1
|
Tian W, Shi D, Zhang Y, Wang H, Tang H, Han Z, Wong CCL, Cui L, Zheng J, Chen Y. Deep proteomic analysis of obstetric antiphospholipid syndrome by DIA-MS of extracellular vesicle enriched fractions. Commun Biol 2024; 7:99. [PMID: 38225453 PMCID: PMC10789860 DOI: 10.1038/s42003-024-05789-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 01/03/2024] [Indexed: 01/17/2024] Open
Abstract
Proteins in the plasma/serum mirror an individual's physiology. Circulating extracellular vesicles (EVs) proteins constitute a large portion of the plasma/serum proteome. Thus, deep and unbiased proteomic analysis of circulating plasma/serum extracellular vesicles holds promise for discovering disease biomarkers as well as revealing disease mechanisms. We established a workflow for simple, deep, and reproducible proteome analysis of both serum large and small EVs enriched fractions by ultracentrifugation plus 4D-data-independent acquisition mass spectrometry (4D-DIA-MS). In our cohort study of obstetric antiphospholipid syndrome (OAPS), 4270 and 3328 proteins were identified from large and small EVs enriched fractions respectively. Both of them revealed known or new pathways related to OAPS. Increased levels of von Willebrand factor (VWF) and insulin receptor (INSR) were identified as candidate biomarkers, which shed light on hypercoagulability and abnormal insulin signaling in disease progression. Our workflow will significantly promote our understanding of plasma/serum-based disease mechanisms and generate new biomarkers.
Collapse
Affiliation(s)
- Wenmin Tian
- Department of Biochemistry and Biophysics, Center for Precision Medicine Multi-Omics Research, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Dongxue Shi
- Department of Biochemistry and Biophysics, Center for Precision Medicine Multi-Omics Research, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Yinmei Zhang
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, P R China
| | - Hongli Wang
- Department of Biochemistry and Biophysics, Center for Precision Medicine Multi-Omics Research, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Haohao Tang
- Department of Biochemistry and Biophysics, Center for Precision Medicine Multi-Omics Research, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Zhongyu Han
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, P R China
| | - Catherine C L Wong
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, 100730, Beijing, China
- Tsinghua University-Peking University Joint Center for Life Sciences, Peking University, 100084, Beijing, China
| | - Liyan Cui
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, P R China.
| | - Jiajia Zheng
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, P R China.
| | - Yang Chen
- Department of Biochemistry and Biophysics, Center for Precision Medicine Multi-Omics Research, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
2
|
Novais AA, Tamarindo GH, Chuffa LGDA, Zuccari DAPDC. Decoding Hidden Messengers: Proteomic Profiling of Exosomes in Mammary Cancer Research. Biomedicines 2023; 11:2839. [PMID: 37893211 PMCID: PMC10604896 DOI: 10.3390/biomedicines11102839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/11/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023] Open
Abstract
Cancer is a complex and heterogeneous disease, influenced by various factors that affect its progression and response to treatment. Although a histopathological diagnosis is crucial for identifying and classifying cancer, it may not accurately predict the disease's development and evolution in all cases. To address this limitation, liquid biopsy has emerged as a valuable tool, enabling a more precise and non-invasive analysis of cancer. Liquid biopsy can detect tumor DNA fragments, circulating tumor cells, and exosomes released by cancer cells into the bloodstream. Exosomes attracted significant attention in cancer research because of their specific protein composition, which can provide valuable insights into the disease. The protein profile of exosomes often differs from that of normal cells, reflecting the unique molecular characteristics of cancer. Analyzing these proteins can help identify cancer-associated markers that play important roles in tumor progression, invasion, and metastasis. Ongoing research and clinical validation are essential to advance and effectively utilize protein biomarkers in cancer. Nevertheless, their potential to improve diagnosis and treatment is highly promising. This review discusses several exosome proteins of interest in breast cancer, particularly focusing on studies conducted in mammary tissue and cell lines in humans and experimental animals. Unfortunately, studies conducted in canine species are scarce. This emphasis sheds light on the limited research available in this field. In addition, we present a curated selection of studies that explored exosomal proteins as potential biomarkers, aiming to achieve benefits in breast cancer diagnosis, prognosis, monitoring, and treatment.
Collapse
Affiliation(s)
- Adriana Alonso Novais
- Health Sciences Institute (ICS), Universidade Federal de Mato Grosso (UFMT), Sinop 78550-728, Brazil;
| | - Guilherme Henrique Tamarindo
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, Brazil;
- Cancer Molecular Research Laboratory (LIMC), Department of Molecular Biology, Faculdade de Medicina de São José do Rio Preto/FAMERP (FAMERP), São José do Rio Preto 15090-000, Brazil
| | - Luiz Gustavo de Almeida Chuffa
- Department of Structural and Functional Biology, Institute of Biosciences, Universidade Estadual Paulista (UNESP), Botucatu 18618-689, Brazil;
| | - Debora Aparecida Pires de Campos Zuccari
- Cancer Molecular Research Laboratory (LIMC), Department of Molecular Biology, Faculdade de Medicina de São José do Rio Preto/FAMERP (FAMERP), São José do Rio Preto 15090-000, Brazil
| |
Collapse
|
3
|
Zahari S, Syafruddin SE, Mohtar MA. Impact of the Cancer Cell Secretome in Driving Breast Cancer Progression. Cancers (Basel) 2023; 15:2653. [PMID: 37174117 PMCID: PMC10177134 DOI: 10.3390/cancers15092653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Breast cancer is a complex and heterogeneous disease resulting from the accumulation of genetic and epigenetic alterations in breast epithelial cells. Despite remarkable progress in diagnosis and treatment, breast cancer continues to be the most prevalent cancer affecting women worldwide. Recent research has uncovered a compelling link between breast cancer onset and the extracellular environment enveloping tumor cells. The complex network of proteins secreted by cancer cells and other cellular components within the tumor microenvironment has emerged as a critical player in driving the disease's metastatic properties. Specifically, the proteins released by the tumor cells termed the secretome, can significantly influence the progression and metastasis of breast cancer. The breast cancer cell secretome promotes tumorigenesis through its ability to modulate growth-associated signaling pathways, reshaping the tumor microenvironment, supporting pre-metastatic niche formation, and facilitating immunosurveillance evasion. Additionally, the secretome has been shown to play a crucial role in drug resistance development, making it an attractive target for cancer therapy. Understanding the intricate role of the cancer cell secretome in breast cancer progression will provide new insights into the underlying mechanisms of this disease and aid in the development of more innovative therapeutic interventions. Hence, this review provides a nuanced analysis of the impact of the cancer cell secretome on breast cancer progression, elucidates the complex reciprocal interaction with the components of the tumor microenvironment and highlights emerging therapeutic opportunities for targeting the constituents of the secretome.
Collapse
Affiliation(s)
| | | | - M. Aiman Mohtar
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (S.Z.); (S.E.S.)
| |
Collapse
|
4
|
Zhang S, Chen L, Zong Y, Li Q, Zhu K, Li Z, Meng R. Research progress of tumor-derived extracellular vesicles in the treatment of malignant pleural effusion. Cancer Med 2023; 12:983-994. [PMID: 35861052 PMCID: PMC9883446 DOI: 10.1002/cam4.5005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/11/2022] [Accepted: 06/19/2022] [Indexed: 02/02/2023] Open
Abstract
Vesicles, also known as "microparticles", are vesicle-like structures that are released outside the cell in a "sprouting" manner when the cytoskeleton is changed during cell activation or apoptosis, with a diameter of about 100-1000 nm, and are carriers of material information exchange between cells. Tumor-derived extracellular vesicles can effectively deliver drugs to the nucleus of tumor stem cells, thus effectively killing them without toxic side effects. The underlying mechanism involves the soft nature of tumor stem cells that allows better uptake of vesicles, and the entry of drug-carrying vesicles into lysosomes and facilitation of lysosomal movement toward the nucleus to deliver drugs to the nucleus. Drug-loaded vesicles have unique advantages, such as low immunogenicity, homing targeting ability, and the ability to break through the physiological barrier to tumor therapy. Tumor-derived drug-delivery vesicles have entered clinical trials for the treatment of malignant pleural effusions. In this review, we summarized the progress of basic and clinical research on tumor cell-derived drug-loaded vesicles for the treatment of malignant pleural effusion in recent years.
Collapse
Affiliation(s)
- Sijia Zhang
- Cancer Center, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Leichong Chen
- Cancer Center, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yan Zong
- Cancer Center, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Qianwen Li
- Cancer Center, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Kuikui Zhu
- Cancer Center, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Zhenyu Li
- Cancer Center, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Rui Meng
- Cancer Center, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
5
|
Ferrara F, Zoupanou S, Primiceri E, Ali Z, Chiriacò MS. Beyond liquid biopsy: Toward non-invasive assays for distanced cancer diagnostics in pandemics. Biosens Bioelectron 2021; 196:113698. [PMID: 34688113 PMCID: PMC8527216 DOI: 10.1016/j.bios.2021.113698] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/01/2021] [Accepted: 10/07/2021] [Indexed: 12/11/2022]
Abstract
Liquid biopsy technologies have seen a significant improvement in the last decade, offering the possibility of reliable analysis and diagnosis from several biological fluids. The use of these technologies can overcome the limits of standard clinical methods, related to invasiveness and poor patient compliance. Along with this there are now mature examples of lab-on-chips (LOC) which are available and could be an emerging and breakthrough technology for the present and near-future clinical demands that provide sample treatment, reagent addition and analysis in a sample-in/answer-out approach. The possibility of combining non-invasive liquid biopsy and LOC technologies could greatly assist in the current need for minimizing exposure and transmission risks. The recent and ongoing pandemic outbreak of SARS-CoV-2, indeed, has heavily influenced all aspects of life worldwide. Ordinary tasks have been forced to switch from “in presence” to “distanced”, limiting the possibilities for a large number of activities in all fields of life outside of the home. Unfortunately, one of the settings in which physical distancing has assumed noteworthy consequences is the screening, diagnosis and follow-up of diseases. In this review, we analyse biological fluids that are easily collected without the intervention of specialized personnel and the possibility that they may be used -or not-for innovative diagnostic assays. We consider their advantages and limitations, mainly due to stability and storage and their integration into Point-of-Care diagnostics, demonstrating that technologies in some cases are mature enough to meet current clinical needs.
Collapse
Affiliation(s)
- Francesco Ferrara
- STMicroelectronics s.r.l., via per Monteroni, 73100, Lecce, Italy; CNR NANOTEC - Institute of Nanotechnology, via per Monteroni, 73100, Lecce, Italy.
| | - Sofia Zoupanou
- CNR NANOTEC - Institute of Nanotechnology, via per Monteroni, 73100, Lecce, Italy; University of Salento, Dept. of Mathematics & Physics E. de Giorgi, Via Arnesano, 73100, Lecce, Italy
| | - Elisabetta Primiceri
- CNR NANOTEC - Institute of Nanotechnology, via per Monteroni, 73100, Lecce, Italy
| | - Zulfiqur Ali
- University of Teesside, School of Health & Life Sciences, Healthcare Innovation Centre, Middlesbrough, TS1 3BX, Tees Valley, England, UK
| | | |
Collapse
|
6
|
Tu VY, Ayari A, O’Connor RS. Beyond the Lactate Paradox: How Lactate and Acidity Impact T Cell Therapies against Cancer. Antibodies (Basel) 2021; 10:25. [PMID: 34203136 PMCID: PMC8293081 DOI: 10.3390/antib10030025] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/14/2021] [Accepted: 06/22/2021] [Indexed: 11/16/2022] Open
Abstract
T cell therapies, including CAR T cells, have proven more effective in hematologic malignancies than solid tumors, where the local metabolic environment is distinctly immunosuppressive. In particular, the acidic and hypoxic features of the tumor microenvironment (TME) present a unique challenge for T cells. Local metabolism is an important consideration for activated T cells as they undergo bursts of migration, proliferation and differentiation in hostile soil. Tumor cells and activated T cells both produce lactic acid at high rates. The role of lactic acid in T cell biology is complex, as lactate is an often-neglected carbon source that can fuel TCA anaplerosis. Circulating lactate is also an important means to regulate redox balance. In hypoxic tumors, lactate is immune-suppressive. Here, we discuss how intrinsic- (T cells) as well as extrinsic (tumor cells and micro-environmental)-derived metabolic factors, including lactate, suppress the ability of antigen-specific T cells to eradicate tumors. Finally, we introduce recent discoveries that target the TME in order to potentiate T cell-based therapies against cancer.
Collapse
Affiliation(s)
- Violet Y. Tu
- Center for Cellular Immunotherapies, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA 19104, USA;
- Department of Biological Physics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Asma Ayari
- Nucleus Biologics, LLC., San Diego, CA 92127, USA;
| | - Roddy S. O’Connor
- Center for Cellular Immunotherapies, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA 19104, USA;
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
7
|
Vaes N, Schonkeren SL, Rademakers G, Holland AM, Koch A, Gijbels MJ, Keulers TG, de Wit M, Moonen L, Van der Meer JRM, van den Boezem E, Wolfs TGAM, Threadgill DW, Demmers J, Fijneman RJA, Jimenez CR, Vanden Berghe P, Smits KM, Rouschop KMA, Boesmans W, Hofstra RMW, Melotte V. Loss of enteric neuronal Ndrg4 promotes colorectal cancer via increased release of Nid1 and Fbln2. EMBO Rep 2021; 22:e51913. [PMID: 33890711 PMCID: PMC8183412 DOI: 10.15252/embr.202051913] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 12/28/2022] Open
Abstract
The N-Myc Downstream-Regulated Gene 4 (NDRG4), a prominent biomarker for colorectal cancer (CRC), is specifically expressed by enteric neurons. Considering that nerves are important members of the tumor microenvironment, we here establish different Ndrg4 knockout (Ndrg4-/- ) CRC models and an indirect co-culture of primary enteric nervous system (ENS) cells and intestinal organoids to identify whether the ENS, via NDRG4, affects intestinal tumorigenesis. Linking immunostainings and gastrointestinal motility (GI) assays, we show that the absence of Ndrg4 does not trigger any functional or morphological GI abnormalities. However, combining in vivo, in vitro, and quantitative proteomics data, we uncover that Ndrg4 knockdown is associated with enlarged intestinal adenoma development and that organoid growth is boosted by the Ndrg4-/- ENS cell secretome, which is enriched for Nidogen-1 (Nid1) and Fibulin-2 (Fbln2). Moreover, NID1 and FBLN2 are expressed in enteric neurons, enhance migration capacities of CRC cells, and are enriched in human CRC secretomes. Hence, we provide evidence that the ENS, via loss of Ndrg4, is involved in colorectal pathogenesis and that ENS-derived Nidogen-1 and Fibulin-2 enhance colorectal carcinogenesis.
