1
|
Perez JM, Duda JM, Ryu J, Shetty M, Mehta S, Jagtap PD, Nelson AC, Winterhoff B, Griffin TJ, Starr TK, Thomas SN. Investigating proteogenomic divergence in patient-derived xenograft models of ovarian cancer. Sci Rep 2025; 15:813. [PMID: 39755759 DOI: 10.1038/s41598-024-84874-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 12/27/2024] [Indexed: 01/06/2025] Open
Abstract
Within ovarian cancer research, patient-derived xenograft (PDX) models recapitulate histologic features and genomic aberrations found in original tumors. However, conflicting data from published studies have demonstrated significant transcriptional differences between PDXs and original tumors, challenging the fidelity of these models. We employed a quantitative mass spectrometry-based proteomic approach coupled with generation of patient-specific databases using RNA-seq data to investigate the proteogenomic landscape of serially-passaged PDX models established from two patients with distinct subtypes of ovarian cancer. We demonstrate that the utilization of patient-specific databases guided by transcriptional profiles increases the depth of human protein identification in PDX models. Our data show that human proteomes of serially passaged PDXs differ significantly from their patient-derived tumor of origin. Analysis of differentially abundant proteins revealed enrichment of distinct biological pathways with major downregulated processes including extracellular matrix organization and the immune system. Finally, we investigated the relative abundances of ovarian cancer-related proteins identified from the Cancer Gene Census across serially passaged PDXs, and found their protein levels to be unstable across PDX models. Our findings highlight features of distinct and dynamic proteomes of serially-passaged PDX models of ovarian cancer.
Collapse
Affiliation(s)
- Jesenia M Perez
- Microbiology, Immunology, and Cancer Biology Graduate Program, University of Minnesota School of Medicine, Minneapolis, MN, 55455, USA
| | - Jolene M Duda
- Biochemistry, Molecular Biology and Biophysics, University of Minnesota School of Medicine, Minneapolis, MN, 55455, USA
| | - Joohyun Ryu
- Department of Laboratory Medicine and Pathology, University of Minnesota School of Medicine, 420 Delaware St SE, MMC 609, Minneapolis, MN, 55455, USA
| | - Mihir Shetty
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Subina Mehta
- Biochemistry, Molecular Biology and Biophysics, University of Minnesota School of Medicine, Minneapolis, MN, 55455, USA
| | - Pratik D Jagtap
- Biochemistry, Molecular Biology and Biophysics, University of Minnesota School of Medicine, Minneapolis, MN, 55455, USA
| | - Andrew C Nelson
- Department of Laboratory Medicine and Pathology, University of Minnesota School of Medicine, 420 Delaware St SE, MMC 609, Minneapolis, MN, 55455, USA
| | - Boris Winterhoff
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Timothy J Griffin
- Biochemistry, Molecular Biology and Biophysics, University of Minnesota School of Medicine, Minneapolis, MN, 55455, USA
| | - Timothy K Starr
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Stefani N Thomas
- Department of Laboratory Medicine and Pathology, University of Minnesota School of Medicine, 420 Delaware St SE, MMC 609, Minneapolis, MN, 55455, USA.
| |
Collapse
|
2
|
Raheja S, Verona G, Florent P, Rendell NB, Nocerino P, Ellemerich S, Fernandes R, Botcher N, Rowczenio D, Gilbertson JA, Simons JP, Gillmore JD, Bellotti V, Taylor GW, Canetti D. Oxidative conversion of transthyretin in formalin-fixed clinical amyloid samples results in the formation of the His90Asp and His90Asn variants. Amyloid 2024:1-8. [PMID: 39676281 DOI: 10.1080/13506129.2024.2436990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 08/20/2024] [Accepted: 11/27/2024] [Indexed: 12/17/2024]
Abstract
BACKGROUND Proteomics is routinely used to type clinical amyloid deposits, and offers additional benefit of identifying genetic variants, which can be diagnostically useful. Reviewing the proteomics data for ATTR patients attending our Centre revealed an unusually large number of samples containing a rare pathogenic H90D TTR variant alongside the more common H90N variant. METHODS These findings raised questions to their source. Proteomics was used to monitor the generation of H90D/H90N variants in fresh, frozen, stored samples during extraction and digestion, and also following Cu2+-mediated oxidation. RESULTS There was no evidence that the variants were present in the circulation, except in one patient with genetically confirmed H90D TTR, in fresh fat aspirates or tissues from an ATTR amyloid mouse model. The variant could be generated in vitro from both wild-type TTR and ex vivo ATTR fibrils by non-enzymic oxidation of histidine at position 90. These data suggest that the H90D variant can be generated artefactually from wild-type 90H TTR through a radical-mediated oxidation of histidine, followed by its conversion to asparagine and aspartic acid. This probably occurs during storage. CONCLUSIONS In the absence of genetic data, the identification of H90D TTR in stored tissue by proteomics should be treated with caution.
Collapse
Affiliation(s)
- Simran Raheja
- Centre for Amyloidosis, Division of Medicine, University College London, London, UK
| | - Guglielmo Verona
- Centre for Amyloidosis, Division of Medicine, University College London, London, UK
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, Pavia, Italy
| | - Paolo Florent
- Centre for Amyloidosis, Division of Medicine, University College London, London, UK
| | - Nigel B Rendell
- Centre for Amyloidosis, Division of Medicine, University College London, London, UK
| | - Paola Nocerino
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, Pavia, Italy
| | - Stephan Ellemerich
- Centre for Amyloidosis, Division of Medicine, University College London, London, UK
| | | | | | | | | | - J Paul Simons
- Centre for Amyloidosis, Division of Medicine, University College London, London, UK
| | - Julian D Gillmore
- Centre for Amyloidosis, Division of Medicine, University College London, London, UK
- National Amyloidosis Centre, London, UK
| | - Vittorio Bellotti
- Centre for Amyloidosis, Division of Medicine, University College London, London, UK
- Research Department, Fondazione IRCSS Policlinico San Matteo, Pavia, Italy
| | - Graham W Taylor
- Centre for Amyloidosis, Division of Medicine, University College London, London, UK
| | - Diana Canetti
- Centre for Amyloidosis, Division of Medicine, University College London, London, UK
| |
Collapse
|
3
|
Humphries EM, Loudon C, Craft GE, Hains PG, Robinson PJ. Quantitative Comparison of Deparaffinization, Rehydration, and Extraction Methods for FFPE Tissue Proteomics and Phosphoproteomics. Anal Chem 2024; 96:13358-13370. [PMID: 39102789 DOI: 10.1021/acs.analchem.3c04479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Formalin-fixed paraffin-embedded (FFPE) tissues are suitable for proteomic and phosphoproteomic biomarker studies by data-independent acquisition mass spectrometry. The choice of the sample preparation method influences the number, intensity, and reproducibility of identifications. By comparing four deparaffinization and rehydration methods, including heptane, histolene, SubX, and xylene, we found that heptane and methanol produced the lowest coefficients of variation (CVs). Using this, five extraction methods from the literature were modified and evaluated for their performance using kidney, leg muscle, lung, and testicular rat organs. All methods performed well, except for SP3 due to insufficient tissue lysis. Heat n' Beat was the fastest and most reproducible method with the highest digestion efficiency and lowest CVs. S-Trap produced the highest peptide yield, while TFE produced the best phosphopeptide enrichment efficiency. The quantitation of FFPE-derived peptides remains an ongoing challenge with bias in UV and fluorescence assays across methods, most notably in SPEED. Functional enrichment analysis demonstrated that each method favored extracting some gene ontology cellular components over others including chromosome, cytoplasmic, cytoskeleton, endoplasmic reticulum, membrane, mitochondrion, and nucleoplasm protein groups. The outcome is a set of recommendations for choosing the most appropriate method for different settings.
Collapse
Affiliation(s)
- Erin M Humphries
- ProCan, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales 2145, Australia
| | - Clare Loudon
- ProCan, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales 2145, Australia
| | - George E Craft
- ProCan, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales 2145, Australia
| | - Peter G Hains
- ProCan, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales 2145, Australia
| | - Phillip J Robinson
- ProCan, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales 2145, Australia
| |
Collapse
|
4
|
Godbole S, Voß H, Gocke A, Schlumbohm S, Schumann Y, Peng B, Mynarek M, Rutkowski S, Dottermusch M, Dorostkar MM, Korshunov A, Mair T, Pfister SM, Kwiatkowski M, Hotze M, Neumann P, Hartmann C, Weis J, Liesche-Starnecker F, Guan Y, Moritz M, Siebels B, Struve N, Schlüter H, Schüller U, Krisp C, Neumann JE. Multiomic profiling of medulloblastoma reveals subtype-specific targetable alterations at the proteome and N-glycan level. Nat Commun 2024; 15:6237. [PMID: 39043693 PMCID: PMC11266559 DOI: 10.1038/s41467-024-50554-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 07/11/2024] [Indexed: 07/25/2024] Open
Abstract
Medulloblastomas (MBs) are malignant pediatric brain tumors that are molecularly and clinically heterogenous. The application of omics technologies-mainly studying nucleic acids-has significantly improved MB classification and stratification, but treatment options are still unsatisfactory. The proteome and their N-glycans hold the potential to discover clinically relevant phenotypes and targetable pathways. We compile a harmonized proteome dataset of 167 MBs and integrate findings with DNA methylome, transcriptome and N-glycome data. We show six proteome MB subtypes, that can be assigned to two main molecular programs: transcription/translation (pSHHt, pWNT and pG3myc), and synapses/immunological processes (pSHHs, pG3 and pG4). Multiomic analysis reveals different conservation levels of proteome features across MB subtypes at the DNA methylome level. Aggressive pGroup3myc MBs and favorable pWNT MBs are most similar in cluster hierarchies concerning overall proteome patterns but show different protein abundances of the vincristine resistance-associated multiprotein complex TriC/CCT and of N-glycan turnover-associated factors. The N-glycome reflects proteome subtypes and complex-bisecting N-glycans characterize pGroup3myc tumors. Our results shed light on targetable alterations in MB and set a foundation for potential immunotherapies targeting glycan structures.
Collapse
Affiliation(s)
- Shweta Godbole
- Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hannah Voß
- Section of Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Antonia Gocke
- Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Section of Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Simon Schlumbohm
- Chair for High Performance Computing, Helmut Schmidt University, Hamburg, Germany
| | - Yannis Schumann
- Chair for High Performance Computing, Helmut Schmidt University, Hamburg, Germany
| | - Bojia Peng
- Section of Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Mynarek
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Rutkowski
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Matthias Dottermusch
- Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mario M Dorostkar
- Center for Neuropathology, Ludwig-Maximilians-University, Munich, Germany
- German Center for Neurodegenerative Diseases, Munich, Germany
| | - Andrey Korshunov
- Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Thomas Mair
- Section of Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan M Pfister
- Hopp Children's Cancer Center at the NCT Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Madlen Hotze
- Institute of Biochemistry, University of Innsbruck, Innsbruck, Austria
| | - Philipp Neumann
- Chair for High Performance Computing, Helmut Schmidt University, Hamburg, Germany
| | - Christian Hartmann
- Department of Neuropathology, Hannover Medical School (MHH), Hannover, Germany
| | - Joachim Weis
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen, Germany
| | | | - Yudong Guan
- Section of Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Manuela Moritz
- Section of Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Bente Siebels
- Section of Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nina Struve
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Radiotherapy & Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hartmut Schlüter
- Section of Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulrich Schüller
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center Hamburg, Hamburg, Germany
| | - Christoph Krisp
- Section of Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julia E Neumann
- Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
5
|
Kelly PA, McHugo GP, Scaife C, Peters S, Stevenson ML, McKay JS, MacHugh DE, Saez IL, Breathnach R. Unveiling the Role of Endoplasmic Reticulum Stress Pathways in Canine Demodicosis. Parasite Immunol 2024; 46:e13033. [PMID: 38607285 DOI: 10.1111/pim.13033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 02/29/2024] [Accepted: 03/08/2024] [Indexed: 04/13/2024]
Abstract
Canine demodicosis is a prevalent skin disease caused by overpopulation of a commensal species of Demodex mite, yet its precise cause remains unknown. Research suggests that T-cell exhaustion, increased immunosuppressive cytokines, induction of regulatory T cells and increased expression of immune checkpoint inhibitors may contribute to its pathogenesis. This study aimed to gain a deeper understanding of the molecular changes occurring in canine demodicosis using mass spectrometry and pathway enrichment analysis. The results indicate that endoplasmic reticulum stress promotes canine demodicosis through regulation of three linked signalling pathways: eIF2, mTOR, and eIF4 and p70S6K. These pathways are involved in the modulation of Toll-like receptors, most notably TLR2, and have been shown to play a role in the pathogenesis of skin diseases in both dogs and humans. Moreover, these pathways are also implicated in the promotion of immunosuppressive M2 phenotype macrophages. Immunohistochemical analysis, utilising common markers of dendritic cells and macrophages, verified the presence of M2 macrophages in canine demodicosis. The proteomic analysis also identified immunological disease, organismal injury and abnormalities and inflammatory response as the most significant underlying diseases and disorders associated with canine demodicosis. This study demonstrates that Demodex mites, through ER stress, unfolded protein response and M2 macrophages contribute to an immunosuppressive microenvironment, thereby assisting in their proliferation.
