1
|
Sutantawong S, Kim BJ, Qu Y, Dallas DC. Survival of intact bovine whey proteins across in vivo and simulated static in vitro models of the adult gastrointestinal tract. Food Chem 2025; 465:142013. [PMID: 39556900 DOI: 10.1016/j.foodchem.2024.142013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/10/2024] [Accepted: 11/10/2024] [Indexed: 11/20/2024]
Abstract
Bovine whey contains bioactive proteins that could benefit consumer health, but their intact bioactivity depends on their ability to survive the digestive process and remain intact to their sites of action. Our study assessed whey protein degradation in the adult human jejunum after whey protein isolate ingestion and during static in vitro gastric and intestinal digestions, using LC-MS/MS-based proteomics and SDS-PAGE. We found that 53 % of the protein counts identified in the gastric digesta, including β-lactoglobulin and lactoferrin were stable under simulated gastric conditions. However, most proteins were degraded during both in vitro and in vivo intestinal digestion. The intact protein survival profiles were closely aligned between in vitro and in vivo digestion samples. Understanding the survival of specific whey proteins during digestion will help determine their biological relevancy in their intact forms within the gastrointestinal tract and may inspire strategies to enhance their stability for specific functions.
Collapse
Affiliation(s)
- Suwimon Sutantawong
- Department of Food Science & Technology, Oregon State University, Corvallis, OR 97331, USA.
| | - Bum Jin Kim
- Nutrition Program, College of Health, Oregon State University, Corvallis, OR 97331, USA.
| | - Yunyao Qu
- Department of Food Science & Technology, Oregon State University, Corvallis, OR 97331, USA.
| | - David C Dallas
- Department of Food Science & Technology, Oregon State University, Corvallis, OR 97331, USA; Nutrition Program, College of Health, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
2
|
Thorne AM, Hoekzema M, Porte RJ, Kuipers F, de Meijer VE, Wolters JC. Comparative Analysis of Digestion Methods for Bile Proteomics: The Key to Unlocking Biliary Biomarker Potential. Anal Chem 2024; 96:14393-14404. [PMID: 39186690 PMCID: PMC11391409 DOI: 10.1021/acs.analchem.4c01766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
BACKGROUND Bile's potential to reflect the health of the biliary system has led to increased attention, with proteomic analysis offering deeper understanding of biliary diseases and potential biomarkers. With the emergence of normothermic machine perfusion (NMP), bile can be easily collected and analyzed. However, the composition of bile can make the application of proteomics challenging. This study systematically evaluated various trypsin digestion methods to optimize proteomics of bile from human NMP livers. METHODS Bile was collected from 12 human donor livers that were accepted for transplantation after the NMP viability assessment. We performed tryptic digestion using six different methods: in-gel, in-solution, S-Trap, SMART, EasyPep, and filter-aided sample purification, with or without additional precipitation before digestion. Proteins were analyzed using untargeted proteomics. Methods were assessed for total protein IDs, variation, and protein characteristics to determine the most optimal method. RESULTS Methods involving precipitation surpassed crude methods in protein identifications (4500 vs 3815) except for in-gel digestion. Filtered data (40%) resulted in 3192 versus 2469 for precipitated and crude methods, respectively. We found minimal differences in mass, cellular components, or hydrophobicity of proteins between methods. Intermethod variability was notably diverse, with in-gel, in-solution, and EasyPep outperforming others. Age-related biological comparisons revealed upregulation of metabolic-related processes in younger donors and immune response and cell cycle-related processes in older donors. CONCLUSIONS Variability between methods emphasizes the importance of cross-validation across multiple analytical approaches to ensure robust analysis. We recommend the in-gel crude method for its simplicity and efficiency, avoiding additional precipitation steps. Sample processing speed, cost, cleanliness, and reproducibility should be considered when a digestion method is selected for bile proteomics.
Collapse
Affiliation(s)
- Adam M Thorne
- Department of Liver Transplantation and HPB Surgery, University of Groningen and University Medical Center, 9713 GZ Groningen, The Netherlands
- UMCG Comprehensive Transplant Center, 9700 RB Groningen, The Netherlands
| | - Martijn Hoekzema
- Department of Liver Transplantation and HPB Surgery, University of Groningen and University Medical Center, 9713 GZ Groningen, The Netherlands
- Department of Applied Life Sciences, Institute for Life Science and Technology, Hanze University Groningen, 9747 AS Groningen, The Netherlands
| | - Robert J Porte
- Department of Liver Transplantation and HPB Surgery, University of Groningen and University Medical Center, 9713 GZ Groningen, The Netherlands
- Erasmus MC Transplant Institute, Department of Surgery, Division of HPB and Transplant Surgery, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Folkert Kuipers
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen and University Medical Center Groningen, 9713 AV Groningen, The Netherlands
- Department of Pediatrics, University of Groningen and University Medical Center Groningen, 9700 RB Groningen, The Netherlands
| | - Vincent E de Meijer
- Department of Liver Transplantation and HPB Surgery, University of Groningen and University Medical Center, 9713 GZ Groningen, The Netherlands
- UMCG Comprehensive Transplant Center, 9700 RB Groningen, The Netherlands
| | - Justina C Wolters
- Department of Pediatrics, University of Groningen and University Medical Center Groningen, 9700 RB Groningen, The Netherlands
| |
Collapse
|
3
|
Lopens S, Schierack P, Krause J, Piaszczyński M, Król R, Staroń R, Krupa Ł, Gutkowski K, Kruk B, Grąt M, Krawczyk M, Patkowski W, Glaser F, Rödiger S, Grossmann K, Pająk J, Milkiewicz P, Lammert F, Zieniewicz K, Schramm C, Roggenbuck D, Krawczyk M. Antimicrobial glycoprotein 2 (GP2) in gallstones, bile fluid and peribiliary glands of patients with primary sclerosing cholangitis. Clin Chim Acta 2024; 562:119841. [PMID: 38964568 DOI: 10.1016/j.cca.2024.119841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 05/28/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND Glycoprotein-2 (GP2) IgA is a predictor of disease severity in primary sclerosing cholangitis (PSC). We examined GP2's occurrence in the biliary tract, the site of inflammation. METHODS GP2 was analyzed using ELISA, immunoblotting, mass spectrometry, and immunohistochemistry. The samples included: 20 bile and 30 serum samples from PSC patients, 23 bile and 11 serum samples from patients with gallstone disease (GD), 15 bile samples from healthy individuals undergoing liver-donation surgery (HILD), 20 extracts of gallstones (GE) obtained during cholecystectomy, and 101 blood-donor sera. RESULTS Biliary GP2 concentrations were significantly higher in patients with PSC and GD than in HILD (p < 0.0001). Serum GP2 levels were similar in PSC and GD patients, and controls, but lower than in bile (p < 0.0001). GP2 was detected in all 20 GEs. Mass spectrometry identified GP2 in the bile of 2 randomly selected GD and 2 PSC patients, and in none of 2 HILD samples. GP2 was found in peribiliary glands in 8 out of 12 PSC patients, showing morphological changes in acinar cells, but not in GD-gallbladders. CONCLUSIONS GP2 is present in bile of PSC and GD patients. It is synthesized in the peribiliary glands of PSC patients, supporting a pathogenic role for biliary GP2 in PSC.
Collapse
Affiliation(s)
- Steffi Lopens
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany; Medipan GmbH, Dahlewitz, Germany
| | - Peter Schierack
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany; Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Jenny Krause
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michał Piaszczyński
- Department of General, Vascular and Transplant Surgery, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Robert Król
- Department of General, Vascular and Transplant Surgery, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Robert Staroń
- Department of Gastroenterology and Hepatology with Internal Disease Unit, Teaching Hospital No 1 in Rzeszów, Rzeszów, Poland; Medical Department, University of Rzeszów, Rzeszów, Poland
| | - Łukasz Krupa
- Department of Gastroenterology and Hepatology with Internal Disease Unit, Teaching Hospital No 1 in Rzeszów, Rzeszów, Poland; Medical Department, University of Rzeszów, Rzeszów, Poland
| | - Krzysztof Gutkowski
- Department of Gastroenterology and Hepatology with Internal Disease Unit, Teaching Hospital No 1 in Rzeszów, Rzeszów, Poland; Medical Department, University of Rzeszów, Rzeszów, Poland
| | - Beata Kruk
- Laboratory of Metabolic Liver Diseases, Department of General, Transplant and Liver Surgery, Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Michał Grąt
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Marek Krawczyk
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Waldemar Patkowski
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Fabian Glaser
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Rödiger
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany; Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | | | - Jacek Pająk
- Department of Pathomorphology and Molecular Diagnostics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Piotr Milkiewicz
- Liver and Internal Medicine Unit, Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland; Translational Medicine Group, Pomeranian Medical University, Szczecin, Poland
| | - Frank Lammert
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany; Health Sciences, Hannover Medical School (MHH), Hannover, Germany
| | - Krzysztof Zieniewicz
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Christoph Schramm
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Martin Zeitz Center for Rare Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dirk Roggenbuck
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany; Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany.
| | - Marcin Krawczyk
- Laboratory of Metabolic Liver Diseases, Department of General, Transplant and Liver Surgery, Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland; Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
| |
Collapse
|
4
|
Li Q, Huo A, Li M, Wang J, Yin Q, Chen L, Chu X, Qin Y, Qi Y, Li Y, Cui H, Cong Q. Structure, ligands, and roles of GPR126/ADGRG6 in the development and diseases. Genes Dis 2024; 11:294-305. [PMID: 37588228 PMCID: PMC10425801 DOI: 10.1016/j.gendis.2023.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/24/2022] [Accepted: 02/05/2023] [Indexed: 03/29/2023] Open
Abstract
Adhesion G protein-coupled receptors (aGPCRs) are the second largest diverse group within the GPCR superfamily, which play critical roles in many physiological and pathological processes through cell-cell and cell-extracellular matrix interactions. The adhesion GPCR Adgrg6, also known as GPR126, is one of the better-characterized aGPCRs. GPR126 was previously found to have critical developmental roles in Schwann cell maturation and its mediated myelination in the peripheral nervous system in both zebrafish and mammals. Current studies have extended our understanding of GPR126-mediated roles during development and in human diseases. In this review, we highlighted these recent advances in GPR126 in expression profile, molecular structure, ligand-receptor interactions, and associated physiological and pathological functions in development and diseases.
Collapse
Affiliation(s)
- Qi Li
- Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu 215123, China
| | - Anran Huo
- Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu 215123, China
| | - Mengqi Li
- Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jiali Wang
- Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu 215123, China
| | - Qiao Yin
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Lumiao Chen
- Department of Nephrology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Xin Chu
- Department of Emergency Center, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Yuan Qin
- Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yuwan Qi
- Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yang Li
- Department of Neurology, Huzhou Central Hospital, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, Zhejiang 313000, China
| | - Hengxiang Cui
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Qifei Cong
- Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu 215123, China
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| |
Collapse
|
5
|
Cano L, Desquilles L, Ghukasyan G, Angenard G, Landreau C, Corlu A, Clément B, Turlin B, Le Ferrec E, Aninat C, Massart J, Musso O. SARS-CoV-2 receptor ACE2 is upregulated by fatty acids in human MASH. JHEP Rep 2024; 6:100936. [PMID: 38074511 PMCID: PMC10698276 DOI: 10.1016/j.jhepr.2023.100936] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 09/08/2023] [Accepted: 09/15/2023] [Indexed: 01/10/2025] Open
Abstract
BACKGROUND & AIMS Metabolic dysfunction-associated steatotic liver disease (MASLD) results in steatosis, inflammation (steatohepatitis), and fibrosis. Patients with MASLD more likely develop liver injury in coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). As viral RNA has been identified in liver tissues, we studied expression levels and cellular sources of the viral receptor angiotensin-converting enzyme 2 (ACE2) and coreceptors in MASLD and fibroinflammatory liver diseases. METHODS We built a transcriptomic MASLD meta-dataset (N = 243) to study SARS-CoV-2 receptor expression and verified results in 161 additional cases of fibroinflammatory liver diseases. We assessed the fibroinflammatory microenvironment by deconvoluting immune cell populations. We studied the cellular sources of ACE2 by multiplex immunohistochemistry followed by high-resolution confocal microscopy (N = 9 fatty livers; N = 7 controls), meta-analysis of two single-cell RNA sequencing datasets (N = 5 cirrhotic livers; N = 14 normal livers), and bulk transcriptomics from 745 primary cell samples. In vitro, we tested ACE2 mRNA expression in primary human hepatocytes treated with inflammatory cytokines, bacterial lipopolysaccharides, or long-chain fatty acids. RESULTS We detected ACE2 at the apical and basal poles of hepatocyte chords, in CLEC4M+ liver sinusoidal endothelial cells, the lumen of ABCC2+ bile canaliculi, HepPar-1+-TMPRSS2+ hepatocytes, cholangiocytes, and CD34+ capillary vessels. ACE2 steeply increased between 30 and 50 years of age; was related to liver fat area, inflammation, high immune reactivity, and fibrogenesis; and was upregulated in steatohepatitis. Although ACE2 mRNA was unmodified in alcoholic or viral hepatitis, it was upregulated in fibroinflammatory livers from overweight patients. In vitro, treatment of primary human hepatocytes with inflammatory cytokines alone downregulated but long chain fatty acids upregulated ACE2 mRNA expression. CONCLUSIONS Lipid overload in fatty liver disease leads to an increased availability of ACE2 receptors. IMPACT AND IMPLICATIONS COVID-19 can be a deadly disease in vulnerable individuals. Patients with fatty liver disease are at a higher risk of experiencing severe COVID-19 and liver injury. Recent studies have indicated that one of the reasons for this vulnerability is the presence of a key cell surface protein called ACE2, which serves as the main SARS-CoV-2 virus receptor. We describe the cellular sources of ACE2 in the liver. In patients with fatty liver disease, ACE2 levels increase with age, liver fat content, fibroinflammatory changes, enhanced positive immune checkpoint levels, and innate immune reactivity. Moreover, we show that long chain fatty acids can induce ACE2 expression in primary human hepatocytes. Understanding the cellular sources of ACE2 in the liver and the factors that influence its availability is crucial. This knowledge will guide further research and help protect potentially vulnerable patients through timely vaccination boosters, dietary adjustments, and improved hygiene practices.
