA. .,The Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
43
|
O-GlcNAc in cancer: An Oncometabolism-fueled vicious cycle. J Bioenerg Biomembr 2018; 50:155-173. [PMID: 29594839 DOI: 10.1007/s10863-018-9751-2] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 03/15/2018] [Indexed: 12/17/2022]
Abstract
Cancer cells exhibit unregulated growth, altered metabolism, enhanced metastatic potential and altered cell surface glycans. Fueled by oncometabolism and elevated uptake of glucose and glutamine, the hexosamine biosynthetic pathway (HBP) sustains glycosylation in the endomembrane system. In addition, the elevated pools of UDP-GlcNAc drives the O-GlcNAc modification of key targets in the cytoplasm, nucleus and mitochondrion. These targets include transcription factors, kinases, key cytoplasmic enzymes of intermediary metabolism, and electron transport chain complexes. O-GlcNAcylation can thereby alter epigenetics, transcription, signaling, proteostasis, and bioenergetics, key 'hallmarks of cancer'. In this review, we summarize accumulating evidence that many cancer hallmarks are linked to dysregulation of O-GlcNAc cycling on cancer-relevant targets. We argue that onconutrient and oncometabolite-fueled elevation increases HBP flux and triggers O-GlcNAcylation of key regulatory enzymes in glycolysis, Kreb's cycle, pentose-phosphate pathway, and the HBP itself. The resulting rerouting of glucose metabolites leads to elevated O-GlcNAcylation of oncogenes and tumor suppressors further escalating elevation in HBP flux creating a 'vicious cycle'. Downstream, elevated O-GlcNAcylation alters DNA repair and cellular stress pathways which influence oncogenesis. The elevated steady-state levels of O-GlcNAcylated targets found in many cancers may also provide these cells with a selective advantage for sustained growth, enhanced metastatic potential, and immune evasion in the tumor microenvironment.
Collapse
|
44
|
Ruiz-May E, Sørensen I, Fei Z, Zhang S, Domozych DS, Rose JKC. The Secretome and N-Glycosylation Profiles of the Charophycean Green Alga, Penium margaritaceum, Resemble Those of Embryophytes. Proteomes 2018; 6:E14. [PMID: 29561781 PMCID: PMC6027541 DOI: 10.3390/proteomes6020014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 11/16/2022] Open
Abstract
The secretome can be defined as the population of proteins that are secreted into the extracellular environment. Many proteins that are secreted by eukaryotes are N-glycosylated. However, there are striking differences in the diversity and conservation of N-glycosylation patterns between taxa. For example, the secretome and N-glycosylation structures differ between land plants and chlorophyte green algae, but it is not clear when this divergence took place during plant evolution. A potentially valuable system to study this issue is provided by the charophycean green algae (CGA), which is the immediate ancestors of land plants. In this study, we used lectin affinity chromatography (LAC) coupled with mass spectrometry to characterize the secretome including secreted N-glycoproteins of Penium margaritaceum, which is a member of the CGA. The identified secreted proteins and N-glycans were compared to those known from the chlorophyte green alga Chlamydomonas reinhardtii and the model land plant, Arabidopsis thaliana, to establish their evolutionary context. Our approach allowed the identification of cell wall proteins and proteins modified with N-glycans that are identical to those of embryophytes, which suggests that the P. margaritaceum secretome is more closely related to those of land plants than to those of chlorophytes. The results of this study support the hypothesis that many of the proteins associated with plant cell wall modification as well as other extracellular processes evolved prior to the colonization of terrestrial habitats.
Collapse
Affiliation(s)
- Eliel Ruiz-May
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA.
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A. C., Cluster BioMimic, Carretera Antigua a Coatepec 351, Congregación el Haya, CP 91070 Xalapa, Veracruz, Mexico.
| | - Iben Sørensen
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA.
| | - Zhangjun Fei
- Boyce Thompson Institute, Ithaca, NY 14853, USA.