Collapse
Affiliation(s)
- Pamela A Kelly
- UCD School of Veterinary Medicine, University College Dublin, Dublin, 4, Ireland
| | - Gillian P McHugo
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, 4, Ireland
| | - Caitriona Scaife
- Proteomics Core, Mass Spectrometry Resource, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, 4, Ireland
| | - Susan Peters
- UCD School of Veterinary Medicine, University College Dublin, Dublin, 4, Ireland
| | - M Lynn Stevenson
- School of Biodiversity, One Health and Veterinary Medicine, Bearsden, University of Glasgow, Glasgow, UK
| | | | - David E MacHugh
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, 4, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, 4, Ireland
| | - Irene Lara Saez
- UCD Charles Institute of Dermatology, University College Dublin, Dublin, 4, Ireland
| | - Rory Breathnach
- UCD School of Veterinary Medicine, University College Dublin, Dublin, 4, Ireland
| |
Collapse
|
6
|
Xavier D, Lucas N, Williams SG, Koh JMS, Ashman K, Loudon C, Reddel R, Hains PG, Robinson PJ. Heat 'n Beat: A Universal High-Throughput End-to-End Proteomics Sample Processing Platform in under an Hour. Anal Chem 2024; 96:4093-4102. [PMID: 38427620 DOI: 10.1021/acs.analchem.3c04708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Proteomic analysis by mass spectrometry of small (≤2 mg) solid tissue samples from diverse formats requires high throughput and comprehensive proteome coverage. We developed a nearly universal, rapid, and robust protocol for sample preparation, suitable for high-throughput projects that encompass most cell or tissue types. This end-to-end workflow extends from original sample to loading the mass spectrometer and is centered on a one-tube homogenization and digestion method called Heat 'n Beat (HnB). It is applicable to most tissues, regardless of how they were fixed or embedded. Sample preparation was divided into separate challenges. The initial sample washing and final peptide cleanup steps were adapted to three tissue sources: fresh frozen (FF), optimal cutting temperature (OCT) compound embedded (FF-OCT), and formalin-fixed paraffin embedded (FFPE). Third, for core processing, tissue disruption and lysis were decreased to a 7 min heat and homogenization treatment, and reduction, alkylation, and proteolysis were optimized into a single step. The refinements produced near doubled peptide yield when compared to our earlier method ABLE delivered a consistently high digestion efficiency of 85-90%, reported by ProteinPilot, and required only 38 min for core processing in a single tube, with the total processing time being 53-63 min. The robustness of HnB was demonstrated on six organ types, a cell line, and a cancer biopsy. Its suitability for high-throughput applications was demonstrated on a set of 1171 FF-OCT human cancer biopsies, which were processed for end-to-end completion in 92 h, producing highly consistent peptide yield and quality for over 3513 MS runs.
Collapse
Affiliation(s)
- Dylan Xavier
- ProCan, Faculty of Medicine and Health, The University of Sydney, Children's Medical Research Institute, Westmead, NSW 2145, Australia
| | - Natasha Lucas
- ProCan, Faculty of Medicine and Health, The University of Sydney, Children's Medical Research Institute, Westmead, NSW 2145, Australia
| | - Steven G Williams
- ProCan, Faculty of Medicine and Health, The University of Sydney, Children's Medical Research Institute, Westmead, NSW 2145, Australia
| | - Jennifer M S Koh
- ProCan, Faculty of Medicine and Health, The University of Sydney, Children's Medical Research Institute, Westmead, NSW 2145, Australia
| | - Keith Ashman
- ProCan, Faculty of Medicine and Health, The University of Sydney, Children's Medical Research Institute, Westmead, NSW 2145, Australia
| | - Clare Loudon
- ProCan, Faculty of Medicine and Health, The University of Sydney, Children's Medical Research Institute, Westmead, NSW 2145, Australia
| | - Roger Reddel
- ProCan, Faculty of Medicine and Health, The University of Sydney, Children's Medical Research Institute, Westmead, NSW 2145, Australia
| | - Peter G Hains
- ProCan, Faculty of Medicine and Health, The University of Sydney, Children's Medical Research Institute, Westmead, NSW 2145, Australia
| | - Phillip J Robinson
- ProCan, Faculty of Medicine and Health, The University of Sydney, Children's Medical Research Institute, Westmead, NSW 2145, Australia
| |
Collapse
|
7
|
G Jagadeeshaprasad M, Zeng J, Zheng N. LC-MS bioanalysis of protein biomarkers and protein therapeutics in formalin-fixed paraffin-embedded tissue specimens. Bioanalysis 2024; 16:245-258. [PMID: 38226835 DOI: 10.4155/bio-2023-0210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024] Open
Abstract
Formalin-fixed paraffin-embedded (FFPE) is a form of preservation and preparation for biopsy specimens. FFPE tissue specimens are readily available as part of oncology studies because they are often collected for disease diagnosis or confirmation. FFPE tissue specimens could be extremely useful for retrospective studies on protein biomarkers because the samples preserved in FFPE blocks could be stable for decades. However, LC-MS bioanalysis of FFPE tissues poses significant challenges. In this Perspective, we review the benefits and recent developments in LC-MS approach for targeted protein biomarker and protein therapeutic analysis using FFPE tissues and their clinical and translational applications. We believe that LC-MS bioanalysis of protein biomarkers in FFPE tissue specimens represents a great potential for its clinical applications.
Collapse
Affiliation(s)
| | - Jianing Zeng
- Department of Protein Sciences & Mass Spectrometry, Translational Medicine, Bristol Myers Squibb, Princeton, NJ 08543, USA
| | - Naiyu Zheng
- Department of Protein Sciences & Mass Spectrometry, Translational Medicine, Bristol Myers Squibb, Princeton, NJ 08543, USA
| |
Collapse
|
8
|
Darville LNF, Lockhart JH, Putty Reddy S, Fang B, Izumi V, Boyle TA, Haura EB, Flores ER, Koomen JM. A Fast-Tracking Sample Preparation Protocol for Proteomics of Formalin-Fixed Paraffin-Embedded Tumor Tissues. Methods Mol Biol 2024; 2823:193-223. [PMID: 39052222 PMCID: PMC11648944 DOI: 10.1007/978-1-0716-3922-1_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Archived tumor specimens are routinely preserved by formalin fixation and paraffin embedding. Despite the conventional wisdom that proteomics might be ineffective due to the cross-linking and pre-analytical variables, these samples have utility for both discovery and targeted proteomics. Building on this capability, proteomics approaches can be used to maximize our understanding of cancer biology and clinical relevance by studying preserved tumor tissues annotated with the patients' medical histories. Proteomics of formalin-fixed paraffin-embedded (FFPE) tissues also integrates with histological evaluation and molecular pathology strategies, so that additional collection of research biopsies or resected tumor aliquots is not needed. The acquisition of data from the same tumor sample also overcomes concerns about biological variation between samples due to intratumoral heterogeneity. However, the protein extraction and proteomics sample preparation from FFPE samples can be onerous, particularly for small (i.e., limited or precious) samples. Therefore, we provide a protocol for a recently introduced kit-based EasyPep method with benchmarking against a modified version of the well-established filter-aided sample preparation strategy using laser-capture microdissected lung adenocarcinoma tissues from a genetically engineered mouse model. This model system allows control over the tumor preparation and pre-analytical variables while also supporting the development of methods for spatial proteomics to examine intratumoral heterogeneity. Data are posted in ProteomeXchange (PXD045879).
Collapse
Affiliation(s)
| | | | | | - Bin Fang
- H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | | | | | | | | | - John M Koomen
- H. Lee Moffitt Cancer Center, Tampa, FL, USA.
- Molecular Oncology/Pathology, Moffitt Cancer Center, Tampa, FL, USA.
| |
Collapse
|
9
|
Phipps WS, Kilgore MR, Kennedy JJ, Whiteaker JR, Hoofnagle AN, Paulovich AG. Clinical Proteomics for Solid Organ Tissues. Mol Cell Proteomics 2023; 22:100648. [PMID: 37730181 PMCID: PMC10692389 DOI: 10.1016/j.mcpro.2023.100648] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 09/22/2023] Open
Abstract
The evaluation of biopsied solid organ tissue has long relied on visual examination using a microscope. Immunohistochemistry is critical in this process, labeling and detecting cell lineage markers and therapeutic targets. However, while the practice of immunohistochemistry has reshaped diagnostic pathology and facilitated improvements in cancer treatment, it has also been subject to pervasive challenges with respect to standardization and reproducibility. Efforts are ongoing to improve immunohistochemistry, but for some applications, the benefit of such initiatives could be impeded by its reliance on monospecific antibody-protein reagents and limited multiplexing capacity. This perspective surveys the relevant challenges facing traditional immunohistochemistry and describes how mass spectrometry, particularly liquid chromatography-tandem mass spectrometry, could help alleviate problems. In particular, targeted mass spectrometry assays could facilitate measurements of individual proteins or analyte panels, using internal standards for more robust quantification and improved interlaboratory reproducibility. Meanwhile, untargeted mass spectrometry, showcased to date clinically in the form of amyloid typing, is inherently multiplexed, facilitating the detection and crude quantification of 100s to 1000s of proteins in a single analysis. Further, data-independent acquisition has yet to be applied in clinical practice, but offers particular strengths that could appeal to clinical users. Finally, we discuss the guidance that is needed to facilitate broader utilization in clinical environments and achieve standardization.
Collapse
Affiliation(s)
- William S Phipps
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Mark R Kilgore
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Jacob J Kennedy
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Jeffrey R Whiteaker
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Andrew N Hoofnagle
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA; Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA.
| | - Amanda G Paulovich
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA; Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA.
| |
Collapse
|
10
|
Alvarez-Rivera E, Ortiz-Hernández EJ, Lugo E, Lozada-Reyes LM, Boukli NM. Oncogenic Proteomics Approaches for Translational Research and HIV-Associated Malignancy Mechanisms. Proteomes 2023; 11:22. [PMID: 37489388 PMCID: PMC10366845 DOI: 10.3390/proteomes11030022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/09/2023] [Accepted: 06/29/2023] [Indexed: 07/26/2023] Open
Abstract
Recent advances in the field of proteomics have allowed extensive insights into the molecular regulations of the cell proteome. Specifically, this allows researchers to dissect a multitude of signaling arrays while targeting for the discovery of novel protein signatures. These approaches based on data mining are becoming increasingly powerful for identifying both potential disease mechanisms as well as indicators for disease progression and overall survival predictive and prognostic molecular markers for cancer. Furthermore, mass spectrometry (MS) integrations satisfy the ongoing demand for in-depth biomarker validation. For the purpose of this review, we will highlight the current developments based on MS sensitivity, to place quantitative proteomics into clinical settings and provide a perspective to integrate proteomics data for future applications in cancer precision medicine. We will also discuss malignancies associated with oncogenic viruses such as Acquire Immunodeficiency Syndrome (AIDS) and suggest novel mechanisms behind this phenomenon. Human Immunodeficiency Virus type-1 (HIV-1) proteins are known to be oncogenic per se, to induce oxidative and endoplasmic reticulum stresses, and to be released from the infected or expressing cells. HIV-1 proteins can act alone or in collaboration with other known oncoproteins, which cause the bulk of malignancies in people living with HIV-1 on ART.