Collapse
Affiliation(s)
- Luis Cano
- INSERM, INRAE, Univ Rennes 1, Nutrition Metabolisms and Cancer, Rennes, France
| | - Lise Desquilles
- INSERM, INRAE, Univ Rennes 1, Nutrition Metabolisms and Cancer, Rennes, France
| | - Gevorg Ghukasyan
- Univ Rennes 1, CNRS, INSERM, UMS Biosit, Core Facility H2P2, Rennes, France
| | - Gaëlle Angenard
- INSERM, INRAE, Univ Rennes 1, Nutrition Metabolisms and Cancer, Rennes, France
| | - Clémence Landreau
- INSERM, INRAE, Univ Rennes 1, Nutrition Metabolisms and Cancer, Rennes, France
| | - Anne Corlu
- INSERM, INRAE, Univ Rennes 1, Nutrition Metabolisms and Cancer, Rennes, France
| | - Bruno Clément
- INSERM, INRAE, Univ Rennes 1, Nutrition Metabolisms and Cancer, Rennes, France
| | - Bruno Turlin
- INSERM, INRAE, Univ Rennes 1, Nutrition Metabolisms and Cancer, Rennes, France
| | - Eric Le Ferrec
- Univ Rennes 1, INSERM, EHESP, IRSET (Institut de Recherche en Santé Environnement et Travail) UMR_S 1085, Rennes, France
| | - Caroline Aninat
- INSERM, INRAE, Univ Rennes 1, Nutrition Metabolisms and Cancer, Rennes, France
| | - Julie Massart
- INSERM, INRAE, Univ Rennes 1, Nutrition Metabolisms and Cancer, Rennes, France
| | - Orlando Musso
- INSERM, INRAE, Univ Rennes 1, Nutrition Metabolisms and Cancer, Rennes, France
| |
Collapse
|
6
|
Yang XT, Wang J, Jiang YH, Zhang L, Du L, Li J, Liu F. Insight into the mechanism of gallstone disease by proteomic and metaproteomic characterization of human bile. Front Microbiol 2023; 14:1276951. [PMID: 38111640 PMCID: PMC10726133 DOI: 10.3389/fmicb.2023.1276951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 11/16/2023] [Indexed: 12/20/2023] Open
Abstract
Introduction Cholesterol gallstone disease is a prevalent condition that has a significant economic impact. However, the role of the bile microbiome in its development and the host's responses to it remain poorly understood. Methods In this study, we conducted a comprehensive analysis of microbial and human bile proteins in 40 individuals with either gallstone disease or gallbladder polyps. We employed a combined proteomic and metaproteomic approach, as well as meta-taxonomic analysis, functional pathway enrichment, and Western blot analyses. Results Our metaproteomic analysis, utilizing the lowest common ancestor algorithm, identified 158 microbial taxa in the bile samples. We discovered microbial taxa that may contribute to gallstone formation, including β-glucuronidase-producing bacteria such as Streptococcus, Staphylococcus, and Clostridium, as well as those involved in biofilm formation like Helicobacter, Cyanobacteria, Pseudomonas, Escherichia coli, and Clostridium. Furthermore, we identified 2,749 human proteins and 87 microbial proteins with a protein false discovery rate (FDR) of 1% and at least 2 distinct peptides. Among these proteins, we found microbial proteins crucial to biofilm formation, such as QDR3, ompA, ndk, pstS, nanA, pfIB, and dnaK. Notably, QDR3 showed a gradual upregulation from chronic to acute cholesterol gallstone disease when compared to polyp samples. Additionally, we discovered other microbial proteins that enhance bacterial virulence and gallstone formation by counteracting host oxidative stress, including sodB, katG, rbr, htrA, and ahpC. We also identified microbial proteins like lepA, rtxA, pckA, tuf, and tpiA that are linked to bacterial virulence and potential gallstone formation, with lepA being upregulated in gallstone bile compared to polyp bile. Furthermore, our analysis of the host proteome in gallstone bile revealed enhanced inflammatory molecular profiles, including innate immune molecules against microbial infections. Gallstone bile exhibited overrepresented pathways related to blood coagulation, folate metabolism, and the IL-17 pathway. However, we observed suppressed metabolic activities, particularly catabolic metabolism and transport activities, in gallstone bile compared to polyp bile. Notably, acute cholelithiasis bile demonstrated significantly impaired metabolic activities compared to chronic cholelithiasis bile. Conclusion Our study provides a comprehensive metaproteomic analysis of bile samples related to gallstone disease, offering new insights into the microbiome-host interaction and gallstone formation mechanism.
Collapse
Affiliation(s)
- Xue-Ting Yang
- Minhang Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical of Sciences, Fudan University, Shanghai, China
| | - Jie Wang
- Minhang Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical of Sciences, Fudan University, Shanghai, China
| | - Ying-Hua Jiang
- Minhang Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical of Sciences, Fudan University, Shanghai, China
| | - Lei Zhang
- Minhang Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical of Sciences, Fudan University, Shanghai, China
| | - Ling Du
- Key Laboratory of Digestive Cancer Full Cycle Monitoring and Precise Intervention of Shanghai Municipal Health Commission, Minhang Hospital, Fudan University, Shanghai, China
| | - Jun Li
- Department of Surgery, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Feng Liu
- Minhang Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical of Sciences, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Liu F, Hao X, Liu B, Liu S, Yuan Y. Bile liquid biopsy in biliary tract cancer. Clin Chim Acta 2023; 551:117593. [PMID: 37839517 DOI: 10.1016/j.cca.2023.117593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/17/2023]
Abstract
Biliary tract cancers are heterogeneous in etiology, morphology and molecular characteristics thus impacting disease management. Diagnosis is complex and prognosis poor. The advent of liquid biopsy has provided a unique approach to more thoroughly understand tumor biology in general and biliary tract cancers specifically. Due to their minimally invasive nature, liquid biopsy can be used to serially monitor disease progression and allow real-time monitoring of tumor genetic profiles as well as therapeutic response. Due to the unique anatomic location of biliary tract cancer, bile provides a promising biologic fluid for this purpose. This review focuses on the composition of bile and the use of these various components, ie, cells, extracellular vesicles, nucleic acids, proteins and metabolites as potential biomarkers. Based on the disease characteristics and research status of biliary tract cancer, considerable effort should be made to increase understanding of this disease, promote research and development into early diagnosis, develop efficient diagnostic, therapeutic and prognostic markers.
Collapse
Affiliation(s)
- Fusheng Liu
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, 430071, Hubei, PR China
| | - Xingyuan Hao
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, 430071, Hubei, PR China
| | - Bin Liu
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, 430071, Hubei, PR China
| | - Songmei Liu
- Department of Clinical Laboratory, Center for Gene Diagnosis, and Program of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, PR China
| | - Yufeng Yuan
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, 430071, Hubei, PR China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, Hubei, PR China.
| |
Collapse
|
8
|
Li YC, Li KS, Liu ZL, Tang YC, Hu XQ, Li XY, Shi AD, Zhao LM, Shu LZ, Lian S, Yan ZD, Huang SH, Sheng GL, Song Y, Liu YJ, Huan F, Zhang MH, Zhang ZL. Research progress of bile biomarkers and their immunoregulatory role in biliary tract cancers. Front Immunol 2022; 13:1049812. [PMID: 36389727 PMCID: PMC9649822 DOI: 10.3389/fimmu.2022.1049812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/12/2022] [Indexed: 11/30/2022] Open
Abstract
Biliary tract cancers (BTCs), including cholangiocarcinoma and gallbladder carcinoma, originate from the biliary epithelium and have a poor prognosis. Surgery is the only choice for cure in the early stage of disease. However, most patients are diagnosed in the advanced stage and lose the chance for surgery. Early diagnosis could significantly improve the prognosis of patients. Bile has complex components and is in direct contact with biliary tract tumors. Bile components are closely related to the occurrence and development of biliary tract tumors and may be applied as biomarkers for BTCs. Meanwhile, arising evidence has confirmed the immunoregulatory role of bile components. In this review, we aim to summarize and discuss the relationship between bile components and biliary tract cancers and their ability as biomarkers for BTCs, highlighting the role of bile components in regulating immune response, and their promising application prospects.
Collapse
|
9
|
One Health and Cattle Genetic Resources: Mining More than 500 Cattle Genomes to Identify Variants in Candidate Genes Potentially Affecting Coronavirus Infections. Animals (Basel) 2022; 12:ani12070838. [PMID: 35405828 PMCID: PMC8997118 DOI: 10.3390/ani12070838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/14/2022] [Accepted: 03/24/2022] [Indexed: 12/17/2022] Open
Abstract
Simple Summary The conservation and exploitation of cattle genetic resources for selection and breeding purposes are important for the definition of sustainable livestock production sectors. One Health approaches should be integrated into these activities to reduce the risk posed by many zoonoses. Coronaviruses are emerging as important zoonotic agents, with the potential to easily cross species barriers, as also recently demonstrated by the COVID-19 pandemic derived by SARS-CoV-2. Genetic resistance to coronavirus infections can be determined by variants of the host (animal) genome segregating within species. In this study, we mined the genome of more than 500 cattle to identify variants that could be involved so as to define different levels of susceptibility and/or resistance to coronavirus diseases in this important livestock species. Using comparative analyses across species, we identified several single amino acid polymorphisms that might alter the function of key proteins involved in the basic biological mechanisms underlying the infection processes in cattle. This study provided new elements to consider genetic variability of the host (cattle) as a potential risk factor to be considered in One Health perspectives. Abstract Epidemiological and biological characteristics of coronaviruses and their ability to cross species barriers are a matter of increasing concerns for these zoonotic agents. To prevent their spread, One Health approaches should be designed to include the host (animal) genome variability as a potential risk factor that might confer genetic resistance or susceptibility to coronavirus infections. At present, there is no example that considers cattle genetic resources for this purpose. In this study, we investigated the variability of six genes (ACE2, ANPEP, CEACAM1 and DPP4 encoding for host receptors of coronaviruses; FURIN and TMPRSS2 encoding for host proteases involved in coronavirus infection) by mining whole genome sequencing datasets from more than 500 cattle of 34 Bos taurus breeds and three related species. We identified a total of 180 protein variants (44 already known from the ARS-UCD1.2 reference genome). Some of them determine altered protein functions or the virus–host interaction and the related virus entry processes. The results obtained in this study constitute a first step towards the definition of a One Health strategy that includes cattle genetic resources as reservoirs of host gene variability useful to design conservation and selection programs to increase resistance to coronavirus diseases.
Collapse
|
10
|
Well-differentiated liver cancers reveal the potential link between ACE2 dysfunction and metabolic breakdown. Sci Rep 2022; 12:1859. [PMID: 35115564 PMCID: PMC8814043 DOI: 10.1038/s41598-021-03710-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 12/08/2021] [Indexed: 01/08/2023] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2) is the receptor of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) causing Coronavirus disease 2019 (COVID-19). Transmembrane serine protease 2 (TMPRSS2) is a coreceptor. Abnormal hepatic function in COVID-19 suggests specific or bystander liver disease. Because liver cancer cells express the ACE2 viral receptor, they are widely used as models of SARS-CoV-2 infection in vitro. Therefore, the purpose of this study was to analyze ACE2 and TMPRSS2 expression and localization in human liver cancers and in non-tumor livers. We studied ACE2 and TMPRSS2 in transcriptomic datasets totaling 1503 liver cancers, followed by high-resolution confocal multiplex immunohistochemistry and quantitative image analysis of a 41-HCC tissue microarray. In cancers, we detected ACE2 and TMPRSS2 at the biliary pole of tumor hepatocytes. In whole mount sections of five normal liver samples, we identified ACE2 in hepatocyte’s bile canaliculi, biliary epithelium, sinusoidal and capillary endothelial cells. Tumors carrying mutated β-catenin showed ACE2 DNA hypomethylation and higher mRNA and protein expression, consistently with predicted β-catenin response sites in the ACE2 promoter. Finally, ACE2 and TMPRSS2 co-expression networks highlighted hepatocyte-specific functions, oxidative stress and inflammation, suggesting a link between inflammation, ACE2 dysfunction and metabolic breakdown.
Collapse
|
11
|
van Duijl TT, Ruhaak LR, Smit NPM, Pieterse MM, Romijn FPHTM, Dolezal N, Drijfhout JW, de Fijter JW, Cobbaert CM. Development and Provisional Validation of a Multiplex LC-MRM-MS Test for Timely Kidney Injury Detection in Urine. J Proteome Res 2021; 20:5304-5314. [PMID: 34735145 PMCID: PMC8650098 DOI: 10.1021/acs.jproteome.1c00532] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
![]()
Kidney injury is
a complication frequently encountered in hospitalized
patients. Early detection of kidney injury prior to loss of renal
function is an unmet clinical need that should be targeted by a protein-based
biomarker panel. In this study, we aim to quantitate urinary kidney
injury biomarkers at the picomolar to nanomolar level by liquid chromatography
coupled to tandem mass spectrometry in multiple reaction monitoring
mode (LC-MRM-MS). Proteins were immunocaptured from urinary samples,
denatured, reduced, alkylated, and digested into peptides before LC-MRM-MS
analysis. Stable-isotope-labeled peptides functioned as internal standards,
and biomarker concentrations were attained by an external calibration
strategy. The method was evaluated for selectivity, carryover, matrix
effects, linearity, and imprecision. The LC-MRM-MS method enabled
the quantitation of KIM-1, NGAL, TIMP2, IGFBP7, CXCL9, nephrin, and
SLC22A2 and the detection of TGF-β1, cubilin, and uromodulin.
Two to three peptides were included per protein, and three transitions
were monitored per peptide for analytical selectivity. The analytical
carryover was <1%, and minimal urine matrix effects were observed
by combining immunocapture and targeted LC-MRM-MS analysis. The average
total CV of all quantifier peptides was 26%. The linear measurement
range was determined per measurand and found to be 0.05–30
nmol/L. The targeted MS-based method enables the multiplex quantitation
of low-abundance urinary kidney injury biomarkers for future clinical
evaluation.