- U.S. Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY 14853, USA.
| | - Sheng Zhang
- Institute of Biotechnology, Cornell University, Ithaca, NY 14853, USA.
| | - David S Domozych
- Department of Biology and Skidmore Microscopy Imaging Center, Skidmore College, Saratoga Springs, NY 12866, USA.
| | - Jocelyn K C Rose
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
45
|
Garfoot AL, Goughenour KD, Wüthrich M, Rajaram MVS, Schlesinger LS, Klein BS, Rappleye CA. O-Mannosylation of Proteins Enables Histoplasma Yeast Survival at Mammalian Body Temperatures. mBio 2018; 9:e02121-17. [PMID: 29295913 PMCID: PMC5750402 DOI: 10.1128/mbio.02121-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 11/27/2017] [Indexed: 01/30/2023] Open
Abstract
The ability to grow at mammalian body temperatures is critical for pathogen infection of humans. For the thermally dimorphic fungal pathogen Histoplasma capsulatum, elevated temperature is required for differentiation of mycelia or conidia into yeast cells, a step critical for invasion and replication within phagocytic immune cells. Posttranslational glycosylation of extracellular proteins characterizes factors produced by the pathogenic yeast cells but not those of avirulent mycelia, correlating glycosylation with infection. Histoplasma yeast cells lacking the Pmt1 and Pmt2 protein mannosyltransferases, which catalyze O-linked mannosylation of proteins, are severely attenuated during infection of mammalian hosts. Cells lacking Pmt2 have altered surface characteristics that increase recognition of yeast cells by the macrophage mannose receptor and reduce recognition by the β-glucan receptor Dectin-1. Despite these changes, yeast cells lacking these factors still associate with and survive within phagocytes. Depletion of macrophages or neutrophils in vivo does not recover the virulence of the mutant yeast cells. We show that yeast cells lacking Pmt functions are more sensitive to thermal stress in vitro and consequently are unable to productively infect mice, even in the absence of fever. Treatment of mice with cyclophosphamide reduces the normal core body temperature of mice, and this decrease is sufficient to restore the infectivity of O-mannosylation-deficient yeast cells. These findings demonstrate that O-mannosylation of proteins increases the thermotolerance of Histoplasma yeast cells, which facilitates infection of mammalian hosts.IMPORTANCE For dimorphic fungal pathogens, mammalian body temperature can have contrasting roles. Mammalian body temperature induces differentiation of the fungal pathogen Histoplasma capsulatum into a pathogenic state characterized by infection of host phagocytes. On the other hand, elevated temperatures represent a significant barrier to infection by many microbes. By functionally characterizing cells lacking O-linked mannosylation enzymes, we show that protein mannosylation confers thermotolerance on H. capsulatum, enabling infection of mammalian hosts.
Collapse
Affiliation(s)
- Andrew L Garfoot
- Department of Microbiology, Ohio State University, Columbus, Ohio, USA
| | | | - Marcel Wüthrich
- Department of Pediatrics, University of Wisconsin, Madison, Wisconsin, USA
| | - Murugesan V S Rajaram
- Department of Microbial Infection and Immunity, Center for Microbial Interface Biology, Ohio State University, Columbus, Ohio, USA
| | - Larry S Schlesinger
- Department of Microbial Infection and Immunity, Center for Microbial Interface Biology, Ohio State University, Columbus, Ohio, USA
| | - Bruce S Klein
- Department of Pediatrics, University of Wisconsin, Madison, Wisconsin, USA
- Departments of Medicine and Medical Microbiology and Immunology, University of Wisconsin, Madison, Wisconsin, USA
| | - Chad A Rappleye
- Department of Microbiology, Ohio State University, Columbus, Ohio, USA
- Department of Microbial Infection and Immunity, Center for Microbial Interface Biology, Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
46
|
Affiliation(s)
- Nicholas
M. Riley
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Genome
Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Joshua J. Coon
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Genome
Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department
of Biomolecular Chemistry, University of
Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Morgridge
Institute for Research, Madison, Wisconsin 53715, United States
| |
Collapse
|
47
|
Discovery of an O-mannosylation pathway selectively serving cadherins and protocadherins. Proc Natl Acad Sci U S A 2017; 114:11163-11168. [PMID: 28973932 DOI: 10.1073/pnas.1708319114] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The cadherin (cdh) superfamily of adhesion molecules carry O-linked mannose (O-Man) glycans at highly conserved sites localized to specific β-strands of their extracellular cdh (EC) domains. These O-Man glycans do not appear to be elongated like O-Man glycans found on α-dystroglycan (α-DG), and we recently demonstrated that initiation of cdh/protocadherin (pcdh) O-Man glycosylation is not dependent on the evolutionary conserved POMT1/POMT2 enzymes that initiate O-Man glycosylation on α-DG. Here, we used a CRISPR/Cas9 genetic dissection strategy combined with sensitive and quantitative O-Man glycoproteomics to identify a homologous family of four putative protein O-mannosyltransferases encoded by the TMTC1-4 genes, which were found to be imperative for cdh and pcdh O-Man glycosylation. KO of all four TMTC genes in HEK293 cells resulted in specific loss of cdh and pcdh O-Man glycosylation, whereas combined KO of TMTC1 and TMTC3 resulted in selective loss of O-Man glycans on specific β-strands of EC domains, suggesting that each isoenzyme serves a different function. In addition, O-Man glycosylation of IPT/TIG domains of plexins and hepatocyte growth factor receptor was not affected in TMTC KO cells, suggesting the existence of yet another O-Man glycosylation machinery. Our study demonstrates that regulation of O-mannosylation in higher eukaryotes is more complex than envisioned, and the discovery of the functions of TMTCs provide insight into cobblestone lissencephaly caused by deficiency in TMTC3.
