1
|
Prasad B, Al-Majdoub ZM, Wegler C, Rostami-Hodjegan A, Achour B. Quantitative Proteomics for Translational Pharmacology and Precision Medicine: State of The Art and Future Outlook. Drug Metab Dispos 2024; 52:1208-1216. [PMID: 38821856 DOI: 10.1124/dmd.124.001600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/02/2024] [Accepted: 05/22/2024] [Indexed: 06/02/2024] Open
Abstract
Over the past 20 years, quantitative proteomics has contributed a wealth of protein expression data, which are currently used for a variety of systems pharmacology applications, as a complement or a surrogate for activity of the corresponding proteins. A symposium at the 25th North American International Society for the Study of Xenobiotics meeting, in Boston, in September 2023, was held to explore current and emerging applications of quantitative proteomics in translational pharmacology and strategies for improved integration into model-informed drug development based on practical experience of each of the presenters. A summary of the talks and discussions is presented in this perspective alongside future outlook that was outlined for future meetings. SIGNIFICANCE STATEMENT: This perspective explores current and emerging applications of quantitative proteomics in translational pharmacology and precision medicine and outlines the outlook for improved integration into model-informed drug development.
Collapse
Affiliation(s)
- Bhagwat Prasad
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (B.P.); Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (Z.M.A.-M., A.R.-H.); Department of Plant Physiology, Umeå University, Umeå, Sweden (C.W.); Certara UK, Sheffield, United Kingdom (A.R.-H.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, the University of Rhode Island, Kingston, Rhode Island (B.A.)
| | - Zubida M Al-Majdoub
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (B.P.); Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (Z.M.A.-M., A.R.-H.); Department of Plant Physiology, Umeå University, Umeå, Sweden (C.W.); Certara UK, Sheffield, United Kingdom (A.R.-H.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, the University of Rhode Island, Kingston, Rhode Island (B.A.)
| | - Christine Wegler
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (B.P.); Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (Z.M.A.-M., A.R.-H.); Department of Plant Physiology, Umeå University, Umeå, Sweden (C.W.); Certara UK, Sheffield, United Kingdom (A.R.-H.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, the University of Rhode Island, Kingston, Rhode Island (B.A.)
| | - Amin Rostami-Hodjegan
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (B.P.); Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (Z.M.A.-M., A.R.-H.); Department of Plant Physiology, Umeå University, Umeå, Sweden (C.W.); Certara UK, Sheffield, United Kingdom (A.R.-H.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, the University of Rhode Island, Kingston, Rhode Island (B.A.)
| | - Brahim Achour
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (B.P.); Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (Z.M.A.-M., A.R.-H.); Department of Plant Physiology, Umeå University, Umeå, Sweden (C.W.); Certara UK, Sheffield, United Kingdom (A.R.-H.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, the University of Rhode Island, Kingston, Rhode Island (B.A.)
| |
Collapse
|
2
|
Padilla JCA, Barutcu S, Malet L, Deschamps-Francoeur G, Calderon V, Kwon E, Lécuyer E. Profiling the polyadenylated transcriptome of extracellular vesicles with long-read nanopore sequencing. BMC Genomics 2023; 24:564. [PMID: 37736705 PMCID: PMC10514964 DOI: 10.1186/s12864-023-09552-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/03/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND While numerous studies have described the transcriptomes of extracellular vesicles (EVs) in different cellular contexts, these efforts have typically relied on sequencing methods requiring RNA fragmentation, which limits interpretations on the integrity and isoform diversity of EV-targeted RNA populations. It has been assumed that mRNA signatures in EVs are likely to be fragmentation products of the cellular mRNA material, and the extent to which full-length mRNAs are present within EVs remains to be clarified. RESULTS Using long-read nanopore RNA sequencing, we sought to characterize the full-length polyadenylated (poly-A) transcriptome of EVs released by human chronic myelogenous leukemia K562 cells. We detected 443 and 280 RNAs that were respectively enriched or depleted in EVs. EV-enriched poly-A transcripts consist of a variety of biotypes, including mRNAs, long non-coding RNAs, and pseudogenes. Our analysis revealed that 10.58% of all EV reads, and 18.67% of all cellular (WC) reads, corresponded to known full-length transcripts, with mRNAs representing the largest biotype for each group (EV = 58.13%, WC = 43.93%). We also observed that for many well-represented coding and non-coding genes, diverse full-length transcript isoforms were present in EV specimens, and these isoforms were reflective-of but often in different ratio compared to cellular samples. CONCLUSION This work provides novel insights into the compositional diversity of poly-A transcript isoforms enriched within EVs, while also underscoring the potential usefulness of nanopore sequencing to interrogate secreted RNA transcriptomes.
Collapse
Affiliation(s)
- Juan-Carlos A Padilla
- Institut de Recherches Cliniques de Montréal (IRCM), 110 Avenue des Pins, Ouest, Montréal, QC, H2W 1R7, Canada
- Division of Experimental Medicine, McGill University, Montréal, QC, H4A 3J1, Canada
| | - Seda Barutcu
- Institut de Recherches Cliniques de Montréal (IRCM), 110 Avenue des Pins, Ouest, Montréal, QC, H2W 1R7, Canada
| | - Ludovic Malet
- Institut de Recherches Cliniques de Montréal (IRCM), 110 Avenue des Pins, Ouest, Montréal, QC, H2W 1R7, Canada
| | | | - Virginie Calderon
- Institut de Recherches Cliniques de Montréal (IRCM), 110 Avenue des Pins, Ouest, Montréal, QC, H2W 1R7, Canada
| | - Eunjeong Kwon
- Institut de Recherches Cliniques de Montréal (IRCM), 110 Avenue des Pins, Ouest, Montréal, QC, H2W 1R7, Canada
| | - Eric Lécuyer
- Institut de Recherches Cliniques de Montréal (IRCM), 110 Avenue des Pins, Ouest, Montréal, QC, H2W 1R7, Canada.
- Division of Experimental Medicine, McGill University, Montréal, QC, H4A 3J1, Canada.
- Département de Biochimie et de Médecine Moléculaire, Université de Montréal, Montréal, QC, H3T 1J4, Canada.
| |
Collapse
|
3
|
Recent Developments in Clinical Plasma Proteomics—Applied to Cardiovascular Research. Biomedicines 2022; 10:biomedicines10010162. [PMID: 35052841 PMCID: PMC8773619 DOI: 10.3390/biomedicines10010162] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/05/2022] [Accepted: 01/12/2022] [Indexed: 01/27/2023] Open
Abstract
The human plasma proteome mirrors the physiological state of the cardiovascular system, a fact that has been used to analyze plasma biomarkers in routine analysis for the diagnosis and monitoring of cardiovascular diseases for decades. These biomarkers address, however, only a very limited subset of cardiovascular diseases, such as acute myocardial infarct or acute deep vein thrombosis, and clinical plasma biomarkers for the diagnosis and stratification cardiovascular diseases that are growing in incidence, such as heart failure and abdominal aortic aneurysm, do not exist and are urgently needed. The discovery of novel biomarkers in plasma has been hindered by the complexity of the human plasma proteome that again transforms into an extreme analytical complexity when it comes to the discovery of novel plasma biomarkers. This complexity is, however, addressed by recent achievements in technologies for analyzing the human plasma proteome, thereby facilitating the possibility for novel biomarker discoveries. The aims of this article is to provide an overview of the recent achievements in technologies for proteomic analysis of the human plasma proteome and their applications in cardiovascular medicine.
Collapse
|
4
|
Salz R, Bouwmeester R, Gabriels R, Degroeve S, Martens L, Volders PJ, 't Hoen PAC. Personalized Proteome: Comparing Proteogenomics and Open Variant Search Approaches for Single Amino Acid Variant Detection. J Proteome Res 2021; 20:3353-3364. [PMID: 33998808 PMCID: PMC8280751 DOI: 10.1021/acs.jproteome.1c00264] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Indexed: 12/30/2022]
Abstract
Discovery of variant peptides such as a single amino acid variant (SAAV) in shotgun proteomics data is essential for personalized proteomics. Both the resolution of shotgun proteomics methods and the search engines have improved dramatically, allowing for confident identification of SAAV peptides. However, it is not yet known if these methods are truly successful in accurately identifying SAAV peptides without prior genomic information in the search database. We studied this in unprecedented detail by exploiting publicly available long-read RNA sequences and shotgun proteomics data from the gold standard reference cell line NA12878. Searching spectra from this cell line with the state-of-the-art open modification search engine ionbot against carefully curated search databases resulted in 96.7% false-positive SAAVs and an 85% lower true positive rate than searching with peptide search databases that incorporate prior genetic information. While adding genetic variants to the search database remains indispensable for correct peptide identification, inclusion of long-read RNA sequences in the search database contributes only 0.3% new peptide identifications. These findings reveal the differences in SAAV detection that result from various approaches, providing guidance to researchers studying SAAV peptides and developers of peptide spectrum identification tools.