Collapse
Affiliation(s)
- Nathalie Vaes
- Department of PathologyGROW–School for Oncology and Developmental BiologyMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Simone L Schonkeren
- Department of PathologyGROW–School for Oncology and Developmental BiologyMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Glenn Rademakers
- Department of PathologyGROW–School for Oncology and Developmental BiologyMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Amy M Holland
- Department of PathologyGROW–School for Oncology and Developmental BiologyMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Alexander Koch
- Department of PathologyGROW–School for Oncology and Developmental BiologyMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Marion J Gijbels
- Department of PathologyGROW–School for Oncology and Developmental BiologyMaastricht University Medical CenterMaastrichtThe Netherlands
- Department of Molecular GeneticsCardiovascular Research Institute Maastricht (CARIM)MaastrichtThe Netherlands
- Department of Medical BiochemistryAcademic Medical CenterAmsterdamThe Netherlands
| | - Tom G Keulers
- Department of RadiotherapyGROW‐School for Oncology and Developmental Biology and Comprehensive Cancer Center Maastricht MUMC+Maastricht UniversityMaastrichtThe Netherlands
| | - Meike de Wit
- Department of Medical Oncology and Oncoproteomics LaboratoryCancer Center AmsterdamVrije Universiteit AmsterdamAmsterdam UMCAmsterdamThe Netherlands
- Department of PathologyNetherlands Cancer InstituteAmsterdamThe Netherlands
| | - Laura Moonen
- Department of PathologyGROW–School for Oncology and Developmental BiologyMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Jaleesa R M Van der Meer
- Department of PathologyGROW–School for Oncology and Developmental BiologyMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Edith van den Boezem
- Department of PathologyGROW–School for Oncology and Developmental BiologyMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Tim G A M Wolfs
- Department of PediatricsGROW‐School for Oncology and Developmental BiologyMaastricht UniversityMaastrichtThe Netherlands
| | - David W Threadgill
- Department of Molecular and Cellular MedicineTexas A&M University Health Science CenterCollege StationTXUSA
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTXUSA
| | - Jeroen Demmers
- Proteomics CenterErasmus University Medical CenterRotterdamThe Netherlands
| | | | - Connie R Jimenez
- Department of Medical Oncology and Oncoproteomics LaboratoryCancer Center AmsterdamVrije Universiteit AmsterdamAmsterdam UMCAmsterdamThe Netherlands
| | - Pieter Vanden Berghe
- Laboratory for Enteric Neuroscience (LENS) and Translational Research Center for Gastrointestinal Disorders (TARGID)Department of Chronic Diseases, Metabolism and AgeingKU LeuvenLeuvenBelgium
| | - Kim M Smits
- Department of PathologyGROW–School for Oncology and Developmental BiologyMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Kasper M A Rouschop
- Department of RadiotherapyGROW‐School for Oncology and Developmental Biology and Comprehensive Cancer Center Maastricht MUMC+Maastricht UniversityMaastrichtThe Netherlands
| | - Werend Boesmans
- Department of PathologyGROW–School for Oncology and Developmental BiologyMaastricht University Medical CenterMaastrichtThe Netherlands
- Biomedical Research Institute (BIOMED)Hasselt UniversityHasseltBelgium
| | - Robert M W Hofstra
- Department of Clinical GeneticsErasmus University Medical CenterRotterdamThe Netherlands
| | - Veerle Melotte
- Department of PathologyGROW–School for Oncology and Developmental BiologyMaastricht University Medical CenterMaastrichtThe Netherlands
- Department of Clinical GeneticsErasmus University Medical CenterRotterdamThe Netherlands
| |
Collapse
|
8
|
Abstract
Dermal interstitial fluid (ISF) is a novel source of biomarkers that can be considered as an alternative to blood sampling for disease diagnosis and treatment. Nevertheless, in vivo extraction and analysis of ISF are challenging. On the other hand, microneedle (MN) technology can address most of the challenges associated with dermal ISF extraction and is well suited for long-term, continuous ISF monitoring as well as in situ detection. In this review, we first briefly summarise the different dermal ISF collection methods and compare them with MN methods. Next, we elaborate on the design considerations and biocompatibility of MNs. Subsequently, the fabrication technologies of various MNs used for dermal ISF extraction, including solid MNs, hollow MNs, porous MNs, and hydrogel MNs, are thoroughly explained. In addition, different sensing mechanisms of ISF detection are discussed in detail. Subsequently, we identify the challenges and propose the possible solutions associated with ISF extraction. A detailed investigation is provided for the transport and sampling mechanism of ISF in vivo. Also, the current in vitro skin model integrated with the MN arrays is discussed. Finally, future directions to develop a point-of-care (POC) device to sample ISF are proposed.
Collapse
|
9
|
Petrick LM, Arora M, Niedzwiecki MM. Minimally Invasive Biospecimen Collection for Exposome Research in Children's Health. Curr Environ Health Rep 2021; 7:198-210. [PMID: 32535858 DOI: 10.1007/s40572-020-00277-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW The advent of low-volume biosampling and novel biomarker matrices offers non- or minimally invasive approaches to sampling in children. These new technologies, combined with advancements in mass spectrometry that provide high sensitivity, robust measurements of low-concentration exposures, facilitate the application of untargeted metabolomics in children's exposome research. Here, we review emerging sampling technologies for alternative biomatrices-dried capillary blood, interstitial fluid, saliva, teeth, and hair-and highlight recent applications of these samplers to drive discovery in population-based exposure research. RECENT FINDINGS Biosampling and biomarker technologies demonstrate potential to directly measure exposures during key developmental time periods. While saliva is the most traditional of the reported biomatrices, each technology has key advantages and disadvantages. For example, hair and teeth provide retrospective analysis of past exposures, and dried capillary blood provides quantitative measurements of systemic exposures that can be more readily compared with traditional venous blood measurements. Importantly, all technologies can or have the potential to be used at home, increasing the convenience and parental support for children's biosampling. This review describes emerging sample collection technologies that hold promise for children's exposome studies. While applications in metabolomics are still limited, these novel matrices are poised to facilitate longitudinal exposome studies to discover key exposures and windows of susceptibility affecting children's health.
Collapse
Affiliation(s)
- Lauren M Petrick
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Manish Arora
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Megan M Niedzwiecki
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
10
|
Su Q, Li T, He PF, Lu XC, Yu Q, Gao QC, Wang ZJ, Wu MN, Yang D, Qi JS. Trichostatin A ameliorates Alzheimer's disease-related pathology and cognitive deficits by increasing albumin expression and Aβ clearance in APP/PS1 mice. Alzheimers Res Ther 2021; 13:7. [PMID: 33397436 PMCID: PMC7784383 DOI: 10.1186/s13195-020-00746-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 12/08/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is an intractable neurodegenerative disorder in the elderly population, currently lacking a cure. Trichostatin A (TSA), a histone deacetylase inhibitor, showed some neuroprotective roles, but its pathology-improvement effects in AD are still uncertain, and the underlying mechanisms remain to be elucidated. The present study aims to examine the anti-AD effects of TSA, particularly investigating its underlying cellular and molecular mechanisms. METHODS Novel object recognition and Morris water maze tests were used to evaluate the memory-ameliorating effects of TSA in APP/PS1 transgenic mice. Immunofluorescence, Western blotting, Simoa assay, and transmission electron microscopy were utilized to examine the pathology-improvement effects of TSA. Microglial activity was assessed by Western blotting and transwell migration assay. Protein-protein interactions were analyzed by co-immunoprecipitation and LC-MS/MS. RESULTS TSA treatment not only reduced amyloid β (Aβ) plaques and soluble Aβ oligomers in the brain, but also effectively improved learning and memory behaviors of APP/PS1 mice. In vitro study suggested that the improvement of Aβ pathology by TSA was attributed to the enhancement of Aβ clearance, mainly by the phagocytosis of microglia, and the endocytosis and transport of microvascular endothelial cells. Notably, a meaningful discovery in the study was that TSA dramatically upregulated the expression level of albumin in cell culture, by which TSA inhibited Aβ aggregation and promoted the phagocytosis of Aβ oligomers. CONCLUSIONS These findings provide a new insight into the pathogenesis of AD and suggest TSA as a novel promising candidate for the AD treatment.
Collapse
Affiliation(s)
- Qiang Su
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Tian Li
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Pei-Feng He
- Institute of Medical Data Sciences and School of Management, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| | - Xue-Chun Lu
- Department of Hematology, the Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Qi Yu
- Institute of Medical Data Sciences and School of Management, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Qi-Chao Gao
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Zhao-Jun Wang
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Mei-Na Wu
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Dan Yang
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Jin-Shun Qi
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
11
|
Terkelsen T, Pernemalm M, Gromov P, Børresen-Dale AL, Krogh A, Haakensen VD, Lethiö J, Papaleo E, Gromova I. High-throughput proteomics of breast cancer interstitial fluid: identification of tumor subtype-specific serologically relevant biomarkers. Mol Oncol 2021; 15:429-461. [PMID: 33176066 PMCID: PMC7858121 DOI: 10.1002/1878-0261.12850] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 08/13/2020] [Accepted: 11/09/2020] [Indexed: 12/24/2022] Open
Abstract
Despite significant advancements in breast cancer (BC) research, clinicians lack robust serological protein markers for accurate diagnostics and tumor stratification. Tumor interstitial fluid (TIF) accumulates aberrantly externalized proteins within the local tumor space, which can potentially gain access to the circulatory system. As such, TIF may represent a valuable starting point for identifying relevant tumor-specific serological biomarkers. The aim of the study was to perform comprehensive proteomic profiling of TIF to identify proteins associated with BC tumor status and subtype. A liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis of 35 TIFs of three main subtypes: luminal (19), Her2 (4), and triple-negative (TNBC) (12) resulted in the identification of > 8800 proteins. Unsupervised hierarchical clustering segregated the TIF proteome into two major clusters, luminal and TNBC/Her2 subgroups. High-grade tumors enriched with tumor infiltrating lymphocytes (TILs) were also stratified from low-grade tumors. A consensus analysis approach, including differential abundance analysis, selection operator regression, and random forest returned a minimal set of 24 proteins associated with BC subtypes, receptor status, and TIL scoring. Among them, a panel of 10 proteins, AGR3, BCAM, CELSR1, MIEN1, NAT1, PIP4K2B, SEC23B, THTPA, TMEM51, and ULBP2, was found to stratify the tumor subtype-specific TIFs. In particular, upregulation of BCAM and CELSR1 differentiates luminal subtypes, while upregulation of MIEN1 differentiates Her2 subtypes. Immunohistochemistry analysis showed a direct correlation between protein abundance in TIFs and intratumor expression levels for all 10 proteins. Sensitivity and specificity were estimated for this protein panel by using an independent, comprehensive breast tumor proteome dataset. The results of this analysis strongly support our data, with eight of the proteins potentially representing biomarkers for stratification of BC subtypes. Five of the most representative proteomics databases currently available were also used to estimate the potential for these selected proteins to serve as putative serological markers.
Collapse
Affiliation(s)
- Thilde Terkelsen
- Computational Biology Laboratory, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Maria Pernemalm
- Cancer Proteomics Mass Spectrometry, Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Pavel Gromov
- Breast Cancer Biology Group, Genome Integrity Unit, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Anna-Lise Børresen-Dale
- Department of Cancer Genetics, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Norway
| | - Anders Krogh
- Department of Computer Science, University of Copenhagen, Denmark.,Department of Biology, University of Copenhagen, Denmark
| | - Vilde D Haakensen
- Department of Cancer Genetics, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Norway
| | - Janne Lethiö
- Cancer Proteomics Mass Spectrometry, Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Elena Papaleo
- Computational Biology Laboratory, Danish Cancer Society Research Center, Copenhagen, Denmark.,Translational Disease System Biology, Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Denmark
| | - Irina Gromova
- Breast Cancer Biology Group, Genome Integrity Unit, Danish Cancer Society Research Center, Copenhagen, Denmark
| |
Collapse
|
12
|
Beatson R, Graham R, Grundland Freile F, Cozzetto D, Kannambath S, Pfeifer E, Woodman N, Owen J, Nuamah R, Mandel U, Pinder S, Gillett C, Noll T, Bouybayoune I, Taylor-Papadimitriou J, Burchell JM. Cancer-associated hypersialylated MUC1 drives the differentiation of human monocytes into macrophages with a pathogenic phenotype. Commun Biol 2020; 3:644. [PMID: 33149188 PMCID: PMC7642421 DOI: 10.1038/s42003-020-01359-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 09/30/2020] [Indexed: 02/07/2023] Open
Abstract
The tumour microenvironment plays a crucial role in the growth and progression of cancer, and the presence of tumour-associated macrophages (TAMs) is associated with poor prognosis. Recent studies have demonstrated that TAMs display transcriptomic, phenotypic, functional and geographical diversity. Here we show that a sialylated tumour-associated glycoform of the mucin MUC1, MUC1-ST, through the engagement of Siglec-9 can specifically and independently induce the differentiation of monocytes into TAMs with a unique phenotype that to the best of our knowledge has not previously been described. These TAMs can recruit and prolong the lifespan of neutrophils, inhibit the function of T cells, degrade basement membrane allowing for invasion, are inefficient at phagocytosis, and can induce plasma clotting. This macrophage phenotype is enriched in the stroma at the edge of breast cancer nests and their presence is associated with poor prognosis in breast cancer patients. Beatson et al. show that a sialylated tumour-associated glycoform of the mucin MUC1 induces the differentiation of monocytes into tumour-associated macrophages. These macrophages are found in breast cancer stroma and their presence is associated with poor prognosis.