Collapse
|
48
|
Geva Y, Crissman J, Arakel EC, Gómez-Navarro N, Chuartzman SG, Stahmer KR, Schwappach B, Miller EA, Schuldiner M. Two novel effectors of trafficking and maturation of the yeast plasma membrane H + -ATPase. Traffic 2017; 18:672-682. [PMID: 28727280 PMCID: PMC5607100 DOI: 10.1111/tra.12503] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 07/17/2017] [Accepted: 07/17/2017] [Indexed: 11/28/2022]
Abstract
The endoplasmic reticulum (ER) is the entry site of proteins into the endomembrane system. Proteins exit the ER via coat protein II (COPII) vesicles in a selective manner, mediated either by direct interaction with the COPII coat or aided by cargo receptors. Despite the fundamental role of such receptors in protein sorting, only a few have been identified. To further define the machinery that packages secretory cargo and targets proteins from the ER to Golgi membranes, we used multiple systematic approaches, which revealed 2 uncharacterized proteins that mediate the trafficking and maturation of Pma1, the essential yeast plasma membrane proton ATPase. Ydl121c (Exp1) is an ER protein that binds Pma1, is packaged into COPII vesicles, and whose deletion causes ER retention of Pma1. Ykl077w (Psg1) physically interacts with Exp1 and can be found in the Golgi and coat protein I (COPI) vesicles but does not directly bind Pma1. Loss of Psg1 causes enhanced degradation of Pma1 in the vacuole. Our findings suggest that Exp1 is a Pma1 cargo receptor and that Psg1 aids Pma1 maturation in the Golgi or affects its retrieval. More generally our work shows the utility of high content screens in the identification of novel trafficking components.
Collapse
Affiliation(s)
- Yosef Geva
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Jonathan Crissman
- Department of Biological Sciences, Columbia University, New York, NY
| | - Eric C Arakel
- Department of Molecular Biology, Universitätsmedizin Göttingen, Göttingen, Germany
| | | | - Silvia G Chuartzman
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Kyle R Stahmer
- Department of Biological Sciences, Columbia University, New York, NY
| | - Blanche Schwappach
- Department of Molecular Biology, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Elizabeth A Miller
- Department of Biological Sciences, Columbia University, New York, NY.,MRC Laboratory of Molecular Biology, Cell Biology Division, Cambridge, UK
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
49
|
Zatorska E, Gal L, Schmitt J, Bausewein D, Schuldiner M, Strahl S. Cellular Consequences of Diminished Protein O-Mannosyltransferase Activity in Baker's Yeast. Int J Mol Sci 2017; 18:ijms18061226. [PMID: 28598353 PMCID: PMC5486049 DOI: 10.3390/ijms18061226] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 05/31/2017] [Accepted: 06/01/2017] [Indexed: 01/08/2023] Open
Abstract
O-Mannosylation is a type of protein glycosylation initiated in the endoplasmic reticulum (ER) by the protein O-mannosyltransferase (PMT) family. Despite the vital role of O-mannosylation, its molecular functions and regulation are not fully characterized. To further explore the cellular impact of protein O-mannosylation, we performed a genome-wide screen to identify Saccharomyces cerevisiae mutants with increased sensitivity towards the PMT-specific inhibitor compound R3A-5a. We identified the cell wall and the ER as the cell compartments affected most upon PMT inhibition. Especially mutants with defects in N-glycosylation, biosynthesis of glycosylphosphatidylinositol-anchored proteins and cell wall β-1,6-glucan showed impaired growth when O-mannosylation became limiting. Signaling pathways that counteract cell wall defects and unbalanced ER homeostasis, namely the cell wall integrity pathway and the unfolded protein response, were highly crucial for the cell growth. Moreover, among the most affected mutants, we identified Ost3, one of two homologous subunits of the oligosaccharyltransferase complexes involved in N-glycosylation, suggesting a functional link between the two pathways. Indeed, we identified Pmt2 as a substrate for Ost3 suggesting that the reduced function of Pmt2 in the absence of N-glycosylation promoted sensitivity to the drug. Interestingly, even though S. cerevisiae Pmt1 and Pmt2 proteins are highly similar on the sequence, as well as the structural level and act as a complex, we identified only Pmt2, but not Pmt1, as an Ost3-specific substrate protein.