Collapse
Affiliation(s)
- Renee Salz
- Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen 6525 GA, The Netherlands
| | - Robbin Bouwmeester
- VIB-UGent Center for Medical Biotechnology VIB, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium
| | - Ralf Gabriels
- VIB-UGent Center for Medical Biotechnology VIB, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium
| | - Sven Degroeve
- VIB-UGent Center for Medical Biotechnology VIB, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium
| | - Lennart Martens
- VIB-UGent Center for Medical Biotechnology VIB, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium
| | - Pieter-Jan Volders
- VIB-UGent Center for Medical Biotechnology VIB, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium
| | - Peter A C 't Hoen
- Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen 6525 GA, The Netherlands
| |
Collapse
|
5
|
Teixeira CSS, Cerqueira NMFSA, Gomes P, Sousa SF. A Molecular Perspective on Sirtuin Activity. Int J Mol Sci 2020; 21:ijms21228609. [PMID: 33203121 PMCID: PMC7696986 DOI: 10.3390/ijms21228609] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/07/2020] [Accepted: 11/13/2020] [Indexed: 12/13/2022] Open
Abstract
The protein acetylation of either the α-amino groups of amino-terminal residues or of internal lysine or cysteine residues is one of the major posttranslational protein modifications that occur in the cell with repercussions at the protein as well as at the metabolome level. The lysine acetylation status is determined by the opposing activities of lysine acetyltransferases (KATs) and lysine deacetylases (KDACs), which add and remove acetyl groups from proteins, respectively. A special group of KDACs, named sirtuins, that require NAD+ as a substrate have received particular attention in recent years. They play critical roles in metabolism, and their abnormal activity has been implicated in several diseases. Conversely, the modulation of their activity has been associated with protection from age-related cardiovascular and metabolic diseases and with increased longevity. The benefits of either activating or inhibiting these enzymes have turned sirtuins into attractive therapeutic targets, and considerable effort has been directed toward developing specific sirtuin modulators. This review summarizes the protein acylation/deacylation processes with a special focus on the current developments in the sirtuin research field.
Collapse
Affiliation(s)
- Carla S. S. Teixeira
- UCIBIO/REQUIMTE, BioSIM - Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; (C.S.S.T.); (N.M.F.S.A.C.)
| | - Nuno M. F. S. A. Cerqueira
- UCIBIO/REQUIMTE, BioSIM - Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; (C.S.S.T.); (N.M.F.S.A.C.)
| | - Pedro Gomes
- Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal;
- Center for Health Technology and Services Research (CINTESIS), University of Porto, R. Dr. Plácido da Costa, 4200-450 Porto, Portugal
- Institute of Pharmacology and Experimental Therapeutics, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Azinhaga Santa Comba, Celas, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Azinhaga Santa Comba, Celas, 3000-548 Coimbra, Portugal
| | - Sérgio F. Sousa
- UCIBIO/REQUIMTE, BioSIM - Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; (C.S.S.T.); (N.M.F.S.A.C.)
- Correspondence: ; Tel.: +351-22-551-3600
| |
Collapse
|
6
|
Baerenfaenger M, Meyer B. Simultaneous characterization of SNPs and N-glycans from multiple glycosylation sites of intact β-2-glycoprotein-1 (B2GP1) by ESI-qTOF-MS. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:556-564. [DOI: 10.1016/j.bbapap.2019.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/21/2019] [Accepted: 03/19/2019] [Indexed: 12/16/2022]
|
7
|
Arnold RJ, Saraswat S, Reilly JP. Analysis of Methylation, Acetylation, and Other Modifications in Bacterial Ribosomal Proteins. Methods Mol Biol 2019; 1934:293-307. [PMID: 31256386 DOI: 10.1007/978-1-4939-9055-9_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A wide variety of posttranslational modifications of expressed proteins are known to occur in living organisms (Krishna R, Wold F. Post-translational modification of proteins. In: Meister A (ed) Advances in enzymology and related areas of molecular biology. Wiley, New York, 1993, pp 265-296). Although their presence in an organism cannot be predicted from the genome, these modifications can play critical roles in protein structure and function. The identification of posttranslational modifications is critical to our understanding of the functions of proteins involved in important biological pathways and mass spectrometry offers a fast, accurate method for observing them. A combined top-down/bottom-up approach can be used for identification and localization of posttranslational modifications of ribosomal proteins. This chapter describes procedures for analyzing Escherichia coli ribosomal proteins and their modifications by matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF) mass spectrometry. It also covers the analysis of gram-negative Caulobacter crescentus and gram-positive Bacillus subtilis ribosomal proteins by electrospray quadrupole time-of-flight (ESI-QTOF) mass spectrometry. Confirmation of the occurrence and localization of PTMs is obtained through mass spectrometric analysis of tryptic peptides.
Collapse
Affiliation(s)
- Randy J Arnold
- Department of Chemistry, Indiana University, Bloomington, IN, USA
| | - Suraj Saraswat
- Department of Chemistry, Indiana University, Bloomington, IN, USA
| | - James P Reilly
- Department of Chemistry, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
8
|
Yang R, Zhu D. A graph-based filtering method for top-down mass spectral identification. BMC Genomics 2018; 19:666. [PMID: 30255788 PMCID: PMC6157290 DOI: 10.1186/s12864-018-5026-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Database search has been the main approach for proteoform identification by top-down tandem mass spectrometry. However, when the target proteoform that produced the spectrum contains post-translational modifications (PTMs) and/or mutations, it is quite time consuming to align a query spectrum against all protein sequences without any PTMs and mutations in a large database. Consequently, it is essential to develop efficient and sensitive filtering algorithms for speeding up database search. RESULTS In this paper, we propose a spectrum graph matching (SGM) based protein sequence filtering method for top-down mass spectral identification. It uses the subspectra of a query spectrum to generate spectrum graphs and searches them against a protein database to report the best candidates. As the sequence tag and gaped tag approaches need the preprocessing step to extract and select tags, the SGM filtering method circumvents this preprocessing step, thus simplifying data processing. We evaluated the filtration efficiency of the SGM filtering method with various parameter settings on an Escherichia coli top-down mass spectrometry data set and compared the performances of the SGM filtering method and two tag-based filtering methods on a data set of MCF-7 cells. CONCLUSIONS Experimental results on the data sets show that the SGM filtering method achieves high sensitivity in protein sequence filtration. When coupled with a spectral alignment algorithm, the SGM filtering method significantly increases the number of identified proteoform spectrum-matches compared with the tag-based methods in top-down mass spectrometry data analysis.
Collapse
Affiliation(s)
- Runmin Yang
- School of Computer Science and Technology, Shandong University, 1500, Shun Hua Lu, Jinan, 250101, China
| | - Daming Zhu
- School of Computer Science and Technology, Shandong University, 1500, Shun Hua Lu, Jinan, 250101, China.
| |
Collapse
|
9
|
Kiseleva OI, Lisitsa AV, Poverennaya EV. Proteoforms: Methods of Analysis and Clinical Prospects. Mol Biol 2018. [DOI: 10.1134/s0026893318030068] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Yang R, Zhu D, Kou Q, Bhat-Nakshatri P, Nakshatri H, Wu S, Liu X. A Spectrum Graph-Based Protein Sequence Filtering Algorithm for Proteoform Identification by Top-Down Mass Spectrometry. PROCEEDINGS. IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE 2018; 2017:222-229. [PMID: 29503761 DOI: 10.1109/bibm.2017.8217653] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Database search is the main approach for identifying proteoforms using top-down tandem mass spectra. However, it is extremely slow to align a query spectrum against all protein sequences in a large database when the target proteoform that produced the spectrum contains post-translational modifications and/or mutations. As a result, efficient and sensitive protein sequence filtering algorithms are essential for speeding up database search. In this paper, we propose a novel filtering algorithm, which generates spectrum graphs from subspectra of the query spectrum and searches them against the protein database to find good candidates. Compared with the sequence tag and gaped tag approaches, the proposed method circumvents the step of tag extraction, thus simplifying data processing. Experimental results on real data showed that the proposed method achieved both high speed and high sensitivity in protein sequence filtration.
Collapse
Affiliation(s)
- Runmin Yang
- School of Computer Science and Technology, Shandong University.,Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis
| | - Daming Zhu
- School of Computer Science and Technology, Shandong University
| | - Qiang Kou
- Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis
| | | | | | - Si Wu
- Department of Chemistry and Biochemistry, University of Oklahoma
| | - Xiaowen Liu
- Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis.,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine
| |
Collapse
|
11
|
Dai Y, Shortreed MR, Scalf M, Frey BL, Cesnik AJ, Solntsev S, Schaffer LV, Smith LM. Elucidating Escherichia coli Proteoform Families Using Intact-Mass Proteomics and a Global PTM Discovery Database. J Proteome Res 2017; 16:4156-4165. [PMID: 28968100 PMCID: PMC5679780 DOI: 10.1021/acs.jproteome.7b00516] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A proteoform family is a group of related molecular forms of a protein (proteoforms) derived from the same gene. We have previously described a strategy to identify proteoforms and elucidate proteoform families in complex mixtures of intact proteins. The strategy is based upon measurements of two properties for each proteoform: (i) the accurate proteoform intact-mass, measured by liquid chromatography/mass spectrometry (LC-MS), and (ii) the number of lysine residues in each proteoform, determined using an isotopic labeling approach. These measured properties are then compared with those extracted from a catalog of theoretical proteoforms containing protein sequences and localized post-translational modifications (PTMs) for the organism under study. A match between the measured properties and those in the catalog constitutes an identification of the proteoform. In the present study, this strategy is extended by utilizing a global PTM discovery database and is applied to the widely studied model organism Escherichia coli, providing the most comprehensive elucidation of E. coli proteoforms and proteoform families to date.