Collapse
Affiliation(s)
- Tirsa T van Duijl
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - L Renee Ruhaak
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Nico P M Smit
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Mervin M Pieterse
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Fred P H T M Romijn
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Natasja Dolezal
- Department of Immunology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Jan Wouter Drijfhout
- Department of Immunology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Johan W de Fijter
- Department of Nephrology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Christa M Cobbaert
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
12
|
Yun J, Jo JY, Tuomivaara ST, Lim JM. Isotope labeling strategies of glycans for mass spectrometry-based quantitative glycomics. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106655] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
13
|
Lalor R, Cwiklinski K, Calvani NED, Dorey A, Hamon S, Corrales JL, Dalton JP, De Marco Verissimo C. Pathogenicity and virulence of the liver flukes Fasciola hepatica and Fasciola Gigantica that cause the zoonosis Fasciolosis. Virulence 2021; 12:2839-2867. [PMID: 34696693 PMCID: PMC8632118 DOI: 10.1080/21505594.2021.1996520] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Fasciolosis caused by the liver flukes Fasciola hepatica and Fasciola gigantica is one of the most important neglected parasitic diseases of humans and animals. The ability of the parasites to infect and multiply in their intermediate snail hosts, and their adaptation to a wide variety of mammalian definitive hosts contribute to their high transmissibility and distribution. Within the mammalian host, the trauma caused by the immature flukes burrowing through the liver parenchyma is associated with most of the pathogenesis. Similarly, the feeding activity and the physical presence of large flukes in the bile ducts can lead to anemia, inflammation, obstruction and cholangitis. The high frequency of non-synonymous polymorphisms found in Fasciola spp. genes allows for adaptation and invasion of a broad range of hosts. This is also facilitated by parasite’s excretory-secretory (ES) molecules that mediate physiological changes that allows their establishment within the host. ES contains cathepsin peptidases that aid parasite invasion by degrading collagen and fibronectin. In the bile ducts, cathepsin-L is critical to hemoglobin digestion during feeding activities. Other molecules (peroxiredoxin, cathepsin-L and Kunitz-type inhibitor) stimulate a strong immune response polarized toward a Treg/Th2 phenotype that favors fluke’s survival. Helminth defense molecule, fatty acid binding proteins, Fasciola-specific glycans and miRNAs modulate host pro-inflammatory responses, while antioxidant scavenger enzymes work in an orchestrated way to deter host oxidant-mediated damage. Combining these strategies Fasciola spp. survive for decades within their mammalian host, where they reproduce and spread to become one of the most widespread zoonotic worm parasites in the world.
Collapse
Affiliation(s)
- Richard Lalor
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Krystyna Cwiklinski
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Nichola Eliza Davies Calvani
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Amber Dorey
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Siobhán Hamon
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Jesús López Corrales
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - John Pius Dalton
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Carolina De Marco Verissimo
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
14
|
Mishra GP, Bhadane RN, Panigrahi D, Amawi HA, Asbhy CR, Tiwari AK. The interaction of the bioflavonoids with five SARS-CoV-2 proteins targets: An in silico study. Comput Biol Med 2021; 134:104464. [PMID: 34020130 PMCID: PMC8108478 DOI: 10.1016/j.compbiomed.2021.104464] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/23/2021] [Accepted: 04/28/2021] [Indexed: 12/16/2022]
Abstract
Flavonoids have been shown to have antioxidant, anti-inflammatory, anti-proliferative, antibacterial and antiviral efficacy. Therefore, in this study, we choose 85 flavonoid compounds and screened them to determine their in-silico interaction with protein targets crucial for SARS-CoV-2 infection. The five important targets chosen were the main protease (Mpro), Spike receptor binding domain (Spike-RBD), RNA - dependent RNA polymerase (RdRp or Nsp12), non-structural protein 15 (Nsp15) of SARS-CoV-2 and the host angiotensin converting enzyme-2 (ACE-2) spike-RBD binding domain. The compounds were initially docked at the selected sites and further evaluated for binding free energy, using the molecular mechanics/generalized Born surface area (MMGBSA) method. The three compounds with the best binding scores were subjected to molecular dynamics (MD) simulations. The compound, tribuloside, had a high average binding free energy of -86.99 and -88.98 kcal/mol for Mpro and Nsp12, respectively. The compound, legalon, had an average binding free energy of -59.02 kcal/mol at the ACE2 spike-RBD binding site. The compound, isosilybin, had an average free binding energy of -63.06 kcal/mol for the Spike-RBD protein. Overall, our results suggest that tribuloside, legalon and isosilybin should be evaluated in future studies to determine their efficacy to inhibit SARS-CoV-2 infectivity.
Collapse
Affiliation(s)
- Ganesh Prasad Mishra
- Kharvel Subharti College of Pharmacy, Swami VivekanandSubharti University, Subhartipuram, NH-58, Delhi-Haridwar Bypass Road, Meerut, U.P, 250005, India,Corresponding author
| | - Rajendra N. Bhadane
- Structural Bioinformatics Laboratory, Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, FI, 20520, Turku, Finland,Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Pharmacy, Åbo Akademi University, FI, 20520, Turku, Finland
| | - Debadash Panigrahi
- Drug Research Laboratory, Nodal Research Centre, College of Pharmaceutical Sciences, Puri, Baliguali, Puri- Konark Marine Drive Road, Puri, Odisha, 752002, India
| | - Haneen A. Amawi
- Department of Clinical Pharmacy and Pharmacy Practice, College of Pharmacy, Yarmouk University, Shafiq Irshidat St, Irbid, Jordan
| | - Charles R. Asbhy
- Department of Pharmaceutical Sciences, College of Pharmacy & Pharmaceutical Sciences, St. John's University, Queens, NY, USA, 10049
| | - Amit K. Tiwari
- Department of Pharmacology & Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, The University of Toledo, Toledo, OH, 43614, USA,Department of Cancer Biology, College of Medicine & Life Sciences, The University of Toledo, Toledo, OH, 43614, USA,Corresponding author. Department of Pharmacology & Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, The University of Toledo, Toledo, OH, 43614, USA
| |
Collapse
|
15
|
Praissman JL, Wells L. Proteomics-Based Insights Into the SARS-CoV-2-Mediated COVID-19 Pandemic: A Review of the First Year of Research. Mol Cell Proteomics 2021; 20:100103. [PMID: 34089862 PMCID: PMC8176883 DOI: 10.1016/j.mcpro.2021.100103] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 05/24/2021] [Indexed: 02/08/2023] Open
Abstract
In late 2019, a virus subsequently named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in China and led to a worldwide pandemic of the disease termed coronavirus disease 2019. The global health threat posed by this pandemic led to an extremely rapid and robust mobilization of the scientific and medical communities as evidenced by the publication of more than 10,000 peer-reviewed articles and thousands of preprints in the first year of the pandemic alone. With the publication of the initial genome sequence of SARS-CoV-2, the proteomics community immediately joined this effort publishing, to date, more than 100 peer-reviewed proteomics studies and submitting many more preprints to preprint servers. In this review, we focus on peer-reviewed articles published on the proteome, glycoproteome, and glycome of SARS-CoV-2. At a basic level, proteomic studies provide valuable information on quantitative aspects of viral infection course; information on the identities, sites, and microheterogeneity of post-translational modifications; and, information on protein-protein interactions. At a biological systems level, these studies elucidate host cell and tissue responses, characterize antibodies and other immune system factors in infection, suggest biomarkers that may be useful for diagnosis and disease-course monitoring, and help in the development or repurposing of potential therapeutics. Here, we summarize results from selected early studies to provide a perspective on the current rapidly evolving literature.
Collapse
Affiliation(s)
- Jeremy L Praissman
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Lance Wells
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
16
|
Shajahan A, Archer-Hartmann S, Supekar NT, Gleinich AS, Heiss C, Azadi P. Comprehensive characterization of N- and O- glycosylation of SARS-CoV-2 human receptor angiotensin converting enzyme 2. Glycobiology 2021; 31:410-424. [PMID: 33135055 PMCID: PMC7665489 DOI: 10.1093/glycob/cwaa101] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/21/2020] [Accepted: 10/21/2020] [Indexed: 12/17/2022] Open
Abstract
The emergence of the COVID-19 pandemic caused by SARS-CoV-2 has created the need for development of new therapeutic strategies. Understanding the mode of viral attachment, entry and replication has become a key aspect of such interventions. The coronavirus surface features a trimeric spike (S) protein that is essential for viral attachment, entry and membrane fusion. The S protein of SARS-CoV-2 binds to human angiotensin converting enzyme 2 (hACE2) for entry. Herein, we describe glycomic and glycoproteomic analysis of hACE2 expressed in HEK293 cells. We observed high glycan occupancy (73.2 to 100%) at all seven possible N-glycosylation sites and surprisingly detected one novel O-glycosylation site. To deduce the detailed structure of glycan epitopes on hACE2 that may be involved in viral binding, we have characterized the terminal sialic acid linkages, the presence of bisecting GlcNAc, and the pattern of N-glycan fucosylation. We have conducted extensive manual interpretation of each glycopeptide and glycan spectrum, in addition to using bioinformatics tools to validate the hACE2 glycosylation. Our elucidation of the site-specific glycosylation and its terminal orientations on the hACE2 receptor, along with the modeling of hACE2 glycosylation sites can aid in understanding the intriguing virus-receptor interactions and assist in the development of novel therapeutics to prevent viral entry. The relevance of studying the role of ACE2 is further increased due to some recent reports about the varying ACE2 dependent complications with regard to age, sex, race, and pre-existing conditions of COVID-19 patients.
Collapse
Affiliation(s)
- Asif Shajahan
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Rd, Athens, GA 30602, USA
| | - Stephanie Archer-Hartmann
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Rd, Athens, GA 30602, USA
| | - Nitin T Supekar
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Rd, Athens, GA 30602, USA
| | - Anne S Gleinich
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Rd, Athens, GA 30602, USA
| | - Christian Heiss
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Rd, Athens, GA 30602, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Rd, Athens, GA 30602, USA
| |
Collapse
|
17
|
Fairweather SJ, Shah N, Brӧer S. Heteromeric Solute Carriers: Function, Structure, Pathology and Pharmacology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 21:13-127. [PMID: 33052588 DOI: 10.1007/5584_2020_584] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Solute carriers form one of three major superfamilies of membrane transporters in humans, and include uniporters, exchangers and symporters. Following several decades of molecular characterisation, multiple solute carriers that form obligatory heteromers with unrelated subunits are emerging as a distinctive principle of membrane transporter assembly. Here we comprehensively review experimentally established heteromeric solute carriers: SLC3-SLC7 amino acid exchangers, SLC16 monocarboxylate/H+ symporters and basigin/embigin, SLC4A1 (AE1) and glycophorin A exchanger, SLC51 heteromer Ost α-Ost β uniporter, and SLC6 heteromeric symporters. The review covers the history of the heteromer discovery, transporter physiology, structure, disease associations and pharmacology - all with a focus on the heteromeric assembly. The cellular locations, requirements for complex formation, and the functional role of dimerization are extensively detailed, including analysis of the first complete heteromer structures, the SLC7-SLC3 family transporters LAT1-4F2hc, b0,+AT-rBAT and the SLC6 family heteromer B0AT1-ACE2. We present a systematic analysis of the structural and functional aspects of heteromeric solute carriers and conclude with common principles of their functional roles and structural architecture.
Collapse
Affiliation(s)
- Stephen J Fairweather
- Research School of Biology, Australian National University, Canberra, ACT, Australia. .,Resarch School of Chemistry, Australian National University, Canberra, ACT, Australia.
| | - Nishank Shah
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Stefan Brӧer
- Research School of Biology, Australian National University, Canberra, ACT, Australia.
| |
Collapse
|
18
|
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has emerged as a major threat to global health. Although varied SARS-CoV-2-related coronaviruses have been isolated from bats and SARS-CoV-2 may infect bat, the structural basis for SARS-CoV-2 to utilize the human receptor counterpart bat angiotensin-converting enzyme 2 (bACE2) for virus infection remains less understood. Here, we report that the SARS-CoV-2 spike protein receptor binding domain (RBD) could bind to bACE2 from Rhinolophus macrotis (bACE2-Rm) with substantially lower affinity compared with that to the human ACE2 (hACE2), and its infectivity to host cells expressing bACE2-Rm was confirmed with pseudotyped SARS-CoV-2 virus and SARS-CoV-2 wild virus. The structure of the SARS-CoV-2 RBD with the bACE2-Rm complex was determined, revealing a binding mode similar to that of hACE2. The analysis of binding details between SARS-CoV-2 RBD and bACE2-Rm revealed that the interacting network involving Y41 and E42 of bACE2-Rm showed substantial differences with that to hACE2. Bats have extensive species diversity and the residues for RBD binding in bACE2 receptor varied substantially among different bat species. Notably, the Y41H mutant, which exists in many bats, attenuates the binding capacity of bACE2-Rm, indicating the central roles of Y41 in the interaction network. These findings would benefit our understanding of the potential infection of SARS-CoV-2 in varied species of bats.
Collapse
|
19
|
Urman JM, Herranz JM, Uriarte I, Rullán M, Oyón D, González B, Fernandez-Urién I, Carrascosa J, Bolado F, Zabalza L, Arechederra M, Alvarez-Sola G, Colyn L, Latasa MU, Puchades-Carrasco L, Pineda-Lucena A, Iraburu MJ, Iruarrizaga-Lejarreta M, Alonso C, Sangro B, Purroy A, Gil I, Carmona L, Cubero FJ, Martínez-Chantar ML, Banales JM, Romero MR, Macias RI, Monte MJ, Marín JJG, Vila JJ, Corrales FJ, Berasain C, Fernández-Barrena MG, Avila MA. Pilot Multi-Omic Analysis of Human Bile from Benign and Malignant Biliary Strictures: A Machine-Learning Approach. Cancers (Basel) 2020; 12:cancers12061644. [PMID: 32575903 PMCID: PMC7352944 DOI: 10.3390/cancers12061644] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/11/2022] Open
Abstract
Cholangiocarcinoma (CCA) and pancreatic adenocarcinoma (PDAC) may lead to the development of extrahepatic obstructive cholestasis. However, biliary stenoses can also be caused by benign conditions, and the identification of their etiology still remains a clinical challenge. We performed metabolomic and proteomic analyses of bile from patients with benign (n = 36) and malignant conditions, CCA (n = 36) or PDAC (n = 57), undergoing endoscopic retrograde cholangiopancreatography with the aim of characterizing bile composition in biliopancreatic disease and identifying biomarkers for the differential diagnosis of biliary strictures. Comprehensive analyses of lipids, bile acids and small molecules were carried out using mass spectrometry (MS) and nuclear magnetic resonance spectroscopy (1H-NMR) in all patients. MS analysis of bile proteome was performed in five patients per group. We implemented artificial intelligence tools for the selection of biomarkers and algorithms with predictive capacity. Our machine-learning pipeline included the generation of synthetic data with properties of real data, the selection of potential biomarkers (metabolites or proteins) and their analysis with neural networks (NN). Selected biomarkers were then validated with real data. We identified panels of lipids (n = 10) and proteins (n = 5) that when analyzed with NN algorithms discriminated between patients with and without cancer with an unprecedented accuracy.
Collapse
Affiliation(s)
- Jesús M. Urman
- Department of Gastroenterology and Hepatology, Navarra University Hospital Complex, 31008 Pamplona, Spain; (J.M.U.); (M.R.); (D.O.); (B.G.); (I.F.-U.); (J.C.); (F.B.); (L.Z.); (J.J.V.)