Collapse
Affiliation(s)
- Richard Beatson
- Breast Cancer Biology, Comprehensive Cancer Centre, King's College London, Guy's Cancer Centre, Guy's Hospital, London, SE1 9RT, UK.
| | - Rosalind Graham
- Breast Cancer Biology, Comprehensive Cancer Centre, King's College London, Guy's Cancer Centre, Guy's Hospital, London, SE1 9RT, UK
| | - Fabio Grundland Freile
- Breast Cancer Biology, Comprehensive Cancer Centre, King's College London, Guy's Cancer Centre, Guy's Hospital, London, SE1 9RT, UK
| | - Domenico Cozzetto
- Translational Bioinformatics, Genomics Facility, National Institute for Health Research Biomedical Research Centre at Guy's and St Thomas' NHS Foundation Trust and King's College London, London, SE1 9RT, UK
| | - Shichina Kannambath
- Genomics Facility, National Institute for Health Research Biomedical Research Centre at Guy's and St Thomas' NHS Foundation Trust and King's College London, London, SE1 9RT, UK
| | - Ester Pfeifer
- Breast Cancer Biology, Comprehensive Cancer Centre, King's College London, Guy's Cancer Centre, Guy's Hospital, London, SE1 9RT, UK
| | - Natalie Woodman
- KHP Tissue Bank, Breast Pathology, Comprehensive Cancer Centre, King's College London, Guy's Cancer Centre, Guy's Hospital, London, SE1 9RT, UK
| | - Julie Owen
- KHP Tissue Bank, Breast Pathology, Comprehensive Cancer Centre, King's College London, Guy's Cancer Centre, Guy's Hospital, London, SE1 9RT, UK
| | - Rosamond Nuamah
- Genomics Facility, National Institute for Health Research Biomedical Research Centre at Guy's and St Thomas' NHS Foundation Trust and King's College London, London, SE1 9RT, UK
| | - Ulla Mandel
- Copenhagen Centre for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, 2200N, Copenhagen, Denmark
| | - Sarah Pinder
- Breast Pathology, Comprehensive Cancer Centre, King's College London, Guy's Cancer Centre, Guy's Hospital, London, SE1 9RT, UK
| | - Cheryl Gillett
- KHP Tissue Bank, Breast Pathology, Comprehensive Cancer Centre, King's College London, Guy's Cancer Centre, Guy's Hospital, London, SE1 9RT, UK
| | - Thomas Noll
- Cell Culture Technology, Faculty of Technology & CeBiTec, Bielefeld University, P.O. Box 10 01 31, 33501, Bielefeld, Germany
| | - Ihssane Bouybayoune
- Breast Pathology, Comprehensive Cancer Centre, King's College London, Guy's Cancer Centre, Guy's Hospital, London, SE1 9RT, UK
| | - Joyce Taylor-Papadimitriou
- Breast Cancer Biology, Comprehensive Cancer Centre, King's College London, Guy's Cancer Centre, Guy's Hospital, London, SE1 9RT, UK
| | - Joy M Burchell
- Breast Cancer Biology, Comprehensive Cancer Centre, King's College London, Guy's Cancer Centre, Guy's Hospital, London, SE1 9RT, UK.
| |
Collapse
|
13
|
Bai J, Zhong JY, Liao W, Hu R, Chen L, Wu XJ, Liu SP. iTRAQ‑based proteomic analysis reveals potential regulatory networks in dust mite‑related asthma treated with subcutaneous allergen immunotherapy. Mol Med Rep 2020; 22:3607-3620. [PMID: 32901873 PMCID: PMC7533450 DOI: 10.3892/mmr.2020.11472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 02/24/2020] [Indexed: 12/29/2022] Open
Abstract
Asthma is one of the most common childhood chronic diseases worldwide. Subcutaneous immunotherapy (SCIT) is commonly used in the treatment of house dust mite (HDM)‑related asthma in children. However, the therapeutic mechanism of SCIT in asthma remains unclear. The present study aimed to investigate the molecular biomarkers associated with HDM‑related asthma in asthmatic children prior and subsequent to SCIT treatment compared with those in healthy children via proteomic analysis. The study included a control group (30 healthy children), ‑Treatment group (30 children with HDM‑related allergic asthma) and +Treatment group (30 children with HDM‑related allergic asthma treated with SCIT). An isobaric labeling with relative and absolute quantification‑based method was used to analyze serum proteome changes to detect differentially expressed proteins, while functional enrichment and protein‑protein interaction network analysis were used to select candidate biomarkers. A total of 72 differentially expressed proteins were detected in the ‑Treatment, +Treatment and control groups. A total of 33 and 57 differentially expressed proteins were observed in the ‑Treatment vs. control and +Treatment vs. control groups, respectively. Through bioinformatics analysis, 5 candidate proteins [keratin 1 (KRT1), apolipoprotein B (APOB), fibronectin 1, antithrombin III (SERPINC1) and α‑1‑antitrypsin (SERPINA1)] were selected for validation by western blotting; among them, 4 proteins (KRT1, APOB, SERPINC1 and SERPINA1) showed robust reproducibility in asthma and control samples. This study illustrated the changes in proteome regulation following SCIT treatment for asthma. The 4 identified proteins may serve as potential biomarkers prior and subsequent to SCIT treatment, and help elucidate the molecular regulation mechanisms of SCIT to treat HDM‑related asthma.
Collapse
Affiliation(s)
- Jun Bai
- Department of Pediatrics, Foshan Maternal and Children's Hospital Affiliated to Southern Medical University, Foshan, Guangdong 528000, P.R. China
| | - Jia-Yong Zhong
- Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, P.R. China
| | - Wang Liao
- Department of Pediatrics, Foshan Maternal and Children's Hospital Affiliated to Southern Medical University, Foshan, Guangdong 528000, P.R. China
| | - Ruo Hu
- School of Computer Science, Guangdong Polytechnic Normal University, Guangzhou, Guangdong 510000, P.R. China
| | - Liang Chen
- Department of Pediatrics, Foshan Maternal and Children's Hospital Affiliated to Southern Medical University, Foshan, Guangdong 528000, P.R. China
| | - Xian-Jin Wu
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Key Laboratory of Hunan Higher Education for Western Hunan Medicinal Plant and Ethnobotany, College of Biological and Food Engineering, Huaihua University, Huaihua, Hunan 418008, P.R. China
| | - Shuang-Ping Liu
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning 116622, P.R. China
| |
Collapse
|
14
|
Loh IP, Sherwin T. Is Keratoconus an Inflammatory Disease? The Implication of Inflammatory Pathways. Ocul Immunol Inflamm 2020; 30:246-255. [PMID: 32791016 DOI: 10.1080/09273948.2020.1780271] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE Keratoconus is considered a non-inflammatory condition. Recently however, increased proinflammatory cytokines have been detected in the tears of keratoconic patients and clinical and immunohistochemical observations reported infiltration of matured dendritic cells and leukocytes. Our laboratory utilized cytokine antibody arrays to elucidate the inflammatory aspects of keratoconus. METHODS Protein was extracted from 42 corneal buttons (14 keratoconic and 28 non-keratoconic) and incubated with cytokine antibody arrays scanning 120 cytokines. Mann Whitney U test with a p-value of <0.05 was considered significant. RESULTS Pathways for wound healing, neuroprotection, angiogenesis, and inflammation were activated in keratoconic samples with 23 cytokines showing significant elevation. Fifteen were expressed only in keratoconus with 8 cytokines elevated 1.7-42-fold. CONCLUSION This study identified elevated inflammatory pathways covering immune responses in keratoconus. Our results support the evidence for inflammatory pathway activation in keratoconus and a possible redefinition of keratoconus as a chronic inflammatory corneal disease.
Collapse
Affiliation(s)
- I-Ping Loh
- Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Trevor Sherwin
- Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
15
|
Matas-Nadal C, Bech-Serra JJ, Guasch-Vallés M, Fernández-Armenteros JM, Barceló C, Casanova JM, de la Torre Gómez C, Aguayo Ortiz R, Garí E. Evaluation of Tumor Interstitial Fluid-Extraction Methods for Proteome Analysis: Comparison of Biopsy Elution versus Centrifugation. J Proteome Res 2020; 19:2598-2605. [PMID: 31877049 DOI: 10.1021/acs.jproteome.9b00770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The analysis of tumor interstitial fluid (TIF) composition is a valuable procedure to identify antimetastatic targets, and different laboratories have set up techniques for TIF isolation and proteomic analyses. However, those methods had never been compared in samples from the same tumor and patient. In this work, we compared the two most used methods, elution and centrifugation, in pieces of the same biopsy samples of cutaneous squamous cell carcinoma (cSCC). First, we established that high G-force (10 000g) was required to obtain TIF from cSCC by centrifugation. Second, we compared the centrifugation method with the elution method in pieces of three different cSCC tumors. We found that the mean protein intensities based in the number of peptide spectrum matches was significantly higher in the centrifuged samples than in the eluted samples. Regarding the robustness of the methods, we observed higher overlapping between both methods (77-80%) than among samples (50%). These results suggest that there exists an elevated consistence of TIF composition independently of the method used. However, we observed a 3-fold increase of extracellular proteins in nonoverlapped proteome obtained by centrifugation. We therefore conclude that centrifugation is the method of choice to study the proteome of TIF from cutaneous biopsies.
Collapse
Affiliation(s)
- Clara Matas-Nadal
- Cell Cycle Laboratory, Institut de Recerca Biomèdica de Lleida (IRB Lleida), Lleida, 25198, Spain
| | - Joan Josep Bech-Serra
- Proteomics Unit, Josep Carreras Leukaemia Research Institute (IJC), Barcelona, 08916, Spain
| | - Marta Guasch-Vallés
- Cell Cycle Laboratory, Institut de Recerca Biomèdica de Lleida (IRB Lleida), Lleida, 25198, Spain.,Department de Ciències Mèdiques Bàsiques. Facultat de Medicina, Universitat de Lleida, Lleida, 25003, Spain
| | - Josep Manel Fernández-Armenteros
- Cell Cycle Laboratory, Institut de Recerca Biomèdica de Lleida (IRB Lleida), Lleida, 25198, Spain.,Servei de Dermatologia, Hospital Universitari Arnau de Vilanova, Lleida, 25198, Spain
| | - Carla Barceló
- Cell Cycle Laboratory, Institut de Recerca Biomèdica de Lleida (IRB Lleida), Lleida, 25198, Spain
| | - Josep Manel Casanova
- Cell Cycle Laboratory, Institut de Recerca Biomèdica de Lleida (IRB Lleida), Lleida, 25198, Spain.,Department de Ciències Mèdiques Bàsiques. Facultat de Medicina, Universitat de Lleida, Lleida, 25003, Spain.,Servei de Dermatologia, Hospital Universitari Arnau de Vilanova, Lleida, 25198, Spain
| | | | - Rafael Aguayo Ortiz
- Cell Cycle Laboratory, Institut de Recerca Biomèdica de Lleida (IRB Lleida), Lleida, 25198, Spain.,Servei de Dermatologia, Hospital Universitari Arnau de Vilanova, Lleida, 25198, Spain
| | - Eloi Garí
- Cell Cycle Laboratory, Institut de Recerca Biomèdica de Lleida (IRB Lleida), Lleida, 25198, Spain.,Department de Ciències Mèdiques Bàsiques. Facultat de Medicina, Universitat de Lleida, Lleida, 25003, Spain
| |
Collapse
|
16
|
Dufresne J, Bowden P, Thavarajah T, Florentinus-Mefailoski A, Chen ZZ, Tucholska M, Norzin T, Ho MT, Phan M, Mohamed N, Ravandi A, Stanton E, Slutsky AS, Dos Santos CC, Romaschin A, Marshall JC, Addison C, Malone S, Heyland D, Scheltens P, Killestein J, Teunissen C, Diamandis EP, Siu KWM, Marshall JG. The plasma peptides of breast versus ovarian cancer. Clin Proteomics 2019; 16:43. [PMID: 31889940 PMCID: PMC6927194 DOI: 10.1186/s12014-019-9262-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 12/05/2019] [Indexed: 02/07/2023] Open
Abstract
Background There is a need to demonstrate a proof of principle that proteomics has the capacity to analyze plasma from breast cancer versus other diseases and controls in a multisite clinical trial design. The peptides or proteins that show a high observation frequency, and/or precursor intensity, specific to breast cancer plasma might be discovered by comparison to other diseases and matched controls. The endogenous tryptic peptides of breast cancer plasma were compared to ovarian cancer, female normal, sepsis, heart attack, Alzheimer's and multiple sclerosis along with the institution-matched normal and control samples collected directly onto ice. Methods Endogenous tryptic peptides were extracted from individual breast cancer and control EDTA plasma samples in a step gradient of acetonitrile, and collected over preparative C18 for LC-ESI-MS/MS with a set of LTQ XL linear quadrupole ion traps working together in parallel to randomly and independently sample clinical populations. The MS/MS spectra were fit to fully tryptic peptides or phosphopeptides within proteins using the X!TANDEM algorithm. The protein observation frequency was counted using the SEQUEST algorithm after selecting the single best charge state and peptide sequence for each MS/MS spectra. The observation frequency was subsequently tested by Chi Square analysis. The log10 precursor intensity was compared by ANOVA in the R statistical system. Results Peptides and/or phosphopeptides of common plasma proteins such as APOE, C4A, C4B, C3, APOA1, APOC2, APOC4, ITIH3 and ITIH4 showed increased observation frequency and/or precursor intensity in breast cancer. Many cellular proteins also showed large changes in frequency by Chi Square (χ2 > 100, p < 0.0001) in the breast cancer samples such as CPEB1, LTBP4, HIF-1A, IGHE, RAB44, NEFM, C19orf82, SLC35B1, 1D12A, C8orf34, HIF1A, OCLN, EYA1, HLA-DRB1, LARS, PTPDC1, WWC1, ZNF562, PTMA, MGAT1, NDUFA1, NOGOC, OR1E1, OR1E2, CFI, HSA12, GCSH, ELTD1, TBX15, NR2C2, FLJ00045, PDLIM1, GALNT9, ASH2L, PPFIBP1, LRRC4B, SLCO3A1, BHMT2, CS, FAM188B2, LGALS7, SAT2, SFRS8, SLC22A12, WNT9B, SLC2A4, ZNF101, WT1, CCDC47, ERLIN1, SPFH1, EID2, THOC1, DDX47, MREG, PTPRE, EMILIN1, DKFZp779G1236 and MAP3K8 among others. The protein gene symbols with large Chi Square values were significantly enriched in proteins that showed a complex set of previously established functional and structural relationships by STRING analysis. An increase in mean precursor intensity of peptides was observed for QSER1 as well as SLC35B1, IQCJ-SCHIP1, MREG, BHMT2, LGALS7, THOC1, ANXA4, DHDDS, SAT2, PTMA and FYCO1 among others. In contrast, the QSER1 peptide QPKVKAEPPPK was apparently specific to ovarian cancer. Conclusion There was striking agreement between the breast cancer plasma peptides and proteins discovered by LC-ESI-MS/MS with previous biomarkers from tumors, cells lines or body fluids by genetic or biochemical methods. The results indicate that variation in plasma peptides from breast cancer versus ovarian cancer may be directly discovered by LC-ESI-MS/MS that will be a powerful tool for clinical research. It may be possible to use a battery of sensitive and robust linear quadrupole ion traps for random and independent sampling of plasma from a multisite clinical trial.