Collapse
Affiliation(s)
- Yunxiang Dai
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Michael R. Shortreed
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Mark Scalf
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Brian L. Frey
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Anthony J. Cesnik
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Stefan Solntsev
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Leah V. Schaffer
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Lloyd M. Smith
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
- Genome Center of Wisconsin, University of Wisconsin, 425G Henry Mall, Room 3420, Madison, Wisconsin 53706, United States
| |
Collapse
|
12
|
Choong WK, Lih TSM, Chen YJ, Sung TY. Decoding the Effect of Isobaric Substitutions on Identifying Missing Proteins and Variant Peptides in Human Proteome. J Proteome Res 2017; 16:4415-4424. [DOI: 10.1021/acs.jproteome.7b00342] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wai-Kok Choong
- Institute of Information Science, Academia Sinica, Taipei 11529, Taiwan
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Tung-Shing Mamie Lih
- Institute of Information Science, Academia Sinica, Taipei 11529, Taiwan
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Yu-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Ting-Yi Sung
- Institute of Information Science, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
13
|
Ponomarenko EA, Poverennaya EV, Ilgisonis EV, Pyatnitskiy MA, Kopylov AT, Zgoda VG, Lisitsa AV, Archakov AI. The Size of the Human Proteome: The Width and Depth. Int J Anal Chem 2016; 2016:7436849. [PMID: 27298622 PMCID: PMC4889822 DOI: 10.1155/2016/7436849] [Citation(s) in RCA: 280] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 04/11/2016] [Accepted: 04/19/2016] [Indexed: 01/01/2023] Open
Abstract
This work discusses bioinformatics and experimental approaches to explore the human proteome, a constellation of proteins expressed in different tissues and organs. As the human proteome is not a static entity, it seems necessary to estimate the number of different protein species (proteoforms) and measure the number of copies of the same protein in a specific tissue. Here, meta-analysis of neXtProt knowledge base is proposed for theoretical prediction of the number of different proteoforms that arise from alternative splicing (AS), single amino acid polymorphisms (SAPs), and posttranslational modifications (PTMs). Three possible cases are considered: (1) PTMs and SAPs appear exclusively in the canonical sequences of proteins, but not in splice variants; (2) PTMs and SAPs can occur in both proteins encoded by canonical sequences and in splice variants; (3) all modification types (AS, SAP, and PTM) occur as independent events. Experimental validation of proteoforms is limited by the analytical sensitivity of proteomic technology. A bell-shaped distribution histogram was generated for proteins encoded by a single chromosome, with the estimation of copy numbers in plasma, liver, and HepG2 cell line. The proposed metabioinformatics approaches can be used for estimation of the number of different proteoforms for any group of protein-coding genes.
Collapse
|
14
|
Choong WK, Chang HY, Chen CT, Tsai CF, Hsu WL, Chen YJ, Sung TY. Informatics View on the Challenges of Identifying Missing Proteins from Shotgun Proteomics. J Proteome Res 2015; 14:5396-407. [DOI: 10.1021/acs.jproteome.5b00482] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Wai-Kok Choong
- Institute
of Information Science, Academia Sinica, Taipei 11529, Taiwan
| | - Hui-Yin Chang
- Institute
of Information Science, Academia Sinica, Taipei 11529, Taiwan
- Bioinformatics
Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Institute
of Biomedical Informatics, National Yang-Ming University, Taipei 11221, Taiwan
| | - Ching-Tai Chen
- Institute
of Information Science, Academia Sinica, Taipei 11529, Taiwan
| | - Chia-Feng Tsai
- Institute
of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Wen-Lian Hsu
- Institute
of Information Science, Academia Sinica, Taipei 11529, Taiwan
| | - Yu-Ju Chen
- Institute
of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Ting-Yi Sung
- Institute
of Information Science, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
15
|
Shortreed MR, Wenger CD, Frey BL, Sheynkman GM, Scalf M, Keller MP, Attie AD, Smith LM. Global Identification of Protein Post-translational Modifications in a Single-Pass Database Search. J Proteome Res 2015; 14:4714-20. [PMID: 26418581 PMCID: PMC4642219 DOI: 10.1021/acs.jproteome.5b00599] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Bottom-up
proteomics database search algorithms used for peptide
identification cannot comprehensively identify post-translational
modifications (PTMs) in a single-pass because of high false discovery
rates (FDRs). A new approach to database searching enables global
PTM (G-PTM) identification by exclusively looking for curated PTMs,
thereby avoiding the FDR penalty experienced during conventional variable
modification searches. We identified over 2200 unique, high-confidence
modified peptides comprising 26 different PTM types in a single-pass
database search.
Collapse
Affiliation(s)
- Michael R Shortreed
- Department of Chemistry and ‡Department of Biochemistry, University of Wisconsin , Madison, Wisconsin 53706, United States
| | - Craig D Wenger
- Department of Chemistry and ‡Department of Biochemistry, University of Wisconsin , Madison, Wisconsin 53706, United States
| | - Brian L Frey
- Department of Chemistry and ‡Department of Biochemistry, University of Wisconsin , Madison, Wisconsin 53706, United States
| | - Gloria M Sheynkman
- Department of Chemistry and ‡Department of Biochemistry, University of Wisconsin , Madison, Wisconsin 53706, United States
| | - Mark Scalf
- Department of Chemistry and ‡Department of Biochemistry, University of Wisconsin , Madison, Wisconsin 53706, United States
| | - Mark P Keller
- Department of Chemistry and ‡Department of Biochemistry, University of Wisconsin , Madison, Wisconsin 53706, United States
| | - Alan D Attie
- Department of Chemistry and ‡Department of Biochemistry, University of Wisconsin , Madison, Wisconsin 53706, United States
| | - Lloyd M Smith
- Department of Chemistry and ‡Department of Biochemistry, University of Wisconsin , Madison, Wisconsin 53706, United States
| |
Collapse
|
16
|
Baraniuk JN, Casado B, Pannell LK, McGarvey PB, Boschetto P, Luisetti M, Iadarola P. Protein networks in induced sputum from smokers and COPD patients. Int J Chron Obstruct Pulmon Dis 2015; 10:1957-75. [PMID: 26396508 PMCID: PMC4576903 DOI: 10.2147/copd.s75978] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
RATIONALE Subtypes of cigarette smoke-induced disease affect different lung structures and may have distinct pathophysiological mechanisms. OBJECTIVE To determine if proteomic classification of the cellular and vascular origins of sputum proteins can characterize these mechanisms and phenotypes. SUBJECTS AND METHODS Individual sputum specimens from lifelong nonsmokers (n=7) and smokers with normal lung function (n=13), mucous hypersecretion with normal lung function (n=11), obstructed airflow without emphysema (n=15), and obstruction plus emphysema (n=10) were assessed with mass spectrometry. Data reduction, logarithmic transformation of spectral counts, and Cytoscape network-interaction analysis were performed. The original 203 proteins were reduced to the most informative 50. Sources were secretory dimeric IgA, submucosal gland serous and mucous cells, goblet and other epithelial cells, and vascular permeability. RESULTS Epithelial proteins discriminated nonsmokers from smokers. Mucin 5AC was elevated in healthy smokers and chronic bronchitis, suggesting a continuum with the severity of hypersecretion determined by mechanisms of goblet-cell hyperplasia. Obstructed airflow was correlated with glandular proteins and lower levels of Ig joining chain compared to other groups. Emphysema subjects' sputum was unique, with high plasma proteins and components of neutrophil extracellular traps, such as histones and defensins. In contrast, defensins were correlated with epithelial proteins in all other groups. Protein-network interactions were unique to each group. CONCLUSION The proteomes were interpreted as complex "biosignatures" that suggest distinct pathophysiological mechanisms for mucin 5AC hypersecretion, airflow obstruction, and inflammatory emphysema phenotypes. Proteomic phenotyping may improve genotyping studies by selecting more homogeneous study groups. Each phenotype may require its own mechanistically based diagnostic, risk-assessment, drug- and other treatment algorithms.
Collapse
Affiliation(s)
- James N Baraniuk
- Division of Rheumatology, Immunology and Allergy, Georgetown University, Washington, DC, USA
| | - Begona Casado
- Division of Rheumatology, Immunology and Allergy, Georgetown University, Washington, DC, USA
| | - Lewis K Pannell
- Proteomics and Mass Spectrometry Laboratory, Mitchell Cancer Center, University of South Alabama, Mobile, AL, USA
| | - Peter B McGarvey
- Innovation Center for Biomedical Informatics, Georgetown University, Washington, DC, USA
| | - Piera Boschetto
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Maurizio Luisetti
- SC Pneumologia, Dipartimento Medicina Molecolare, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Paolo Iadarola
- Lazzaro Spallanzani Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| |
Collapse
|
17
|
Dissecting human skeletal muscle troponin proteoforms by top-down mass spectrometry. J Muscle Res Cell Motil 2015; 36:169-81. [PMID: 25613324 DOI: 10.1007/s10974-015-9404-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 01/07/2015] [Indexed: 01/26/2023]
Abstract
Skeletal muscles are the most abundant tissues in the human body. They are composed of a heterogeneous collection of muscle fibers that perform various functions. Skeletal muscle troponin (sTn) regulates skeletal muscle contraction and relaxation. sTn consists of 3 subunits, troponin I (TnI), troponin T (TnT), and troponin C (TnC). TnI inhibits the actomyosin Mg(2+)-ATPase, TnC binds Ca(2+), and TnT is the tropomyosin (Tm)-binding subunit. The cardiac and skeletal isoforms of Tn share many similarities but the roles of modifications of Tn in the two muscles may differ. The modifications of cardiac Tn are known to alter muscle contractility and have been well-characterized. However, the modification status of sTn remains unclear. Here, we have employed top-down mass spectrometry (MS) to decipher the modifications of human sTnT and sTnI. We have extensively characterized sTnT and sTnI proteoforms, including alternatively spliced isoforms and post-translationally modified forms, found in human skeletal muscle with high mass accuracy and comprehensive sequence coverage. Moreover, we have localized the phosphorylation site of slow sTnT isoform III to Ser1 by tandem MS with electron capture dissociation. This is the first study to comprehensively characterize human sTn and also the first to identify the basal phosphorylation site for human sTnT by top-down MS.