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain; (M.A.); (B.S.); (A.P.); (I.G.); (C.B.); (M.G.F.-B.)
| | - José M. Herranz
- National Institute for the Study of Liver and Gastrointestinal Diseases, CIBERehd, Carlos III Health Institute, 28029 Madrid, Spain; (J.M.H.); (I.U.); (G.A.-S.); (M.L.M.-C.); (J.M.B.); (M.R.R.); (R.I.R.M.); (M.J.M.); (J.J.G.M.); (F.J.C.)
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (L.C.); (M.U.L.)
| | - Iker Uriarte
- National Institute for the Study of Liver and Gastrointestinal Diseases, CIBERehd, Carlos III Health Institute, 28029 Madrid, Spain; (J.M.H.); (I.U.); (G.A.-S.); (M.L.M.-C.); (J.M.B.); (M.R.R.); (R.I.R.M.); (M.J.M.); (J.J.G.M.); (F.J.C.)
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (L.C.); (M.U.L.)
| | - María Rullán
- Department of Gastroenterology and Hepatology, Navarra University Hospital Complex, 31008 Pamplona, Spain; (J.M.U.); (M.R.); (D.O.); (B.G.); (I.F.-U.); (J.C.); (F.B.); (L.Z.); (J.J.V.)
| | - Daniel Oyón
- Department of Gastroenterology and Hepatology, Navarra University Hospital Complex, 31008 Pamplona, Spain; (J.M.U.); (M.R.); (D.O.); (B.G.); (I.F.-U.); (J.C.); (F.B.); (L.Z.); (J.J.V.)
| | - Belén González
- Department of Gastroenterology and Hepatology, Navarra University Hospital Complex, 31008 Pamplona, Spain; (J.M.U.); (M.R.); (D.O.); (B.G.); (I.F.-U.); (J.C.); (F.B.); (L.Z.); (J.J.V.)
| | - Ignacio Fernandez-Urién
- Department of Gastroenterology and Hepatology, Navarra University Hospital Complex, 31008 Pamplona, Spain; (J.M.U.); (M.R.); (D.O.); (B.G.); (I.F.-U.); (J.C.); (F.B.); (L.Z.); (J.J.V.)
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain; (M.A.); (B.S.); (A.P.); (I.G.); (C.B.); (M.G.F.-B.)
| | - Juan Carrascosa
- Department of Gastroenterology and Hepatology, Navarra University Hospital Complex, 31008 Pamplona, Spain; (J.M.U.); (M.R.); (D.O.); (B.G.); (I.F.-U.); (J.C.); (F.B.); (L.Z.); (J.J.V.)
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain; (M.A.); (B.S.); (A.P.); (I.G.); (C.B.); (M.G.F.-B.)
| | - Federico Bolado
- Department of Gastroenterology and Hepatology, Navarra University Hospital Complex, 31008 Pamplona, Spain; (J.M.U.); (M.R.); (D.O.); (B.G.); (I.F.-U.); (J.C.); (F.B.); (L.Z.); (J.J.V.)
| | - Lucía Zabalza
- Department of Gastroenterology and Hepatology, Navarra University Hospital Complex, 31008 Pamplona, Spain; (J.M.U.); (M.R.); (D.O.); (B.G.); (I.F.-U.); (J.C.); (F.B.); (L.Z.); (J.J.V.)
| | - María Arechederra
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain; (M.A.); (B.S.); (A.P.); (I.G.); (C.B.); (M.G.F.-B.)
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (L.C.); (M.U.L.)
| | - Gloria Alvarez-Sola
- National Institute for the Study of Liver and Gastrointestinal Diseases, CIBERehd, Carlos III Health Institute, 28029 Madrid, Spain; (J.M.H.); (I.U.); (G.A.-S.); (M.L.M.-C.); (J.M.B.); (M.R.R.); (R.I.R.M.); (M.J.M.); (J.J.G.M.); (F.J.C.)
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (L.C.); (M.U.L.)
| | - Leticia Colyn
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (L.C.); (M.U.L.)
| | - María U. Latasa
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (L.C.); (M.U.L.)
| | - Leonor Puchades-Carrasco
- Drug Discovery Unit, Instituto de Investigación Sanitaria La Fe, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain;
| | - Antonio Pineda-Lucena
- Drug Discovery Unit, Instituto de Investigación Sanitaria La Fe, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain;
- Program of Molecular Therapeutics, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain;
| | - María J. Iraburu
- Department of Biochemistry and Genetics, School of Sciences; University of Navarra, 31008 Pamplona, Spain;
| | | | - Cristina Alonso
- OWL Metabolomics, Bizkaia Technology Park, 48160 Derio, Spain; (M.I.-L.); (C.A.)
| | - Bruno Sangro
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain; (M.A.); (B.S.); (A.P.); (I.G.); (C.B.); (M.G.F.-B.)
- National Institute for the Study of Liver and Gastrointestinal Diseases, CIBERehd, Carlos III Health Institute, 28029 Madrid, Spain; (J.M.H.); (I.U.); (G.A.-S.); (M.L.M.-C.); (J.M.B.); (M.R.R.); (R.I.R.M.); (M.J.M.); (J.J.G.M.); (F.J.C.)
- Hepatology Unit, Department of Internal Medicine, University of Navarra Clinic, 31008 Pamplona, Spain
| | - Ana Purroy
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain; (M.A.); (B.S.); (A.P.); (I.G.); (C.B.); (M.G.F.-B.)
- Navarrabiomed Biobank Unit, IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Isabel Gil
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain; (M.A.); (B.S.); (A.P.); (I.G.); (C.B.); (M.G.F.-B.)
- Navarrabiomed Biobank Unit, IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Lorena Carmona
- Proteomics Unit, Centro Nacional de Biotecnología (CNB) Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain;
| | - Francisco Javier Cubero
- Department of Immunology, Ophtalmology & Ear, Nose and Throat (ENT), Complutense University School of Medicine and 12 de Octubre Health Research Institute (Imas12), 28040 Madrid, Spain;
| | - María L. Martínez-Chantar
- National Institute for the Study of Liver and Gastrointestinal Diseases, CIBERehd, Carlos III Health Institute, 28029 Madrid, Spain; (J.M.H.); (I.U.); (G.A.-S.); (M.L.M.-C.); (J.M.B.); (M.R.R.); (R.I.R.M.); (M.J.M.); (J.J.G.M.); (F.J.C.)
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain
| | - Jesús M. Banales
- National Institute for the Study of Liver and Gastrointestinal Diseases, CIBERehd, Carlos III Health Institute, 28029 Madrid, Spain; (J.M.H.); (I.U.); (G.A.-S.); (M.L.M.-C.); (J.M.B.); (M.R.R.); (R.I.R.M.); (M.J.M.); (J.J.G.M.); (F.J.C.)
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, 20014 San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Marta R. Romero
- National Institute for the Study of Liver and Gastrointestinal Diseases, CIBERehd, Carlos III Health Institute, 28029 Madrid, Spain; (J.M.H.); (I.U.); (G.A.-S.); (M.L.M.-C.); (J.M.B.); (M.R.R.); (R.I.R.M.); (M.J.M.); (J.J.G.M.); (F.J.C.)
- Experimental Hepatology and Drug Targeting (HEVEFARM) Group, University of Salamanca, Biomedical Research Institute of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Rocio I.R. Macias
- National Institute for the Study of Liver and Gastrointestinal Diseases, CIBERehd, Carlos III Health Institute, 28029 Madrid, Spain; (J.M.H.); (I.U.); (G.A.-S.); (M.L.M.-C.); (J.M.B.); (M.R.R.); (R.I.R.M.); (M.J.M.); (J.J.G.M.); (F.J.C.)
- Experimental Hepatology and Drug Targeting (HEVEFARM) Group, University of Salamanca, Biomedical Research Institute of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Maria J. Monte
- National Institute for the Study of Liver and Gastrointestinal Diseases, CIBERehd, Carlos III Health Institute, 28029 Madrid, Spain; (J.M.H.); (I.U.); (G.A.-S.); (M.L.M.-C.); (J.M.B.); (M.R.R.); (R.I.R.M.); (M.J.M.); (J.J.G.M.); (F.J.C.)
- Experimental Hepatology and Drug Targeting (HEVEFARM) Group, University of Salamanca, Biomedical Research Institute of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Jose J. G. Marín
- National Institute for the Study of Liver and Gastrointestinal Diseases, CIBERehd, Carlos III Health Institute, 28029 Madrid, Spain; (J.M.H.); (I.U.); (G.A.-S.); (M.L.M.-C.); (J.M.B.); (M.R.R.); (R.I.R.M.); (M.J.M.); (J.J.G.M.); (F.J.C.)
- Experimental Hepatology and Drug Targeting (HEVEFARM) Group, University of Salamanca, Biomedical Research Institute of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Juan J. Vila
- Department of Gastroenterology and Hepatology, Navarra University Hospital Complex, 31008 Pamplona, Spain; (J.M.U.); (M.R.); (D.O.); (B.G.); (I.F.-U.); (J.C.); (F.B.); (L.Z.); (J.J.V.)
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain; (M.A.); (B.S.); (A.P.); (I.G.); (C.B.); (M.G.F.-B.)
| | - Fernando J. Corrales
- National Institute for the Study of Liver and Gastrointestinal Diseases, CIBERehd, Carlos III Health Institute, 28029 Madrid, Spain; (J.M.H.); (I.U.); (G.A.-S.); (M.L.M.-C.); (J.M.B.); (M.R.R.); (R.I.R.M.); (M.J.M.); (J.J.G.M.); (F.J.C.)
- Proteomics Unit, Centro Nacional de Biotecnología (CNB) Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain;
| | - Carmen Berasain
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain; (M.A.); (B.S.); (A.P.); (I.G.); (C.B.); (M.G.F.-B.)
- National Institute for the Study of Liver and Gastrointestinal Diseases, CIBERehd, Carlos III Health Institute, 28029 Madrid, Spain; (J.M.H.); (I.U.); (G.A.-S.); (M.L.M.-C.); (J.M.B.); (M.R.R.); (R.I.R.M.); (M.J.M.); (J.J.G.M.); (F.J.C.)
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (L.C.); (M.U.L.)
| | - Maite G. Fernández-Barrena
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain; (M.A.); (B.S.); (A.P.); (I.G.); (C.B.); (M.G.F.-B.)
- National Institute for the Study of Liver and Gastrointestinal Diseases, CIBERehd, Carlos III Health Institute, 28029 Madrid, Spain; (J.M.H.); (I.U.); (G.A.-S.); (M.L.M.-C.); (J.M.B.); (M.R.R.); (R.I.R.M.); (M.J.M.); (J.J.G.M.); (F.J.C.)
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (L.C.); (M.U.L.)
| | - Matías A. Avila
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain; (M.A.); (B.S.); (A.P.); (I.G.); (C.B.); (M.G.F.-B.)
- National Institute for the Study of Liver and Gastrointestinal Diseases, CIBERehd, Carlos III Health Institute, 28029 Madrid, Spain; (J.M.H.); (I.U.); (G.A.-S.); (M.L.M.-C.); (J.M.B.); (M.R.R.); (R.I.R.M.); (M.J.M.); (J.J.G.M.); (F.J.C.)
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (L.C.); (M.U.L.)
- Correspondence: ; Tel.: +34-948-194700 (ext. 4003)
| |
Collapse
|
20
|
Huehne PS, Bhinija K, Srisomsap C, Chokchaichamnankit D, Weeraphan C, Svasti J, Mongkolsuk S. Detection of superoxide dismutase (Cu-Zn) isoenzymes in leaves and pseudobulbs of Bulbophyllum morphologlorum Kraenzl orchid by comparative proteomic analysis. Biochem Biophys Rep 2020; 22:100762. [PMID: 32395639 PMCID: PMC7210398 DOI: 10.1016/j.bbrep.2020.100762] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 11/28/2022] Open
Abstract
Typically, biological systems are protected from the toxic effect of free radicals by antioxidant defense. Extracts from orchids have been reported to show high levels of exogenous antioxidant activity including Bulbophyllum orchids but so far, there have been no reports on antioxidant enzymes. Therefore, differences in protein expression from leaves and pseudobulbs of Bulbophyllum morphologlorum Kraenzl and Dendrobium Sonia Earsakul were studied using two-dimensional gel electrophoresis and mass spectrometry (LC/MS/MS). Interestingly, the largest group of these stress response proteins were associated with antioxidant defense and temperature stress, including superoxide dismutase (Cu–Zn) and heat shock protein 70. The high expression of this antioxidant enzyme from Bulbophyllum morphologlorum Kraenzl was confirmed by activity staining on native-PAGE, and the two Cu/Zn-SODs isoenzymes were identified as Cu/Zn-SOD 1 and Cu/Zn-SOD 2 by LC/MS/MS. The results suggested that Bulbophyllum orchid can be a potential plant source for medicines and natural antioxidant supplements.
Collapse
Affiliation(s)
- Pattana S Huehne
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Kisana Bhinija
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Chantragan Srisomsap
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | | | - Churat Weeraphan
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Jisnuson Svasti
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok, 10210, Thailand.,Applied Biological Sciences Program, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, 10210, Thailand
| | - Skorn Mongkolsuk
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, 10210, Thailand.,Applied Biological Sciences Program, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, 10210, Thailand
| |
Collapse
|
21
|
Intuyod K, Armartmuntree N, Jusakul A, Sakonsinsiri C, Thanan R, Pinlaor S. Current omics-based biomarkers for cholangiocarcinoma. Expert Rev Mol Diagn 2019; 19:997-1005. [PMID: 31566016 DOI: 10.1080/14737159.2019.1673162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Introduction: Cholangiocarcinoma (CCA) is a malignancy of the biliary tract. CCA generally has a low incidence worldwide but incidence is typically high in Southeast Asian countries, particularly in northeastern Thailand, where small liver-fluke (Opisthorchis viverrini) infection is endemic. CCA has a poor prognosis as most CCA patients present with advanced stages. Poor prognosis and worse outcomes are due to the lack of specific and early-stage CCA biomarkers. Areas covered: In this review, we discuss the use of CCA tissues, serum and bile samples as sources of diagnostic and prognostic markers by using -omics approaches, including genomics, epigenomics, transcriptomics and proteomics. The current state of the discovery of molecular candidates and their potential to be used as diagnostic and prognostic biomarkers for CCA are summarized and discussed. Expert opinion: Various potential molecules have been discovered, some of which have been verified as diagnostic biomarkers for CCA. However, most identified molecules require much further evaluation to help us find markers with high specificity, low cost and ease-of-use in routine diagnostic laboratories.