Collapse
Affiliation(s)
- Jaimie Dufresne
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria St., Toronto, ON Canada
| | - Pete Bowden
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria St., Toronto, ON Canada
| | - Thanusi Thavarajah
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria St., Toronto, ON Canada
| | - Angelique Florentinus-Mefailoski
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria St., Toronto, ON Canada
| | - Zhuo Zhen Chen
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria St., Toronto, ON Canada
| | - Monika Tucholska
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria St., Toronto, ON Canada
| | - Tenzin Norzin
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria St., Toronto, ON Canada
| | - Margaret Truc Ho
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria St., Toronto, ON Canada
| | - Morla Phan
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria St., Toronto, ON Canada
| | - Nargiz Mohamed
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria St., Toronto, ON Canada
| | - Amir Ravandi
- 2Institute of Cardiovascular Sciences, St. Boniface Hospital Research Center, University of Manitoba, Winnipeg, Canada
| | - Eric Stanton
- 3Division of Cardiology, Department of Medicine, McMaster University, Hamilton, Canada
| | - Arthur S Slutsky
- 4St. Michael's Hospital, Keenan Chair in Medicine, Professor of Medicine, Surgery & Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Claudia C Dos Santos
- 5St. Michael's Hospital, Keenan Research Centre for Biomedical Science, Toronto, Canada
| | - Alexander Romaschin
- 5St. Michael's Hospital, Keenan Research Centre for Biomedical Science, Toronto, Canada
| | - John C Marshall
- 5St. Michael's Hospital, Keenan Research Centre for Biomedical Science, Toronto, Canada
| | - Christina Addison
- 6Program for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Shawn Malone
- 6Program for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Daren Heyland
- 7Clinical Evaluation Research Unit, Kingston General Hospital, Kingston, Canada
| | - Philip Scheltens
- 8Alzheimer Center, Dept of Neurology, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Joep Killestein
- 9MS Center, Dept of Neurology, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Charlotte Teunissen
- 10Neurochemistry Lab and Biobank, Dept of Clinical Chemsitry, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | | | - K W M Siu
- 12University of Windsor, Windsor, Canada
| | - John G Marshall
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria St., Toronto, ON Canada.,13International Biobank of Luxembourg (IBBL), Luxembourg Institute of Health (formerly CRP Sante Luxembourg), Strassen, Luxembourg
| |
Collapse
|
17
|
Broza YY, Zhou X, Yuan M, Qu D, Zheng Y, Vishinkin R, Khatib M, Wu W, Haick H. Disease Detection with Molecular Biomarkers: From Chemistry of Body Fluids to Nature-Inspired Chemical Sensors. Chem Rev 2019; 119:11761-11817. [DOI: 10.1021/acs.chemrev.9b00437] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yoav Y. Broza
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion—Israel Institute of Technology, Haifa 3200003, Israel
| | - Xi Zhou
- School of Natural and Applied Sciences, Northwestern Polytechnical University, Xi’an 710072, P.R. China
| | - Miaomiao Yuan
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518033, P.R. China
| | - Danyao Qu
- School of Advanced Materials and Nanotechnology, Interdisciplinary Research Center of Smart Sensors, Xidian University, Shaanxi 710126, P.R. China
| | - Youbing Zheng
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion—Israel Institute of Technology, Haifa 3200003, Israel
| | - Rotem Vishinkin
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion—Israel Institute of Technology, Haifa 3200003, Israel
| | - Muhammad Khatib
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion—Israel Institute of Technology, Haifa 3200003, Israel
| | - Weiwei Wu
- School of Advanced Materials and Nanotechnology, Interdisciplinary Research Center of Smart Sensors, Xidian University, Shaanxi 710126, P.R. China
| | - Hossam Haick
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion—Israel Institute of Technology, Haifa 3200003, Israel
- School of Advanced Materials and Nanotechnology, Interdisciplinary Research Center of Smart Sensors, Xidian University, Shaanxi 710126, P.R. China
| |
Collapse
|
18
|
da Cunha BR, Domingos C, Stefanini ACB, Henrique T, Polachini GM, Castelo-Branco P, Tajara EH. Cellular Interactions in the Tumor Microenvironment: The Role of Secretome. J Cancer 2019; 10:4574-4587. [PMID: 31528221 PMCID: PMC6746126 DOI: 10.7150/jca.21780] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 05/25/2019] [Indexed: 02/06/2023] Open
Abstract
Over the past years, it has become evident that cancer initiation and progression depends on several components of the tumor microenvironment, including inflammatory and immune cells, fibroblasts, endothelial cells, adipocytes, and extracellular matrix. These components of the tumor microenvironment and the neoplastic cells interact with each other providing pro and antitumor signals. The tumor-stroma communication occurs directly between cells or via a variety of molecules secreted, such as growth factors, cytokines, chemokines and microRNAs. This secretome, which derives not only from tumor cells but also from cancer-associated stromal cells, is an important source of key regulators of the tumorigenic process. Their screening and characterization could provide useful biomarkers to improve cancer diagnosis, prognosis, and monitoring of treatment responses.
Collapse
Affiliation(s)
- Bianca Rodrigues da Cunha
- Department of Molecular Biology, School of Medicine of São José do Rio Preto/FAMERP, São José do Rio Preto, SP, Brazil
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, SP, Brazil
| | - Célia Domingos
- Department of Biomedical Sciences and Medicine, University of Algarve, Portugal
- Centre for Biomedical Research (CBMR), University of Algarve, Faro, Portugal
| | - Ana Carolina Buzzo Stefanini
- Department of Molecular Biology, School of Medicine of São José do Rio Preto/FAMERP, São José do Rio Preto, SP, Brazil
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, SP, Brazil
| | - Tiago Henrique
- Department of Molecular Biology, School of Medicine of São José do Rio Preto/FAMERP, São José do Rio Preto, SP, Brazil
| | - Giovana Mussi Polachini
- Department of Molecular Biology, School of Medicine of São José do Rio Preto/FAMERP, São José do Rio Preto, SP, Brazil
| | - Pedro Castelo-Branco
- Department of Biomedical Sciences and Medicine, University of Algarve, Portugal
- Centre for Biomedical Research (CBMR), University of Algarve, Faro, Portugal
- Algarve Biomedical Center, Gambelas, Faro, Portugal
| | - Eloiza Helena Tajara
- Department of Molecular Biology, School of Medicine of São José do Rio Preto/FAMERP, São José do Rio Preto, SP, Brazil
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, SP, Brazil
| |
Collapse
|
19
|
Kolluru C, Gupta R, Jiang Q, Williams M, Gholami Derami H, Cao S, Noel RK, Singamaneni S, Prausnitz MR. Plasmonic Paper Microneedle Patch for On-Patch Detection of Molecules in Dermal Interstitial Fluid. ACS Sens 2019; 4:1569-1576. [PMID: 31070358 DOI: 10.1021/acssensors.9b00258] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Minimally invasive devices to detect molecules in dermal interstitial fluid (ISF) are desirable for point-of-care diagnostic and monitoring applications. In this study, we developed a microneedle (MN) patch that collects ISF for on-patch biomarker analysis by surface-enhanced Raman scattering (SERS). The micrometer-scale MNs create micropores in the skin surface, through which microliter quantities of ISF are collected onto plasmonic paper on the patch backing. The plasmonic paper was prepared by immobilizing poly(styrenesulfonate) (PSS) coated gold nanorods (AuNRs) on a thin strip of filter paper using plasmonic calligraphy. Negatively charged PSS was used to bind positively charged rhodamine 6G (R6G), which served as a model compound, and thereby localize R6G on AuNR surface. R6G bound on the AuNR surface was detected and quantified by acquiring SERS spectra from the plasmonic paper MN patch. This approach was used to measure pharmacokinetic profiles of R6G in ISF and serum from rats in vivo. This proof-of-concept study indicates that a plasmonic paper MN patch has the potential to enable on-patch measurement of molecules in ISF for research and future medical applications.
Collapse
Affiliation(s)
- Chandana Kolluru
- School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive, Atlanta, Georgia 30332, United States
| | - Rohit Gupta
- Institute of Materials Science and Engineering, Washington University, 1 Brookings Drive, St. Louis, Missouri 63130, United States
| | - Qisheng Jiang
- Institute of Materials Science and Engineering, Washington University, 1 Brookings Drive, St. Louis, Missouri 63130, United States
| | - Mikayla Williams
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, Georgia 30332, United States
| | - Hamed Gholami Derami
- Institute of Materials Science and Engineering, Washington University, 1 Brookings Drive, St. Louis, Missouri 63130, United States
| | - Sisi Cao
- Institute of Materials Science and Engineering, Washington University, 1 Brookings Drive, St. Louis, Missouri 63130, United States
| | - Richard K. Noel
- Physiological Research Laboratory, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, Georgia 30332, United States
| | - Srikanth Singamaneni
- Institute of Materials Science and Engineering, Washington University, 1 Brookings Drive, St. Louis, Missouri 63130, United States
| | - Mark R. Prausnitz
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, Georgia 30332, United States
| |
Collapse
|
20
|
García-Cañaveras JC, Chen L, Rabinowitz JD. The Tumor Metabolic Microenvironment: Lessons from Lactate. Cancer Res 2019; 79:3155-3162. [PMID: 31171526 DOI: 10.1158/0008-5472.can-18-3726] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/15/2019] [Accepted: 04/10/2019] [Indexed: 01/15/2023]
Abstract
The extracellular milieu of tumors is generally assumed to be immunosuppressive due in part to metabolic factors. Here, we review methods for probing the tumor metabolic microenvironment. In parallel, we consider the resulting available evidence, with a focus on lactate, which is the most strongly increased metabolite in bulk tumors. Limited microenvironment concentration measurements suggest depletion of glucose and modest accumulation of lactate (less than 2-fold). Isotope tracer measurements show rapid lactate exchange between the tumor and circulation. Such exchange is catalyzed by MCT transporters, which cotransport lactate and protons (H+). Rapid lactate exchange seems at odds with tumor lactate accumulation. We propose a potential resolution to this paradox. Because of the high pH of tumor cells relative to the microenvironment, H+-coupled transport by MCTs tends to drive lactate from the interstitium into tumor cells. Accordingly, lactate may accumulate preferentially in tumor cells, not the microenvironment. Thus, although they are likely subject to other immunosuppressive metabolic factors, tumor immune cells may not experience a high lactate environment. The lack of clarity regarding microenvironmental lactate highlights the general need for careful metabolite measurements in the tumor extracellular milieu.
Collapse
Affiliation(s)
- Juan C García-Cañaveras
- Lewis Sigler Institute for Integrative Genomics and Department of Chemistry, Princeton University, Princeton, New Jersey
| | - Li Chen
- Lewis Sigler Institute for Integrative Genomics and Department of Chemistry, Princeton University, Princeton, New Jersey
| | - Joshua D Rabinowitz
- Lewis Sigler Institute for Integrative Genomics and Department of Chemistry, Princeton University, Princeton, New Jersey.
| |
Collapse
|
21
|
Li Q, Li G, Zhou Y, Zhang X, Sun M, Jiang H, Yu G. Comprehensive N-Glycome Profiling of Cells and Tissues for Breast Cancer Diagnosis. J Proteome Res 2019; 18:2559-2570. [PMID: 30889355 DOI: 10.1021/acs.jproteome.9b00073] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Aberrant protein glycosylation is observed in the progression of many types of diseases, including different cancers. In this study, we assess differential N-glycan patterns of human breast cancer cells and tissues by PGC-ESI-MS/MS. Compared with mammary epithelial cells, high-mannose glycans were significantly elevated in breast cancer cells. However, the alteration of N-glycans in tissues was more obvious than that in cells. Sixty-three kinds of different N-glycans were stably identified, and 38 types of them exhibited significant differences between para-carcinoma and breast cancer tissues. High-mannose glycans and core-fucosylated glycans were increased in the breast cancer tissues, while bisected glycans and sialylated glycans were decreased. Moreover, a total of 27 types of N-glycans displayed evident differences between benign breast tumor and breast cancer tissues, and most of them including bisected and sialylated glycans exhibited decreased relative abundances in cancer tissues. Overall, three high-mannose N-glycans (F0H6N2S0, F0H7N2S0, F0H8N2S0) exhibited significant diagnostic accuracy in both breast cancer cells and tissues, suggesting their potential role in biomarkers. Furthermore, a negative correlation between sialylated glycans and age of patients was identified. In conclusion, our results may be beneficial to understand the role that N-glycan plays on the progression of breast cancer and propose potential diagnostic biomarkers.