Collapse
|
18
|
Han X, Wang Y, Aslanian A, Fonslow B, Graczyk B, Davis TN, Yates JR. In-line separation by capillary electrophoresis prior to analysis by top-down mass spectrometry enables sensitive characterization of protein complexes. J Proteome Res 2014; 13:6078-86. [PMID: 25382489 PMCID: PMC4262260 DOI: 10.1021/pr500971h] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
![]()
Intact
protein analysis via top-down mass spectrometry (MS) provides
a bird’s eye view over the protein complexes and complex protein
mixtures with the unique capability of characterizing protein variants,
splice isoforms, and combinatorial post-translational modifications
(PTMs). Here we applied capillary electrophoresis (CE) through a sheathless
CE–electrospray ionization interface coupled to an LTQ Velos
Orbitrap Elite mass spectrometer to analyze the Dam1 complex from Saccharomyces cerevisiae. We achieved a 100-fold
increase in sensitivity compared to a reversed-phase liquid chromatography
coupled MS analysis of recombinant Dam1 complex with a total loading
of 2.5 ng (12 amol). N-terminal processing forms of individual subunits
of the Dam1 complex were observed as well as their phosphorylation
stoichiometry upon Mps1p kinase treatment.
Collapse
Affiliation(s)
- Xuemei Han
- Department of Chemical Physiology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | | | | | | | | | | | | |
Collapse
|
19
|
Simultaneous characterization of sequence polymorphisms, glycosylation and phosphorylation of fibrinogen in a direct analysis by LC-MS. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:2284-9. [PMID: 25280394 DOI: 10.1016/j.bbapap.2014.09.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 09/17/2014] [Accepted: 09/23/2014] [Indexed: 12/15/2022]
Abstract
Fibrinogen is an abundant plasma glycoprotein involved in pathologically important processes like blood clotting, hemostasis and angiogenesis. Sequence polymorphisms and posttranslational modification (PTM) status of fibrinogen are important factors of cardiovascular disease. We aim for the simultaneous analysis of fibrinogen subunits for sequence polymorphisms (SNPs), phosphorylation and glycosylation by top-down mass spectrometry. Fibrinogen was isolated from human plasma of twelve individuals and subunits of fibrinogen were separated by RP-HPLC and subsequently analyzed by high resolution ESI mass spectrometry. Two coding single nucleotide polymorphisms on the Aα- and Bβ-subunit could be identified on the basis of their mass shifts: Three individuals are heterozygous and two are homozygous for Thr312Ala on the Aα-subunit, three individuals are heterozygous for Arg448Lys on the Bβ-subunit. For the Aα-subunit we find mono- and diphosphorylation amounting to about 55% to 71% and O-glycosylation (likely sialyl-T-antigen) from 10% to 17%. N-glycosylation is present with one or two sialic acids in a ratio of about 3:2 and 3:1 for the Bβ and the γ-subunit, respectively. Both SNPs and the PTMs are associated with fibrinogen levels, clotting behavior and thus the risk for cardiovascular diseases. The homozygosity of the SNP at position 312 in the alpha chain for example nearly doubles the risk for ischemic stroke. Isolation and analysis of fibrinogen can be achieved in a few hours from only one drop of blood plasma, and thus the method presented here should assist in a quick assessment and prevention of stroke and infarction.
Collapse
|
20
|
Yang X, Lazar IM. XMAn: A Homo sapiens Mutated-Peptide Database for the MS Analysis of Cancerous Cell States. J Proteome Res 2014; 13:5486-95. [DOI: 10.1021/pr5004467] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Xu Yang
- Department
of Biological
Sciences, Virginia Polytechnic Institute and State University, Integrated Life Sciences Building, Kraft Drive 1981, Blacksburg, Virginia 24061, United States
| | - Iulia M. Lazar
- Department
of Biological
Sciences, Virginia Polytechnic Institute and State University, Integrated Life Sciences Building, Kraft Drive 1981, Blacksburg, Virginia 24061, United States
| |
Collapse
|
21
|
Venne AS, Zahedi RP. The potential of fractional diagonal chromatography strategies for the enrichment of post-translational modifications. EUPA OPEN PROTEOMICS 2014. [DOI: 10.1016/j.euprot.2014.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
22
|
Ying P, Serife AG, Deyang Y, Ying G. Top-down mass spectrometry of cardiac myofilament proteins in health and disease. Proteomics Clin Appl 2014; 8:554-68. [PMID: 24945106 PMCID: PMC4231170 DOI: 10.1002/prca.201400043] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 05/21/2014] [Accepted: 06/12/2014] [Indexed: 12/29/2022]
Abstract
Myofilaments are composed of thin and thick filaments that coordinate with each other to regulate muscle contraction and relaxation. PTMs together with genetic variations and alternative splicing of the myofilament proteins play essential roles in regulating cardiac contractility in health and disease. Therefore, a comprehensive characterization of the myofilament proteins in physiological and pathological conditions is essential for better understanding the molecular basis of cardiac function and dysfunction. Due to the vast complexity and dynamic nature of proteins, it is challenging to obtain a holistic view of myofilament protein modifications. In recent years, top-down MS has emerged as a powerful approach to study isoform composition and PTMs of proteins owing to its advantage of complete sequence coverage and its ability to identify PTMs and sequence variants without a priori knowledge. In this review, we will discuss the application of top-down MS to the study of cardiac myofilaments and highlight the insights it provides into the understanding of molecular mechanisms in contractile dysfunction of heart failure. Particularly, recent results of cardiac troponin and tropomyosin modifications will be elaborated. The limitations and perspectives on the use of top-down MS for myofilament protein characterization will also be briefly discussed.
Collapse
Affiliation(s)
- Peng Ying
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Ayaz-Guner Serife
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Yu Deyang
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Molecular and Environmental Toxicology Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Ge Ying
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
23
|
Wang X, Zhang B. Integrating genomic, transcriptomic, and interactome data to improve Peptide and protein identification in shotgun proteomics. J Proteome Res 2014; 13:2715-23. [PMID: 24792918 PMCID: PMC4059263 DOI: 10.1021/pr500194t] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
![]()
Mass spectrometry (MS)-based shotgun
proteomics is an effective
technology for global proteome profiling. The ultimate goal is to
assign tandem MS spectra to peptides and subsequently infer proteins
and their abundance. In addition to database searching and protein
assembly algorithms, computational approaches have been developed
to integrate genomic, transcriptomic, and interactome information
to improve peptide and protein identification. Earlier efforts focus
primarily on making databases more comprehensive using publicly available
genomic and transcriptomic data. More recently, with the increasing
affordability of the Next Generation Sequencing (NGS) technologies,
personalized protein databases derived from sample-specific genomic
and transcriptomic data have emerged as an attractive strategy. In
addition, incorporating interactome data not only improves protein
identification but also puts identified proteins into their functional
context and thus facilitates data interpretation. In this paper, we
survey the major integrative bioinformatics approaches that have been
developed during the past decade and discuss their merits and demerits.
Collapse
Affiliation(s)
- Xiaojing Wang
- Department of Biomedical Informatics, ‡Vanderbilt-Ingram Cancer Center, and §Department of Cancer Biology, Vanderbilt University School of Medicine , Nashville, Tennessee 37232, United States
| | | |
Collapse
|
24
|
Dekker L, Wu S, Vanduijn M, Tolić N, Stingl C, Zhao R, Luider T, Paša-Tolić L. An integrated top-down and bottom-up proteomic approach to characterize the antigen-binding fragment of antibodies. Proteomics 2014; 14:1239-48. [DOI: 10.1002/pmic.201300366] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 02/14/2014] [Accepted: 03/07/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Lennard Dekker
- Department of Neurology; Erasmus MC; Rotterdam The Netherlands
| | - Si Wu
- Environmental Molecular Sciences Laboratory; Pacific Northwest National Laboratories; Richland WA USA
| | | | - Nikolai Tolić
- Environmental Molecular Sciences Laboratory; Pacific Northwest National Laboratories; Richland WA USA
| | | | - Rui Zhao
- Environmental Molecular Sciences Laboratory; Pacific Northwest National Laboratories; Richland WA USA
| | - Theo Luider
- Department of Neurology; Erasmus MC; Rotterdam The Netherlands
| | - Ljiljana Paša-Tolić
- Environmental Molecular Sciences Laboratory; Pacific Northwest National Laboratories; Richland WA USA
| |
Collapse
|
25
|
Catherman AD, Skinner OS, Kelleher NL. Top Down proteomics: facts and perspectives. Biochem Biophys Res Commun 2014; 445:683-93. [PMID: 24556311 PMCID: PMC4103433 DOI: 10.1016/j.bbrc.2014.02.041] [Citation(s) in RCA: 319] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 02/10/2014] [Indexed: 12/29/2022]
Abstract
The rise of the "Top Down" method in the field of mass spectrometry-based proteomics has ushered in a new age of promise and challenge for the characterization and identification of proteins. Injecting intact proteins into the mass spectrometer allows for better characterization of post-translational modifications and avoids several of the serious "inference" problems associated with peptide-based proteomics. However, successful implementation of a Top Down approach to endogenous or other biologically relevant samples often requires the use of one or more forms of separation prior to mass spectrometric analysis, which have only begun to mature for whole protein MS. Recent advances in instrumentation have been used in conjunction with new ion fragmentation using photons and electrons that allow for better (and often complete) protein characterization on cases simply not tractable even just a few years ago. Finally, the use of native electrospray mass spectrometry has shown great promise for the identification and characterization of whole protein complexes in the 100 kDa to 1 MDa regime, with prospects for complete compositional analysis for endogenous protein assemblies a viable goal over the coming few years.