Collapse
Affiliation(s)
- Kitti Intuyod
- Department of Parasitology, Faculty of Medicine, Khon Kaen University , Khon Kaen , Thailand.,Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University , Khon Kaen , Thailand
| | - Napat Armartmuntree
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University , Khon Kaen , Thailand.,Department of Biochemistry, Faculty of Medicine, Khon Kaen University , Khon Kaen , Thailand
| | - Apinya Jusakul
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University , Khon Kaen , Thailand.,Faculty of Associated Medical Sciences, Khon Kaen University , Khon Kaen , Thailand
| | - Chadamas Sakonsinsiri
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University , Khon Kaen , Thailand.,Department of Biochemistry, Faculty of Medicine, Khon Kaen University , Khon Kaen , Thailand
| | - Raynoo Thanan
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University , Khon Kaen , Thailand.,Department of Biochemistry, Faculty of Medicine, Khon Kaen University , Khon Kaen , Thailand
| | - Somchai Pinlaor
- Department of Parasitology, Faculty of Medicine, Khon Kaen University , Khon Kaen , Thailand.,Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University , Khon Kaen , Thailand
| |
Collapse
|
22
|
Constitutive release of CPS1 in bile and its role as a protective cytokine during acute liver injury. Proc Natl Acad Sci U S A 2019; 116:9125-9134. [PMID: 30979808 DOI: 10.1073/pnas.1822173116] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Carbamoyl phosphate synthetase-1 (CPS1) is the major mitochondrial urea cycle enzyme in hepatocytes. It is released into mouse and human blood during acute liver injury, where is has a short half-life. The function of CPS1 in blood and the reason for its short half-life in serum are unknown. We show that CPS1 is released normally into mouse and human bile, and pathologically into blood during acute liver injury. Other cytoplasmic and mitochondrial urea cycle enzymes are also found in normal mouse bile. Serum, bile, and purified CPS1 manifest sedimentation properties that overlap with extracellular vesicles, due to the propensity of CPS1 to aggregate despite being released primarily as a soluble protein. During liver injury, CPS1 in blood is rapidly sequestered by monocytes, leading to monocyte M2-polarization and homing to the liver independent of its enzyme activity. Recombinant CPS1 (rCPS1), but not control r-transferrin, increases hepatic macrophage numbers and phagocytic activity. Notably, rCPS1 does not activate hepatic macrophages directly; rather, it activates bone marrow and circulating monocytes that then home to the liver. rCPS1 administration prevents mouse liver damage induced by Fas ligand or acetaminophen, but this protection is absent in macrophage-deficient mice. Moreover, rCPS1 protects from acetaminophen-induced liver injury even when given therapeutically after injury induction. In summary, CPS1 is normally found in bile but is released by hepatocytes into blood upon liver damage. We demonstrate a nonenzymatic function of CPS1 as an antiinflammatory protective cytokine during acute liver injury.
Collapse
|
23
|
De Novo Endotoxin-Induced Production of Antibodies against the Bile Salt Export Pump Associated with Bacterial Infection following Major Hepatectomy. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6197152. [PMID: 29850541 PMCID: PMC5937615 DOI: 10.1155/2018/6197152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/01/2018] [Accepted: 03/18/2018] [Indexed: 01/25/2023]
Abstract
Background Clinically severe infection-related inflammation after major liver resection may cause hyperbilirubinemia. This study aims to clarify the impact of bacterial infection and endotoxins on the hepatobiliary transporter system and to explore possible mechanisms of endotoxin-related postoperative hyperbilirubinemia. Method Mice that underwent major hepatectomy with removal of at least 70% of liver volume were exposed to lipopolysaccharide (LPS) at different dosages. Subsequently, hepatobiliary transporter compounds related to bile salt excretion were further investigated. Results The expression of genes related to hepatobiliary transporter compounds was not significantly different in the liver tissue of mice after major hepatectomy and LPS exposure. However, bile salt export pump (BSEP) protein expression within the liver tissue of mice treated with LPS after major hepatectomy was relatively weaker and was even further reduced in the high-dose LPS group. The formation of antibodies against the BSEP in response to endotoxin exposure was also detected. Conclusion This study illustrates a possible mechanism whereby the dysfunction of hepatobiliary transporter systems caused by endotoxin-induced autoantibodies may be involved in the development of postoperative jaundice associated with bacterial infection after major hepatectomy.
Collapse
|
24
|
Abstract
Many potentially toxic electrophilic xenobiotics and some endogenous compounds are detoxified by conversion to the corresponding glutathione S-conjugate, which is metabolized to the N-acetylcysteine S-conjugate (mercapturate) and excreted. Some mercapturate pathway components, however, are toxic. Bioactivation (toxification) may occur when the glutathione S-conjugate (or mercapturate) is converted to a cysteine S-conjugate that undergoes a β-lyase reaction. If the sulfhydryl-containing fragment produced in this reaction is reactive, toxicity may ensue. Some drugs and halogenated workplace/environmental contaminants are bioactivated by this mechanism. On the other hand, cysteine S-conjugate β-lyases occur in nature as a means of generating some biologically useful sulfhydryl-containing compounds.
Collapse
|
25
|
Désert R, Rohart F, Canal F, Sicard M, Desille M, Renaud S, Turlin B, Bellaud P, Perret C, Clément B, Lê Cao KA, Musso O. Human hepatocellular carcinomas with a periportal phenotype have the lowest potential for early recurrence after curative resection. Hepatology 2017; 66:1502-1518. [PMID: 28498607 DOI: 10.1002/hep.29254] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/03/2017] [Accepted: 05/03/2017] [Indexed: 12/25/2022]
Abstract
UNLABELLED Hepatocellular carcinomas (HCCs) exhibit a diversity of molecular phenotypes, raising major challenges in clinical management. HCCs detected by surveillance programs at an early stage are candidates for potentially curative therapies (local ablation, resection, or transplantation). In the long term, transplantation provides the lowest recurrence rates. Treatment allocation is based on tumor number, size, vascular invasion, performance status, functional liver reserve, and the prediction of early (<2 years) recurrence, which reflects the intrinsic aggressiveness of the tumor. Well-differentiated, potentially low-aggressiveness tumors form the heterogeneous molecular class of nonproliferative HCCs, characterized by an approximate 50% β-catenin mutation rate. To define the clinical, pathological, and molecular features and the outcome of nonproliferative HCCs, we constructed a 1,133-HCC transcriptomic metadata set and validated findings in a publically available 210-HCC RNA sequencing set. We show that nonproliferative HCCs preserve the zonation program that distributes metabolic functions along the portocentral axis in normal liver. More precisely, we identified two well-differentiated, nonproliferation subclasses, namely periportal-type (wild-type β-catenin) and perivenous-type (mutant β-catenin), which expressed negatively correlated gene networks. The new periportal-type subclass represented 29% of all HCCs; expressed a hepatocyte nuclear factor 4A-driven gene network, which was down-regulated in mouse hepatocyte nuclear factor 4A knockout mice; were early-stage tumors by Barcelona Clinic Liver Cancer, Cancer of the Liver Italian Program, and tumor-node-metastasis staging systems; had no macrovascular invasion; and showed the lowest metastasis-specific gene expression levels and TP53 mutation rates. Also, we identified an eight-gene periportal-type HCC signature, which was independently associated with the highest 2-year recurrence-free survival by multivariate analyses in two independent cohorts of 247 and 210 patients. CONCLUSION Well-differentiated HCCs display mutually exclusive periportal or perivenous zonation programs. Among all HCCs, periportal-type tumors have the lowest intrinsic potential for early recurrence after curative resection. (Hepatology 2017;66:1502-1518).
Collapse
Affiliation(s)
- Romain Désert
- INSERM, INRA, Univ Rennes, CHU Rennes, Nutrition Metabolisms and Cancer (NuMeCan), CRB-Santé, Biosit, Biogenouest, UBL, Rennes, France
| | - Florian Rohart
- Diamantina Institute and Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Frédéric Canal
- INSERM, CNRS, Université de Paris Descartes, Sorbonne Paris Cité, Institut Cochin, Paris, France
| | - Marie Sicard
- INSERM, INRA, Univ Rennes, CHU Rennes, Nutrition Metabolisms and Cancer (NuMeCan), CRB-Santé, Biosit, Biogenouest, UBL, Rennes, France
| | - Mireille Desille
- INSERM, INRA, Univ Rennes, CHU Rennes, Nutrition Metabolisms and Cancer (NuMeCan), CRB-Santé, Biosit, Biogenouest, UBL, Rennes, France
| | - Stéphanie Renaud
- INSERM, INRA, Univ Rennes, CHU Rennes, Nutrition Metabolisms and Cancer (NuMeCan), CRB-Santé, Biosit, Biogenouest, UBL, Rennes, France
| | - Bruno Turlin
- INSERM, INRA, Univ Rennes, CHU Rennes, Nutrition Metabolisms and Cancer (NuMeCan), CRB-Santé, Biosit, Biogenouest, UBL, Rennes, France
| | - Pascale Bellaud
- INSERM, INRA, Univ Rennes, CHU Rennes, Nutrition Metabolisms and Cancer (NuMeCan), CRB-Santé, Biosit, Biogenouest, UBL, Rennes, France
| | - Christine Perret
- INSERM, CNRS, Université de Paris Descartes, Sorbonne Paris Cité, Institut Cochin, Paris, France
| | - Bruno Clément
- INSERM, INRA, Univ Rennes, CHU Rennes, Nutrition Metabolisms and Cancer (NuMeCan), CRB-Santé, Biosit, Biogenouest, UBL, Rennes, France
| | - Kim-Anh Lê Cao
- Diamantina Institute and Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Orlando Musso
- INSERM, INRA, Univ Rennes, CHU Rennes, Nutrition Metabolisms and Cancer (NuMeCan), CRB-Santé, Biosit, Biogenouest, UBL, Rennes, France
| |
Collapse
|
26
|
Rupp C, Bode KA, Leopold Y, Sauer P, Gotthardt DN. Pathological features of primary sclerosing cholangitis identified by bile proteomic analysis. Biochim Biophys Acta Mol Basis Dis 2017; 1864:1380-1389. [PMID: 28943450 DOI: 10.1016/j.bbadis.2017.09.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 09/07/2017] [Accepted: 09/11/2017] [Indexed: 01/05/2023]
Abstract
Primary sclerosing cholangitis (PSC) is a chronic cholestatic liver disease of unknown origin. Previous bile proteomic analyses in patients with PSC have revealed changes in disease activity specific to malignant transformation. In this study, we established a reference bile duct-derived bile proteome for PSC that can be used to evaluate biliary pathophysiology. Samples were collected from patients with PSC or with choledocholithiasis (control) (n=6 each). Furthermore, patients with PSC-associated cholangiocarcinoma (CC) and with CC without concomitant PSC were analyzed. None of the patients showed signs of inflammation or infection based on clinical and laboratory examinations. Proteins overexpressed in patients with PSC relative to control patients were detected by two-dimensional difference gel electrophoresis and identified by liquid chromatography-tandem mass spectrometry. Functional proteomic analysis was performed using STRING software. A total of 101 proteins were overexpressed in the bile fluid of patients with PSC but not in those of controls; the majority of these were predicted to be intracellular and related to the ribosomal and proteasomal pathways. On the other hand, 91 proteins were found only in the bile fluid of controls; most were derived from the extracellular space and were linked to cell adhesion, the complement system, and the coagulation cascade. In addition, proteins associated with inflammation and the innate immune response-e.g., cluster of differentiation 14, annexin-2, and components of the complement system-were upregulated in PSC. The most prominent pathways in PSC/CC-patients were inflammation associated cytokine and chemokine pathways, whereas in CC-patients the Wnt signaling pathway was upregulated. In PSC/CC-patients DIGE-analysis revealed biliary CD14 and Annexin-4 expression, among others, as the most prominent protein that discriminates between both cohorts. Thus, the bile-duct bile proteome of patients with PSC shows disease-specific changes associated with inflammation and the innate immune response even in the absence of obvious clinical signs of cholangitis, malignancy, or inflammation. This article is part of a Special Issue entitled: Cholangiocytes in Health and Diseaseedited by Jesus Banales, Marco Marzioni and Peter Jansen.
Collapse
Affiliation(s)
- C Rupp
- Department of Internal Medicine IV, University Hospital of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - K A Bode
- Department of Infectious Diseases, Medical Microbiology and Hygiene, University of Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Y Leopold
- Department of Internal Medicine IV, University Hospital of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - P Sauer
- Department of Internal Medicine IV, University Hospital of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - D N Gotthardt
- Department of Internal Medicine IV, University Hospital of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany.
| |
Collapse
|
27
|
Laohaviroj M, Potriquet J, Jia X, Suttiprapa S, Chamgramol Y, Pairojkul C, Sithithaworn P, Mulvenna J, Sripa B. A comparative proteomic analysis of bile for biomarkers of cholangiocarcinoma. Tumour Biol 2017; 39:1010428317705764. [PMID: 28618946 DOI: 10.1177/1010428317705764] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Cholangiocarcinoma is a primary malignant tumor of the bile duct epithelium. Cholangiocarcinoma is usually detected at an advanced stage when successful treatment is no longer possible. As the tumor originates from the bile duct epithelium, bile is an ideal source of tumor biomarkers for cholangiocarcinoma. In this study, we used a quantitative proteomics approach to identify potential tumor-associated proteins in the bile fluid of six cholangiocarcinoma patients. Three different gross-appearance tumor types were used in the analysis: mass-forming type ( n = 2), periductal infiltrating type ( n = 2), and intraductal growth type ( n = 2). Two bile samples from non-cancerous patients were used as controls. Isobaric labeling, coupled with Tandem mass spectrometry, was used to quantify protein levels in the bile of cholangiocarcinoma and control patients. In all, 63 proteins were significantly increased in cholangiocarcinoma bile compared to normal bile. Alpha-1-antitrypsin was one of the overexpressed proteins that increased in cholangiocarcinoma bile samples. Immunohistochemical analysis revealed that alpha-1-antitrypsin was detected in 177 (50%) of 354 cholangiocarcinoma tissues from our Tissue Bank. Immunoblotting of 54 cholangiocarcinoma bile samples showed that alpha-1-antitrypsin was positive in 38 (70%) samples. Fecal enzyme-linked immunosorbent assay showed that alpha-1-antitrypsin level was able to distinguish cholangiocarcinoma patients from normal individuals. In conclusion, alpha-1-antitrypsin is a potential marker for early diagnosis of cholangiocarcinoma.