Collapse
Affiliation(s)
- Qinying Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology , Ocean University of China , Qingdao 266003 , China
| | - Guoyun Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology , Ocean University of China , Qingdao 266003 , China.,Laboratory for Marine Drugs and Bioproducts , Qingdao National Laboratory for Marine Science and Technology , Qingdao 266003 , China
| | - Yu Zhou
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology , Ocean University of China , Qingdao 266003 , China
| | - Xin Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology , Ocean University of China , Qingdao 266003 , China
| | - Mei Sun
- Qingdao Municipal Hospital, The Affiliated Qingdao Municipal Hospital , Qingdao University Medical College , Qingdao 266071 , China
| | - Hao Jiang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology , Ocean University of China , Qingdao 266003 , China.,Laboratory for Marine Drugs and Bioproducts , Qingdao National Laboratory for Marine Science and Technology , Qingdao 266003 , China
| | - Guangli Yu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology , Ocean University of China , Qingdao 266003 , China.,Laboratory for Marine Drugs and Bioproducts , Qingdao National Laboratory for Marine Science and Technology , Qingdao 266003 , China
| |
Collapse
|
22
|
Xiao Y, Li Y, Yuan Y, Liu B, Pan S, Liu Q, Qi X, Zhou H, Dong W, Jia L. The potential of exosomes derived from colorectal cancer as a biomarker. Clin Chim Acta 2019; 490:186-193. [DOI: 10.1016/j.cca.2018.09.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 08/28/2018] [Accepted: 09/03/2018] [Indexed: 12/11/2022]
|
23
|
Kolluru C, Williams M, Yeh JS, Noel RK, Knaack J, Prausnitz MR. Monitoring drug pharmacokinetics and immunologic biomarkers in dermal interstitial fluid using a microneedle patch. Biomed Microdevices 2019; 21:14. [PMID: 30725230 PMCID: PMC6533066 DOI: 10.1007/s10544-019-0363-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Minimally invasive point-of-care diagnostic devices are of great interest for rapid detection of biomarkers in diverse settings. Although blood is the most common source of biomarkers, interstitial fluid (ISF) is an alternate body fluid that does not clot or contain red blood cells that often complicate analysis. However, ISF is difficult to collect. In this study, we assessed the utility of a microneedle patch to sample microliter volumes of ISF in a simple and minimally invasive manner. We demonstrated the use of ISF collected in this way for therapeutic drug monitoring by showing similar vancomycin pharmacokinetic profiles in ISF and serum from rats. We also measured polio-specific neutralizing antibodies and anti-polio IgG in ISF similar to serum in rats immunized with polio vaccine. These studies demonstrate the potential utility of ISF collected by microneedle patch in therapeutic drug monitoring and immunodiagnostic applications.
Collapse
Affiliation(s)
- Chandana Kolluru
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, GA, 30332, USA
| | - Mikayla Williams
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, GA, 30332, USA
| | - Jihee Stephanie Yeh
- School of Pharmaceutical Sciences, Mercer University, Atlanta, GA, 30341, USA
| | - Richard K Noel
- Physiological Research Laboratory, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, GA, 30332, USA
| | - Jennifer Knaack
- School of Pharmaceutical Sciences, Mercer University, Atlanta, GA, 30341, USA
| | - Mark R Prausnitz
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, GA, 30332, USA.
| |
Collapse
|
24
|
Ura B, Di Lorenzo G, Romano F, Monasta L, Mirenda G, Scrimin F, Ricci G. Interstitial Fluid in Gynecologic Tumors and Its Possible Application in the Clinical Practice. Int J Mol Sci 2018; 19:ijms19124018. [PMID: 30545144 PMCID: PMC6321738 DOI: 10.3390/ijms19124018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 11/29/2018] [Indexed: 12/12/2022] Open
Abstract
Gynecologic cancers are an important cause of worldwide mortality. The interstitium consists of solid and fluid phases, situated between the blood vessels and cells. The interstitial fluid (IF), or fluid phase, is an extracellular fluid bathing and surrounding the tissue cells. The TIF (tumor interstitial fluid) is a dynamic fluid rich in lipids, proteins and enzyme-derived substances. The molecules found in the IF may be associated with pathological changes in tissues leading to cancer growth and metastatization. Proteomic techniques have allowed an extensive study of the composition of the TIF as a source of biomarkers for gynecologic cancers. In our review, we analyze the composition of the TIF, its formation process, the sampling methods, the consequences of its accumulation and the proteomic analyses performed, that make TIF valuable for monitoring different types of cancers.
Collapse
Affiliation(s)
- Blendi Ura
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", 34137 Trieste, Italy.
| | - Giovanni Di Lorenzo
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", 34137 Trieste, Italy.
| | - Federico Romano
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", 34137 Trieste, Italy.
| | - Lorenzo Monasta
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", 34137 Trieste, Italy.
| | - Giuseppe Mirenda
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", 34137 Trieste, Italy.
| | - Federica Scrimin
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", 34137 Trieste, Italy.
| | - Giuseppe Ricci
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", 34137 Trieste, Italy.
- Department of Medical, Surgery and Health Sciences, University of Trieste, 34137 Trieste, Italy.
| |
Collapse
|
25
|
Anjo SI, Manadas B. A translational view of cells' secretome analysis - from untargeted proteomics to potential circulating biomarkers. Biochimie 2018; 155:37-49. [DOI: 10.1016/j.biochi.2018.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 05/16/2018] [Indexed: 02/06/2023]
|
26
|
Shender VO, Arapidi GP, Pavlyukov MS, Shnaider PV, Anufrieva KS, Stepanov GA, Govorun VM. The Role of Intercellular Communication in Cancer Progression. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2018. [DOI: 10.1134/s1068162018040179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
27
|
Haslene-Hox H. Measuring gradients in body fluids - A tool for elucidating physiological processes, diagnosis and treatment of disease. Clin Chim Acta 2018; 489:233-241. [PMID: 30145208 DOI: 10.1016/j.cca.2018.08.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/15/2018] [Accepted: 08/16/2018] [Indexed: 01/03/2023]
Affiliation(s)
- Hanne Haslene-Hox
- SINTEF Industry, Department of biotechnology and nanomedicine, Sem Sælands vei 2A, 7034 Trondheim, Norway.
| |
Collapse
|
28
|
Kennedy E, Hokmabadi M, Dong Z, McKelvey K, Nelson EM, Timp G. Method for Dynamically Detecting Secretions from Single Cells Using a Nanopore. NANO LETTERS 2018; 18:4263-4272. [PMID: 29870666 DOI: 10.1021/acs.nanolett.8b01257] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Secreted proteins mediate cell-to-cell communications. Thus, eavesdropping on the secretome could reveal the cellular phenotype, but it is challenging to detect the proteins because they are secreted only in minute amounts and then diluted in blood plasma or contaminated by cell culture medium or the lysate. In this pilot study, it is demonstrated that secretions from single cancer cells can be detected and dynamically analyzed through measurements of blockades in the electrolytic current due to single molecules translocating through a nanopore in a thin inorganic membrane. It is established that the distribution of blockades can be used to differentiate three different cancer cell lines (U937, MDA-MB-231, and MCF-7) in real time and quickly (<20 s). Importantly, the distinctive blockades associated with the chemokine CCL5, a prognostic factor for disease progression in breast cancer, along with other low-mass biomarkers of breast cancer (PI3, TIMP1, and MMP1) were identified in the context of the secretome of these three cell types, tracked with time, and used to provide information on the cellular phenotype.
Collapse
|
29
|
Terkelsen T, Haakensen VD, Saldova R, Gromov P, Hansen MK, Stöckmann H, Lingjaerde OC, Børresen-Dale AL, Papaleo E, Helland Å, Rudd PM, Gromova I. N-glycan signatures identified in tumor interstitial fluid and serum of breast cancer patients: association with tumor biology and clinical outcome. Mol Oncol 2018; 12:972-990. [PMID: 29698574 PMCID: PMC5983225 DOI: 10.1002/1878-0261.12312] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/04/2018] [Accepted: 04/13/2018] [Indexed: 11/29/2022] Open
Abstract
Particular N‐glycan structures are known to be associated with breast malignancies by coordinating various regulatory events within the tumor and corresponding microenvironment, thus implying that N‐glycan patterns may be used for cancer stratification and as predictive or prognostic biomarkers. However, the association between N‐glycans secreted by breast tumor and corresponding clinical relevance remain to be elucidated. We profiled N‐glycans by HILIC UPLC across a discovery dataset composed of tumor interstitial fluids (TIF, n = 85), paired normal interstitial fluids (NIF, n = 54) and serum samples (n = 28) followed by independent evaluation, with the ultimate goal of identifying tumor‐related N‐glycan patterns in blood of patients with breast cancer. The segregation of N‐linked oligosaccharides revealed 33 compositions, which exhibited differential abundances between TIF and NIF. TIFs were depleted of bisecting N‐glycans, which are known to play essential roles in tumor suppression. An increased level of simple high mannose N‐glycans in TIF strongly correlated with the presence of tumor infiltrating lymphocytes within tumor. At the same time, a low level of highly complex N‐glycans in TIF inversely correlated with the presence of infiltrating lymphocytes within tumor. Survival analysis showed that patients exhibiting increased TIF abundance of GP24 had better outcomes, whereas low levels of GP10, GP23, GP38, and coreF were associated with poor prognosis. Levels of GP1, GP8, GP9, GP14, GP23, GP28, GP37, GP38, and coreF were significantly correlated between TIF and paired serum samples. Cross‐validation analysis using an independent serum dataset supported the observed correlation between TIF and serum, for five of nine N‐glycan groups: GP8, GP9, GP14, GP23, and coreF. Collectively, our results imply that profiling of N‐glycans from proximal breast tumor fluids is a promising strategy for determining tumor‐derived glyco‐signature(s) in the blood. N‐glycans structures validated in our study may serve as novel biomarkers to improve the diagnostic and prognostic stratification of patients with breast cancer.
Collapse
Affiliation(s)
- Thilde Terkelsen
- Computational Biology Laboratory, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Vilde D Haakensen
- Department of Cancer Genetics, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Norway
| | - Radka Saldova
- NIBRT GlycoScience Group, National Institute for Bioprocessing Research and Training, Dublin 4, Ireland
| | - Pavel Gromov
- Danish Cancer Society Research Center, Genome Integrity Unit, Breast Cancer Biology Group, Copenhagen, Denmark
| | - Merete Kjaer Hansen
- Computational Biology Laboratory, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Henning Stöckmann
- NIBRT GlycoScience Group, National Institute for Bioprocessing Research and Training, Dublin 4, Ireland
| | - Ole Christian Lingjaerde
- Department of Cancer Genetics, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Norway
| | - Anne-Lise Børresen-Dale
- Department of Cancer Genetics, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Norway
| | - Elena Papaleo
- Computational Biology Laboratory, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Åslaug Helland
- Department of Cancer Genetics, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Norway
| | - Pauline M Rudd
- NIBRT GlycoScience Group, National Institute for Bioprocessing Research and Training, Dublin 4, Ireland
| | - Irina Gromova
- Danish Cancer Society Research Center, Genome Integrity Unit, Breast Cancer Biology Group, Copenhagen, Denmark
| |
Collapse
|
30
|
Comparative Proteomic Study of the Antiproliferative Activity of Frog Host-Defence Peptide Caerin 1.9 and Its Additive Effect with Caerin 1.1 on TC-1 Cells Transformed with HPV16 E6 and E7. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7382351. [PMID: 29862288 PMCID: PMC5971270 DOI: 10.1155/2018/7382351] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 03/27/2018] [Indexed: 12/26/2022]
Abstract
Caerin is a family of peptides isolated from the glandular secretion of Australian tree frogs, the genus Litoria, and has been previously shown to have anticancer activity against several cancer cells. In this work, we used two host-defence peptides, caerin 1.1 and caerin 1.9, to investigate their ability to inhibit a murine derived TC-1 cell transformed with human papillomavirus 16 E6 and E7 growth in vitro. Caerin 1.9 inhibits TC-1 cell proliferation, although inhibition is more pronounced when applied in conjunction with caerin 1.1. To gain further insights into the antiproliferative mechanisms of caerin 1.9 and its additive effect with caerin 1.1, we used a proteomics strategy to quantitatively examine (i) the changes in the protein profiles of TC-1 cells and (ii) the excretory-secretory products of TC-1 cells following caerin peptides treatment. Caerin 1.9 treatment significantly altered the abundance of several immune-related proteins and related pathways, such as the Tec kinase and ILK signalling pathways, as well as the levels of proinflammatory cytokines and chemokines. In conclusion, caerin peptides inhibit TC-1 cell proliferation, associated with modification in signalling pathways that would change the tumour microenvironment which is normally immune suppressive.
Collapse
|
31
|
Onsurathum S, Haonon O, Pinlaor P, Pairojkul C, Khuntikeo N, Thanan R, Roytrakul S, Pinlaor S. Proteomics detection of S100A6 in tumor tissue interstitial fluid and evaluation of its potential as a biomarker of cholangiocarcinoma. Tumour Biol 2018; 40:1010428318767195. [DOI: 10.1177/1010428318767195] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Tumor interstitial fluid contains tumor-specific proteins that may be useful biomarkers for cancers. In this study, we identified proteins present in cholangiocarcinoma interstitial fluid. Proteins derived from three samples of tumor interstitial fluid and paired samples of adjacent normal interstitial fluid from cholangiocarcinoma patients were subjected to two-dimensional liquid chromatography with tandem mass spectrometry. Candidate proteins were selected based on a greater than twofold change in expression levels between tumor interstitial fluid and normal interstitial fluid. Upregulation of six proteins in tumor interstitial fluid, including S100 calcium binding protein A6 (S100A6), S100 calcium binding protein A9, aldo-keto reductase family 1 member C4, neuropilin-1, 14-3-3 zeta/delta, and triosephosphate isomerase was assessed by western blot and immunohistochemistry. Their potential as markers was evaluated in human cholangiocarcinoma tissue arrays, and in serum using enzyme-linked immunosorbent assay. Expression of S100A6 was higher in tumor interstitial fluid than in normal interstitial fluid and showed the highest positive rate (98.96%) in cholangiocarcinoma tissues. Serum levels of S100A6 did not differ between cholangitis and cholangiocarcinoma patients, but were significantly higher than in healthy individuals ( p < 0.0001). In cholangiocarcinoma cases, S100A6 level was associated with vascular invasion ( p = 0.007) and could distinguish cholangiocarcinoma patients from healthy individuals as effectively as the carbohydrate antigen 19-9. In addition, potential for drug treatment targeting S100A6 and other candidate proteins was also demonstrated using STITCH analysis. In conclusion, proteomics analysis of tumor interstitial fluid could be a new approach for biomarker discovery, and S100A6 is a potential risk marker for screening of cholangiocarcinoma.