Collapse
Affiliation(s)
- Adam D Catherman
- Departments of Chemistry and Molecular Biosciences, The Chemistry of Life Processes Institute, The Proteomics Center of Excellence, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL 60208, United States
| | - Owen S Skinner
- Departments of Chemistry and Molecular Biosciences, The Chemistry of Life Processes Institute, The Proteomics Center of Excellence, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL 60208, United States
| | - Neil L Kelleher
- Departments of Chemistry and Molecular Biosciences, The Chemistry of Life Processes Institute, The Proteomics Center of Excellence, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL 60208, United States.
| |
Collapse
|
26
|
Cannon JR, Cammarata M, Robotham SA, Cotham VC, Shaw JB, Fellers RT, Early BP, Thomas PM, Kelleher NL, Brodbelt JS. Ultraviolet photodissociation for characterization of whole proteins on a chromatographic time scale. Anal Chem 2014; 86:2185-92. [PMID: 24447299 PMCID: PMC3958131 DOI: 10.1021/ac403859a] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 01/21/2014] [Indexed: 02/01/2023]
Abstract
Intact protein characterization using mass spectrometry thus far has been achieved at the cost of throughput. Presented here is the application of 193 nm ultraviolet photodissociation (UVPD) for top down identification and characterization of proteins in complex mixtures in an online fashion. Liquid chromatographic separation at the intact protein level coupled with fast UVPD and high-resolution detection resulted in confident identification of 46 unique sequences compared to 44 using HCD from prepared Escherichia coli ribosomes. Importantly, nearly all proteins identified in both the UVPD and optimized HCD analyses demonstrated a substantial increase in confidence in identification (as defined by an average decrease in E value of ∼40 orders of magnitude) due to the higher number of matched fragment ions. Also shown is the potential for high-throughput characterization of intact proteins via liquid chromatography (LC)-UVPD-MS of molecular weight-based fractions of a Saccharomyces cerevisiae lysate. In total, protein products from 215 genes were identified and found in 292 distinct proteoforms, 168 of which contained some type of post-translational modification.
Collapse
Affiliation(s)
- Joe R. Cannon
- Department
of Chemistry, University of Texas at Austin, 1 University Station A5300, Austin, Texas 78712, United States
| | - Michael
B. Cammarata
- Department
of Chemistry, University of Texas at Austin, 1 University Station A5300, Austin, Texas 78712, United States
| | - Scott A. Robotham
- Department
of Chemistry, University of Texas at Austin, 1 University Station A5300, Austin, Texas 78712, United States
| | - Victoria C. Cotham
- Department
of Chemistry, University of Texas at Austin, 1 University Station A5300, Austin, Texas 78712, United States
| | - Jared B. Shaw
- Department
of Chemistry, University of Texas at Austin, 1 University Station A5300, Austin, Texas 78712, United States
| | - Ryan T. Fellers
- Departments
of Chemistry and Molecular Biosciences and the Proteomics Center of
Excellence, Northwestern University, Evanston, Illinois 60208, United States
| | - Bryan P. Early
- Departments
of Chemistry and Molecular Biosciences and the Proteomics Center of
Excellence, Northwestern University, Evanston, Illinois 60208, United States
| | - Paul M. Thomas
- Departments
of Chemistry and Molecular Biosciences and the Proteomics Center of
Excellence, Northwestern University, Evanston, Illinois 60208, United States
| | - Neil L. Kelleher
- Departments
of Chemistry and Molecular Biosciences and the Proteomics Center of
Excellence, Northwestern University, Evanston, Illinois 60208, United States
| | - Jennifer S. Brodbelt
- Department
of Chemistry, University of Texas at Austin, 1 University Station A5300, Austin, Texas 78712, United States
| |
Collapse
|
27
|
Naryzhny SN, Lisitsa AV, Zgoda VG, Ponomarenko EA, Archakov AI. 2DE-based approach for estimation of number of protein species in a cell. Electrophoresis 2013; 35:895-900. [PMID: 24259369 DOI: 10.1002/elps.201300525] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 11/07/2013] [Indexed: 01/26/2023]
Abstract
Insufficient sensitivity of methods for detection of proteins at a single molecule level does not yet allow obtaining the whole image of human proteome. But to go further, we need at least to know the proteome size, or how many different protein species compose this proteome. This is the task that could be at least partially realized by the method described in this article. The approach used in our study is based on detection of protein spots in 2DE after staining by protein dyes with various sensitivities. As the different protein spots contain different protein species, counting the spots opens a way for estimation of number of protein species. The function representing the dependence of the number of protein spots on sensitivity or LOD of protein dyes was generated. And extrapolation of this function curve to theoretical point of the maximum sensitivity (detection of a single smallest polypeptide) allowed to counting the number of different molecules (polypeptide species) at the concentration level of a single polypeptide per proteome. Using this approach, it was estimated that the minimal numbers of protein species for model objects, Escherichia coli and Pirococcus furiosus, are 6200 and 3400, respectively. We expect a single human cell (HepG2) to contain minimum 70 000 protein species.
Collapse
Affiliation(s)
- Stanislav N Naryzhny
- Department of Proteomic Research and Mass Spectrometry, V.N. Orekhovich, Institute of Biomedical Chemistry, Moscow, Russia; Department of Molecular and Radiation Biophysics, B.P. Konstantinov, Petersburg Nuclear Physics Institute, Gatchina, Leningrad District, Russia
| | | | | | | | | |
Collapse
|
28
|
Ponomarenko EA, Kopylov AT, Lisitsa AV, Radko SP, Kiseleva YY, Kurbatov LK, Ptitsyn KG, Tikhonova OV, Moisa AA, Novikova SE, Poverennaya EV, Ilgisonis EV, Filimonov AD, Bogolubova NA, Averchuk VV, Karalkin PA, Vakhrushev IV, Yarygin KN, Moshkovskii SA, Zgoda VG, Sokolov AS, Mazur AM, Prokhortchouck EB, Skryabin KG, Ilina EN, Kostrjukova ES, Alexeev DG, Tyakht AV, Gorbachev AY, Govorun VM, Archakov AI. Chromosome 18 transcriptoproteome of liver tissue and HepG2 cells and targeted proteome mapping in depleted plasma: update 2013. J Proteome Res 2013; 13:183-90. [PMID: 24328317 DOI: 10.1021/pr400883x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We report the results obtained in 2012-2013 by the Russian Consortium for the Chromosome-centric Human Proteome Project (C-HPP). The main scope of this work was the transcriptome profiling of genes on human chromosome 18 (Chr 18), as well as their encoded proteome, from three types of biomaterials: liver tissue, the hepatocellular carcinoma-derived cell line HepG2, and blood plasma. The transcriptome profiling for liver tissue was independently performed using two RNaseq platforms (SOLiD and Illumina) and also by droplet digital PCR (ddPCR) and quantitative RT-PCR. The proteome profiling of Chr 18 was accomplished by quantitatively measuring protein copy numbers in the three types of biomaterial (the lowest protein concentration measured was 10(-13) M) using selected reaction monitoring (SRM). In total, protein copy numbers were estimated for 228 master proteins, including quantitative data on 164 proteins in plasma, 171 in the HepG2 cell line, and 186 in liver tissue. Most proteins were present in plasma at 10(8) copies/μL, while the median abundance was 10(4) and 10(5) protein copies per cell in HepG2 cells and liver tissue, respectively. In summary, for liver tissue and HepG2 cells a "transcriptoproteome" was produced that reflects the relationship between transcript and protein copy numbers of the genes on Chr 18. The quantitative data acquired by RNaseq, PCR, and SRM were uploaded into the "Update_2013" data set of our knowledgebase (www.kb18.ru) and investigated for linear correlations.
Collapse
Affiliation(s)
- Elena A Ponomarenko
- Orekhovich Institute of Biomedical Chemistry of the Russian Academy of Medical Sciences , 10 Pogodinskaya Street, Moscow 119121, Russia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Ponomarenko E, Baranova A, Lisitsa A, Albar JP, Archakov A. The chromosome-centric human proteome project at FEBS Congress. Proteomics 2013; 14:147-52. [PMID: 24285571 DOI: 10.1002/pmic.201300373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 11/07/2013] [Accepted: 11/20/2013] [Indexed: 11/10/2022]
Abstract
In the summer of 2013, distinguished global representatives of proteome science gathered to discuss the futuristic visions of the chromosome-centric human proteome project (C-HPP) (Cochairs: Y. K. Paik, G. Omenn; hosted by A. Archakov, Institute of Biomedical Chemistry, Russia) that was broadcast to the annual Federation of European Biochemical Societies Congress (St. Petersburg, Russia, July 10-11, 2013). Technology breakthroughs presented included a new ultra-sensitive Tribrid mass-spectrometer from Thermo and SOMAmers-Slow Off-rate Modified Aptamers (SOMAlogic, USA), a new type of protein capture reagents. Professor Archakov's group introduced the "rectangle" concept of proteome size as a product of proteome width and depth. The discussion on proteome width culminated with the introduction of digital biomarkers-low-copied aberrant proteins that differ from their typical forms by PTMs, alternative splicing, or single amino acid polymorphisms. The aberrant proteoforms, a complement to whole-genome proteomic surveys, were presented as an ultimate goal for the proteomic community.