Collapse
Affiliation(s)
- Marut Laohaviroj
- 1 Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,2 WHO Collaborating Centre for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Disease), Tropical Disease Research Center (TDRC), Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Jeremy Potriquet
- 3 Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Xinying Jia
- 4 Centre for Advanced Imaging, The University of Queensland St Lucia, Brisbane, QLD, Australia
| | - Sutas Suttiprapa
- 1 Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,2 WHO Collaborating Centre for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Disease), Tropical Disease Research Center (TDRC), Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Yaovalux Chamgramol
- 1 Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Chawalit Pairojkul
- 1 Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Paiboon Sithithaworn
- 5 Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Jason Mulvenna
- 3 Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Banchob Sripa
- 1 Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,2 WHO Collaborating Centre for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Disease), Tropical Disease Research Center (TDRC), Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
28
|
Goeppert B, Roessler S, Becker N, Zucknick M, Vogel MN, Warth A, Pathil-Warth A, Mehrabi A, Schirmacher P, Mollenhauer J, Renner M. DMBT1 expression in biliary carcinogenesis with correlation of clinicopathological data. Histopathology 2017; 70:1064-1071. [PMID: 28130841 DOI: 10.1111/his.13175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 01/18/2017] [Accepted: 01/24/2017] [Indexed: 12/31/2022]
Abstract
AIMS Deleted in malignant brain tumours 1 (DMBT1) exerts functions in the regulation of epithelial differentiation and inflammation and has been proposed as a tumour suppressor. Because chronic inflammation is a hallmark of cholangiocarcinogenesis, the aim of this study was to investigate the expression of DMBT1 in biliary tract cancer (BTC) and to correlate this expression with clinicopathological data. METHODS AND RESULTS The expression of DMBT1 protein was examined immunohistochemically in 157 BTC patients [41 intrahepatic (ICC), 60 extrahepatic cholangiocarcinomas (ECC) and 56 adenocarcinomas of the gallbladder (GBAC)]. Additionally, 56 samples of high-grade biliary intraepithelial neoplasia (BilIN 3) and 92 corresponding samples of histological non-neoplastic biliary tract tissues were included. DMBT1 expression was increased significantly in BilIN 3 compared to normal tissue (P < 0.0001) and BTC (P < 0.0001). BTC showed no significant difference in DMBT1 expression compared to non-neoplastic biliary tissue (P = 0.315). Absent DMBT1 expression in non-neoplastic biliary tissue of BTC patients was associated with poorer survival (P = 0.027). DMBT1 expression was correlated significantly with patients' age (P < 0.001). CONCLUSION DMBT1 is expressed differently in cholangiocarcinogenesis and poorer patients' survival rates are associated with absent DMBT1 expression in non-neoplastic biliary tissue, suggesting a tumour-suppressive role of DMBT1 in early cholangiocarcinogenesis.
Collapse
Affiliation(s)
| | | | - Natalia Becker
- Division of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Manuela Zucknick
- Division of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Oslo Center for Biostatistics and Epidemiology, Department of Biostatistics, Institute of Basic Medical Sciences, University of Oslo, Norway
| | - Monika N Vogel
- Diagnostic and Interventional Radiology, Thoraxklinik, University Hospital Heidelberg, Germany
| | - Arne Warth
- Institute of Pathology, University Hospital, Heidelberg, Germany
| | - Anita Pathil-Warth
- Department of Internal Medicine IV, Gastroenterology and Hepatology, University Hospital Heidelberg, Germany
| | - Arianeb Mehrabi
- Department of General Visceral and Transplantation Surgery, University Hospital Heidelberg, Germany
| | | | - Jan Mollenhauer
- Molecular Oncology and Lundbeckfonden Center of Excellence NanoCAN, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Marcus Renner
- Institute of Pathology, University Hospital, Heidelberg, Germany
| |
Collapse
|
29
|
Hinneburg H, Stavenhagen K, Schweiger-Hufnagel U, Pengelley S, Jabs W, Seeberger PH, Silva DV, Wuhrer M, Kolarich D. The Art of Destruction: Optimizing Collision Energies in Quadrupole-Time of Flight (Q-TOF) Instruments for Glycopeptide-Based Glycoproteomics. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:507-19. [PMID: 26729457 PMCID: PMC4756043 DOI: 10.1007/s13361-015-1308-6] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 11/06/2015] [Accepted: 11/09/2015] [Indexed: 05/12/2023]
Abstract
In-depth site-specific investigations of protein glycosylation are the basis for understanding the biological function of glycoproteins. Mass spectrometry-based N- and O-glycopeptide analyses enable determination of the glycosylation site, site occupancy, as well as glycan varieties present on a particular site. However, the depth of information is highly dependent on the applied analytical tools, including glycopeptide fragmentation regimes and automated data analysis. Here, we used a small set of synthetic disialylated, biantennary N-glycopeptides to systematically tune Q-TOF instrument parameters towards optimal energy stepping collision induced dissociation (CID) of glycopeptides. A linear dependency of m/z-ratio and optimal fragmentation energy was found, showing that with increasing m/z-ratio, more energy is required for glycopeptide fragmentation. Based on these optimized fragmentation parameters, a method combining lower- and higher-energy CID was developed, allowing the online acquisition of glycan and peptide-specific fragments within a single tandem MS experiment. We validated this method analyzing a set of human immunoglobulins (IgA1+2, sIgA, IgG1+2, IgE, IgD, IgM) as well as bovine fetuin. These optimized fragmentation parameters also enabled software-assisted glycopeptide assignment of both N- and O-glycopeptides including information about the most abundant glycan compositions, peptide sequence and putative structures. Twenty-six out of 30 N-glycopeptides and four out of five O-glycopeptides carrying >110 different glycoforms could be identified by this optimized LC-ESI tandem MS method with minimal user input. The Q-TOF based glycopeptide analysis platform presented here opens the way to a range of different applications in glycoproteomics research as well as biopharmaceutical development and quality control.
Collapse
Affiliation(s)
- Hannes Hinneburg
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424, Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| | - Kathrin Stavenhagen
- Division of BioAnalytical Chemistry, VU University Amsterdam, Amsterdam, The Netherlands
| | | | | | | | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424, Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| | - Daniel Varón Silva
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424, Potsdam, Germany
| | - Manfred Wuhrer
- Division of BioAnalytical Chemistry, VU University Amsterdam, Amsterdam, The Netherlands
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Daniel Kolarich
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424, Potsdam, Germany.
| |
Collapse
|
30
|
Optimizing Human Bile Preparation for Two-Dimensional Gel Electrophoresis. BIOMED RESEARCH INTERNATIONAL 2016; 2016:5185317. [PMID: 26966686 PMCID: PMC4757711 DOI: 10.1155/2016/5185317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 12/21/2015] [Indexed: 02/04/2023]
Abstract
Aims. Bile is an important body fluid which assists in the digestion of fat and excretion of endogenous and exogenous compounds. In the present study, an improved sample preparation for human bile was established. Methods and Material. The method involved acetone precipitation followed by protein extraction using commercially available 2D Clean-Up kit. The effectiveness was evaluated by 2-dimensional electrophoresis (2DE) profiling quality, including number of protein spots and spot distribution. Results. The total protein of bile fluid in benign biliary disorders was 0.797 ± 0.465 μg/μL. The sample preparation method using acetone precipitation first followed by 2D Clean-Up kit protein extraction resulted in better quality of 2DE gel images in terms of resolution as compared with other sample preparation methods. Using this protocol, we obtained approximately 558 protein spots on the gel images and with better protein spots presentation of haptoglobin, serum albumin, serotransferrin, and transthyretin. Conclusions. Protein samples of bile prepared using acetone precipitation followed by 2D Clean-Up kit exhibited high protein resolution and significant protein profile. This optimized protein preparation protocol can effectively concentrate bile proteins, remove abundant proteins and debris, and yield clear presentation of nonabundant proteins and its isoforms on 2-dimensional electrophoresis gel images.
Collapse
|
31
|
Acuña M, González-Hódar L, Amigo L, Castro J, Morales MG, Cancino GI, Groen AK, Young J, Miquel JF, Zanlungo S. Transgenic overexpression of Niemann-Pick C2 protein promotes cholesterol gallstone formation in mice. J Hepatol 2016; 64:361-369. [PMID: 26453970 DOI: 10.1016/j.jhep.2015.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 09/29/2015] [Accepted: 10/01/2015] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Niemann-Pick C2 (NPC2) is a lysosomal protein involved in the egress of low-density lipoprotein-derived cholesterol from lysosomes to other intracellular compartments. NPC2 has been detected in several tissues and is also secreted from the liver into bile. We have previously shown that NPC2-deficient mice fed a lithogenic diet showed reduced biliary cholesterol secretion as well as cholesterol crystal and gallstone formation. This study aimed to investigate the consequences of NPC2 hepatic overexpression on liver cholesterol metabolism, biliary lipid secretion, gallstone formation and the effect of NPC2 on cholesterol crystallization in model bile. METHODS We generated NPC2 transgenic mice (Npc2.Tg) and fed them either chow or lithogenic diets. We studied liver cholesterol metabolism, biliary lipid secretion, bile acid composition and gallstone formation. We performed cholesterol crystallization studies in model bile using a recombinant NPC2 protein. RESULTS No differences were observed in biliary cholesterol content or secretion between wild-type and Npc2.Tg mice fed the chow or lithogenic diets. Interestingly, Npc2.Tg mice showed an increased susceptibility to the lithogenic diet, developing more cholesterol gallstones at early times, but did not show differences in the bile acid hydrophobicity and gallbladder cholesterol saturation indices compared to wild-type mice. Finally, recombinant NPC2 decreased nucleation time in model bile. CONCLUSIONS These results suggest that NPC2 promotes cholesterol gallstone formation by decreasing the cholesterol nucleation time, indicating a pro-nucleating function of NPC2 in bile.
Collapse
Affiliation(s)
- Mariana Acuña
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile; FONDAP "Center for Genome Regulation" (CGR), Santiago, Chile
| | - Lila González-Hódar
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ludwig Amigo
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan Castro
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - M Gabriela Morales
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gonzalo I Cancino
- Neuroscience and Mental Health Program, The Hospital for Sick Children, Toronto, Canada
| | - Albert K Groen
- Departments of Pediatrics/Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Juan Young
- Centro de Estudios Científicos (CECs), Valdivia, Chile
| | - Juan Francisco Miquel
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile; FONDAP "Center for Genome Regulation" (CGR), Santiago, Chile
| | - Silvana Zanlungo
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile; FONDAP "Center for Genome Regulation" (CGR), Santiago, Chile.
| |
Collapse
|
32
|
Hoffmann M, Marx K, Reichl U, Wuhrer M, Rapp E. Site-specific O-Glycosylation Analysis of Human Blood Plasma Proteins. Mol Cell Proteomics 2015; 15:624-41. [PMID: 26598643 PMCID: PMC4739677 DOI: 10.1074/mcp.m115.053546] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Indexed: 12/04/2022] Open
Abstract
Site-specific glycosylation analysis is key to investigate structure-function relationships of glycoproteins, e.g. in the context of antigenicity and disease progression. The analysis, though, is quite challenging and time consuming, in particular for O-glycosylated proteins. In consequence, despite their clinical and biopharmaceutical importance, many human blood plasma glycoproteins have not been characterized comprehensively with respect to their O-glycosylation. Here, we report on the site-specific O-glycosylation analysis of human blood plasma glycoproteins. To this end pooled human blood plasma of healthy donors was proteolytically digested using a broad-specific enzyme (Proteinase K), followed by a precipitation step, as well as a glycopeptide enrichment and fractionation step via hydrophilic interaction liquid chromatography, the latter being optimized for intact O-glycopeptides carrying short mucin-type core-1 and -2 O-glycans, which represent the vast majority of O-glycans on human blood plasma proteins. Enriched O-glycopeptide fractions were subjected to mass spectrometric analysis using reversed-phase liquid chromatography coupled online to an ion trap mass spectrometer operated in positive-ion mode. Peptide identity and glycan composition were derived from low-energy collision-induced dissociation fragment spectra acquired in multistage mode. To pinpoint the O-glycosylation sites glycopeptides were fragmented using electron transfer dissociation. Spectra were annotated by database searches as well as manually. Overall, 31 O-glycosylation sites and regions belonging to 22 proteins were identified, the majority being acute-phase proteins. Strikingly, also 11 novel O-glycosylation sites and regions were identified. In total 23 O-glycosylation sites could be pinpointed. Interestingly, the use of Proteinase K proved to be particularly beneficial in this context. The identified O-glycan compositions most probably correspond to mono- and disialylated core-1 mucin-type O-glycans (T-antigen). The developed workflow allows the identification and characterization of the major population of the human blood plasma O-glycoproteome and our results provide new insights, which can help to unravel structure-function relationships. The data were deposited to ProteomeXchange PXD003270.
Collapse
Affiliation(s)
- Marcus Hoffmann
- From the ‡Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, 39106 Magdeburg, Germany
| | | | - Udo Reichl
- From the ‡Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, 39106 Magdeburg, Germany; ¶Otto von Guericke University Magdeburg, Chair of Bioprocess Engineering, 39106 Magdeburg, Germany
| | - Manfred Wuhrer
- ‖Center for Proteomics and Metabolomics, Department of Rheumatology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Erdmann Rapp
- From the ‡Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, 39106 Magdeburg, Germany; **glyXera GmbH, Leipziger Strasse 44 (Zenit), 39120 Magdeburg, Germany
| |
Collapse
|
33
|
Clerc F, Reiding KR, Jansen BC, Kammeijer GSM, Bondt A, Wuhrer M. Human plasma protein N-glycosylation. Glycoconj J 2015; 33:309-43. [PMID: 26555091 PMCID: PMC4891372 DOI: 10.1007/s10719-015-9626-2] [Citation(s) in RCA: 309] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 09/30/2015] [Accepted: 10/05/2015] [Indexed: 01/09/2023]
Abstract
Glycosylation is the most abundant and complex protein modification, and can have a profound structural and functional effect on the conjugate. The oligosaccharide fraction is recognized to be involved in multiple biological processes, and to affect proteins physical properties, and has consequentially been labeled a critical quality attribute of biopharmaceuticals. Additionally, due to recent advances in analytical methods and analysis software, glycosylation is targeted in the search for disease biomarkers for early diagnosis and patient stratification. Biofluids such as saliva, serum or plasma are of great use in this regard, as they are easily accessible and can provide relevant glycosylation information. Thus, as the assessment of protein glycosylation is becoming a major element in clinical and biopharmaceutical research, this review aims to convey the current state of knowledge on the N-glycosylation of the major plasma glycoproteins alpha-1-acid glycoprotein, alpha-1-antitrypsin, alpha-1B-glycoprotein, alpha-2-HS-glycoprotein, alpha-2-macroglobulin, antithrombin-III, apolipoprotein B-100, apolipoprotein D, apolipoprotein F, beta-2-glycoprotein 1, ceruloplasmin, fibrinogen, immunoglobulin (Ig) A, IgG, IgM, haptoglobin, hemopexin, histidine-rich glycoprotein, kininogen-1, serotransferrin, vitronectin, and zinc-alpha-2-glycoprotein. In addition, the less abundant immunoglobulins D and E are included because of their major relevance in immunology and biopharmaceutical research. Where available, the glycosylation is described in a site-specific manner. In the discussion, we put the glycosylation of individual proteins into perspective and speculate how the individual proteins may contribute to a total plasma N-glycosylation profile determined at the released glycan level.