Collapse
Affiliation(s)
- Sudarat Onsurathum
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Ornuma Haonon
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Porntip Pinlaor
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Chawalit Pairojkul
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Narong Khuntikeo
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Raynoo Thanan
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Sittiruk Roytrakul
- Proteomics Research Laboratory, National Center for Genetic Engineering and Biotechnology, Pathumthani, Thailand
| | - Somchai Pinlaor
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
32
|
Niedzwiecki M, Samant P, Walker DI, Tran V, Jones DP, Prausnitz MR, Miller GW. Human Suction Blister Fluid Composition Determined Using High-Resolution Metabolomics. Anal Chem 2018; 90:3786-3792. [PMID: 29425024 PMCID: PMC5863097 DOI: 10.1021/acs.analchem.7b04073] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 02/09/2018] [Indexed: 12/22/2022]
Abstract
Interstitial fluid (ISF) surrounds the cells and tissues of the body. Since ISF has molecular components similar to plasma, as well as compounds produced locally in tissues, it may be a valuable source of biomarkers for diagnostics and monitoring. However, there has not been a comprehensive study to determine the metabolite composition of ISF and to compare it to plasma. In this study, the metabolome of suction blister fluid (SBF), which largely consists of ISF, collected from 10 human volunteers was analyzed using untargeted high-resolution metabolomics (HRM). A wide range of metabolites were detected in SBF, including amino acids, lipids, nucleotides, and compounds of exogenous origin. Various systemic and skin-derived metabolite biomarkers were elevated or found uniquely in SBF, and many other metabolites of clinical and physiological significance were well correlated between SBF and plasma. In sum, using untargeted HRM profiling, this study shows that SBF can be a valuable source of information about metabolites relevant to human health.
Collapse
Affiliation(s)
- Megan
M. Niedzwiecki
- Department
of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, United States
| | - Pradnya Samant
- School
of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Douglas I. Walker
- Clinical
Biomarkers Laboratory, Division of Pulmonary, Allergy, and Critical
Care Medicine, Emory University School of
Medicine, Atlanta, Georgia 30322, United
States
| | - ViLinh Tran
- Clinical
Biomarkers Laboratory, Division of Pulmonary, Allergy, and Critical
Care Medicine, Emory University School of
Medicine, Atlanta, Georgia 30322, United
States
| | - Dean P. Jones
- Clinical
Biomarkers Laboratory, Division of Pulmonary, Allergy, and Critical
Care Medicine, Emory University School of
Medicine, Atlanta, Georgia 30322, United
States
| | - Mark R. Prausnitz
- School
of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Gary W. Miller
- Department
of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
33
|
Kotyza J, Havel D, Vrzalová J, Kulda V, Pešek M. Diagnostic and Prognostic Significance of Inflammatory Markers in Lung Cancer-Associated Pleural Effusions. Int J Biol Markers 2018; 25:12-20. [DOI: 10.1177/172460081002500102] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Besides massive expression in inflammatory pleural effusions, inflammatory markers are also present in cancer-induced pleural effusions. Recent advances in cancer biology point to a role of inflammatory signaling in cancer and encourage reconsidering the diagnostic and prognostic value of inflammatory markers. Here an attempt was made to relate protein levels of inflammatory markers to underlying malignant processes in the pleural space. Pleural effusions from lung cancer patients (n=116) were subjected to a multifactorial analysis covering 13 inflammatory markers. The composition of tumor-associated effusions was compared with that of parainflammatory pleural effusions (n=30), transudates (n=18), and serum values, and evaluated in relation to cancer origin, histology, cytology, pleural involvement, treatment history, and survival time. Inflammatory markers were significantly expressed in pleural effusions of paraneoplastic origin when compared to transudates and most serum levels. Values in pleura-invading and metastatic tumor-associated effusions were typically higher than those of other tumors. Many markers correlated negatively with survival, most prominently IL-8 (r=–0.36, p=0.001) and VEGF (r=–0.35, p=0.001). It appears that most inflammatory markers are highly expressed in tumor-associated pleural effusions, reflecting to some extent tumor origin and localization. Despite the lower efficacy of inflammatory markers in the differentiation between exudative pleural effusions, some inflammatory markers may represent potential prognostic markers of malignant processes in the pleural space.
Collapse
Affiliation(s)
- Jaromír Kotyza
- Department of Biochemistry, Medical Faculty, Charles University, Plzen?
| | - David Havel
- Department of Pneumology, University Hospital, Plzen?
| | - Jindra Vrzalová
- Laboratory of Immunoanalysis, Department of Nuclear Medicine, University Hospital, Plzen? - Czech Republic
| | - Vlastimil Kulda
- Department of Biochemistry, Medical Faculty, Charles University, Plzen?
| | - Miloš Pešek
- Department of Pneumology, University Hospital, Plzen?
| |
Collapse
|
34
|
Innovative methods for biomarker discovery in the evaluation and development of cancer precision therapies. Cancer Metastasis Rev 2018; 37:125-145. [PMID: 29392535 DOI: 10.1007/s10555-017-9710-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The discovery of biomarkers able to detect cancer at an early stage, to evaluate its aggressiveness, and to predict the response to therapy remains a major challenge in clinical oncology and precision medicine. In this review, we summarize recent achievements in the discovery and development of cancer biomarkers. We also highlight emerging innovative methods in biomarker discovery and provide insights into the challenges faced in their evaluation and validation.
Collapse
|
35
|
Mueller C, Haymond A, Davis JB, Williams A, Espina V. Protein biomarkers for subtyping breast cancer and implications for future research. Expert Rev Proteomics 2018; 15:131-152. [PMID: 29271260 PMCID: PMC6104835 DOI: 10.1080/14789450.2018.1421071] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Breast cancer subtypes are currently defined by a combination of morphologic, genomic, and proteomic characteristics. These subtypes provide a molecular portrait of the tumor that aids diagnosis, prognosis, and treatment escalation/de-escalation options. Gene expression signatures describing intrinsic breast cancer subtypes for predicting risk of recurrence have been rapidly adopted in the clinic. Despite the use of subtype classifications, many patients develop drug resistance, breast cancer recurrence, or therapy failure. Areas covered: This review provides a summary of immunohistochemistry, reverse phase protein array, mass spectrometry, and integrative studies that are revealing differences in biological functions within and between breast cancer subtypes. We conclude with a discussion of rigor and reproducibility for proteomic-based biomarker discovery. Expert commentary: Innovations in proteomics, including implementation of assay guidelines and standards, are facilitating refinement of breast cancer subtypes. Proteomic and phosphoproteomic information distinguish biologically functional subtypes, are predictive of recurrence, and indicate likelihood of drug resistance. Actionable, activated signal transduction pathways can now be quantified and characterized. Proteomic biomarker validation in large, well-designed studies should become a public health priority to capitalize on the wealth of information gleaned from the proteome.
Collapse
Affiliation(s)
- Claudius Mueller
- a Center for Applied Proteomics and Molecular Medicine , George Mason University , Manassas , VA , USA
| | - Amanda Haymond
- a Center for Applied Proteomics and Molecular Medicine , George Mason University , Manassas , VA , USA
| | - Justin B Davis
- a Center for Applied Proteomics and Molecular Medicine , George Mason University , Manassas , VA , USA
| | - Alexa Williams
- a Center for Applied Proteomics and Molecular Medicine , George Mason University , Manassas , VA , USA
| | - Virginia Espina
- a Center for Applied Proteomics and Molecular Medicine , George Mason University , Manassas , VA , USA
| |
Collapse
|
36
|
Costanza B, Turtoi A, Bellahcène A, Hirano T, Peulen O, Blomme A, Hennequière V, Mutijima E, Boniver J, Meuwis MA, Josse C, Koopmansch B, Segers K, Yokobori T, Fahmy K, Thiry M, Coimbra C, Garbacki N, Colige A, Baiwir D, Bours V, Louis E, Detry O, Delvenne P, Nishiyama M, Castronovo V. Innovative methodology for the identification of soluble biomarkers in fresh tissues. Oncotarget 2018. [PMID: 29535834 PMCID: PMC5828218 DOI: 10.18632/oncotarget.24366] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The identification of diagnostic and prognostic biomarkers from early lesions, measurable in liquid biopsies remains a major challenge, particularly in oncology. Fresh human material of high quality is required for biomarker discovery but is often not available when it is totally required for clinical pathology investigation. Hence, all OMICs studies are done on residual and less clinically relevant biological samples. Here after, we present an innovative, simple, and non-destructive, procedure named EXPEL that uses rapid, pressure-assisted, interstitial fluid extrusion, preserving the specimen for full routine clinical pathology investigation. In the meantime, the technique allows a comprehensive OMICs analysis (proteins, metabolites, miRNAs and DNA). As proof of concept, we have applied EXPEL on freshly collected human colorectal cancer and liver metastases tissues. We demonstrate that the procedure efficiently allows the extraction, within a few minutes, of a wide variety of biomolecules holding diagnostic and prognostic potential while keeping both tissue morphology and antigenicity unaltered. Our method enables, for the first time, both clinicians and scientists to explore identical clinical material regardless of its origin and size, which has a major positive impact on translation to the clinic.
Collapse
Affiliation(s)
- Brunella Costanza
- Metastasis Research Laboratory, GIGA Cancer, University of Liège, Liège, Belgium
| | - Andrei Turtoi
- Metastasis Research Laboratory, GIGA Cancer, University of Liège, Liège, Belgium
| | - Akeila Bellahcène
- Metastasis Research Laboratory, GIGA Cancer, University of Liège, Liège, Belgium
| | - Touko Hirano
- Laboratory for Analytical Instruments, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Olivier Peulen
- Metastasis Research Laboratory, GIGA Cancer, University of Liège, Liège, Belgium
| | - Arnaud Blomme
- Metastasis Research Laboratory, GIGA Cancer, University of Liège, Liège, Belgium
| | - Vincent Hennequière
- Metastasis Research Laboratory, GIGA Cancer, University of Liège, Liège, Belgium
| | - Eugene Mutijima
- Department of Pathology, University Hospital (CHU), University of Liège, Liège, Belgium
| | - Jacques Boniver
- Department of Pathology, University Hospital (CHU), University of Liège, Liège, Belgium
| | - Marie-Alice Meuwis
- Gastroenterology Department, University Hospital (CHU), University of Liège, Liège, Belgium
| | - Claire Josse
- Center for Human Genetic, Molecular Haemato-Oncology Unit, UniLab, University Hospital (CHU), University of Liège, Liège, Belgium
| | - Benjamin Koopmansch
- Center for Human Genetic, Molecular Haemato-Oncology Unit, UniLab, University Hospital (CHU), University of Liège, Liège, Belgium
| | - Karin Segers
- Center for Human Genetic, Molecular Haemato-Oncology Unit, UniLab, University Hospital (CHU), University of Liège, Liège, Belgium
| | - Takehiko Yokobori
- Division of Integrated Oncology Research, Research Program for Omics-based Medical Science, Gunma University Initiative for Advanced Research, Gunma, Japan
| | - Karim Fahmy
- Metastasis Research Laboratory, GIGA Cancer, University of Liège, Liège, Belgium
| | - Marc Thiry
- Laboratory of Cell Biology, Faculty of Sciences, University of Liège, Liège, Belgium
| | - Carla Coimbra
- Department of Abdominal Surgery, University Hospital (CHU), University of Liège, Liège, Belgium
| | - Nancy Garbacki
- Laboratory of Connective Tissues Biology, GIGA-Cancer, University Hospital, University of Liège, Liège, Belgium
| | - Alain Colige
- Laboratory of Connective Tissues Biology, GIGA-Cancer, University Hospital, University of Liège, Liège, Belgium
| | - Dominique Baiwir
- Mass Spectrometry Laboratory, University of Liège, Liège, Belgium.,GIGA Proteomics Facility, University of Liège, Liège, Belgium
| | - Vincent Bours
- Center for Human Genetic, Molecular Haemato-Oncology Unit, UniLab, University Hospital (CHU), University of Liège, Liège, Belgium
| | - Edouard Louis
- Gastroenterology Department, University Hospital (CHU), University of Liège, Liège, Belgium
| | - Olivier Detry
- Department of Abdominal Surgery, University Hospital (CHU), University of Liège, Liège, Belgium
| | - Philippe Delvenne
- Department of Pathology, University Hospital (CHU), University of Liège, Liège, Belgium
| | - Masahiko Nishiyama
- Division of Integrated Oncology Research, Research Program for Omics-based Medical Science, Gunma University Initiative for Advanced Research, Gunma, Japan.,Department of Molecular Pharmacology and Oncology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Vincent Castronovo
- Metastasis Research Laboratory, GIGA Cancer, University of Liège, Liège, Belgium
| |
Collapse
|
37
|
Abstract
Tumor interstitial fluid (TIF) surrounds and perfuses bodily tumorigenic tissues and cells, and can accumulate by-products of tumors and stromal cells in a relatively local space. Interstitial fluid offers several important advantages for biomarker and therapeutic target discovery, especially for cancer. Here, we describe the most currently accepted method for recovering TIF from tumor and nonmalignant tissues that was initially performed using breast cancer tissue. TIF recovery is achieved by passive extraction of fluid from small, surgically dissected tissue specimens in phosphate-buffered saline. We also present protocols for hematoxylin and eosin (H&E) staining of snap-frozen and formalin-fixed, paraffin-embedded (FFPE) tumor sections and for proteomic profiling of TIF and matched tumor samples by high-resolution two-dimensional gel electrophoresis (2D-PAGE) to enable comparative analysis of tumor secretome and paired tumor tissue.