Collapse
Affiliation(s)
- Eduardo Alvarez-Rivera
- Biomedical Proteomics Facility, Department of Microbiology and Immunology, Universidad Central del Caribe, School of Medicine, Bayamón, PR 00960, USA
| | - Emanuel J. Ortiz-Hernández
- Biomedical Proteomics Facility, Department of Microbiology and Immunology, Universidad Central del Caribe, School of Medicine, Bayamón, PR 00960, USA
| | - Elyette Lugo
- Biomedical Proteomics Facility, Department of Microbiology and Immunology, Universidad Central del Caribe, School of Medicine, Bayamón, PR 00960, USA
| | | | - Nawal M. Boukli
- Biomedical Proteomics Facility, Department of Microbiology and Immunology, Universidad Central del Caribe, School of Medicine, Bayamón, PR 00960, USA
| |
Collapse
|
11
|
Mar D, Babenko IM, Zhang R, Noble WS, Denisenko O, Vaisar T, Bomsztyk K. MultiomicsTracks96: A high throughput PIXUL-Matrix-based toolbox to profile frozen and FFPE tissues multiomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.16.533031. [PMID: 36993219 PMCID: PMC10055122 DOI: 10.1101/2023.03.16.533031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Background The multiome is an integrated assembly of distinct classes of molecules and molecular properties, or "omes," measured in the same biospecimen. Freezing and formalin-fixed paraffin-embedding (FFPE) are two common ways to store tissues, and these practices have generated vast biospecimen repositories. However, these biospecimens have been underutilized for multi-omic analysis due to the low throughput of current analytical technologies that impede large-scale studies. Methods Tissue sampling, preparation, and downstream analysis were integrated into a 96-well format multi-omics workflow, MultiomicsTracks96. Frozen mouse organs were sampled using the CryoGrid system, and matched FFPE samples were processed using a microtome. The 96-well format sonicator, PIXUL, was adapted to extract DNA, RNA, chromatin, and protein from tissues. The 96-well format analytical platform, Matrix, was used for chromatin immunoprecipitation (ChIP), methylated DNA immunoprecipitation (MeDIP), methylated RNA immunoprecipitation (MeRIP), and RNA reverse transcription (RT) assays followed by qPCR and sequencing. LC-MS/MS was used for protein analysis. The Segway genome segmentation algorithm was used to identify functional genomic regions, and linear regressors based on the multi-omics data were trained to predict protein expression. Results MultiomicsTracks96 was used to generate 8-dimensional datasets including RNA-seq measurements of mRNA expression; MeRIP-seq measurements of m6A and m5C; ChIP-seq measurements of H3K27Ac, H3K4m3, and Pol II; MeDIP-seq measurements of 5mC; and LC-MS/MS measurements of proteins. We observed high correlation between data from matched frozen and FFPE organs. The Segway genome segmentation algorithm applied to epigenomic profiles (ChIP-seq: H3K27Ac, H3K4m3, Pol II; MeDIP-seq: 5mC) was able to recapitulate and predict organ-specific super-enhancers in both FFPE and frozen samples. Linear regression analysis showed that proteomic expression profiles can be more accurately predicted by the full suite of multi-omics data, compared to using epigenomic, transcriptomic, or epitranscriptomic measurements individually. Conclusions The MultiomicsTracks96 workflow is well suited for high dimensional multi-omics studies - for instance, multiorgan animal models of disease, drug toxicities, environmental exposure, and aging as well as large-scale clinical investigations involving the use of biospecimens from existing tissue repositories.
Collapse
|
12
|
Davidson JM, Rayner SL, Liu S, Cheng F, Di Ieva A, Chung RS, Lee A. Inter-Regional Proteomic Profiling of the Human Brain Using an Optimized Protein Extraction Method from Formalin-Fixed Tissue to Identify Signaling Pathways. Int J Mol Sci 2023; 24:ijms24054283. [PMID: 36901711 PMCID: PMC10001664 DOI: 10.3390/ijms24054283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/16/2023] [Accepted: 02/19/2023] [Indexed: 02/24/2023] Open
Abstract
Proteomics offers vast potential for studying the molecular regulation of the human brain. Formalin fixation is a common method for preserving human tissue; however, it presents challenges for proteomic analysis. In this study, we compared the efficiency of two different protein-extraction buffers on three post-mortem, formalin-fixed human brains. Equal amounts of extracted proteins were subjected to in-gel tryptic digestion and LC-MS/MS. Protein, peptide sequence, and peptide group identifications; protein abundance; and gene ontology pathways were analyzed. Protein extraction was superior using lysis buffer containing tris(hydroxymethyl)aminomethane hydrochloride, sodium dodecyl sulfate, sodium deoxycholate, and Triton X-100 (TrisHCl, SDS, SDC, Triton X-100), which was then used for inter-regional analysis. Pre-frontal, motor, temporal, and occipital cortex tissues were analyzed by label free quantification (LFQ) proteomics, Ingenuity Pathway Analysis and PANTHERdb. Inter-regional analysis revealed differential enrichment of proteins. We found similarly activated cellular signaling pathways in different brain regions, suggesting commonalities in the molecular regulation of neuroanatomically-linked brain functions. Overall, we developed an optimized, robust, and efficient method for protein extraction from formalin-fixed human brain tissue for in-depth LFQ proteomics. We also demonstrate herein that this method is suitable for rapid and routine analysis to uncover molecular signaling pathways in the human brain.
Collapse
Affiliation(s)
- Jennilee M. Davidson
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Level 1, 75 Talavera Road, Sydney, NSW 2109, Australia
- Correspondence: (J.M.D.); (A.D.I.)
| | - Stephanie L. Rayner
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Level 1, 75 Talavera Road, Sydney, NSW 2109, Australia
| | - Sidong Liu
- Centre for Health Informatics, Faculty of Medicine, Health and Human Sciences, Macquarie University, 75 Talavera Road, Sydney, NSW 2109, Australia
- Computational NeuroSurgery (CNS) Lab, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Level 1, 75 Talavera Road, Sydney, NSW 2109, Australia
| | - Flora Cheng
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Level 1, 75 Talavera Road, Sydney, NSW 2109, Australia
| | - Antonio Di Ieva
- Computational NeuroSurgery (CNS) Lab, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Level 1, 75 Talavera Road, Sydney, NSW 2109, Australia
- Correspondence: (J.M.D.); (A.D.I.)
| | - Roger S. Chung
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Level 1, 75 Talavera Road, Sydney, NSW 2109, Australia
| | - Albert Lee
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Level 1, 75 Talavera Road, Sydney, NSW 2109, Australia
| |
Collapse
|
13
|
Pu J, Xue C, Huo S, Shen Q, Qu Y, Yang X, An B, Angel TE, Chen Z, Mehl JT, Tang H, Yang E, Sikorski TW, Qu J. Highly Accurate and Robust Absolute Quantification of Target Proteins in Formalin-Fixed Paraffin-Embedded (FFPE) Tissues by LC-MS. Anal Chem 2023; 95:924-934. [PMID: 36534410 PMCID: PMC10581745 DOI: 10.1021/acs.analchem.2c03473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Accurate, absolute liquid chromatography-mass spectrometry (LC-MS)-based quantification of target proteins in formalin-fixed paraffin-embedded (FFPE) tissues would greatly expand sample availability for pharmaceutical/clinical investigations but remains challenging owing to the following issues: (i) efficient/quantitative recovery of target signature peptides from FFPE tissues is essential but an optimal procedure for targeted, absolute quantification is lacking; (ii) most FFPE samples are long-term-stored; severe immunohistochemistry (IHC) signal losses of target proteins during storage were widely reported, while the effect of storage on LC-MS-based methods was unknown; and (iii) the proper strategy to prepare calibration/quality-control samples to ensure accurate targeted protein analysis in FFPE tissues remained elusive. Using targeted quantification of monoclonal antibody (mAb), antigen, and 40 tissue markers in FFPE tissues as a model system, we extensively investigate those issues and develope an LC-MS-based strategy enabling accurate and precise targeted protein quantification in FFPE samples. First, we demonstrated a surfactant cocktail-based procedure (f-SEPOD), providing high/reproducible recovery of target signature peptides from FFPE tissues. Second, a heat-accelerated degradation study within a roughly estimated 5 year storage period recapitulated the loss of protein IHC signals while LC-MS signals of all targets remained constant. This indicates that the storage of FFPE tissues mainly causes decreased immunoreactivity but unlikely chemical degradation of proteins, which strongly suggests that the storage of FFPE tissues does not cause significant quantitative bias for LC-MS-based methods. Third, while a conventional spike-and-extract approach for calibration caused substantial negative biases, a novel approach, using FFPE-treated calibration standards, enabled accurate and precise quantification. With the pipeline, we conducted the first-ever pharmacokinetics measurement of mAb and its target in FFPE tissues, where time courses by FFPE vs fresh tissues showed excellent correlation.
Collapse
Affiliation(s)
- Jie Pu
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York 14214, United States
| | - Chao Xue
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, New York 14214, United States
| | - Shihan Huo
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York 14214, United States
| | - Qingqing Shen
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York 14214, United States
| | - Yang Qu
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York 14214, United States; New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, New York 14203, United States
| | - Xinxin Yang
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York 14214, United States
| | - Bo An
- Bioanalysis, Immunogenicity & Biomarkers, In-Vitro/In-Vivo Translation, R&D Research, GlaxoSmithKline, Collegeville, Pennsylvania 19426, United States
| | - Thomas E. Angel
- Bioanalysis, Immunogenicity & Biomarkers, In-Vitro/In-Vivo Translation, R&D Research, GlaxoSmithKline, Collegeville, Pennsylvania 19426, United States
| | - Zhuo Chen
- Bioanalysis, Immunogenicity & Biomarkers, In-Vitro/In-Vivo Translation, R&D Research, GlaxoSmithKline, Collegeville, Pennsylvania 19426, United States
| | - John T. Mehl
- Bioanalysis, Immunogenicity & Biomarkers, In-Vitro/In-Vivo Translation, R&D Research, GlaxoSmithKline, Collegeville, Pennsylvania 19426, United States
| | - Huaping Tang
- Bioanalysis, Immunogenicity & Biomarkers, In-Vitro/In-Vivo Translation, R&D Research, GlaxoSmithKline, Collegeville, Pennsylvania 19426, United States
| | - Eric Yang
- Bioanalysis, Immunogenicity & Biomarkers, In-Vitro/In-Vivo Translation, R&D Research, GlaxoSmithKline, Collegeville, Pennsylvania 19426, United States
| | - Timothy W. Sikorski
- Bioanalysis, Immunogenicity & Biomarkers, In-Vitro/In-Vivo Translation, R&D Research, GlaxoSmithKline, Collegeville, Pennsylvania 19426, United States; Phone: (610) 270-4978
| | - Jun Qu
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York 14214, United States; New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, New York 14203, United States
| |
Collapse
|
14
|
Obi EN, Tellock DA, Thomas GJ, Veenstra TD. Biomarker Analysis of Formalin-Fixed Paraffin-Embedded Clinical Tissues Using Proteomics. Biomolecules 2023; 13:biom13010096. [PMID: 36671481 PMCID: PMC9855471 DOI: 10.3390/biom13010096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 01/06/2023] Open
Abstract
The relatively recent developments in mass spectrometry (MS) have provided novel opportunities for this technology to impact modern medicine. One of those opportunities is in biomarker discovery and diagnostics. Key developments in sample preparation have enabled a greater range of clinical samples to be characterized at a deeper level using MS. While most of these developments have focused on blood, tissues have also been an important resource. Fresh tissues, however, are difficult to obtain for research purposes and require significant resources for long-term storage. There are millions of archived formalin-fixed paraffin-embedded (FFPE) tissues within pathology departments worldwide representing every possible tissue type including tumors that are rare or very small. Owing to the chemical technique used to preserve FFPE tissues, they were considered intractable to many newer proteomics techniques and primarily only useful for immunohistochemistry. In the past couple of decades, however, researchers have been able to develop methods to extract proteins from FFPE tissues in a form making them analyzable using state-of-the-art technologies such as MS and protein arrays. This review will discuss the history of these developments and provide examples of how they are currently being used to identify biomarkers and diagnose diseases such as cancer.