Collapse
Affiliation(s)
- Florent Clerc
- Center for Proteomics and Metabolomics, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Karli R Reiding
- Center for Proteomics and Metabolomics, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Bas C Jansen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Guinevere S M Kammeijer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Albert Bondt
- Center for Proteomics and Metabolomics, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands.,Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands. .,Division of BioAnalytical Chemistry, VU University Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
34
|
Hwang J, Chung H, Lee KG, Kim HJ, Choi D. Feasibility of infrared spectroscopy for discrimination between gallbladder polyp and gallbladder stone using bile juices. Microchem J 2015. [DOI: 10.1016/j.microc.2015.05.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
35
|
Farid SG, Morris-Stiff G. "OMICS" technologies and their role in foregut primary malignancies. Curr Probl Surg 2015; 52:409-41. [PMID: 26527526 DOI: 10.1067/j.cpsurg.2015.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 08/03/2015] [Indexed: 12/18/2022]
|
36
|
Lourdusamy V, Tharian B, Navaneethan U. Biomarkers in bile-complementing advanced endoscopic imaging in the diagnosis of indeterminate biliary strictures. World J Gastrointest Endosc 2015; 7:308-317. [PMID: 25901209 PMCID: PMC4400619 DOI: 10.4253/wjge.v7.i4.308] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 09/24/2014] [Accepted: 01/20/2015] [Indexed: 02/05/2023] Open
Abstract
Biliary strictures present a diagnostic challenge and a conundrum, particularly when an initial work up including abdominal imaging and endoscopic retrograde cholangiopancreatography based sampling are non-diagnostic. Advances in endoscopic imaging have helped us diagnose these strictures better. However, even with modern technology, some strictures remain a diagnostic challenge. The proximity of bile fluid to the bile duct epithelia makes it an attractive option to investigate for bio-markers, which might be representative of the functions/abnormal changes taking place in the biliary system. A number of biomarkers in bile have been discovered recently in approaching biliary strictures with their potential future diagnostic utility, further supported by the immunohistochemical analysis of the resected tissue specimens. Novel biliary biomarkers especially carcinoembryonic cell adhesion molecule 6 and neutrophil gelatinase-associated lipocalin seem promising in differentiating malignant from benign biliary strictures. Recent developments in lipidomic profiling of bile are also very promising. Biliary biomarkers appear to complement endoscopic imaging in diagnosing malignant etiologies of biliary stricture. Future studies addressing these biomarkers need to be incorporated to the current endoscopic techniques to determine the best approach in determining the etiology of biliary strictures.
Collapse
|
37
|
Stalmach A, Husi H, Mosbahi K, Albalat A, Mullen W, Mischak H. Methods in capillary electrophoresis coupled to mass spectrometry for the identification of clinical proteomic/peptidomic biomarkers in biofluids. Methods Mol Biol 2015; 1243:187-205. [PMID: 25384747 DOI: 10.1007/978-1-4939-1872-0_11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Proteomic biomarkers hold the promise of enabling assessment of patients according to a pathological condition aiming at improvements in diagnosis, prognosis, in general clinical patient management. Capillary electrophoresis coupled to an electrospray ionization time-of-flight mass spectrometer (CE-MS) allows the detection of thousands of small proteins and peptides in various biofluids, in a single, reproducible and time-limited step, enabling the simultaneous comparison of multiple individual proteins and peptides in biomarker discovery, but also in clinical applications. The reliability of the CE-MS platform, together with the use of a validated approach for data processing and mining is, to date, the most advanced technique for biomarker discovery of clinical significance. In this chapter, we report on the materials, methods and protocols used for CE-MS-based clinical proteomics allowing the reproducible profiling of biofluids.
Collapse
Affiliation(s)
- Angelique Stalmach
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | | | | | | | | | | |
Collapse
|
38
|
Farina A, Delhaye M, Lescuyer P, Dumonceau JM. Bile proteome in health and disease. Compr Physiol 2014; 4:91-108. [PMID: 24692135 DOI: 10.1002/cphy.c130016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The study of bile proteins could improve the understanding of physiological processes involved in the regulation of the hepato-biliary system. Researchers have tried for years to investigate the bile proteome but, until recently, only a few tens of proteins were known. The advent of proteomics, availing of large-scale analytical devices paired with potent bioinformatic resources, lately allowed the identification of thousands of proteins in bile. Nevertheless, the knowledge of their role in the hepato-biliary system still represents almost a "blank page in the book of physiology." In this review, we first guide the reader through the historical phases of the analysis of bile protein content, emphasizing the recent progresses achieved through the use of proteomic techniques. Thereafter, we deeply explore the involvement of bile proteins in health and disease, with a particular focus on the discovery of biomarkers for biliary tract malignancies.
Collapse
Affiliation(s)
- Annarita Farina
- Biomedical Proteomics Research Group, Department of Human Protein Sciences, Geneva University, Geneva, Switzerland
| | | | | | | |
Collapse
|
39
|
Pampanin DM, Larssen E, Øysæd KB, Sundt RC, Sydnes MO. Study of the bile proteome of Atlantic cod (Gadus morhua): Multi-biological markers of exposure to polycyclic aromatic hydrocarbons. MARINE ENVIRONMENTAL RESEARCH 2014; 101:161-168. [PMID: 25440786 DOI: 10.1016/j.marenvres.2014.10.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 10/14/2014] [Accepted: 10/15/2014] [Indexed: 06/04/2023]
Abstract
PAH metabolites present in bile are well-known biological markers of exposure in fish, and their investigation is recommended by the ICES (International Council for the Exploration of the Sea) and the OSPAR convention (Convention for the Protection of the Marine Environment of the North-East Atlantic) for monitoring purposes. Development of analytical strategies for fish bile is encouraged by the need for more sensitive and informative markers (e.g., capable of tracking the PAH composition of contamination sources) and strengthened by recent results in both fish genomics and proteomics. Herein, the study of the Atlantic cod bile proteome is presented. Preliminary testing for discovering new sensitive markers in the form of expressed proteins affected by PAH exposure (i.e., PAH-protein adducts) is reported. Protein markers were identified using LC-MS/MS analysis, as single biological indicators. Through multivariate analyses, the overall proteome was revealed to be a sensitive multi-biological marker of exposure to PAHs.
Collapse
Affiliation(s)
- Daniela M Pampanin
- IRIS-Environment, International Research Institute of Stavanger, Mekjarvik 12, NO-4070 Randaberg, Norway.
| | - Eivind Larssen
- IRIS-Environment, International Research Institute of Stavanger, Mekjarvik 12, NO-4070 Randaberg, Norway
| | - Kjell Birger Øysæd
- IRIS-Environment, International Research Institute of Stavanger, Mekjarvik 12, NO-4070 Randaberg, Norway
| | - Rolf C Sundt
- IRIS-Environment, International Research Institute of Stavanger, Mekjarvik 12, NO-4070 Randaberg, Norway
| | - Magne O Sydnes
- IRIS-Environment, International Research Institute of Stavanger, Mekjarvik 12, NO-4070 Randaberg, Norway; Faculty of Science and Technology, Department of Mathematics and Natural Science, University of Stavanger, NO-4036 Stavanger, Norway
| |
Collapse
|
40
|
Lim JM, Wollaston-Hayden EE, Teo CF, Hausman D, Wells L. Quantitative secretome and glycome of primary human adipocytes during insulin resistance. Clin Proteomics 2014; 11:20. [PMID: 24948903 PMCID: PMC4055909 DOI: 10.1186/1559-0275-11-20] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 02/04/2014] [Indexed: 01/04/2023] Open
Abstract
Adipose tissue is both an energy storage depot and an endocrine organ. The impaired regulation of the secreted proteins of adipose tissue, known as adipocytokines, observed during obesity contributes to the onset of whole-body insulin resistance and the pathobiology of type 2 diabetes mellitus (T2DM). In addition, the global elevation of the intracellular glycosylation of proteins by O-linked β-N-acetylglucosamine (O-GlcNAc) via either genetic or pharmacological methods is sufficient to induce insulin resistance in both cultured cells and animal models. The elevation of global O-GlcNAc levels is associated with the altered expression of many adipocytokines. We have previously characterized the rodent adipocyte secretome during insulin sensitive and insulin resistant conditions. Here, we characterize and quantify the secretome and glycome of primary human adipocytes during insulin responsive and insulin resistant conditions generated by the classical method of hyperglycemia and hyperinsulinemia or by the pharmacological manipulation of O-GlcNAc levels. Using a proteomic approach, we identify 190 secreted proteins and report a total of 20 up-regulated and 6 down-regulated proteins that are detected in both insulin resistant conditions. Moreover, we apply glycomic techniques to examine (1) the sites of N-glycosylation on secreted proteins, (2) the structures of complex N- and O-glycans, and (3) the relative abundance of complex N- and O-glycans structures in insulin responsive and insulin resistant conditions. We identify 91 N-glycosylation sites derived from 51 secreted proteins, as well as 155 and 29 released N- and O-glycans respectively. We go on to quantify many of the N- and O-glycan structures between insulin responsive and insulin resistance conditions demonstrating no significant changes in complex glycosylation in the time frame for the induction of insulin resistance. Thus, our data support that the O-GlcNAc modification is involved in the regulation of adipocytokine secretion upon the induction of insulin resistance in human adipocytes.
Collapse
Affiliation(s)
- Jae-Min Lim
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, 30602-4712 Athens, Georgia ; Department of Chemistry, The University of Georgia, 30602 Athens, Georgia ; Department of Chemistry, Changwon National University, Changwon, Gyeongnam 641-773, South Korea
| | - Edith E Wollaston-Hayden
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, 30602-4712 Athens, Georgia ; Department of Biochemistry and Molecular Biology, The University of Georgia, 30602 Athens, Georgia
| | - Chin Fen Teo
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, 30602-4712 Athens, Georgia ; Department of Biochemistry and Molecular Biology, The University of Georgia, 30602 Athens, Georgia
| | - Dorothy Hausman
- Department of Foods and Nutrition, The University of Georgia, 30602 Athens, Georgia
| | - Lance Wells
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, 30602-4712 Athens, Georgia ; Department of Chemistry, The University of Georgia, 30602 Athens, Georgia ; Department of Biochemistry and Molecular Biology, The University of Georgia, 30602 Athens, Georgia
| |
Collapse
|
41
|
Farina A. Proximal fluid proteomics for the discovery of digestive cancer biomarkers. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:988-1002. [DOI: 10.1016/j.bbapap.2013.10.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 09/15/2013] [Accepted: 10/22/2013] [Indexed: 12/13/2022]
|
42
|
Silsirivanit A, Sawanyawisuth K, Riggins GJ, Wongkham C. Cancer biomarker discovery for cholangiocarcinoma: the high-throughput approaches. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2014; 21:388-96. [PMID: 24616382 DOI: 10.1002/jhbp.68] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cholangiocarcinoma (CCA) is difficult to diagnose at an early stage and most tumors are detected at late stage where surgery or other therapy is ineffective. Many advanced techniques are applied to diagnose CCA; however, most are expensive and have varying degrees of accuracy. A less invasive and simpler procedure such as serum markers would be of substantial clinical benefit for diagnosis, monitoring, and predicting outcome for CCA patients. Recent advances in "Omics" technologies offer remarkable opportunities for establishment of biomarker-related to diseases. In this review, the potential biomarkers obtained from proteomics and glycomic studies are evaluated. Several protein markers were discovered from patient specimen, using two dimensional-differential gel electrophoresis couple with liquid chromatography tandem mass spectrometry (2D-DIGE/LC-MS-MS), matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF-MS), surface enhanced laser desorption/ionization (SELDI)-TOF-MS and capillary electrophoresis (CE)-MS, etc. Newly reported CCA-associated glyco-biomarkers were identified using lectin-assisted, monoclonal antibody-assisted or specific-target strategies. The combination between carbohydrate binding-lectin and core protein-binding mAb significantly increased the values for detection of the glyco-biomarkers for CCA. Searching for specific and sensitive molecular markers to be used for population screening is worth being evaluated. This could lead to earlier diagnosis and improve outcome. Further investigation of those biomarker functions is also of value in order to better understand the tumor biology and use them as targets for future therapeutic agents.
Collapse
Affiliation(s)
- Atit Silsirivanit
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, 123 Mitraparb Road, Khon Kaen, 40002, Thailand; Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | | | | | | |
Collapse
|
43
|
Yang G, Cui T, Wang Y, Sun S, Ma T, Wang T, Chen Q, Li Z. Selective isolation and analysis of glycoprotein fractions and their glycomes from hepatocellular carcinoma sera. Proteomics 2013; 13:1481-98. [PMID: 23436760 DOI: 10.1002/pmic.201200259] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 01/29/2013] [Accepted: 02/12/2013] [Indexed: 01/20/2023]
Abstract
As one of the most important post-translational modifications, the discovery, isolation, and identification of glycoproteins are becoming increasingly important. In this study, a Con A-magnetic particle conjugate-based method was utilized to selectively isolate the glycoproteins and their glycomes from the healthy donor and hepatocellular carcinoma (HCC) case sera. The isolated glycoproteins and their N-linked glycans were identified by LC-ESI-MS/MS and MALDI-TOF/TOF-MS, respectively. A total of 93 glycoproteins from the healthy donors and 85 glycoproteins from the HCC cases were identified. There were 34 different glycoproteins shown between the healthy donors (21/34) and the HCC cases (13/34). Twenty-eight glycans from the healthy donors and 30 glycans from the HCC cases were detected and there were 22 different glycans shown between the healthy donors (10/22) and HCC cases (12/22). Among these glycoproteins, 50 were known to be N-linked glycoproteins and three novel glycopeptides from two predicted potential glycoproteins were discovered. Moreover, lectin blotting, Western blotting and lectin/glyco-antibody microarrays were applied to definitely elucidate the change of selective protein expressions and their glycosylation levels, the results indicated that the differences of the identified glycoproteins between the healthy donors and HCC cases were caused by the change of both protein expression and their glycosylation levels.