Collapse
|
38
|
Hasan M, Mustafa G, Iqbal J, Ashfaq M, Mahmood N. Quantitative proteomic analysis of HeLa cells in response to biocompatible Fe 2C@C nanoparticles: 16O/ 18O-labelling & HPLC-ESI-orbit-trap profiling approach. Toxicol Res (Camb) 2018; 7:84-92. [PMID: 30090565 PMCID: PMC6060731 DOI: 10.1039/c7tx00248c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/07/2017] [Indexed: 11/21/2022] Open
Abstract
The effective detection of molecular biomarkers, such as proteins, lipids, carbohydrates, and pathogens, in a living body is a huge challenge in the field of nanomedicine. Here, we have investigated the comparative quantitative proteomics analysis of the molecular response of HeLa cells to biocompatible Fe2C@C nanoparticles (NPs) using 16O/18O isotopic labelling of the cell culture. The relative binding efficiency of proteins to Fe2C@C NPs was calculated. HPLC-ESI-orbit-trap analysis found 51 differentially expressed proteins, out of which 23 were over-expressed and 28 down-regulated. This study showed that Fe2C@C NPs alter the expression of the proteins involved in endocytosis, cell-cycle regulation, and cell membrane protrusion. Further, the quantification and validation of the mass spectrometry (MS) results was successfully confirmed by western blot analysis of cytochrome C. The change in the expression of proteins can be useful for early stage disease diagnoses and the development of tailored therapeutic strategies. This study is the first large-scale characterization of low abundance proteins on Fe2C@C NPs, providing the biochemical basis for the assessment of the suitability of magnetic NPs as biomedical markers and emerging functional probes.
Collapse
Affiliation(s)
- Murtaza Hasan
- Department of Biochemistry and Biotechnology , The Islamia University of Bahawalpur , Pakistan
- Department of Materials Science and Engineering , College of Engineering , Peking University , Beijing , 178001 , China
| | - Ghazala Mustafa
- Department of Plant Sciences , Quaid-i-Azam University , Islamabad 45320 , Pakistan
| | - Javed Iqbal
- College of Life Sciences , Shenzhen University , Shenzhen 10590 , China
| | - Muhammad Ashfaq
- Department of Biochemistry and Biotechnology , The Islamia University of Bahawalpur , Pakistan
| | - Nasir Mahmood
- School of Engineering , RMIT University , 124 La Trobe Street , 3001 Melbourne , Victoria , Australia . ; ; Tel: +61423669339
- Center of Micro-Nano Functional Materials and Devices , School of Energy Science and Engineering , State key Laboratory of Electronic Thin Films and Integrated Devices , University of Electronic Science and Technology of China , Chengdu , 611731 , China
| |
Collapse
|
39
|
Singh R, Dagar P, Pal S, Basu B, Shankar BS. Significant alterations of the novel 15 gene signature identified from macrophage-tumor interactions in breast cancer. Biochim Biophys Acta Gen Subj 2017; 1862:669-683. [PMID: 29248526 DOI: 10.1016/j.bbagen.2017.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 11/09/2017] [Accepted: 12/11/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND Tumor microenvironment is composed of a largely altered extracellular matrix with different cell types. The complex interplay between macrophages and tumor cells through several soluble factors and signaling is an important factor in breast cancer progression. METHODS We have extended our earlier studies on monocyte and macrophage conditioned medium (MϕCM) and have carried out proteomic analysis to identify its constituents as well as validation. The 8-gene signature identified through macrophage-breast cancer cell interactions was queried in cBioportal for bioinformatic analyses. RESULTS Proteomic analysis (MALDI-TOF and LC-MS/MS) revealed integrin and matrix metalloproteinases in MϕCM which activated TGF-β1, IL-6, TGF- βRII and EGFR as well as its downstream STAT and SMAD signaling in breast cancer cells. Neutralization of pro-inflammatory cytokines (TNF-α. Il-1β, IL-6) abrogated the MϕCM induced migration but invasion to lesser extent. The 8- gene signature identified by macrophage-tumor interactions (TNF-α, IL-1β, IL-6, MMP1, MMP9, TGF-β1, TGF-βRII, EGFR) significantly co-occurred with TP53 mutation, WTAPP1 deletion and SLC12A5 amplification along with differential expression of PSAT1 and ESR1 at the mRNA level and TPD52and PRKCD at the protein level in TCGA (cBioportal). Together these genes form a novel 15 gene signature which is altered in 63.6% of TCGA (1105 samples) data and was associated with high risk and poor survival (p<0.05) in many breast cancer datasets (SurvExpress). CONCLUSIONS These results highlight the importance of macrophage signaling in breast cancer and the prognostic role of the15-gene signature. GENERAL SIGNIFICANCE Our study may facilitate novel prognostic markers based on tumor-macrophage interaction.
Collapse
Affiliation(s)
- Rajshri Singh
- Radiation Biology & Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Mumbai 400 085, India; HomiBhabha National Institute, Anushaktinagar, Mumbai 400 094, India
| | - Priya Dagar
- Radiation Biology & Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Shyama Pal
- Radiation Biology & Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Bhakti Basu
- HomiBhabha National Institute, Anushaktinagar, Mumbai 400 094, India; Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Bhavani S Shankar
- Radiation Biology & Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Mumbai 400 085, India; HomiBhabha National Institute, Anushaktinagar, Mumbai 400 094, India.
| |
Collapse
|
40
|
Liu W, Liu C, Zhang L, Xie X, Gu X, Sang C, Xu M, Xu W, Jia H. Molecular basis of coronary artery dilation and aneurysms in patients with Kawasaki disease based on differential protein expression. Mol Med Rep 2017; 17:2402-2414. [PMID: 29207079 PMCID: PMC5783486 DOI: 10.3892/mmr.2017.8111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 10/10/2017] [Indexed: 12/29/2022] Open
Abstract
Kawasaki disease (KD) is an acquired cardiac disease with a high incidence that affects children. KD has various complications, including coronary artery dilation (CAD) and coronary artery aneurysms (CAA). The identification of differentially expressed proteins and the underlying mechanisms may be the key to understanding differences between these KD complications. In the present study, isobaric tags for relative and absolute quantitation were used to identify variations in serum proteins between KD patients with CAD and CAA. In total, 87 (37 upregulated and 50 downregulated) and 65 (33 upregulated and 32 downregulated) significantly differentially-expressed proteins were identified in comparisons between control samples (healthy individuals) and those obtained from patients with KD and with CAD or CAA. Investigation into the underlying biological process revealed that variations between the two complications were associated with the wound healing response, as well as lipoprotein- and cholesterol-associated processes. Important proteins involved in the formation of the wound healing signaling network were identified via enriched biological processes and pathway analysis using ClueGo and ReactomeFIViz software. In the present study, 5 significantly differentially-expressed proteins, including mannose binding lectin 2 (MBL2), complement factor H (CFH), kininogen 1 (KNG1), serpin family C member 1 (SERPINC1) and fibronectin 1 (FN1), were selected and confirmed by western blotting. Analysis indicated that these proteins were associated to immunity, inflammation and metabolism, serving a key role within each module, which has never been reported previously. The present study proposed that MBL2, CFH, KNG1, SERPINC1 and FN1 may be a potentially excellent indicator group for distinguishing the two major KD complications, CAD and CAA.
Collapse
Affiliation(s)
- Wanting Liu
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Chaowu Liu
- Institute of Mass Spectrometer and Atmospheric Environment, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Li Zhang
- Department of Pediatric Cardiology, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong 510120, P.R. China
| | - Xiaofei Xie
- Department of Pediatric Cardiology, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong 510120, P.R. China
| | - Xiaoqiong Gu
- Department of Pediatric Cardiology, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong 510120, P.R. China
| | - Chuanlan Sang
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Mingguo Xu
- Department of Pediatric Cardiology, Shenzhen Children's Hospital, Shenzhen, Guangdong 518038, P.R. China
| | - Weijun Xu
- Information Center, Shenzhen Children's Hospital, Shenzhen, Guangdong 518038, P.R. China
| | - Hongling Jia
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| |
Collapse
|
41
|
In-depth proteomic analysis of tissue interstitial fluid for hepatocellular carcinoma serum biomarker discovery. Br J Cancer 2017; 117:1676-1684. [PMID: 29024941 PMCID: PMC5729441 DOI: 10.1038/bjc.2017.344] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 07/25/2017] [Accepted: 09/01/2017] [Indexed: 12/12/2022] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is a primary malignancy of the liver. New serum biomarkers for HCC screening are needed, especially for alpha-fetoprotein (AFP) negative patients. As a proximal fluid between body fluids and intracellular fluid, tissue interstitial fluid (TIF) is a suitable source for serum biomarker discovery. Methods: Sixteen paired TIF samples from HCC tumour and adjacent non-tumour tissues were analysed by isobaric tags for relative and absolute quantitation (iTRAQ) method. Two proteins were selected for ELISA validation in serum samples. Results: Totally, 3629 proteins were identified and 3357 proteins were quantified in TIF samples. Among them, 232 proteins were significantly upregulated in HCC-TIF and 257 proteins down-regulated. Two overexpressed extracellular matrix proteins, SPARC and thrombospondin-2 (THBS2) were selected for further validation. ELISA result showed that the serum levels of SPARC and THBS2 in HCC patients were both significantly higher than those in healthy controls. The combination of serum SPARC and THBS2 could distinguish HCC (AUC=0.97, sensitivity=86%, specificity=100%) or AFP-negative HCC (AUC=0.95, sensitivity=91%, specificity=93%) from healthy controls. And the combination of serum SPARC and THBS2 could also distinguish HCC patients from benign liver disease patients (AUC=0.93, sensitivity=80%, specificity=94%). In addition, serum THBS2 was found to be a novel independent indicator for poor prognosis of HCC. Conclusions: Novel HCC candidate serum markers were found through in-depth proteomic analysis of TIF, which demonstrated the successful utility of TIF in cancer serum biomarker discovery.
Collapse
|
42
|
Papaleo E, Gromova I, Gromov P. Gaining insights into cancer biology through exploration of the cancer secretome using proteomic and bioinformatic tools. Expert Rev Proteomics 2017; 14:1021-1035. [PMID: 28967788 DOI: 10.1080/14789450.2017.1387053] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Tumor-associated proteins released by cancer cells and by tumor stroma cells, referred as 'cancer secretome', represent a valuable resource for discovery of potential cancer biomarkers. The last decade was marked by a great increase in number of studies focused on various aspects of cancer secretome including, composition and identification of components externalized by malignant cells and by the components of tumor microenvironment. Areas covered: Here, we provide an overview of achievements in the proteomic analysis of the cancer secretome, elicited through the tumor-associated interstitial fluid recovered from malignant tissues ex vivo or the protein component of conditioned media obtained from cultured cancer cells in vitro. We summarize various bioinformatic tools and approaches and critically appraise their outcomes, focusing on problems and challenges that arise when applied for the analysis of cancer secretomic databases. Expert commentary: Recent achievements in the omics- analysis of structural and metabolic aspects of altered cancer secretome contribute greatly to the various hallmarks of cancer including the identification of clinically significant biomarkers and potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Elena Papaleo
- a Danish Cancer Society Research Center, Computational Biology Laboratory , Copenhagen , Denmark
| | - Irina Gromova
- b Danish Cancer Society Research Center, Genome Integrity Unit, Breast Cancer Biology Group , Copenhagen , Denmark
| | - Pavel Gromov
- b Danish Cancer Society Research Center, Genome Integrity Unit, Breast Cancer Biology Group , Copenhagen , Denmark
| |
Collapse
|
43
|
Protein Array-based Approaches for Biomarker Discovery in Cancer. GENOMICS PROTEOMICS & BIOINFORMATICS 2017; 15:73-81. [PMID: 28392481 PMCID: PMC5414965 DOI: 10.1016/j.gpb.2017.03.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 03/24/2017] [Accepted: 03/30/2017] [Indexed: 01/15/2023]
Abstract
Biomarkers are deemed to be potential tools in early diagnosis, therapeutic monitoring, and prognosis evaluation for cancer, with simplicity as well as economic advantages compared with computed tomography and biopsy. However, most of the current cancer biomarkers present insufficient sensitivity as well as specificity. Therefore, there is urgent requirement for the discovery of biomarkers for cancer. As one of the most exciting emerging technologies, protein array provides a versatile and robust platform in cancer proteomics research because it shows tremendous advantages of miniaturized features, high throughput, and sensitive detections in last decades. Here, we will present a relatively complete picture on the characteristics and advance of different types of protein arrays in application for biomarker discovery in cancer, and give the future perspectives in this area of research.
Collapse
|
44
|
Oncostatin M promotes cancer cell plasticity through cooperative STAT3-SMAD3 signaling. Oncogene 2017; 36:4001-4013. [PMID: 28288136 PMCID: PMC5509502 DOI: 10.1038/onc.2017.33] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 01/20/2017] [Accepted: 01/24/2017] [Indexed: 02/06/2023]
Abstract
Increasing evidence supports the idea that cancer cell plasticity promotes metastasis and tumor recurrence, resulting in patient mortality. While it is clear that the tumor microenvironment (TME) contributes to cancer cell plasticity, the specific TME factors most actively controlling plasticity remain largely unknown. Here, we performed a screen to identify TME cytokines and growth factors that promote epithelial–mesenchymal plasticity, and acquisition of cancer stem cell (CSC) properties. Of 28 TME cytokines and growth factors tested, we identified Oncostatin M (OSM) as the most potent inducer of mesenchymal/CSC properties. OSM-induced plasticity was Signal Transducer and Activator of Transcription 3 (STAT3)-dependent, and also required a novel intersection with transforming growth factor-β (TGF-β)/SMAD signaling. OSM/STAT3 activation promoted SMAD3 nuclear accumulation, DNA binding and induced SMAD3-dependent transcriptional activity. Suppression of TGF-β receptor activity or ablation of SMAD3 or SMAD4, but not SMAD2, strongly suppressed OSM/STAT3-mediated plasticity. Moreover, removal of OSM or inhibition of STAT3 or SMAD3 resulted in a marked reversion to a non-invasive, epithelial phenotype. We propose that targeted blockade of the STAT3/SMAD3 axis in tumor cells may represent a novel therapeutic approach to prevent the plasticity required for metastatic progression and tumor recurrence.