Collapse
|
15
|
Li F, Hooper AT, Golas J, Chang CPB, Neubert H, King L. Evaluation of EDB Fibronectin in Plasma, Patient-Derived Xenograft Formalin-Fixed Paraffin-Embedded and Fresh Frozen Tumor Tissues Using Immunoaffinity LC-MS/MS. J Proteome Res 2022; 21:2331-2340. [PMID: 36049057 DOI: 10.1021/acs.jproteome.2c00182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The fibronectin (FN) isoform including the extradomain B (EDB) segment (EDB + FN) is a promising tumor target and is highly expressed in some tumor types, such as breast, head, and neck cancer. To date, mostly immunohistochemistry (IHC) and Western blot have been used for the analysis of EDB + FN. However, complete quantitative measurements of EDB + FN expression in a tumor and circulation are important for the development of anti-EDB therapeutics. To this end, a method using protein enrichment followed by online antipeptide antibody enrichment coupled with a nanoflow LC-MS/MS was developed to quantify EDB + FN in human and cynomolgus plasma, patient-derived xenograft (PDX) tumors, and PDX formalin-fixed paraffin-embedded (FFPE) samples. Mouse plasma EDB + FN was analyzed using a protein immunoaffinity method followed by nanoflow LC-MS/MS. EDB + FN concentrations were 63.1 pmol/g in PDX breast cancer tumor and 49.6 pmol/g in PDX head and neck tumor. Mean plasma concentration was 1.1 nM (pmol/mL, 47.4 ng/mL) in normal healthy humans and 0.35 nM (15.1 ng/mL) in naive cynomolgus. The assay sensitivity was 0.018 nM based on calibration with recombinant human EDB + FN (rhEDB + FN).
Collapse
Affiliation(s)
- Fengping Li
- BioMedicine Design, Pfizer Inc., 1 Burtt Road, Andover, Massachusetts 01810, United States
| | - Andrea T Hooper
- Oncology Research & Development, Pfizer Inc., 401 N Middletown Rd, Pearl River, New York 10965, United States
| | - Jonathon Golas
- Oncology Research & Development, Pfizer Inc., 401 N Middletown Rd, Pearl River, New York 10965, United States
| | - Chao-Pei Betty Chang
- Oncology Research & Development, Pfizer Inc., 401 N Middletown Rd, Pearl River, New York 10965, United States
| | - Hendrik Neubert
- BioMedicine Design, Pfizer Inc., 1 Burtt Road, Andover, Massachusetts 01810, United States
| | - Lindsay King
- Clinical Pharmacology, Global Product Development, Pfizer Inc. 610 Main St, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
16
|
A Non-Hazardous Deparaffinization Protocol Enables Quantitative Proteomics of Core Needle Biopsy-Sized Formalin-Fixed and Paraffin-Embedded (FFPE) Tissue Specimens. Int J Mol Sci 2022; 23:ijms23084443. [PMID: 35457260 PMCID: PMC9031572 DOI: 10.3390/ijms23084443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/09/2022] [Accepted: 04/11/2022] [Indexed: 12/22/2022] Open
Abstract
Most human tumor tissues that are obtained for pathology and diagnostic purposes are formalin-fixed and paraffin-embedded (FFPE). To perform quantitative proteomics of FFPE samples, paraffin has to be removed and formalin-induced crosslinks have to be reversed prior to proteolytic digestion. A central component of almost all deparaffinization protocols is xylene, a toxic and highly flammable solvent that has been reported to negatively affect protein extraction and quantitative proteome analysis. Here, we present a 'green' xylene-free protocol for accelerated sample preparation of FFPE tissues based on paraffin-removal with hot water. Combined with tissue homogenization using disposable micropestles and a modified protein aggregation capture (PAC) digestion protocol, our workflow enables streamlined and reproducible quantitative proteomic profiling of FFPE tissue. Label-free quantitation of FFPE cores from human ductal breast carcinoma in situ (DCIS) xenografts with a volume of only 0.79 mm3 showed a high correlation between replicates (r2 = 0.992) with a median %CV of 16.9%. Importantly, this small volume is already compatible with tissue micro array (TMA) cores and core needle biopsies, while our results and its ease-of-use indicate that further downsizing is feasible. Finally, our FFPE workflow does not require costly equipment and can be established in every standard clinical laboratory.
Collapse
|
17
|
Evaluation of Fast and Sensitive Proteome Profiling of FF and FFPE Kidney Patient Tissues. Molecules 2022; 27:molecules27031137. [PMID: 35164409 PMCID: PMC8838561 DOI: 10.3390/molecules27031137] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/27/2022] [Accepted: 02/01/2022] [Indexed: 12/14/2022] Open
Abstract
The application of proteomics to fresh frozen (FF) and formalin-fixed paraffin-embedded (FFPE) human tissues is an important development spurred on by requests from stakeholder groups in clinical fields. One objective is to complement current diagnostic methods with new specific molecular information. An important goal is to achieve adequate and consistent protein recovery across and within large-scale studies. Here, we describe development of several protocols incorporating mass spectrometry compatible detergents, including Rapigest, PPS, and ProteaseMax. Methods were applied on 4 and 15 μm thick FF tissues, and 4 μm thick FFPE tissues. We evaluated sensitivity and repeatability of the methods and found that the protocol containing Rapigest enabled detection of 630 proteins from FF tissue of 1 mm2 and 15 μm thick, whereas 498 and 297 proteins were detected with the protocols containing ProteaseMax and PPS, respectively. Surprisingly, PPS-containing buffer showed good extraction of the proteins from 4 μm thick FFPE tissue with the average of 270 protein identifications (1 mm2), similar to the results on 4 μm thick FF. Moreover, we found that temperature increases during incubation with urea on 4 μm thick FF tissue revealed a decrease in the number of identified proteins and increase in the number of the carbamylated peptides.
Collapse
|
18
|
Rossouw S, Bendou H, Bell L, Rigby J, Christoffels A. Effect of polyethylene glycol 20 000 on protein extraction efficiency of formalin-fixed paraffin-embedded tissues in South Africa. Afr J Lab Med 2021; 10:1122. [PMID: 34966662 PMCID: PMC8689371 DOI: 10.4102/ajlm.v10i1.1122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 09/08/2021] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND Optimal protocols for efficient and reproducible protein extraction from formalin-fixed paraffin-embedded (FFPE) tissues are not yet standardised and new techniques are continually developed and improved. The effect of polyethylene glycol (PEG) 20 000 on protein extraction efficiency has not been evaluated using human FFPE colorectal cancer tissues and there is no consensus on the protein extraction solution required for efficient, reproducible extraction. OBJECTIVE The impact of PEG 20 000 on protein extraction efficiency, reproducibility and protein selection bias was evaluated using FFPE colonic tissue via liquid chromatography tandem mass spectrometry analysis. METHODS This study was conducted from August 2017 to July 2019 using human FFPE colorectal carcinoma tissues from the Anatomical Pathology department at Tygerberg Hospital in South Africa. Samples were analysed via label-free liquid chromatography tandem mass spectrometry to determine the impact of using PEG 20 000 in the protein extraction solution. Data were assessed regarding peptide and protein identifications, method efficiency, reproducibility, protein characteristics and organisation relating to gene ontology categories. RESULTS Polyethylene glycol 20 000 exclusion increased peptides and proteins identifications and the method was more reproducible compared to the samples processed with PEG 20 000. However, no differences were observed with regard to protein selection bias. We found that higher protein concentrations (> 10 µg) compromised the function of PEG. CONCLUSION This study indicates that protocols generating high protein yields from human FFPE tissues would benefit from the exclusion of PEG 20 000 in the protein extraction solution.
Collapse
Affiliation(s)
- Sophia Rossouw
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Cape Town, South Africa
| | - Hocine Bendou
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Cape Town, South Africa
| | - Liam Bell
- Centre for Proteomic and Genomic Research, Observatory, Cape Town, South Africa
| | - Jonathan Rigby
- Department of Anatomical Pathology, National Health Laboratory Service, Tygerberg Hospital, Stellenbosch University, Cape Town, South Africa
| | - Alan Christoffels
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Cape Town, South Africa
| |
Collapse
|
19
|
Xiao Q, Zhang F, Xu L, Yue L, Kon OL, Zhu Y, Guo T. High-throughput proteomics and AI for cancer biomarker discovery. Adv Drug Deliv Rev 2021; 176:113844. [PMID: 34182017 DOI: 10.1016/j.addr.2021.113844] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/13/2021] [Accepted: 06/15/2021] [Indexed: 02/08/2023]
Abstract
Biomarkers are assayed to assess biological and pathological status. Recent advances in high-throughput proteomic technology provide opportunities for developing next generation biomarkers for clinical practice aided by artificial intelligence (AI) based techniques. We summarize the advances and limitations of cancer biomarkers based on genomic and transcriptomic analysis, as well as classical antibody-based methodologies. Then we review recent progresses in mass spectrometry (MS)-based proteomics in terms of sample preparation, peptide fractionation by liquid chromatography (LC) and mass spectrometric data acquisition. We highlight applications of AI techniques in high-throughput clinical studies as compared with clinical decisions based on singular features. This review sets out our approach for discovering clinical biomarkers in studies using proteomic big data technology conjoined with computational and statistical methods.
Collapse
|
20
|
Friedrich C, Schallenberg S, Kirchner M, Ziehm M, Niquet S, Haji M, Beier C, Neudecker J, Klauschen F, Mertins P. Comprehensive micro-scaled proteome and phosphoproteome characterization of archived retrospective cancer repositories. Nat Commun 2021; 12:3576. [PMID: 34117251 PMCID: PMC8196151 DOI: 10.1038/s41467-021-23855-w] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 05/17/2021] [Indexed: 02/07/2023] Open
Abstract
Formalin-fixed paraffin-embedded (FFPE) tissues are a valuable resource for retrospective clinical studies. Here, we evaluate the feasibility of (phospho-)proteomics on FFPE lung tissue regarding protein extraction, quantification, pre-analytics, and sample size. After comparing protein extraction protocols, we use the best-performing protocol for the acquisition of deep (phospho-)proteomes from lung squamous cell and adenocarcinoma with >8,000 quantified proteins and >14,000 phosphosites with a tandem mass tag (TMT) approach. With a microscaled approach, we quantify 7,000 phosphosites, enabling the analysis of FFPE biopsies with limited tissue amounts. We also investigate the influence of pre-analytical variables including fixation time and heat-assisted de-crosslinking on protein extraction efficiency and proteome coverage. Our improved workflows provide quantitative information on protein abundance and phosphosite regulation for the most relevant oncogenes, tumor suppressors, and signaling pathways in lung cancer. Finally, we present general guidelines to which methods are best suited for different applications, highlighting TMT methods for comprehensive (phospho-)proteome profiling for focused clinical studies and label-free methods for large cohorts.