Collapse
Affiliation(s)
- Ganglong Yang
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, PR China
| | | | | | | | | | | | | | | |
Collapse
|
44
|
|
45
|
Abstract
Bile is a unique and vital aqueous secretion of the liver that is formed by the hepatocyte and modified down stream by absorptive and secretory properties of the bile duct epithelium. Approximately 5% of bile consists of organic and inorganic solutes of considerable complexity. The bile-secretory unit consists of a canalicular network which is formed by the apical membrane of adjacent hepatocytes and sealed by tight junctions. The bile canaliculi (∼1 μm in diameter) conduct the flow of bile countercurrent to the direction of portal blood flow and connect with the canal of Hering and bile ducts which progressively increase in diameter and complexity prior to the entry of bile into the gallbladder, common bile duct, and intestine. Canalicular bile secretion is determined by both bile salt-dependent and independent transport systems which are localized at the apical membrane of the hepatocyte and largely consist of a series of adenosine triphosphate-binding cassette transport proteins that function as export pumps for bile salts and other organic solutes. These transporters create osmotic gradients within the bile canalicular lumen that provide the driving force for movement of fluid into the lumen via aquaporins. Species vary with respect to the relative amounts of bile salt-dependent and independent canalicular flow and cholangiocyte secretion which is highly regulated by hormones, second messengers, and signal transduction pathways. Most determinants of bile secretion are now characterized at the molecular level in animal models and in man. Genetic mutations serve to illuminate many of their functions.
Collapse
Affiliation(s)
- James L Boyer
- Department of Medicine and Liver Center, Yale University School of Medicine, New Haven, Connecticut, USA.
| |
Collapse
|
46
|
Lukic N, Visentin R, Delhaye M, Frossard JL, Lescuyer P, Dumonceau JM, Farina A. An integrated approach for comparative proteomic analysis of human bile reveals overexpressed cancer-associated proteins in malignant biliary stenosis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1844:1026-33. [PMID: 23872482 DOI: 10.1016/j.bbapap.2013.06.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 06/21/2013] [Accepted: 06/28/2013] [Indexed: 12/18/2022]
Abstract
Proteomics is a key tool in the identification of new bile biomarkers for differentiating malignant and nonmalignant biliary stenoses. Unfortunately, the complexity of bile and the presence of molecules interfering with protein analysis represent an obstacle for quantitative proteomic studies in bile samples. The simultaneous need to introduce purification steps and minimize the use of pre-fractionation methods inevitably leads to protein loss and limited quantifications. This dramatically reduces the chance of identifying new potential biomarkers. In the present study, we included differential centrifugation as a preliminary step in a quantitative proteomic workflow involving iTRAQ labeling, peptide fractionation by OFFGEL electrophoresis and LC-MS/MS, to compare protein expression in bile samples collected from patients with malignant or nonmalignant biliary stenoses. A total of 1267 proteins were identified, including a set of 322 newly described bile proteins, mainly belonging to high-density cellular fractions. The subsequent comparative analysis led to a 5-fold increase in the number of quantified proteins over previously published studies and highlighted 104 proteins overexpressed in malignant samples. Finally, immunoblot verifications performed on a cohort of 8 malignant (pancreatic adenocarcinoma, n=4; cholangiocarcinoma, n=4) and 5 nonmalignant samples (chronic pancreatitis, n=3; biliary stones, n=2) confirmed the results of proteomic analysis for three proteins: olfactomedin-4, syntenin-2 and Ras-related C3 botulinum toxin substrate 1. This article is part of a Special Issue entitled: Biomarkers: A Proteomic Challenge.
Collapse
Affiliation(s)
- Natalija Lukic
- Biomedical Proteomics Research Group, Department of Human Protein Sciences, Geneva University, Geneva CH-1211, Switzerland
| | - Rémy Visentin
- Biomedical Proteomics Research Group, Department of Human Protein Sciences, Geneva University, Geneva CH-1211, Switzerland
| | - Myriam Delhaye
- Department of Gastroenterology, Erasme Hospital, Free University of Brussels, Brussels BE-1070, Belgium
| | - Jean-Louis Frossard
- Division of Gastroenterology and Hepatology, Geneva University Hospitals, Geneva CH-1211, Switzerland
| | - Pierre Lescuyer
- Biomedical Proteomics Research Group, Department of Human Protein Sciences, Geneva University, Geneva CH-1211, Switzerland; Clinical Proteomics Laboratory, Department of Genetic and Laboratory Medicine, Geneva University Hospitals, Geneva CH-1211, Switzerland
| | - Jean-Marc Dumonceau
- Division of Gastroenterology and Hepatology, Geneva University Hospitals, Geneva CH-1211, Switzerland
| | - Annarita Farina
- Biomedical Proteomics Research Group, Department of Human Protein Sciences, Geneva University, Geneva CH-1211, Switzerland.
| |
Collapse
|
47
|
Differential activation of diverse glutathione transferases of Clonorchis sinensis in response to the host bile and oxidative stressors. PLoS Negl Trop Dis 2013; 7:e2211. [PMID: 23696907 PMCID: PMC3656158 DOI: 10.1371/journal.pntd.0002211] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 04/02/2013] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Clonorchis sinensis causes chronic cumulative infections in the human hepatobiliary tract and is intimately associated with cholangiocarcinoma. Approximately 35 million people are infected and 600 million people are at risk of infections worldwide. C. sinensis excretory-secretory products (ESP) constitute the first-line effector system affecting the host-parasite interrelationship by interacting with bile fluids and ductal epithelium. However, the secretory behavior of C. sinensis in an environment close to natural host conditions is unclear. C. sinensis differs from Fasciola hepatica in migration to, and maturation in, the hepatic bile duct, implying that protein profile of the ESP of these two trematodes might be different from each other. METHODOLOGY/PRINCIPAL FINDINGS We conducted systemic approaches to analyze the C. sinensis ESP proteome and the biological reactivity of C. sinensis glutathione transferases (GSTs), such as global expression patterns and induction profiles under oxidative stress and host bile. When we observed ex host excretion behavior of C. sinensis in the presence of 10% host bile, the global proteome pattern was not significantly altered, but the amount of secretory proteins was increased by approximately 3.5-fold. Bioactive molecules secreted by C. sinensis revealed universal/unique features in relation to its intraluminal hydrophobic residing niche. A total of 38 protein spots identified abundantly included enzymes involved in glucose metabolism (11 spots, 28.9%) and diverse-classes of glutathione transferases (GSTs; 10 spots, 26.3%). Cathepsin L/F (four spots, 10.5%) and transporter molecules (three spots, 7.9%) were also recognized. The universal secretory proteins found in other parasites, such as several enzymes involved in glucose metabolism and oxygen transporters, were commonly detected. C. sinensis secreted less cysteine proteases and fatty acid binding proteins compared to other tissue-invading or intravascular trematodes. Interestingly, secretion of a 28 kDa σ-class GST (Cs28σGST3) was significantly affected by the host bile, involving reduced secretion of the 28 kDa species and augmented secretion of Cs28σGST3-related high-molecular-weight 85 kDa protein. Oxidative stressors induced upregulated secretion of 28 kDa Cs28σGST3, but not an 85 kDa species. A secretory 26 kDa μ-class GST (Cs26μGST2) was increased upon treatment with oxidative stressors and bile juice, while another 28 kDa σ-class GST (Cs28σGST1) showed negligible responses. CONCLUSIONS/SIGNIFICANCE Our results represent the first analysis of the genuine nature of the C. sinensis ESP proteome in the presence of host bile mimicking the natural host environments. The behavioral patterns of migration and maturation of C. sinensis in the bile ducts might contribute to the secretion of copious amounts of diverse GSTs, but a smaller quantity and fewer kinds of cysteine proteases. The Cs28σGST1 and its paralog(s) detoxify endogenous oxidative molecules, while Cs28σGST3 and Cs26μGST2 conjugate xenobiotics/hydrophobic substances in the extracellular environments, which imply that diverse C. sinensis GSTs might have evolved for each of the multiple specialized functions.
Collapse
|
48
|
The Application of SILAC Mouse in Human Body Fluid Proteomics Analysis Reveals Protein Patterns Associated with IgA Nephropathy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:275390. [PMID: 23762118 PMCID: PMC3671237 DOI: 10.1155/2013/275390] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 04/18/2013] [Indexed: 01/07/2023]
Abstract
Body fluid proteome is the most informative proteome from a medical viewpoint. But the lack of accurate quantitation method for complicated body fluid limited its application in disease research and biomarker discovery. To address this problem, we introduced a novel strategy, in which SILAC-labeled mouse serum was used as internal standard for human serum and urine proteome analysis. The SILAC-labeled mouse serum was mixed with human serum and urine, and multidimensional separation coupled with tandem mass spectrometry (IEF-LC-MS/MS) analysis was performed. The shared peptides between two species were quantified by their SILAC pairs, and the human-only peptides were quantified by mouse peptides with coelution. The comparison for the results from two replicate experiments indicated the high repeatability of our strategy. Then the urine from Immunoglobulin A nephropathy patients treated and untreated was compared by this quantitation strategy. Fifty-three peptides were found to be significantly changed between two groups, including both known diagnostic markers for IgAN and novel candidates, such as Complement C3, Albumin, VDBP, ApoA,1 and IGFBP7. In conclusion, we have developed a practical and accurate quantitation strategy for comparison of complicated human body fluid proteome. The results from such strategy could provide potential disease-related biomarkers for evaluation of treatment.
Collapse
|
49
|
Matsuda A, Kuno A, Matsuzaki H, Kawamoto T, Shikanai T, Nakanuma Y, Yamamoto M, Ohkohchi N, Ikehara Y, Shoda J, Hirabayashi J, Narimatsu H. Glycoproteomics-based cancer marker discovery adopting dual enrichment with Wisteria floribunda agglutinin for high specific glyco-diagnosis of cholangiocarcinoma. J Proteomics 2013; 85:1-11. [PMID: 23612463 DOI: 10.1016/j.jprot.2013.04.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 03/30/2013] [Accepted: 04/11/2013] [Indexed: 12/22/2022]
Abstract
UNLABELLED Cholangiocarcinoma (CC) is a lethal malignancy because it exhibits asymptomatic growth infiltrating the surrounding structures and therefore is usually detected at an advanced stage. The mainstay of treatment for CC is complete resection with negative surgical margins. Therefore, its diagnosis at a relatively early stage is demanded for performing relevant surgical resection. Since the definitive CC diagnosis depends on invasive methods such as biliary cytology and biopsy, a noninvasive assay with high diagnostic accuracy is keenly required. We therefore developed a CC marker with high specificity by the Wisteria floribunda agglutinin (WFA)-assisted glycoproteomics approach. WFA-positive glycoproteins were enriched by the direct dissection of the WFA-stained CC tissue region and following WFA-agarose column chromatography. Subsequent analysis by mass spectrometry identified 71 proteins as candidate markers. Screening of these candidates by gene expression profiling and immunohistochemistry resulted in the selection of L1 cell adhesion molecule (L1CAM) as the most specific CC marker. We confirmed the importance of WFA-positivity for L1CAM using both bile and serum of CC and benign bile duct disease patients. Specifically, WFA-positive L1CAM was enriched from serum by the WFA-assisted affinity capturing, with which CC was efficiently distinguished from benign. In the primary verification study using bile from CC patients (n=29) and that of benign bile duct disease (n=29), WFA-positive L1CAM distinguished CC with high specificity (sensitivity=0.66, specificity=0.93, overall accuracy=0.79, area under the receiver operating curve [AUC]=0.82). The combined use of the WFA-positive L1CAM assay with the high sensitive assay detecting WFA-positive sialylated mucin 1 sufficiently improved the diagnostic accuracy of CC (overall accuracy=0.84, AUC=0.93). This combination will possibly be a precise procedure for CC diagnosis compared with conventional diagnostic techniques. BIOLOGICAL SIGNIFICANCE In this study, we constructed the system for verification of the candidate molecules that exhibit disease specific glyco-alterations and discovered a useful CC marker by the glycoproteomics-assisted strategy for biomarker discovery. Based on the strategy, we previously found that WFA is the best probe to detect CC-specific glycosylation and WFA-positive sialyl MUC1 as a possible biomarker candidate. While the diagnostic specificity of WFA-positive sialyl MUC1 was not superb, we proposed a new biomarker candidate WFA-positive L1CAM with high specificity in bile and serum to complement the previous one. We proved that the novel combination assay of WFA-L1CAM and WFA-sialyl MUC1 selected based on our strategy has the possibility to become a reliable serological test. This study represents application of our strategy, which can be extrapolated to discovery of marker candidates for other diseases.
Collapse
Affiliation(s)
- Atsushi Matsuda
- Research Center for Medical Glycoscience-RCMG, National Institute of Advanced Industrial Science and Technology-AIST, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Stamp LA, Braxton DR, Wu J, Akopian V, Hasegawa K, Chandrasoma PT, Hawes SM, McLean C, Petrovic LM, Wang K, Pera MF. The GCTM-5 epitope associated with the mucin-like glycoprotein FCGBP marks progenitor cells in tissues of endodermal origin. Stem Cells 2013; 30:1999-2009. [PMID: 22761039 DOI: 10.1002/stem.1167] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Monoclonal antibodies against cell surface markers are powerful tools in the study of tissue regeneration, repair, and neoplasia, but there is a paucity of specific reagents to identify stem and progenitor cells in tissues of endodermal origin. The epitope defined by the GCTM-5 monoclonal antibody is a putative marker of hepatic progenitors. We sought to analyze further the distribution of the GCTM-5 antigen in normal tissues and disease states and to characterize the antigen biochemically. The GCTM-5 epitope was specifically expressed on tissues derived from the definitive endoderm, in particular the fetal gut, liver, and pancreas. Antibody reactivity was detected in subpopulations of normal adult biliary and pancreatic duct cells, and GCTM-5-positive cells isolated from the nonparenchymal fraction of adult liver expressed markers of progenitor cells. The GCTM-5-positive cell populations in liver and pancreas expanded greatly in numbers in disease states such as biliary atresia, cirrhosis, and pancreatitis. Neoplasms arising in these tissues also expressed the GCTM-5 antigen, with pancreatic adenocarcinoma in particular showing strong and consistent reactivity. The GCTM-5 epitope was also strongly displayed on cells undergoing intestinal metaplasia in Barrett's esophagus, a precursor to esophageal carcinoma. Biochemical, mass spectrometry, and immunochemical studies revealed that the GCTM-5 epitope is associated with the mucin-like glycoprotein FCGBP. The GCTM-5 epitope on the mucin-like glycoprotein FCGBP is a cell surface marker for the study of normal differentiation lineages, regeneration, and disease progression in tissues of endodermal origin.
Collapse
Affiliation(s)
- Lincon A Stamp
- Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|