Collapse
|
45
|
Kotyza J. Chemokines in tumor proximal fluids. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2017; 161:41-49. [PMID: 28115749 DOI: 10.5507/bp.2016.062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/09/2016] [Indexed: 01/02/2023] Open
Abstract
Chemokines are chemotactic cytokines produced by leukocytes and other types of cells including tumor cells. Their action is determined by the expression of cognate receptors and subsequent signaling in target cells, followed by the modulation of cytoskeletal proteins and the induction of other responses. In tumors, chemokines produced by neoplastic/stroma cells control the leukocyte infiltrate influencing tumor growth and progression. Tumor cells also express functional chemokine receptors responding to chemokine signals, promoting cell survival, proliferation and metastasis formation. Chemokines may be detected in serum of cancer patients, but due to the paracrine nature of these molecules, more significant concentrations are found in the tumor adjacent, non-vascular fluids, collectively called tumor proximal fluids. This review summarizes the expression of CC and CXC chemokines in these fluids, namely in interstitial fluid, pleural, ascitic, and cyst fluids, but also in urine, saliva, cerebrospinal fluid, cervical secretions and bronchoalveolar lavage fluid. Most comparative clinical studies reveal increased chemokine levels in high-grade tumor proximal fluids rather than in low-grade tumors and benign conditions, indicating shorter survival periods. The data confirm peritumoral fluid chemokines as sensitive diagnostic and prognostic markers, as well as offer support for chemokines and their receptors as potential targets for antitumor therapy.
Collapse
Affiliation(s)
- Jaromir Kotyza
- Institute of Biochemistry, Faculty of Medicine in Pilsen, Charles University in Prague, Pilzen, Czech Republic
| |
Collapse
|
46
|
Ramadan N, Ghazale H, El-Sayyad M, El-Haress M, Kobeissy FH. Neuroproteomics Studies: Challenges and Updates. Methods Mol Biol 2017; 1598:3-19. [PMID: 28508355 DOI: 10.1007/978-1-4939-6952-4_1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The Human Genome Project in 2003 has resulted in the complete sequence of ~99% of the human genome paving the road for the Human Proteome Project (HPP) assessing the full characterization of the translated protein map of the 20,300 protein-coding genes. Consequently, the emerging of the proteomics field has successfully been adopted as the method of choice for the proteome characterization. Proteomics is a term that is used to encompass multidisciplinary approaches combining different technologies that aim to study the entire spectrum of protein changes at a specific physiological condition. Proteomics research has shown excellent outcomes in different fields, among which is neuroscience; however, the complexity of the nervous systems necessitated the genesis of a new subdiscipline of proteomics termed as "neuroproteomics." Neuroproteomics studies involve assessing the quantitative and qualitative aspects of nervous system components encompassing global dynamic events underlying various brain-related disorders ranging from neuropsychiatric disorders, degenerative disorders, mental illness, and most importantly brain-specific neurotrauma-related injuries. In this introductory chapter, we will provide a brief historical perspective on the field of neuroproteomics. In doing so, we will highlight on the recent applications of neuroproteomics in the areas of neurotrauma, an area that has benefitted from neuroproteomics in terms of biomarker research, spatiotemporal injury mechanism, and its use to translate its findings from experimental settings to human translational applications. Importantly, this chapter will include some recommendation to the general studies in the area of neuroproteomics and the need to move from this field from being a descriptive, hypothesis-free approach to being an independent mature scientific discipline.
Collapse
Affiliation(s)
- Naify Ramadan
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Hussein Ghazale
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | | | - Mohamad El-Haress
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Faculty of Medicine, Beirut Arab University, Beirut, Lebanon
| | - Firas H Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
- Department of Psychiatry, Center for Neuroproteomics and Biomarkers Research, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
47
|
Yu JL, Song QF, Xie ZW, Jiang WH, Chen JH, Fan HF, Xie YP, Lu G. iTRAQ-based Quantitative Proteomics Study in Patients with Refractory Mycoplasma pneumoniae Pneumonia. Jpn J Infect Dis 2016; 70:571-578. [PMID: 28003598 DOI: 10.7883/yoken.jjid.2016.355] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mycoplasma pneumoniae (MP) is a leading cause of community-acquired pneumonia in children and young adults. Although MP pneumonia is usually benign and self-limited, in some cases it can develop into life-threating refractory MP pneumonia (RMPP). However, the pathogenesis of RMPP is poorly understood. The identification and characterization of proteins related to RMPP could provide a proof of principle to facilitate appropriate diagnostic and therapeutic strategies for treating paients with MP. In this study, we used a quantitative proteomic technique (iTRAQ) to analyze MP-related proteins in serum samples from 5 patients with RMPP, 5 patients with non-refractory MP pneumonia (NRMPP), and 5 healthy children. Functional classification, sub-cellular localization, and protein interaction network analysis were carried out based on protein annotation through evolutionary relationship (PANTHER) and Cytoscape analysis. A total of 260 differentially expressed proteins were identified in the RMPP and NRMPP groups. Compared to the control group, the NRMPP and RMPP groups showed 134 (70 up-regulated and 64 down-regulated) and 126 (63 up-regulated and 63 down-regulated) differentially expressed proteins, respectively. The complex functional classification and protein interaction network of the identified proteins reflected the complex pathogenesis of RMPP. Our study provides the first comprehensive proteome map of RMPP-related proteins from MP pneumonia. These profiles may be useful as part of a diagnostic panel, and the identified proteins provide new insights into the pathological mechanisms underlying RMPP.
Collapse
Affiliation(s)
- Jia-Lu Yu
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University
| | - Qi-Fang Song
- Department of Bioengineering, Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University
| | - Zhi-Wei Xie
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University
| | - Wen-Hui Jiang
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University
| | - Jia-Hui Chen
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University
| | - Hui-Feng Fan
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University
| | - Ya-Ping Xie
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University
| | - Gen Lu
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University
| |
Collapse
|
48
|
The Angiogenic Secretome in VEGF overexpressing Breast Cancer Xenografts. Sci Rep 2016; 6:39460. [PMID: 27995973 PMCID: PMC5171865 DOI: 10.1038/srep39460] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 11/22/2016] [Indexed: 02/08/2023] Open
Abstract
The plasticity of cancer cells and the fluidity of the tumor microenvironment continue to present major challenges in the comprehensive understanding of cancer that is essential to design effective treatments. The tumor interstitial fluid (TIF) encompasses the secretome and holds the key to several of the phenotypic characteristics of cancer. Difficulties in sampling this fluid have resulted in limited characterization of its components. Here we have sampled TIF from triple negative and estrogen receptor (ER)-positive human breast tumor xenografts with or without VEGF overexpression. Angiogenesis-related factors were characterized in the TIF and plasma, to understand the relationship between the TIF and plasma secretomes. Clear differences were observed between the TIF and plasma angiogenic secretomes in triple negative MDA-MB-231 breast cancer xenografts compared to ER-positive MCF-7 xenografts with or without VEGF overexpression that provide new insights into TIF components and the role of VEGF in modifying the angiogenic secretome.
Collapse
|
49
|
Halvorsen AR, Helland Å, Gromov P, Wielenga VT, Talman MLM, Brunner N, Sandhu V, Børresen-Dale AL, Gromova I, Haakensen VD. Profiling of microRNAs in tumor interstitial fluid of breast tumors - a novel resource to identify biomarkers for prognostic classification and detection of cancer. Mol Oncol 2016; 11:220-234. [PMID: 28145100 PMCID: PMC5527454 DOI: 10.1002/1878-0261.12025] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/07/2016] [Accepted: 11/08/2016] [Indexed: 12/21/2022] Open
Abstract
It has been hypothesized based on accumulated data that a class of small noncoding RNAs, termed microRNAs, are key factors in intercellular communication. Here, microRNAs present in interstitial breast tumor fluids have been analyzed to identify relevant markers for a diagnosis of breast cancer and to elucidate the cross‐talk that exists among cells in a tumor microenvironment. Matched tumor interstitial fluid samples (TIF, n = 60), normal interstitial fluid samples (NIF, n = 51), corresponding tumor tissue specimens (n = 54), and serum samples (n = 27) were collected from patients with breast cancer, and detectable microRNAs were analyzed and compared. In addition, serum data from 32 patients with breast cancer and 22 healthy controls were obtained for a validation study. To identify potential serum biomarkers of breast cancer, first the microRNA profiles of TIF and NIF samples were compared. A total of 266 microRNAs were present at higher level in the TIF samples as compared to normal counterparts. Sixty‐one of these microRNAs were present in > 75% of the serum samples and were subsequently tested in a validation set. Seven of the 61 microRNAs were associated with poor survival, while 23 were associated with the presence of immune cells and adipocytes. To our knowledge, these data demonstrate for the first time that profiling of microRNAs in TIF can identify novel biomarkers for the prognostic classification and detection of breast cancer. In addition, the present findings demonstrate that microRNAs may represent the cross‐talk that occurs between tumor cells and their surrounding stroma.
Collapse
Affiliation(s)
- Ann Rita Halvorsen
- Department of Cancer Genetics, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Norway
| | - Åslaug Helland
- Department of Cancer Genetics, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Norway.,Department of Oncology, The Norwegian Radium Hospital, Oslo University Hospital, Norway
| | - Pavel Gromov
- Danish Cancer Society Research Center, Genome Integrity Unit, Cancer Proteomics Group, Copenhagen, Denmark
| | - Vera Timmermans Wielenga
- Department of Pathology, Center of Diagnostic Investigations, Copenhagen University Hospital, Denmark
| | - Maj-Lis Møller Talman
- Department of Pathology, Center of Diagnostic Investigations, Copenhagen University Hospital, Denmark
| | - Nils Brunner
- Section for Molecular Disease Biology and Sino-Danish Breast Cancer Research Center, Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.,Translational Cancer Research Unit, Danish Cancer Society, Copenhagen, Denmark
| | - Vandana Sandhu
- Department of Cancer Genetics, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Norway
| | - Anne-Lise Børresen-Dale
- Department of Cancer Genetics, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Norway.,Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Norway
| | - Irina Gromova
- Danish Cancer Society Research Center, Genome Integrity Unit, Cancer Proteomics Group, Copenhagen, Denmark
| | - Vilde D Haakensen
- Department of Cancer Genetics, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Norway
| |
Collapse
|
50
|
Espinoza JA, Jabeen S, Batra R, Papaleo E, Haakensen V, Timmermans Wielenga V, Møller Talman ML, Brunner N, Børresen-Dale AL, Gromov P, Helland Å, Kristensen VN, Gromova I. Cytokine profiling of tumor interstitial fluid of the breast and its relationship with lymphocyte infiltration and clinicopathological characteristics. Oncoimmunology 2016; 5:e1248015. [PMID: 28123884 DOI: 10.1080/2162402x.2016.1248015] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/05/2016] [Accepted: 10/08/2016] [Indexed: 10/20/2022] Open
Abstract
The tumor microenvironment is composed of many immune cell subpopulations and is an important factor in the malignant progression of neoplasms, particularly breast cancer (BC). However, the cytokine networks that coordinate various regulatory events within the BC interstitium remain largely uncharacterized. Moreover, the data obtained regarding the origin of cytokine secretions, the levels of secretion associated with tumor development, and the possible clinical relevance of cytokines remain controversial. Therefore, we profiled 27 cytokines in 78 breast tumor interstitial fluid (TIF) samples, 43 normal interstitial fluid (NIF) samples, and 25 matched serum samples obtained from BC patients with Luminex xMAP multiplex technology. Eleven cytokines exhibited significantly higher levels in the TIF samples compared with the NIF samples: interleukin (IL)-7, IL-10, fibroblast growth factor-2, IL-13, interferon (IFN)γ-inducible protein (IP-10), IL-1 receptor antagonist (IL-1RA), platelet-derived growth factor (PDGF)-β, IL-1β, chemokine ligand 5 (RANTES), vascular endothelial growth factor, and IL-12. An immunohistochemical analysis further demonstrated that IL-1RA, IP-10, IL-10, PDGF-β, RANTES, and VEGF are widely expressed by both cancer cells and tumor-infiltrating lymphocytes (TILs), whereas IP-10 and RANTES were preferentially abundant in triple-negative breast cancers (TNBCs) compared to Luminal A subtype cancers. The latter observation corresponds with the high level of TILs in the TNBC samples. IL-1β, IL-7, IL-10, and PDGFβ also exhibited a correlation between the TIF samples and matched sera. In a survival analysis, high levels of IL-5, a hallmark TH2 cytokine, in the TIF samples were associated with a worse prognosis. These findings have important implications for BC immunotherapy research.
Collapse
Affiliation(s)
- Jaime A Espinoza
- SciLifeLab, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Solna, Stockholm, Sweden
| | - Shakila Jabeen
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway; K.G. Jebsen Center for Breast Cancer Research, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Clinical Molecular Biology (EpiGen), Akershus University Hospital, University of Oslo (UiO), Oslo, Norway
| | - Richa Batra
- Danish Cancer Society Research Center, Computational Biology Laboratory, Unit of Statistics, Bioinformatics and Registry, Copenhagen, Denmark; Department of Dermatology and Allergy, Technical University of Munich, Munich, Germany; Institute of Computational Biology, Helmholtz Zentrum Munich, Munich, Germany
| | - Elena Papaleo
- Danish Cancer Society Research Center, Computational Biology Laboratory, Unit of Statistics, Bioinformatics and Registry , Copenhagen, Denmark
| | - Vilde Haakensen
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital , Oslo, Norway
| | - Vera Timmermans Wielenga
- Department of Pathology, Center of Diagnostic Investigations, Copenhagen University Hospital , Copenhagen, Denmark
| | - Maj-Lis Møller Talman
- Department of Pathology, Center of Diagnostic Investigations, Copenhagen University Hospital , Copenhagen, Denmark
| | - Nils Brunner
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen, Denmark
| | - Anne-Lise Børresen-Dale
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway; Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Norway
| | - Pavel Gromov
- Danish Cancer Society Research Center, Genome Integrity Unit, Cancer Proteomics Group , Copenhagen, Denmark
| | - Åslaug Helland
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway; K.G. Jebsen Center for Breast Cancer Research, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Clinical Molecular Biology (EpiGen), Akershus University Hospital, University of Oslo (UiO), Oslo, Norway; Department of Oncology, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway
| | - Vessela N Kristensen
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway; K.G. Jebsen Center for Breast Cancer Research, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Clinical Molecular Biology (EpiGen), Akershus University Hospital, University of Oslo (UiO), Oslo, Norway
| | - Irina Gromova
- Danish Cancer Society Research Center, Genome Integrity Unit, Cancer Proteomics Group , Copenhagen, Denmark
| |
Collapse
|