Collapse
Affiliation(s)
- Corinna Friedrich
- German Cancer Consortium (DKTK), partner site Berlin, Berlin, Germany ,grid.7497.d0000 0004 0492 0584German Cancer Research Center (DKFZ), Heidelberg, Germany ,grid.7468.d0000 0001 2248 7639Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany ,grid.419491.00000 0001 1014 0849Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), MDC graduate school, Berlin, Germany ,grid.7468.d0000 0001 2248 7639Humboldt Universität zu Berlin, Institute of Chemistry, Berlin, Germany
| | - Simon Schallenberg
- grid.7468.d0000 0001 2248 7639Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Marieluise Kirchner
- grid.419491.00000 0001 1014 0849Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Proteomics Platform, Berlin, Germany ,grid.484013.aBerlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Matthias Ziehm
- grid.419491.00000 0001 1014 0849Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Proteomics Platform, Berlin, Germany ,grid.484013.aBerlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Sylvia Niquet
- grid.419491.00000 0001 1014 0849Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Proteomics Platform, Berlin, Germany ,grid.484013.aBerlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Mohamed Haji
- grid.419491.00000 0001 1014 0849Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Proteomics Platform, Berlin, Germany
| | - Christin Beier
- grid.419491.00000 0001 1014 0849Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Proteomics Platform, Berlin, Germany
| | - Jens Neudecker
- grid.6363.00000 0001 2218 4662Department of Surgery - Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Frederick Klauschen
- German Cancer Consortium (DKTK), partner site Berlin, Berlin, Germany ,grid.7497.d0000 0004 0492 0584German Cancer Research Center (DKFZ), Heidelberg, Germany ,grid.7468.d0000 0001 2248 7639Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany ,grid.484013.aBerlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany ,grid.5252.00000 0004 1936 973XInstitute of Pathology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Philipp Mertins
- German Cancer Consortium (DKTK), partner site Berlin, Berlin, Germany ,grid.7497.d0000 0004 0492 0584German Cancer Research Center (DKFZ), Heidelberg, Germany ,grid.419491.00000 0001 1014 0849Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Proteomics Platform, Berlin, Germany ,grid.484013.aBerlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
21
|
Pirog A, Faktor J, Urban-Wojciuk Z, Kote S, Chruściel E, Arcimowicz Ł, Marek-Trzonkowska N, Vojtesek B, Hupp TR, Al Shboul S, Brennan PM, Smoleński RT, Goodlett DR, Dapic I. Comparison of different digestion methods for proteomic analysis of isolated cells and FFPE tissue samples. Talanta 2021; 233:122568. [PMID: 34215064 DOI: 10.1016/j.talanta.2021.122568] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/22/2021] [Accepted: 05/26/2021] [Indexed: 12/14/2022]
Abstract
Proteomics of human tissues and isolated cellular subpopulations create new opportunities for therapy and monitoring of a patients' treatment in the clinic. Important considerations in such analysis include recovery of adequate amounts of protein for analysis and reproducibility in sample collection. In this study we compared several protocols for proteomic sample preparation: i) filter-aided sample preparation (FASP), ii) in-solution digestion (ISD) and iii) a pressure-assisted digestion (PCT) method. PCT method is known for already a decade [1], however it is not widely used in proteomic research. We assessed protocols for proteome profiling of isolated immune cell subsets and formalin-fixed paraffin embedded (FFPE) tissue samples. Our results show that the ISD method has very good efficiency of protein and peptide identification from the whole proteome, while the FASP method is particularly effective in identification of membrane proteins. Pressure-assisted digestion methods generally provide lower numbers of protein/peptide identifications, but have gained in popularity due to their shorter digestion time making them considerably faster than for ISD or FASP. Furthermore, PCT does not result in substantial sample loss when applied to samples of 50 000 cells. Analysis of FFPE tissues shows comparable results. ISD method similarly yields the highest number of identifications. Furthermore, proteins isolated from FFPE samples show a significant reduction of cleavages at lysine sites due to chemical modifications with formaldehyde-such as methylation (+14 Da) being among the most common. The data we present will be helpful for making decisions about the robust preparation of clinical samples for biomarker discovery and studies on pathomechanisms of various diseases.
Collapse
Affiliation(s)
- Artur Pirog
- International Centre for Cancer Vaccine Science, University of Gdansk, Kładki 24, 80-822, Gdańsk, Poland
| | - Jakub Faktor
- International Centre for Cancer Vaccine Science, University of Gdansk, Kładki 24, 80-822, Gdańsk, Poland
| | - Zuzanna Urban-Wojciuk
- International Centre for Cancer Vaccine Science, University of Gdansk, Kładki 24, 80-822, Gdańsk, Poland
| | - Sachin Kote
- International Centre for Cancer Vaccine Science, University of Gdansk, Kładki 24, 80-822, Gdańsk, Poland
| | - Elżbieta Chruściel
- International Centre for Cancer Vaccine Science, University of Gdansk, Kładki 24, 80-822, Gdańsk, Poland
| | - Łukasz Arcimowicz
- International Centre for Cancer Vaccine Science, University of Gdansk, Kładki 24, 80-822, Gdańsk, Poland
| | - Natalia Marek-Trzonkowska
- International Centre for Cancer Vaccine Science, University of Gdansk, Kładki 24, 80-822, Gdańsk, Poland; Laboratory of Immunoregulation and Cellular Therapies, Department of Family Medicine, Medical University of Gdańsk, Dębinki 2, 80-210, Gdańsk, Poland
| | - Borek Vojtesek
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, 656 53, Brno, Czech Republic
| | - Ted R Hupp
- International Centre for Cancer Vaccine Science, University of Gdansk, Kładki 24, 80-822, Gdańsk, Poland; Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland, EH4 2XR, United Kingdom
| | - Sofian Al Shboul
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland, EH4 2XR, United Kingdom; Department of Basic Medical Sciences, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - Paul M Brennan
- Translational Neurosurgery, Centre for Clinical Brain Sciences, Bioquarter, University of Edinburgh, Edinburgh, UK
| | | | - David R Goodlett
- International Centre for Cancer Vaccine Science, University of Gdansk, Kładki 24, 80-822, Gdańsk, Poland; Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, V8P 5C2, Canada
| | - Irena Dapic
- International Centre for Cancer Vaccine Science, University of Gdansk, Kładki 24, 80-822, Gdańsk, Poland.
| |
Collapse
|
22
|
Clift CL, Su YR, Bichell D, Jensen Smith HC, Bethard JR, Norris-Caneda K, Comte-Walters S, Ball LE, Hollingsworth MA, Mehta AS, Drake RR, Angel PM. Collagen fiber regulation in human pediatric aortic valve development and disease. Sci Rep 2021; 11:9751. [PMID: 33963260 PMCID: PMC8105334 DOI: 10.1038/s41598-021-89164-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 04/19/2021] [Indexed: 02/03/2023] Open
Abstract
Congenital aortic valve stenosis (CAVS) affects up to 10% of the world population without medical therapies to treat the disease. New molecular targets are continually being sought that can halt CAVS progression. Collagen deregulation is a hallmark of CAVS yet remains mostly undefined. Here, histological studies were paired with high resolution accurate mass (HRAM) collagen-targeting proteomics to investigate collagen fiber production with collagen regulation associated with human AV development and pediatric end-stage CAVS (pCAVS). Histological studies identified collagen fiber realignment and unique regions of high-density collagen in pCAVS. Proteomic analysis reported specific collagen peptides are modified by hydroxylated prolines (HYP), a post-translational modification critical to stabilizing the collagen triple helix. Quantitative data analysis reported significant regulation of collagen HYP sites across patient categories. Non-collagen type ECM proteins identified (26 of the 44 total proteins) have direct interactions in collagen synthesis, regulation, or modification. Network analysis identified BAMBI (BMP and Activin Membrane Bound Inhibitor) as a potential upstream regulator of the collagen interactome. This is the first study to detail the collagen types and HYP modifications associated with human AV development and pCAVS. We anticipate that this study will inform new therapeutic avenues that inhibit valvular degradation in pCAVS and engineered options for valve replacement.
Collapse
Affiliation(s)
- Cassandra L Clift
- Department of Cell and Molecular Pharmacology, MUSC Proteomics Center, Bruker-MUSC Clinical Glycomics Center of Excellence, Medical University of South Carolina, 173 Ashley Ave, BSB358, Charleston, SC, 29425, USA
| | - Yan Ru Su
- Division of Pediatric Cardiac Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - David Bichell
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Heather C Jensen Smith
- Eppley Institute for Cancer Research and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | | | | | | | | | - M A Hollingsworth
- Eppley Institute for Cancer Research and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Anand S Mehta
- Department of Cell and Molecular Pharmacology, MUSC Proteomics Center, Bruker-MUSC Clinical Glycomics Center of Excellence, Medical University of South Carolina, 173 Ashley Ave, BSB358, Charleston, SC, 29425, USA
| | - Richard R Drake
- Department of Cell and Molecular Pharmacology, MUSC Proteomics Center, Bruker-MUSC Clinical Glycomics Center of Excellence, Medical University of South Carolina, 173 Ashley Ave, BSB358, Charleston, SC, 29425, USA
| | - Peggi M Angel
- Department of Cell and Molecular Pharmacology, MUSC Proteomics Center, Bruker-MUSC Clinical Glycomics Center of Excellence, Medical University of South Carolina, 173 Ashley Ave, BSB358, Charleston, SC, 29425, USA.
| |
Collapse
|
23
|
Rossouw SC, Bendou H, Blignaut RJ, Bell L, Rigby J, Christoffels A. Evaluation of Protein Purification Techniques and Effects of Storage Duration on LC-MS/MS Analysis of Archived FFPE Human CRC Tissues. Pathol Oncol Res 2021; 27:622855. [PMID: 34257588 PMCID: PMC8262168 DOI: 10.3389/pore.2021.622855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/01/2021] [Indexed: 12/17/2022]
Abstract
To elucidate cancer pathogenesis and its mechanisms at the molecular level, the collecting and characterization of large individual patient tissue cohorts are required. Since most pathology institutes routinely preserve biopsy tissues by standardized methods of formalin fixation and paraffin embedment, these archived FFPE tissues are important collections of pathology material that include patient metadata, such as medical history and treatments. FFPE blocks can be stored under ambient conditions for decades, while retaining cellular morphology, due to modifications induced by formalin. However, the effect of long-term storage, at resource-limited institutions in developing countries, on extractable protein quantity/quality has not yet been investigated. In addition, the optimal sample preparation techniques required for accurate and reproducible results from label-free LC-MS/MS analysis across block ages remains unclear. This study investigated protein extraction efficiency of 1, 5, and 10-year old human colorectal carcinoma resection tissue and assessed three different gel-free protein purification methods for label-free LC-MS/MS analysis. A sample size of n = 17 patients per experimental group (with experiment power = 0.7 and α = 0.05, resulting in 70% confidence level) was selected. Data were evaluated in terms of protein concentration extracted, peptide/protein identifications, method reproducibility and efficiency, sample proteome integrity (due to storage time), as well as protein/peptide distribution according to biological processes, cellular components, and physicochemical properties. Data are available via ProteomeXchange with identifier PXD017198. The results indicate that the amount of protein extracted is significantly dependent on block age (p < 0.0001), with older blocks yielding less protein than newer blocks. Detergent removal plates were the most efficient and overall reproducible protein purification method with regard to number of peptide and protein identifications, followed by the MagReSyn® SP3/HILIC method (with on-bead enzymatic digestion), and lastly the acetone precipitation and formic acid resolubilization method. Overall, the results indicate that long-term storage of FFPE tissues (as measured by methionine oxidation) does not considerably interfere with retrospective proteomic analysis (p > 0.1). Block age mainly affects initial protein extraction yields and does not extensively impact on subsequent label-free LC-MS/MS analysis results.
Collapse
Affiliation(s)
- Sophia C. Rossouw
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Bellville, South Africa
| | - Hocine Bendou
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Bellville, South Africa
| | - Renette J. Blignaut
- Department of Statistics and Population Studies, University of the Western Cape, Bellville, South Africa
| | - Liam Bell
- Centre for Proteomic and Genomic Research, Observatory, Cape Town, South Africa
| | - Jonathan Rigby
- Division of Anatomical Pathology, Department of Pathology, Faculty of Health Sciences, University of Stellenbosch, National Health Laboratory Service, Tygerberg Hospital, Cape Town, South Africa
| | - Alan Christoffels
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Bellville, South Africa
| |
Collapse
|
24
|
Mohanty V, Subbannayya Y, Patil S, Puttamallesh VN, Najar MA, Datta KK, Pinto SM, Begum S, Mohanty N, Routray S, Abdulla R, Ray JG, Sidransky D, Gowda H, Prasad TSK, Chatterjee A. Molecular alterations in oral cancer using high-throughput proteomic analysis of formalin-fixed paraffin-embedded tissue. J Cell Commun Signal 2021; 15:447-459. [PMID: 33683571 DOI: 10.1007/s12079-021-00609-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 02/01/2021] [Indexed: 01/04/2023] Open
Abstract
Loss of cell differentiation is a hallmark for the progression of oral squamous cell carcinoma (OSCC). Archival Formalin-Fixed Paraffin-Embedded (FFPE) tissues constitute a valuable resource for studying the differentiation of OSCC and can offer valuable insights into the process of tumor progression. In the current study, we performed LC-MS/MS-based quantitative proteomics of FFPE specimens from pathologically-confirmed well-differentiated, moderately-differentiated, and poorly-differentiated OSCC cases. The data were analyzed in four technical replicates, resulting in the identification of 2376 proteins. Of these, 141 and 109 were differentially expressed in moderately-differentiated and poorly differentiated OSCC cases, respectively, compared to well-differentiated OSCC. The data revealed significant metabolic reprogramming with respect to lipid metabolism and glycolysis with proteins belonging to both these processes downregulated in moderately-differentiated OSCC when compared to well-differentiated OSCC. Signaling pathway analysis indicated the alteration of extracellular matrix organization, muscle contraction, and glucose metabolism pathways across tumor grades. The extracellular matrix organization pathway was upregulated in moderately-differentiated OSCC and downregulated in poorly differentiated OSCC, compared to well-differentiated OSCC. PADI4, an epigenetic enzyme transcriptional regulator, and its transcriptional target HIST1H1B were both found to be upregulated in moderately differentiated and poorly differentiated OSCC, indicating epigenetic events underlying tumor differentiation. In conclusion, the findings support the advantage of using high-resolution mass spectrometry-based FFPE archival blocks for clinical and translational research. The candidate signaling pathways identified in the study could be used to develop potential therapeutic targets for OSCC.