Collapse
Affiliation(s)
- Elena Ponomarenko
- Institute of Biomedical Chemistry, Moscow, Russia; RHUPO, Russian Human Proteome Organization, Moscow, Russia
| | | | | | | | | |
Collapse
|
30
|
Zhang J, Roth MJ, Chang AN, Plymire DA, Corbett JR, Greenberg BM, Patrie SM. Top-Down Mass Spectrometry on Tissue Extracts and Biofluids with Isoelectric Focusing and Superficially Porous Silica Liquid Chromatography. Anal Chem 2013; 85:10377-84. [DOI: 10.1021/ac402394w] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Junmei Zhang
- UT Southwestern Medical Center, 5323
Harry Hines Blvd., Dallas, Texas 75390-9072
| | - Michael J. Roth
- UT Southwestern Medical Center, 5323
Harry Hines Blvd., Dallas, Texas 75390-9072
| | - Audrey N. Chang
- UT Southwestern Medical Center, 5323
Harry Hines Blvd., Dallas, Texas 75390-9072
| | - Daniel A. Plymire
- UT Southwestern Medical Center, 5323
Harry Hines Blvd., Dallas, Texas 75390-9072
| | - John R. Corbett
- UT Southwestern Medical Center, 5323
Harry Hines Blvd., Dallas, Texas 75390-9072
| | | | - Steven M. Patrie
- UT Southwestern Medical Center, 5323
Harry Hines Blvd., Dallas, Texas 75390-9072
| |
Collapse
|
31
|
In-depth proteomic analysis of human tropomyosin by top-down mass spectrometry. J Muscle Res Cell Motil 2013; 34:199-210. [PMID: 23881156 DOI: 10.1007/s10974-013-9352-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 06/27/2013] [Indexed: 01/29/2023]
Abstract
Tropomyosins (Tms) are a family of highly conserved actin-binding proteins that play critical roles in a variety of processes, most notably, in the regulation of muscle contraction and relaxation. It is well known that different Tm isoforms have distinct functions and that altered expression of Tm isoforms could lead to changes in cardiac structure and function. To precisely define Tm isoform expression in the human heart, towards a better understanding of their functional roles, we have employed top-down mass spectrometry for in-depth proteomic characterization of Tm isoforms. Using a minimal amount of human heart tissue from rejected donor organs, we confirmed the presence of multiple Tm isoforms including α-Tm, β-Tm and κ-Tm in the human heart, with α-Tm being the predominant isoform, followed by minor isoforms of β-Tm and κ-Tm. Interestingly, our data revealed regional variations of Tm isoforms and post-translational modifications in the human heart. Specifically, the expression level of κ-Tm was highest in the left atrium but nearly undetectable in the left ventricle. The phosphorylation level of α-Tm (pα-Tm) was significantly higher in the atria than it was in the ventricles. The sequences of all Tm isoforms were characterized and the sites of post-translational modifications were localized. Clearly, top-down mass spectrometry is an attractive method for comprehensive characterization of Tm isoforms and post-translational modifications since it can universally detect and quantify all types of protein modifications without a priori knowledge and without the need for specific antibodies.
Collapse
|
32
|
Lange S, Rosenkrands I, Stein R, Andersen P, Kaufmann SHE, Jungblut PR. Analysis of protein species differentiation among mycobacterial low-Mr-secreted proteins by narrow pH range Immobiline gel 2-DE-MALDI-MS. J Proteomics 2013; 97:235-44. [PMID: 23856608 DOI: 10.1016/j.jprot.2013.06.036] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 06/11/2013] [Accepted: 06/29/2013] [Indexed: 12/25/2022]
Abstract
UNLABELLED Secreted proteins of bacteria are preferentially capable of interacting with host cells and are therefore of special biological and medical interest. Narrow pH range 2-DE and MALDI-TOFTOF-MS combine high-resolution protein separation with highly sensitive identification of proteins. Secreted proteins of Mycobacterium tuberculosis were separated at the protein species level, distinguishing different protein species of one protein. We focused on the pI range 4.0-4.7 and the Mr range 6-20kDa of the 2-DE pattern. Out of 128 analyzed spots, 121 were identified resulting in 33 different proteins with 277 different protein species, accumulating in a mean of 8.4 protein species per protein. Overrepresentation was found for the protein classes "virulence, detoxification, adaption", "information pathways", "cell wall and cell processes" and "intermediary metabolism and respiration". Thus far, 15 protein species of the ESX-1 family are characterized with 100% sequence coverage. More automated 2-DE procedures and more sensitive identification techniques are required for complete characterization of all of the protein species even in highly enriched samples, such as culture filtrates. Only then the functional level of proteomics will be achieved and potential biomarkers can be postulated at the molecular level. BIOLOGICAL SIGNIFICANCE Proteomics is dominated by bottom-up approaches largely ignoring protein speciation. A prerequisite to reach the protein species level is to obtain 100% sequence coverage, which is a major challenge in proteomics. Here we show complete sequence information with a 2-DE-MS approach for 15 protein species. Acetylation of the N-terminus of ESAT-6 inhibits interaction with CFP-10, with direct consequences for pathogen-host interaction. This article is part of a Special Issue entitled: Trends in Microbial Proteomics.
Collapse
Affiliation(s)
- Sabine Lange
- Max Planck Institute for Infection Biology, Core Facility Protein Analysis, Berlin, Germany
| | - Ida Rosenkrands
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | | | - Peter Andersen
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Stefan H E Kaufmann
- Max Planck Institute for Infection Biology, Department of Immunology, Berlin, Germany
| | - Peter R Jungblut
- Max Planck Institute for Infection Biology, Core Facility Protein Analysis, Berlin, Germany.
| |
Collapse
|
33
|
Catherman AD, Li M, Tran JC, Durbin KR, Compton PD, Early BP, Thomas PM, Kelleher NL. Top down proteomics of human membrane proteins from enriched mitochondrial fractions. Anal Chem 2013; 85:1880-8. [PMID: 23305238 DOI: 10.1021/ac3031527] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The interrogation of intact integral membrane proteins has long been a challenge for biological mass spectrometry. Here, we demonstrate the application of top down mass spectrometry to whole membrane proteins below 60 kDa with up to 8 transmembrane helices. Analysis of enriched mitochondrial membrane preparations from human cells yielded identification of 83 integral membrane proteins, along with 163 membrane-associated or soluble proteins, with a median q value of 3 × 10(-10). An analysis of matching fragment ions demonstrated that significantly more fragment ions were found within transmembrane domains than would be expected based upon the observed protein sequence. In total, 46 proteins from the complexes of oxidative phosphorylation were identified which exemplifies the increasing ability of top down proteomics to provide extensive coverage in a biological network.
Collapse
Affiliation(s)
- Adam D Catherman
- Department of Chemistry, the Chemistry of Life Processes Institute, and the Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, Illinois, 60208, United States
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Peng Y, Chen X, Zhang H, Xu Q, Hacker TA, Ge Y. Top-down targeted proteomics for deep sequencing of tropomyosin isoforms. J Proteome Res 2013; 12:187-98. [PMID: 23256820 PMCID: PMC3596867 DOI: 10.1021/pr301054n] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Tropomyosins (Tm) constitute a family of ubiquitous and highly conserved actin-binding proteins, playing essential roles in a variety of biological processes. Tm isoforms produced by multiple Tm encoding genes and alternatively expressed exons along with post-translational modifications (PTMs) regulate Tm function. Therefore, to gain a better understanding of the functional role of Tm, it is essential to fully characterize Tm isoforms. Herein, we developed a top-down high-resolution mass spectrometry (MS)-based targeted proteomics method for comprehensive characterization of Tm isoforms. α-Tm was identified to be the predominant isoform in swine cardiac muscle. We further characterized its sequence and localized the PTMs such as acetylation and phosphorylation as well as amino acid polymorphisms. Interestingly, we discovered a "novel" Tm isoform that does not match with any of the currently available swine Tm sequences. A deep sequencing of this isoform by top-down MS revealed an exact match with mouse β-Tm sequence, suggesting that this "novel" isoform is swine β-Tm which is 100% conserved between swine and mouse. Taken together, we demonstrated that top-down targeted proteomics provides a powerful tool for deep sequencing of Tm isoforms from genetic variations together with complete mapping of the PTM sites.
Collapse
Affiliation(s)
- Ying Peng
- Human Proteomics Program, University of Wisconsin-Madison, Madison, WI, 53706
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, 53706
| | - Xin Chen
- Human Proteomics Program, University of Wisconsin-Madison, Madison, WI, 53706
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, 53706
| | - Han Zhang
- Human Proteomics Program, University of Wisconsin-Madison, Madison, WI, 53706
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706
| | - Qingge Xu
- Human Proteomics Program, University of Wisconsin-Madison, Madison, WI, 53706
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, 53706
| | - Timothy A. Hacker
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53706
| | - Ying Ge
- Human Proteomics Program, University of Wisconsin-Madison, Madison, WI, 53706
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, 53706
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706
| |
Collapse
|
35
|
Lanucara F, Eyers CE. Top-down mass spectrometry for the analysis of combinatorial post-translational modifications. MASS SPECTROMETRY REVIEWS 2013; 32:27-42. [PMID: 22718314 DOI: 10.1002/mas.21348] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 02/21/2012] [Accepted: 02/21/2012] [Indexed: 06/01/2023]
Abstract
Protein post-translational modifications (PTMs) are critically important in regulating both protein structure and function, often in a rapid and reversible manner. Due to its sensitivity and vast applicability, mass spectrometry (MS) has become the technique of choice for analyzing PTMs. Whilst the "bottom-up' analytical approach, in which proteins are proteolyzed generating peptides for analysis by MS, is routinely applied and offers some advantages in terms of ease of analysis and lower limit of detection, "top-down" MS, describing the analysis of intact proteins, yields unique and highly valuable information on the connectivity and therefore combinatorial effect of multiple PTMs in the same polypeptide chain. In this review, the state of the art in top-down MS will be discussed, covering the main instrumental platforms and ion activation techniques. Moreover, the way that this approach can be used to gain insights on the combinatorial effect of multiple post-translational modifications and how this information can assist in studying physiologically relevant systems at the molecular level will also be addressed.