Collapse
Affiliation(s)
- Ewa Zatorska
- Centre for Organismal Studies (COS), Heidelberg University, 69120 Heidelberg, Germany.
| | - Lihi Gal
- Department of Molecular Genetics, Weizmann Institute of Science, 7610001 Rehovot, Israel.
| | - Jaro Schmitt
- Centre for Organismal Studies (COS), Heidelberg University, 69120 Heidelberg, Germany.
| | - Daniela Bausewein
- Centre for Organismal Studies (COS), Heidelberg University, 69120 Heidelberg, Germany.
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, 7610001 Rehovot, Israel.
| | - Sabine Strahl
- Centre for Organismal Studies (COS), Heidelberg University, 69120 Heidelberg, Germany.
| |
Collapse
|
50
|
Larsen ISB, Narimatsu Y, Joshi HJ, Yang Z, Harrison OJ, Brasch J, Shapiro L, Honig B, Vakhrushev SY, Clausen H, Halim A. Mammalian O-mannosylation of cadherins and plexins is independent of protein O-mannosyltransferases 1 and 2. J Biol Chem 2017; 292:11586-11598. [PMID: 28512129 DOI: 10.1074/jbc.m117.794487] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Indexed: 11/06/2022] Open
Abstract
Protein O-mannosylation is found in yeast and metazoans, and a family of conserved orthologous protein O-mannosyltransferases is believed to initiate this important post-translational modification. We recently discovered that the cadherin superfamily carries O-linked mannose (O-Man) glycans at highly conserved residues in specific extracellular cadherin domains, and it was suggested that the function of E-cadherin was dependent on the O-Man glycans. Deficiencies in enzymes catalyzing O-Man biosynthesis, including the two human protein O-mannosyltransferases, POMT1 and POMT2, underlie a subgroup of congenital muscular dystrophies designated α-dystroglycanopathies, because deficient O-Man glycosylation of α-dystroglycan disrupts laminin interaction with α-dystroglycan and the extracellular matrix. To explore the functions of O-Man glycans on cadherins and protocadherins, we used a combinatorial gene-editing strategy in multiple cell lines to evaluate the role of the two POMTs initiating O-Man glycosylation and the major enzyme elongating O-Man glycans, the protein O-mannose β-1,2-N-acetylglucosaminyltransferase, POMGnT1. Surprisingly, O-mannosylation of cadherins and protocadherins does not require POMT1 and/or POMT2 in contrast to α-dystroglycan, and moreover, the O-Man glycans on cadherins are not elongated. Thus, the classical and evolutionarily conserved POMT O-mannosylation pathway is essentially dedicated to α-dystroglycan and a few other proteins, whereas a novel O-mannosylation process in mammalian cells is predicted to serve the large cadherin superfamily and other proteins.
Collapse
Affiliation(s)
- Ida Signe Bohse Larsen
- From the Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark, and
| | - Yoshiki Narimatsu
- From the Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark, and
| | - Hiren Jitendra Joshi
- From the Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark, and
| | - Zhang Yang
- From the Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark, and
| | | | - Julia Brasch
- the Department of Biochemistry and Molecular Biophysics
| | - Lawrence Shapiro
- the Department of Biochemistry and Molecular Biophysics.,Zuckerman Mind Brain Behavior Institute, Department of Systems Biology, and
| | - Barry Honig
- the Department of Biochemistry and Molecular Biophysics.,Zuckerman Mind Brain Behavior Institute, Department of Systems Biology, and.,Howard Hughes Medical Institute Columbia University, New York, New York 10032
| | - Sergey Y Vakhrushev
- From the Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark, and
| | - Henrik Clausen
- From the Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark, and
| | - Adnan Halim
- From the Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark, and
| |
Collapse
|