Collapse
Affiliation(s)
- Varshasnata Mohanty
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed To Be University), Mangalore, Karnataka, 575018, India
| | - Yashwanth Subbannayya
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed To Be University), Mangalore, Karnataka, 575018, India.,Centre of Molecular Inflammation Research (CEMIR), and Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, N-7491, Trondheim, Norway
| | - Shankargouda Patil
- Division of Oral Pathology, College of Dentistry, Department of Maxillofacial Surgery and Diagnostic Sciences, Jazan University, Jazan, 45142, Saudi Arabia
| | - Vinuth N Puttamallesh
- Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka, 560066, India
| | - Mohd Altaf Najar
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed To Be University), Mangalore, Karnataka, 575018, India
| | - Keshava K Datta
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed To Be University), Mangalore, Karnataka, 575018, India
| | - Sneha M Pinto
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed To Be University), Mangalore, Karnataka, 575018, India.,Centre of Molecular Inflammation Research (CEMIR), and Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, N-7491, Trondheim, Norway
| | - Sameera Begum
- Department of Oral Pathology, Yenepoya Dental College, Yenepoya (Deemed To Be University), Mangalore, Karnataka, 575018, India
| | - Neeta Mohanty
- Department of Oral Pathology & Microbiology, Institute of Dental Sciences, Siksha'O'Anusandhan University, Bhubaneswar, Odisha, 751003, India
| | - Samapika Routray
- Department of Oral Pathology & Microbiology, Institute of Dental Sciences, Siksha'O'Anusandhan University, Bhubaneswar, Odisha, 751003, India.,Department of Dental Surgery, All India Institute of Medical Sciences, Bhubaneswar, Odisha, 751019, India
| | - Riaz Abdulla
- Department of Oral Pathology, Yenepoya Dental College, Yenepoya (Deemed To Be University), Mangalore, Karnataka, 575018, India
| | - Jay Gopal Ray
- Department of Oral Pathology, Dr. R. Ahmed Dental College & Hospital, Kolkata, West Bengal, 700 014, India.,Department of Pathology, Burdwan Dental College and Hospital, Burdwan, West Bengal, 713101, India
| | - David Sidransky
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD, 21231, USA
| | - Harsha Gowda
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed To Be University), Mangalore, Karnataka, 575018, India.,Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka, 560066, India.,Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - T S Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed To Be University), Mangalore, Karnataka, 575018, India.
| | - Aditi Chatterjee
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed To Be University), Mangalore, Karnataka, 575018, India. .,Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka, 560066, India. .,Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
25
|
Hildebrand LA, Pierce CJ, Dennis M, Paracha M, Maoz A. Artificial Intelligence for Histology-Based Detection of Microsatellite Instability and Prediction of Response to Immunotherapy in Colorectal Cancer. Cancers (Basel) 2021; 13:391. [PMID: 33494280 PMCID: PMC7864494 DOI: 10.3390/cancers13030391] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/18/2021] [Accepted: 01/18/2021] [Indexed: 12/14/2022] Open
Abstract
Microsatellite instability (MSI) is a molecular marker of deficient DNA mismatch repair (dMMR) that is found in approximately 15% of colorectal cancer (CRC) patients. Testing all CRC patients for MSI/dMMR is recommended as screening for Lynch Syndrome and, more recently, to determine eligibility for immune checkpoint inhibitors in advanced disease. However, universal testing for MSI/dMMR has not been uniformly implemented because of cost and resource limitations. Artificial intelligence has been used to predict MSI/dMMR directly from hematoxylin and eosin (H&E) stained tissue slides. We review the emerging data regarding the utility of machine learning for MSI classification, focusing on CRC. We also provide the clinician with an introduction to image analysis with machine learning and convolutional neural networks. Machine learning can predict MSI/dMMR with high accuracy in high quality, curated datasets. Accuracy can be significantly decreased when applied to cohorts with different ethnic and/or clinical characteristics, or different tissue preparation protocols. Research is ongoing to determine the optimal machine learning methods for predicting MSI, which will need to be compared to current clinical practices, including next-generation sequencing. Predicting response to immunotherapy remains an unmet need.
Collapse
Affiliation(s)
- Lindsey A. Hildebrand
- Department of Medicine, Boston University School of Medicine and Boston Medical Center, Boston, MA 02118, USA; (L.A.H.); (C.J.P.); (M.D.); (M.P.)
| | - Colin J. Pierce
- Department of Medicine, Boston University School of Medicine and Boston Medical Center, Boston, MA 02118, USA; (L.A.H.); (C.J.P.); (M.D.); (M.P.)
| | - Michael Dennis
- Department of Medicine, Boston University School of Medicine and Boston Medical Center, Boston, MA 02118, USA; (L.A.H.); (C.J.P.); (M.D.); (M.P.)
- Division of Hematology Oncology, Department of Medicine, University of California San Diego, San Diego, CA 92093, USA
| | - Munizay Paracha
- Department of Medicine, Boston University School of Medicine and Boston Medical Center, Boston, MA 02118, USA; (L.A.H.); (C.J.P.); (M.D.); (M.P.)
| | - Asaf Maoz
- Department of Medicine, Boston University School of Medicine and Boston Medical Center, Boston, MA 02118, USA; (L.A.H.); (C.J.P.); (M.D.); (M.P.)
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
26
|
Davalieva K, Kiprijanovska S, Dimovski A, Rosoklija G, Dwork AJ. Comparative evaluation of two methods for LC-MS/MS proteomic analysis of formalin fixed and paraffin embedded tissues. J Proteomics 2021; 235:104117. [PMID: 33453434 DOI: 10.1016/j.jprot.2021.104117] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 10/22/2022]
Abstract
The proteomics of formalin-fixed, paraffin-embedded (FFPE) samples has advanced significantly during the last two decades, but there are many protocols and few studies comparing them directly. There is no consensus on the most effective protocol for shotgun proteomic analysis. We compared the in-solution digestion with RapiGest and Filter Aided Sample Preparation (FASP) of FFPE prostate tissues stored 7 years and mirroring fresh frozen samples, using two label-free data-independent LC-MS/MS acquisitions. RapiGest identified more proteins than FASP, with almost identical numbers of proteins from fresh and FFPE tissues and 69% overlap, good preservation of high-MW proteins, no bias regarding isoelectric point, and greater technical reproducibility. On the other hand, FASP yielded 20% fewer protein identifications in FFPE than in fresh tissue, with 64-69% overlap, depletion of proteins >70 kDa, lower efficiency in acidic and neutral range, and lower technical reproducibility. Both protocols showed highly similar subcellular compartments distribution, highly similar percentages of extracted unique peptides from FFPE and fresh tissues and high positive correlation between the absolute quantitation values of fresh and FFPE proteins. In conclusion, RapiGest extraction of FFPE tissues delivers a proteome that closely resembles the fresh frozen proteome and should be preferred over FASP in biomarker and quantification studies. SIGNIFICANCE: Here we analyzed the performance of two sample preparation methods for shotgun proteomic analysis of FFPE tissues to give a comprehensive overview of the obtained proteomes and the resemblance to its matching fresh frozen counterparts. These findings give us better understanding towards competent proteomics analysis of FFPE tissues. It is hoped that it will encourage further assessments of available protocols before establishing the most effective protocol for shotgun proteomic FFPE tissue analysis.
Collapse
Affiliation(s)
- Katarina Davalieva
- Research Centre for Genetic Engineering and Biotechnology "Georgi D Efremov", Macedonian Academy of Sciences and Arts, Krste Misirkov 2, 1000 Skopje, North Macedonia.
| | - Sanja Kiprijanovska
- Research Centre for Genetic Engineering and Biotechnology "Georgi D Efremov", Macedonian Academy of Sciences and Arts, Krste Misirkov 2, 1000 Skopje, North Macedonia
| | - Aleksandar Dimovski
- Research Centre for Genetic Engineering and Biotechnology "Georgi D Efremov", Macedonian Academy of Sciences and Arts, Krste Misirkov 2, 1000 Skopje, North Macedonia; Faculty of Pharmacy, University "St. Cyril and Methodius", 50ta Divizija 6, 1000 Skopje, North Macedonia
| | - Gorazd Rosoklija
- Department of Psychiatry, Columbia University, New York, USA; Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, 1051 Riverside Drive, Unit 42, New York, NY 10032, USA
| | - Andrew J Dwork
- Department of Psychiatry, Columbia University, New York, USA; Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, 1051 Riverside Drive, Unit 42, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University, New York, USA
| |
Collapse
|
27
|
Liss MA, Leach RJ, Sanda MG, Semmes OJ. Prostate Cancer Biomarker Development: National Cancer Institute's Early Detection Research Network Prostate Cancer Collaborative Group Review. Cancer Epidemiol Biomarkers Prev 2020; 29:2454-2462. [PMID: 33093161 PMCID: PMC7710596 DOI: 10.1158/1055-9965.epi-20-1104] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/29/2020] [Accepted: 10/15/2020] [Indexed: 01/01/2023] Open
Abstract
Prostate cancer remains the most common non-skin cancer and second leading cause of death among men in the United States. Although progress has been made in diagnosis and risk assessment, many clinical questions remain regarding early identification of prostate cancer and management. The early detection of aggressive disease continues to provide high curative rates if diagnosed in a localized state. Unfortunately, prostate cancer displays significant heterogeneity within the prostate organ and between individual patients making detection and treatment strategies complex. Although prostate cancer is common among men, the majority will not die from prostate cancer, introducing the issue of overtreatment as a major concern in clinical management of the disease. The focus of the future is to identify those at highest risk for aggressive prostate cancer and to develop prevention and screening strategies, as well as discerning the difference in malignant potential of diagnosed tumors. The Prostate Cancer Research Group of the National Cancer Institute's Early Detection Research Network has contributed to the progress in addressing these concerns. This summary is an overview of the activities of the group.See all articles in this CEBP Focus section, "NCI Early Detection Research Network: Making Cancer Detection Possible."
Collapse
Affiliation(s)
- Michael A Liss
- Department of Urology, University of Texas Health San Antonio, San Antonio, Texas
| | - Robin J Leach
- Department of Urology, University of Texas Health San Antonio, San Antonio, Texas
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, Texas
| | - Martin G Sanda
- Department of Urology, Emory University School of Medicine, Atlanta, Georgia
| | - Oliver J Semmes
- The Leroy T. Canoles Jr. Cancer Research Center, Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia.
| |
Collapse
|
28
|
Differentiating Staphylococcus infection-associated glomerulonephritis and primary IgA nephropathy: a mass spectrometry-based exploratory study. Sci Rep 2020; 10:17179. [PMID: 33057112 PMCID: PMC7560901 DOI: 10.1038/s41598-020-73847-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 09/18/2020] [Indexed: 01/18/2023] Open
Abstract
Staphylococcus infection-associated glomerulonephritis (SAGN) and primary IgA nephropathy (IgAN) are separate disease entities requiring different treatment approaches. However, overlapping histologic features may cause a diagnostic dilemma. An exploratory proteomic study to identify potential distinguishing biomarkers was performed on formalin fixed paraffin embedded kidney biopsy tissue, using mass spectrometry (HPLC–MS/MS) (n = 27) and immunohistochemistry (IHC) (n = 64), on four main diagnostic groups—SAGN, primary IgAN, acute tubular necrosis (ATN) and normal kidney (baseline transplant biopsies). Spectral counts modeled as a negative binomial distribution were used for statistical comparisons and in silico pathway analysis. Analysis of variance techniques were used to compare groups and the ROC curve to evaluate classification algorithms. The glomerular proteomes of SAGN and IgAN showed remarkable similarities, except for significantly higher levels of monocyte/macrophage proteins in SAGN—mainly lysozyme and S100A9. This finding was confirmed by IHC. In contrast, the tubulointerstitial proteomes were markedly different in IgAN and SAGN, with a lower abundance of metabolic pathway proteins and a higher abundance of extracellular matrix proteins in SAGN. The stress protein transglutaminase-2 (TGM2) was also significantly higher in SAGN. IHC of differentially-expressed glomerular and tubulointerstitial proteins can be used to help discriminate between SAGN and IgAN in ambiguous cases.