Collapse
Affiliation(s)
- Francesco Lanucara
- Michael Barber Centre for Mass Spectrometry, School of Chemistry, University of Manchester, Manchester Interdisciplinary Biocentre, Manchester M1 7DN, UK
| | | |
Collapse
|
36
|
Thiede B, Koehler CJ, Strozynski M, Treumann A, Stein R, Zimny-Arndt U, Schmid M, Jungblut PR. High resolution quantitative proteomics of HeLa cells protein species using stable isotope labeling with amino acids in cell culture(SILAC), two-dimensional gel electrophoresis(2DE) and nano-liquid chromatograpohy coupled to an LTQ-OrbitrapMass spectrometer. Mol Cell Proteomics 2012; 12:529-38. [PMID: 23033477 DOI: 10.1074/mcp.m112.019372] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The proteomics field has shifted over recent years from two-dimensional gel electrophoresis (2-DE)-based approaches to SDS-PAGE or gel-free workflows because of the tremendous developments in isotopic labeling techniques, nano-liquid chromatography, and high-resolution mass spectrometry. However, 2-DE still offers the highest resolution in protein separation. Therefore, we combined stable isotope labeling with amino acids in cell culture of controls and apoptotic HeLa cells with 2-DE and the subsequent analysis of tryptic peptides via nano-liquid chromatography coupled to an LTQ-Orbitrap mass spectrometer to obtain quantitative data using the methods with the highest resolving power on all levels of the proteomics workflow. More than 1,200 proteins with more than 2,700 protein species were identified and quantified from 816 Coomassie Brilliant Blue G-250 stained 2-DE spots. About half of the proteins were identified and quantified only in single 2-DE spots. The majority of spots revealed one to five proteins; however, in one 2-DE spot, up to 23 proteins were identified. Only half of the 2-DE spots represented a dominant protein with more than 90% of the whole protein amount. Consequently, quantification based on staining intensities in 2-DE gels would in approximately half of the spots be imprecise, and minor components could not be quantified. These problems are circumvented by quantification using stable isotope labeling with amino acids in cell culture. Despite challenges, as shown in detail for lamin A/C and vimentin, the quantitative changes of protein species can be detected. The combination of 2-DE with high-resolution nano-liquid chromatography-mass spectrometry allowed us to identify proteomic changes in apoptotic cells that would be unobservable using any of the other previously employed proteomic workflows.
Collapse
Affiliation(s)
- Bernd Thiede
- The Biotechnology Centre of Oslo, University of Oslo, Gaustadalleen 21, 0349 Oslo, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Stastna M, Van Eyk JE. Analysis of protein isoforms: can we do it better? Proteomics 2012; 12:2937-48. [PMID: 22888084 DOI: 10.1002/pmic.201200161] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 06/12/2012] [Accepted: 06/18/2012] [Indexed: 12/23/2022]
Abstract
Protein isoforms/splice variants can play important roles in various biological processes and can potentially be used as biomarkers or therapeutic targets/mediators. Thus, there is a need for efficient and, importantly, accurate methods to distinguish and quantify specific protein isoforms. Since protein isoforms can share a high percentage of amino acid sequence homology and dramatically differ in their cellular concentration, the task for accuracy and efficiency in methodology and instrumentation is challenging. The analysis of intact proteins has been perceived to provide a more accurate and complete result for isoform identification/quantification in comparison to analysis of the corresponding peptides that arise from protein enzymatic digestion. Recently, novel approaches have been explored and developed that can possess the accuracy and reliability important for protein isoform differentiation and isoform-specific peptide targeting. In this review, we discuss the recent development in methodology and instrumentation for enhanced detection of protein isoforms as well as the examples of their biological importance.
Collapse
Affiliation(s)
- Miroslava Stastna
- Johns Hopkins Bayview Proteomics Center, Department of Medicine, Division of Cardiology, School of Medicine, Johns Hopkins University, Baltimore, MD 21224, USA
| | | |
Collapse
|
38
|
Peterson AC, Russell JD, Bailey DJ, Westphall MS, Coon JJ. Parallel reaction monitoring for high resolution and high mass accuracy quantitative, targeted proteomics. Mol Cell Proteomics 2012; 11:1475-88. [PMID: 22865924 DOI: 10.1074/mcp.o112.020131] [Citation(s) in RCA: 902] [Impact Index Per Article: 75.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Selected reaction monitoring on a triple quadrupole mass spectrometer is currently experiencing a renaissance within the proteomics community for its, as yet, unparalleled ability to characterize and quantify a set of proteins reproducibly, completely, and with high sensitivity. Given the immense benefit that high resolution and accurate mass instruments have brought to the discovery proteomics field, we wondered if highly accurate mass measurement capabilities could be leveraged to provide benefits in the targeted proteomics domain as well. Here, we propose a new targeted proteomics paradigm centered on the use of next generation, quadrupole-equipped high resolution and accurate mass instruments: parallel reaction monitoring (PRM). In PRM, the third quadrupole of a triple quadrupole is substituted with a high resolution and accurate mass mass analyzer to permit the parallel detection of all target product ions in one, concerted high resolution mass analysis. We detail the analytical performance of the PRM method, using a quadrupole-equipped bench-top Orbitrap MS, and draw a performance comparison to selected reaction monitoring in terms of run-to-run reproducibility, dynamic range, and measurement accuracy. In addition to requiring minimal upfront method development and facilitating automated data analysis, PRM yielded quantitative data over a wider dynamic range than selected reaction monitoring in the presence of a yeast background matrix because of PRM's high selectivity in the mass-to-charge domain. With achievable linearity over the quantifiable dynamic range found to be statistically equal between the two methods, our investigation suggests that PRM will be a promising new addition to the quantitative proteomics toolbox.
Collapse
Affiliation(s)
- Amelia C Peterson
- Department of Chemistry and Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
39
|
Ahlf DR, Compton PD, Tran JC, Early BP, Thomas PM, Kelleher NL. Evaluation of the compact high-field orbitrap for top-down proteomics of human cells. J Proteome Res 2012; 11:4308-14. [PMID: 22746247 DOI: 10.1021/pr3004216] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mass spectrometry based proteomics generally seeks to identify and fully characterize protein species with high accuracy and throughput. Recent improvements in protein separation have greatly expanded the capacity of top-down proteomics (TDP) to identify a large number of intact proteins. To date, TDP has been most tightly associated with Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry. Here, we couple the improved separations to a Fourier-transform instrument based not on ICR but using the Orbitrap Elite mass analyzer. Application of this platform to H1299 human lung cancer cells resulted in the unambiguous identification of 690 unique proteins and over 2000 proteoforms identified from proteins with intact masses<50 kDa. This is an early demonstration of high throughput TDP (>500 identifications) in an Orbitrap mass spectrometer and exemplifies an accessible platform for whole protein mass spectrometry.
Collapse
Affiliation(s)
- Dorothy R Ahlf
- Department of Chemistry, Northwestern University, Evanston, Illinois, United States
| | | | | | | | | | | |
Collapse
|
40
|
Ross MK, Borazjani A, Wang R, Crow JA, Xie S. Examination of the carboxylesterase phenotype in human liver. Arch Biochem Biophys 2012; 522:44-56. [PMID: 22525521 PMCID: PMC3569858 DOI: 10.1016/j.abb.2012.04.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 04/03/2012] [Accepted: 04/05/2012] [Indexed: 10/28/2022]
Abstract
Carboxylesterases (CES) metabolize esters. Two CES isoforms are expressed in human liver (CES1 and CES2) and liver extracts are used in reaction phenotyping studies to discern interindividual metabolic variation. We tested the hypothesis that an individual's CES phenotype can be characterized by reporter substrates/probes that interrogate native CES1 and CES2 activities in liver and immunoblotting methods. We obtained 25 livers and found that CES1 is the main hydrolytic enzyme. Moreover, although CES1 protein levels were similar, we observed large interindividual variation in bioresmethrin hydrolysis rates (17-fold), a pyrethroid metabolized by CES1 but not CES2. Bioresmethrin hydrolysis rates did not correlate with CES1 protein levels. In contrast, procaine hydrolysis rates, a drug metabolized by CES2 but not CES1, were much less variant (3-fold). Using activity-based fluorophosphonate probes (FP-biotin), which covalently reacts with active serine hydrolases, CES1 protein was the most active enzyme in the livers. Finally, using bioorthogonal probes and click chemistry methodology, the half-life of CES 1 and 2 in cultured HepG2 cells was estimated at 96 h. The cause of the differential CES1 activities is unknown, but the underlying factors will be important to understand because several carboxylic acid ester drugs and environmental toxicants are metabolized by this enzyme.
Collapse
Affiliation(s)
- Matthew K Ross
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, P.O. Box 6100, Mississippi State, MS 39762, United States.
| | | | | | | | | |
Collapse
|
41
|
Halgand F, Zabrouskov V, Bassilian S, Souda P, Loo JA, Faull KF, Wong DT, Whitelegge JP. Defining intact protein primary structures from saliva: a step toward the human proteome project. Anal Chem 2012; 84:4383-95. [PMID: 22509742 DOI: 10.1021/ac203337s] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Top-down mass spectrometry has been used to investigate structural diversity within some abundant salivary protein families. In this study, we report the identification of two isoforms of protein II-2 which differed in mass by less than 1 Da, the determination of a sequence for protein IB8a that was best satisfied by including a mutation and a covalent modification in the C-terminal part, and the assignment of a sequence of a previously unreported protein of mass 10433 Da. The final characterization of Peptide P-J was achieved, and the discovery of a truncated form of this peptide was reported. The first sequence assignment was done at low resolution using a hybrid quadrupole time-of-flight instrument to quickly identify and characterize proteins, and data acquisition was switched to Fourier-transform ion cyclotron resonance (FTICR) for proteins that required additional sequence coverage and certainty of assignment. High-resolution and high mass accuracy mass spectrometry on a FTICR-mass spectrometry (MS) instrument combined with electron-capture dissociation (ECD) provided the most informative data sets, with the more frequent presence of "unique" ions that unambiguously define the primary structure. A mixture of predictable and unusual post-translational modifications in the protein sequence precluded the use of shotgun-annotated databases at this stage, requiring manual iterations of sequence refinement in many cases. This led us to propose guidelines for an iterative processing workflow of MS and MSMS data sets that allow researchers to completely assign the identity and the structure of a protein.