Collapse
|
29
|
Azimzadeh O, Azizova T, Merl-Pham J, Blutke A, Moseeva M, Zubkova O, Anastasov N, Feuchtinger A, Hauck SM, Atkinson MJ, Tapio S. Chronic Occupational Exposure to Ionizing Radiation Induces Alterations in the Structure and Metabolism of the Heart: A Proteomic Analysis of Human Formalin-Fixed Paraffin-Embedded (FFPE) Cardiac Tissue. Int J Mol Sci 2020; 21:ijms21186832. [PMID: 32957660 PMCID: PMC7555548 DOI: 10.3390/ijms21186832] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/14/2020] [Accepted: 09/14/2020] [Indexed: 12/23/2022] Open
Abstract
Epidemiological studies on workers employed at the Mayak plutonium enrichment plant have demonstrated an association between external gamma ray exposure and an elevated risk of ischemic heart disease (IHD). In a previous study using fresh-frozen post mortem samples of the cardiac left ventricle of Mayak workers and non-irradiated controls, we observed radiation-induced alterations in the heart proteome, mainly downregulation of mitochondrial and structural proteins. As the control group available at that time was younger than the irradiated group, we could not exclude age as a confounding factor. To address this issue, we have now expanded our study to investigate additional samples using archival formalin-fixed paraffin-embedded (FFPE) tissue. Importantly, the control group studied here is older than the occupationally exposed (>500 mGy) group. Label-free quantitative proteomics analysis showed that proteins involved in the lipid metabolism, sirtuin signaling, mitochondrial function, cytoskeletal organization, and antioxidant defense were the most affected. A histopathological analysis elucidated large foci of fibrotic tissue, myocardial lipomatosis and lymphocytic infiltrations in the irradiated samples. These data highlight the suitability of FFPE material for proteomics analysis. The study confirms the previous results emphasizing the role of adverse metabolic changes in the radiation-associated IHD. Most importantly, it excludes age at the time of death as a confounding factor.
Collapse
Affiliation(s)
- Omid Azimzadeh
- Helmholtz Zentrum München—German Research Centre for Environmental Health GmbH, Institute of Radiation Biology, 85764 Neuherberg, Germany; (N.A.); (M.J.A.); (S.T.)
- Correspondence: ; Tel.: +49-89-3187-3887
| | - Tamara Azizova
- Southern Urals Biophysics Institute (SUBI), Russian Federation, 456780 Ozyorsk, Russia; (T.A.); (M.M.); (O.Z.)
| | - Juliane Merl-Pham
- Helmholtz Zentrum München—German Research Centre for Environmental Health, Research Unit Protein Science, 80939 Munich, Germany; (J.M.-P.); (S.M.H.)
| | - Andreas Blutke
- Helmholtz Zentrum München—German Research Centre for Environmental Health GmbH, Research Unit Analytical Pathology, 85764 Neuherberg, Germany; (A.B.); (A.F.)
| | - Maria Moseeva
- Southern Urals Biophysics Institute (SUBI), Russian Federation, 456780 Ozyorsk, Russia; (T.A.); (M.M.); (O.Z.)
| | - Olga Zubkova
- Southern Urals Biophysics Institute (SUBI), Russian Federation, 456780 Ozyorsk, Russia; (T.A.); (M.M.); (O.Z.)
| | - Natasa Anastasov
- Helmholtz Zentrum München—German Research Centre for Environmental Health GmbH, Institute of Radiation Biology, 85764 Neuherberg, Germany; (N.A.); (M.J.A.); (S.T.)
| | - Annette Feuchtinger
- Helmholtz Zentrum München—German Research Centre for Environmental Health GmbH, Research Unit Analytical Pathology, 85764 Neuherberg, Germany; (A.B.); (A.F.)
| | - Stefanie M. Hauck
- Helmholtz Zentrum München—German Research Centre for Environmental Health, Research Unit Protein Science, 80939 Munich, Germany; (J.M.-P.); (S.M.H.)
| | - Michael J. Atkinson
- Helmholtz Zentrum München—German Research Centre for Environmental Health GmbH, Institute of Radiation Biology, 85764 Neuherberg, Germany; (N.A.); (M.J.A.); (S.T.)
- Chair of Radiation Biology, Technical University of Munich, 81675 Munich, Germany
| | - Soile Tapio
- Helmholtz Zentrum München—German Research Centre for Environmental Health GmbH, Institute of Radiation Biology, 85764 Neuherberg, Germany; (N.A.); (M.J.A.); (S.T.)
| |
Collapse
|
30
|
Coscia F, Doll S, Bech JM, Schweizer L, Mund A, Lengyel E, Lindebjerg J, Madsen GI, Moreira JM, Mann M. A streamlined mass spectrometry-based proteomics workflow for large-scale FFPE tissue analysis. J Pathol 2020; 251:100-112. [PMID: 32154592 DOI: 10.1002/path.5420] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 12/15/2022]
Abstract
Formalin fixation and paraffin-embedding (FFPE) is the most common method to preserve human tissue for clinical diagnosis, and FFPE archives represent an invaluable resource for biomedical research. Proteins in FFPE material are stable over decades but their efficient extraction and streamlined analysis by mass spectrometry (MS)-based proteomics has so far proven challenging. Herein we describe a MS-based proteomic workflow for quantitative profiling of large FFPE tissue cohorts directly from histopathology glass slides. We demonstrate broad applicability of the workflow to clinical pathology specimens and variable sample amounts, including low-input cancer tissue isolated by laser microdissection. Using state-of-the-art data dependent acquisition (DDA) and data independent acquisition (DIA) MS workflows, we consistently quantify a large part of the proteome in 100 min single-run analyses. In an adenoma cohort comprising more than 100 samples, total workup took less than a day. We observed a moderate trend towards lower protein identification in long-term stored samples (>15 years), but clustering into distinct proteomic subtypes was independent of archival time. Our results underscore the great promise of FFPE tissues for patient phenotyping using unbiased proteomics and they prove the feasibility of analyzing large tissue cohorts in a robust, timely, and streamlined manner. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Fabian Coscia
- Clinical Proteomics Group, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Sophia Doll
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Jacob Mathias Bech
- Section for Molecular Disease Biology, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lisa Schweizer
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Andreas Mund
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Ernst Lengyel
- Department of Obstetrics and Gynecology, Section of Gynecologic Oncology, University of Chicago, Chicago, IL, USA
| | - Jan Lindebjerg
- Lillebaelt Hospital, Vejle Hospital, Department of Pathology, Vejle, Denmark
| | | | - José Ma Moreira
- Section for Molecular Disease Biology, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Matthias Mann
- Clinical Proteomics Group, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
31
|
Liebler DC, Holzer TR, Haragan A, Morrison RD, O'Neill Reising L, Ackermann BL, Fill JA, Schade AE, Gruver AM. Analysis of Immune Checkpoint Drug Targets and Tumor Proteotypes in Non-Small Cell Lung Cancer. Sci Rep 2020; 10:9805. [PMID: 32555523 PMCID: PMC7300007 DOI: 10.1038/s41598-020-66902-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/27/2020] [Indexed: 12/18/2022] Open
Abstract
New therapeutics targeting immune checkpoint proteins have significantly advanced treatment of non-small cell lung cancer (NSCLC), but protein level quantitation of drug targets presents a critical problem. We used multiplexed, targeted mass spectrometry (MS) to quantify immunotherapy target proteins PD-1, PD-L1, PD-L2, IDO1, LAG3, TIM3, ICOSLG, VISTA, GITR, and CD40 in formalin-fixed, paraffin-embedded (FFPE) NSCLC specimens. Immunohistochemistry (IHC) and MS measurements for PD-L1 were weakly correlated, but IHC did not distinguish protein abundance differences detected by MS. PD-L2 abundance exceeded PD-L1 in over half the specimens and the drug target proteins all displayed different abundance patterns. mRNA correlated with protein abundance only for PD-1, PD-L1, and IDO1 and tumor mutation burden did not predict abundance of any protein targets. Global proteome analyses identified distinct proteotypes associated with high PD-L1-expressing and high IDO1-expressing NSCLC. MS quantification of multiple drug targets and tissue proteotypes can improve clinical evaluation of immunotherapies for NSCLC.
Collapse
Affiliation(s)
| | - Timothy R Holzer
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Alexander Haragan
- Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | | | | | | | - Jeff A Fill
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Andrew E Schade
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Aaron M Gruver
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA.
| |
Collapse
|
32
|
Prieto DA, Blonder J. Tissue sample preparation for proteomic analysis. PROTEOMIC AND METABOLOMIC APPROACHES TO BIOMARKER DISCOVERY 2020:39-52. [DOI: 10.1016/b978-0-12-818607-7.00003-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
33
|
Nelson LJ, Wright HJ, Dinh NB, Nguyen KD, Razorenova OV, Heinemann FS. Src Kinase Is Biphosphorylated at Y416/Y527 and Activates the CUB-Domain Containing Protein 1/Protein Kinase C δ Pathway in a Subset of Triple-Negative Breast Cancers. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 190:484-502. [PMID: 31843498 DOI: 10.1016/j.ajpath.2019.10.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 09/20/2019] [Accepted: 10/15/2019] [Indexed: 01/07/2023]
Abstract
Targeted therapeutics are needed for triple-negative breast cancer (TNBC). In this study, we investigated the activation of Src family of cytoplasmic tyrosine kinases (SFKs) and two SFK substrates-CUB-domain containing protein 1 (CDCP1) and protein kinase C δ (PKCδ)-in 56 formalin-fixed, paraffin-embedded (FFPE) TNBCs. Expression of SFK phosphorylated at Y416 (SFK_pY416+) in tumor cells was strongly associated with phosphorylation of CDCP1 and PKCδ (CDCP1_ pY743+ and PKCδ_pY311+), as assessed by immunohistochemistry, indicating increased SFK activity in situ. To enable biochemical analysis, protein extraction from FFPE tissue was optimized. Cleaved CDCP1 isoform (70 kDa) was expressed to a varying degree in all samples but only phosphorylated in TNBC tumor cells that expressed SFK_pY416. Interestingly, active SFK was found to be biphosphorylated (SFK_pY416+/pY527+). Biphosphorylated active SFK was observed more frequently in forkhead box protein A1 (FOXA1)- TNBCs. In addition, in SFK_pY416- samples, FOXA1+ TNBC tended to be SFK_pY527+ (classic inactive SFK), and FOXA1- TNBC tended to be SFK_pY527- (SFK poised for activation). Strong SFK_pY416 staining was also observed in tumor-infiltrating lymphocytes in a subset of TNBCs with high tumor-infiltrating lymphocyte content. This report will facilitate protein biochemical analysis of FFPE tumor samples and justifies the development of therapies targeting the SFK/CDCP1/PKCδ pathway for TNBC treatment.
Collapse
Affiliation(s)
- Luke J Nelson
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California
| | - Heather J Wright
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California
| | - Nguyen B Dinh
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California
| | - Kevin D Nguyen
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California
| | - Olga V Razorenova
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California.
| | - F Scott Heinemann
- Department of Pathology, Hoag Memorial Hospital Presbyterian, Newport Beach, California.
| |
Collapse
|
34
|
Mantsiou A, Makridakis M, Fasoulakis K, Katafigiotis I, Constantinides CA, Zoidakis J, Roubelakis MG, Vlahou A, Lygirou V. Proteomics Analysis of Formalin Fixed Paraffin Embedded Tissues in the Investigation of Prostate Cancer. J Proteome Res 2019; 19:2631-2642. [PMID: 31682457 DOI: 10.1021/acs.jproteome.9b00587] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Prostate cancer (PCa) is one of the leading causes of death in men worldwide. The molecular features, associated with the onset and progression of the disease, are under vigorous investigation. Formalin-fixed paraffin-embedded (FFPE) tissues are valuable resources for large-scale studies; however, their application in proteomics is limited due to protein cross-linking. In this study, the adjustment of a protocol for the proteomic analysis of FFPE tissues was performed which was followed by a pilot application on FFPE PCa clinical samples to investigate whether the optimized protocol can provide biologically relevant data for the investigation of PCa. For the optimization, FFPE mouse tissues were processed using seven protein extraction protocols including combinations of homogenization methods (beads, sonication, boiling) and buffers (SDS based and urea-thiourea based). The proteome extraction efficacy was then evaluated based on protein identifications and reproducibility using SDS electrophoresis and high resolution LC-MS/MS analysis. Comparison between the FFPE and matched fresh frozen (FF) tissues, using an optimized protocol involving protein extraction with an SDS-based buffer following beads homogenization and boiling, showed a substantial overlap in protein identifications with a strong correlation in relative abundances (rs = 0.819, p < 0.001). Next, FFPE tissues (3 sections, 15 μm each per sample) from 10 patients with PCa corresponding to tumor (GS = 6 or GS ≥ 8) and adjacent benign regions were processed with the optimized protocol. Extracted proteins were analyzed by GeLC-MS/MS followed by statistical and bioinformatics analysis. Proteins significantly deregulated between PCa GS ≥ 8 and PCa GS = 6 represented extracellular matrix organization, gluconeogenesis, and phosphorylation pathways. Proteins deregulated between cancerous and adjacent benign tissues, reflected increased translation, peptide synthesis, and protein metabolism in the former, which is consistent with the literature. In conclusion, the results support the relevance of the proteomic findings in the context of PCa and the reliability of the optimized protocol for proteomics analysis of FFPE material.