Collapse
Affiliation(s)
- F Halgand
- NPI-Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90024, United States.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Kim MS, Pandey A. Electron transfer dissociation mass spectrometry in proteomics. Proteomics 2012; 12:530-42. [PMID: 22246976 DOI: 10.1002/pmic.201100517] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 10/25/2011] [Accepted: 11/02/2011] [Indexed: 01/30/2023]
Abstract
Mass spectrometry has rapidly evolved to become the platform of choice for proteomic analysis. While CID remains the major fragmentation method for peptide sequencing, electron transfer dissociation (ETD) is emerging as a complementary method for the characterization of peptides and post-translational modifications (PTMs). Here, we review the evolution of ETD and some of its newer applications including characterization of PTMs, non-tryptic peptides and intact proteins. We will also discuss some of the unique features of ETD such as its complementarity with CID and the use of alternating CID/ETD along with issues pertaining to analysis of ETD data. The potential of ETD for applications such as multiple reaction monitoring and proteogenomics in the future will also be discussed.
Collapse
Affiliation(s)
- Min-Sik Kim
- Department of Biological Chemistry, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
43
|
Hung CW, Tholey A. Tandem Mass Tag Protein Labeling for Top-Down Identification and Quantification. Anal Chem 2011; 84:161-70. [DOI: 10.1021/ac202243r] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chien-Wen Hung
- Institut für Experimentelle Medizin—AG Systematische Proteomforschung, Christian-Albrechts-Universität, Niemannsweg 11, 24105 Kiel, Germany
| | - Andreas Tholey
- Institut für Experimentelle Medizin—AG Systematische Proteomforschung, Christian-Albrechts-Universität, Niemannsweg 11, 24105 Kiel, Germany
| |
Collapse
|
44
|
Zhou H, Ning Z, E. Starr A, Abu-Farha M, Figeys D. Advancements in Top-Down Proteomics. Anal Chem 2011; 84:720-34. [DOI: 10.1021/ac202882y] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Hu Zhou
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1H8M5
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China 201203
| | - Zhibing Ning
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1H8M5
| | - Amanda E. Starr
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1H8M5
| | - Mohamed Abu-Farha
- Biochemistry and Molecular Biology Unit, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Daniel Figeys
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1H8M5
| |
Collapse
|
45
|
Roth MJ, Plymire DA, Chang AN, Kim J, Maresh EM, Larson SE, Patrie SM. Sensitive and Reproducible Intact Mass Analysis of Complex Protein Mixtures with Superficially Porous Capillary Reversed-Phase Liquid Chromatography Mass Spectrometry. Anal Chem 2011; 83:9586-92. [DOI: 10.1021/ac202339x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Michael J. Roth
- UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390-9185, United States
| | - Daniel A. Plymire
- UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390-9185, United States
| | - Audrey N. Chang
- UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390-9185, United States
| | - Jaekuk Kim
- UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390-9185, United States
| | - Erica M. Maresh
- UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390-9185, United States
| | - Shane E. Larson
- UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390-9185, United States
| | - Steven M. Patrie
- UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390-9185, United States
| |
Collapse
|
46
|
Mapping intact protein isoforms in discovery mode using top-down proteomics. Nature 2011; 480:254-8. [PMID: 22037311 PMCID: PMC3237778 DOI: 10.1038/nature10575] [Citation(s) in RCA: 491] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 09/15/2011] [Indexed: 11/23/2022]
Abstract
A full description of the human proteome relies on the challenging task of detecting mature and changing forms of protein molecules in the body. Large scale proteome analysis1 has routinely involved digesting intact proteins followed by inferred protein identification using mass spectrometry (MS)2. This “bottom up” process affords a high number of identifications (not always unique to a single gene). However, complications arise from incomplete or ambiguous2 characterization of alternative splice forms, diverse modifications (e.g., acetylation and methylation), and endogenous protein cleavages, especially when combinations of these create complex patterns of intact protein isoforms and species3. “Top down” interrogation of whole proteins can overcome these problems for individual proteins4,5, but has not been achieved on a proteome scale due to the lack of intact protein fractionation methods that are well integrated with tandem MS. Here we show, using a new four dimensional (4D) separation system, identification of 1,043 gene products from human cells that are dispersed into >3,000 protein species created by post-translational modification, RNA splicing, and proteolysis. The overall system produced >20-fold increases in both separation power and proteome coverage, enabling the identification of proteins up to 105 kilodaltons and those with up to 11 transmembrane helices. Many previously undetected isoforms of endogenous human proteins were mapped, including changes in multiply-modified species in response to accelerated cellular aging (senescence) induced by DNA damage. Integrated with the latest version of the Swiss-Prot database6, the data provide precise correlations to individual genes and proof-of-concept for large scale interrogation of whole protein molecules. The technology promises to improve the link between proteomics data and complex phenotypes in basic biology and disease research7.
Collapse
|
47
|
Calligaris D, Villard C, Lafitte D. Advances in top-down proteomics for disease biomarker discovery. J Proteomics 2011; 74:920-34. [DOI: 10.1016/j.jprot.2011.03.030] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 03/01/2011] [Accepted: 03/29/2011] [Indexed: 11/16/2022]
|
48
|
Li J, Su Z, Ma ZQ, Slebos RJC, Halvey P, Tabb DL, Liebler DC, Pao W, Zhang B. A bioinformatics workflow for variant peptide detection in shotgun proteomics. Mol Cell Proteomics 2011; 10:M110.006536. [PMID: 21389108 DOI: 10.1074/mcp.m110.006536] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Shotgun proteomics data analysis usually relies on database search. However, commonly used protein sequence databases do not contain information on protein variants and thus prevent variant peptides and proteins from been identified. Including known coding variations into protein sequence databases could help alleviate this problem. Based on our recently published human Cancer Proteome Variation Database, we have created a protein sequence database that comprehensively annotates thousands of cancer-related coding variants collected in the Cancer Proteome Variation Database as well as noncancer-specific ones from the Single Nucleotide Polymorphism Database (dbSNP). Using this database, we then developed a data analysis workflow for variant peptide identification in shotgun proteomics. The high risk of false positive variant identifications was addressed by a modified false discovery rate estimation method. Analysis of colorectal cancer cell lines SW480, RKO, and HCT-116 revealed a total of 81 peptides that contain either noncancer-specific or cancer-related variations. Twenty-three out of 26 variants randomly selected from the 81 were confirmed by genomic sequencing. We further applied the workflow on data sets from three individual colorectal tumor specimens. A total of 204 distinct variant peptides were detected, and five carried known cancer-related mutations. Each individual showed a specific pattern of cancer-related mutations, suggesting potential use of this type of information for personalized medicine. Compatibility of the workflow has been tested with four popular database search engines including Sequest, Mascot, X!Tandem, and MyriMatch. In summary, we have developed a workflow that effectively uses existing genomic data to enable variant peptide detection in proteomics.
Collapse
Affiliation(s)
- Jing Li
- Department of Biomedical Informatics,Vanderbilt University School of Medicine, 2525 West End Ave, Suite 800, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Durbin KR, Tran JC, Zamdborg L, Sweet SMM, Catherman AD, Lee JE, Li M, Kellie JF, Kelleher NL. Intact mass detection, interpretation, and visualization to automate Top-Down proteomics on a large scale. Proteomics 2011; 10:3589-97. [PMID: 20848673 DOI: 10.1002/pmic.201000177] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Applying high-throughput Top-Down MS to an entire proteome requires a yet-to-be-established model for data processing. Since Top-Down is becoming possible on a large scale, we report our latest software pipeline dedicated to capturing the full value of intact protein data in automated fashion. For intact mass detection, we combine algorithms for processing MS1 data from both isotopically resolved (FT) and charge-state resolved (ion trap) LC-MS data, which are then linked to their fragment ions for database searching using ProSight. Automated determination of human keratin and tubulin isoforms is one result. Optimized for the intricacies of whole proteins, new software modules visualize proteome-scale data based on the LC retention time and intensity of intact masses and enable selective detection of PTMs to automatically screen for acetylation, phosphorylation, and methylation. Software functionality was demonstrated using comparative LC-MS data from yeast strains in addition to human cells undergoing chemical stress. We further these advances as a key aspect of realizing Top-Down MS on a proteomic scale.
Collapse
Affiliation(s)
- Kenneth R Durbin
- Department of Chemistry, The Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Casado-Vela J, Cebrián A, Gómez del Pulgar MT, Sánchez-López E, Vilaseca M, Menchén L, Diema C, Sellés-Marchart S, Martínez-Esteso MJ, Yubero N, Bru-Martínez R, Lacal JC. Lights and shadows of proteomic technologies for the study of protein species including isoforms, splicing variants and protein post-translational modifications. Proteomics 2011; 11:590-603. [DOI: 10.1002/pmic.201000287] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 08/13/2010] [Accepted: 08/23/2010] [Indexed: 01/12/2023]
|