Collapse
Affiliation(s)
- Anna Mantsiou
- Biomedical Research Foundation of the Academy of Athens, Biotechnology Division, 4 Soranou Ephessiou Street, Athens 11527, Greece
| | - Manousos Makridakis
- Biomedical Research Foundation of the Academy of Athens, Biotechnology Division, 4 Soranou Ephessiou Street, Athens 11527, Greece
| | - Konstantinos Fasoulakis
- Ippokrateio General Hospital of Athens, Department of Urology, 114 Vasilissis Sofias Avenue, Athens 11527, Greece
| | - Ioannis Katafigiotis
- National and Kapodistrian University of Athens, Medical School, 1st Urology Department, Laikon Hospital, 17 Agiou Thoma Street, Athens 11527, Greece
| | - Constantinos A Constantinides
- National and Kapodistrian University of Athens, Medical School, 1st Urology Department, Laikon Hospital, 17 Agiou Thoma Street, Athens 11527, Greece
| | - Jerome Zoidakis
- Biomedical Research Foundation of the Academy of Athens, Biotechnology Division, 4 Soranou Ephessiou Street, Athens 11527, Greece
| | - Maria G Roubelakis
- National and Kapodistrian University of Athens, Medical School, Laboratory of Biology, 75 Mikras Assias Street, Athens 11527, Greece
| | - Antonia Vlahou
- Biomedical Research Foundation of the Academy of Athens, Biotechnology Division, 4 Soranou Ephessiou Street, Athens 11527, Greece
| | - Vasiliki Lygirou
- Biomedical Research Foundation of the Academy of Athens, Biotechnology Division, 4 Soranou Ephessiou Street, Athens 11527, Greece
| |
Collapse
|
35
|
Prasad B, Achour B, Artursson P, Hop CECA, Lai Y, Smith PC, Barber J, Wisniewski JR, Spellman D, Uchida Y, Zientek M, Unadkat JD, Rostami-Hodjegan A. Toward a Consensus on Applying Quantitative Liquid Chromatography-Tandem Mass Spectrometry Proteomics in Translational Pharmacology Research: A White Paper. Clin Pharmacol Ther 2019; 106:525-543. [PMID: 31175671 PMCID: PMC6692196 DOI: 10.1002/cpt.1537] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 05/22/2019] [Indexed: 12/18/2022]
Abstract
Quantitative translation of information on drug absorption, disposition, receptor engagement, and drug-drug interactions from bench to bedside requires models informed by physiological parameters that link in vitro studies to in vivo outcomes. To predict in vivo outcomes, biochemical data from experimental systems are routinely scaled using protein quantity in these systems and relevant tissues. Although several laboratories have generated useful quantitative proteomic data using state-of-the-art mass spectrometry, no harmonized guidelines exit for sample analysis and data integration to in vivo translation practices. To address this gap, a workshop was held on September 27 and 28, 2018, in Cambridge, MA, with 100 experts attending from academia, the pharmaceutical industry, and regulators. Various aspects of quantitative proteomics and its applications in translational pharmacology were debated. A summary of discussions and best practices identified by this expert panel are presented in this "White Paper" alongside unresolved issues that were outlined for future debates.
Collapse
Affiliation(s)
- Bhagwat Prasad
- Department of Pharmaceutics, University of Washington, Seattle, WA
| | - Brahim Achour
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, UK
| | - Per Artursson
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | | | | | - Philip C Smith
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Jill Barber
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, UK
| | - Jacek R Wisniewski
- Biochemical Proteomics Group, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Daniel Spellman
- Pharmacokinetics, Pharmacodynamics & Drug Metabolism, Merck & Co., Inc., West Point, PA
| | - Yasuo Uchida
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | | | | | - Amin Rostami-Hodjegan
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, UK
- Certara UK Ltd. (Simcyp Division), 1 Concourse Way, Sheffield, UK
| |
Collapse
|
36
|
Buzdin A, Sorokin M, Garazha A, Glusker A, Aleshin A, Poddubskaya E, Sekacheva M, Kim E, Gaifullin N, Giese A, Seryakov A, Rumiantsev P, Moshkovskii S, Moiseev A. RNA sequencing for research and diagnostics in clinical oncology. Semin Cancer Biol 2019; 60:311-323. [PMID: 31412295 DOI: 10.1016/j.semcancer.2019.07.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 07/16/2019] [Indexed: 12/26/2022]
Abstract
Molecular diagnostics is becoming one of the major drivers of personalized oncology. With hundreds of different approved anticancer drugs and regimens of their administration, selecting the proper treatment for a patient is at least nontrivial task. This is especially sound for the cases of recurrent and metastatic cancers where the standard lines of therapy failed. Recent trials demonstrated that mutation assays have a strong limitation in personalized selection of therapeutics, consequently, most of the drugs cannot be ranked and only a small percentage of patients can benefit from the screening. Other approaches are, therefore, needed to address a problem of finding proper targeted therapies. The analysis of RNA expression (transcriptomic) profiles presents a reasonable solution because transcriptomics stands a few steps closer to tumor phenotype than the genome analysis. Several recent studies pioneered using transcriptomics for practical oncology and showed truly encouraging clinical results. The possibility of directly measuring of expression levels of molecular drugs' targets and profiling activation of the relevant molecular pathways enables personalized prioritizing for all types of molecular-targeted therapies. RNA sequencing is the most robust tool for the high throughput quantitative transcriptomics. Its use, potentials, and limitations for the clinical oncology will be reviewed here along with the technical aspects such as optimal types of biosamples, RNA sequencing profile normalization, quality controls and several levels of data analysis.
Collapse
Affiliation(s)
- Anton Buzdin
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia; Omicsway Corp., Walnut, CA, USA; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia.
| | - Maxim Sorokin
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia; Omicsway Corp., Walnut, CA, USA; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | | | | | - Alex Aleshin
- Stanford University School of Medicine, Stanford, 94305, CA, USA
| | - Elena Poddubskaya
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia; Vitamed Oncological Clinics, Moscow, Russia
| | - Marina Sekacheva
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Ella Kim
- Johannes Gutenberg University Mainz, Mainz, Germany
| | - Nurshat Gaifullin
- Lomonosov Moscow State University, Faculty of Medicine, Moscow, Russia
| | | | | | | | - Sergey Moshkovskii
- Institute of Biomedical Chemistry, Moscow, 119121, Russia; Pirogov Russian National Research Medical University (RNRMU), Moscow, 117997, Russia
| | - Alexey Moiseev
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
37
|
Dapic I, Baljeu-Neuman L, Uwugiaren N, Kers J, Goodlett DR, Corthals GL. Proteome analysis of tissues by mass spectrometry. MASS SPECTROMETRY REVIEWS 2019; 38:403-441. [PMID: 31390493 DOI: 10.1002/mas.21598] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 06/17/2019] [Indexed: 06/10/2023]
Abstract
Tissues and biofluids are important sources of information used for the detection of diseases and decisions on patient therapies. There are several accepted methods for preservation of tissues, among which the most popular are fresh-frozen and formalin-fixed paraffin embedded methods. Depending on the preservation method and the amount of sample available, various specific protocols are available for tissue processing for subsequent proteomic analysis. Protocols are tailored to answer various biological questions, and as such vary in lysis and digestion conditions, as well as duration. The existence of diverse tissue-sample protocols has led to confusion in how to choose the best protocol for a given tissue and made it difficult to compare results across sample types. Here, we summarize procedures used for tissue processing for subsequent bottom-up proteomic analysis. Furthermore, we compare protocols for their variations in the composition of lysis buffers, digestion procedures, and purification steps. For example, reports have shown that lysis buffer composition plays an important role in the profile of extracted proteins: the most common are tris(hydroxymethyl)aminomethane, radioimmunoprecipitation assay, and ammonium bicarbonate buffers. Although, trypsin is the most commonly used enzyme for proteolysis, in some protocols it is supplemented with Lys-C and/or chymotrypsin, which will often lead to an increase in proteome coverage. Data show that the selection of the lysis procedure might need to be tissue-specific to produce distinct protocols for individual tissue types. Finally, selection of the procedures is also influenced by the amount of sample available, which range from biopsies or the size of a few dozen of mm2 obtained with laser capture microdissection to much larger amounts that weight several milligrams.
Collapse
Affiliation(s)
- Irena Dapic
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
| | | | - Naomi Uwugiaren
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
| | - Jesper Kers
- Department of Pathology, Amsterdam Infection & Immunity Institute (AI&II), Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA
| | - David R Goodlett
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
- University of Maryland, 20N. Pine Street, Baltimore, MD 21201
| | - Garry L Corthals
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
38
|
Compton CC, Robb JA, Anderson MW, Berry AB, Birdsong GG, Bloom KJ, Branton PA, Crothers JW, Cushman-Vokoun AM, Hicks DG, Khoury JD, Laser J, Marshall CB, Misialek MJ, Natale KE, Nowak JA, Olson D, Pfeifer JD, Schade A, Vance GH, Walk EE, Yohe SL. Preanalytics and Precision Pathology: Pathology Practices to Ensure Molecular Integrity of Cancer Patient Biospecimens for Precision Medicine. Arch Pathol Lab Med 2019; 143:1346-1363. [PMID: 31329478 DOI: 10.5858/arpa.2019-0009-sa] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Biospecimens acquired during routine medical practice are the primary sources of molecular information about patients and their diseases that underlies precision medicine and translational research. In cancer care, molecular analysis of biospecimens is especially common because it often determines treatment choices and may be used to monitor therapy in real time. However, patient specimens are collected, handled, and processed according to routine clinical procedures during which they are subjected to factors that may alter their molecular quality and composition. Such artefactual alteration may skew data from molecular analyses, render analysis data uninterpretable, or even preclude analysis altogether if the integrity of a specimen is severely compromised. As a result, patient care and safety may be affected, and medical research dependent on patient samples may be compromised. Despite these issues, there is currently no requirement to control or record preanalytical variables in clinical practice with the single exception of breast cancer tissue handled according to the guideline jointly developed by the American Society of Clinical Oncology and College of American Pathologists (CAP) and enforced through the CAP Laboratory Accreditation Program. Recognizing the importance of molecular data derived from patient specimens, the CAP Personalized Healthcare Committee established the Preanalytics for Precision Medicine Project Team to develop a basic set of evidence-based recommendations for key preanalytics for tissue and blood specimens. If used for biospecimens from patients, these preanalytical recommendations would ensure the fitness of those specimens for molecular analysis and help to assure the quality and reliability of the analysis data.
Collapse
Affiliation(s)
- Carolyn C Compton
- From School of Life Sciences, Arizona State University and Mayo Clinic School of Medicine, Scottsdale (Dr Compton); Consulting Pathologist, Boca Raton, Florida (Dr Robb); Versiti Diagnostic Laboratories, Milwaukee, Wisconsin (Dr Anderson); Molecular Pathology and Genomics, Swedish Cancer Institute, Seattle, Washington (Dr Berry); Anatomic Pathology, Grady Health System, Atlanta, Georgia (Dr Birdsong); Advanced Genomic Services, Ambry Genetics, Aliso Viejo, California (Dr Bloom); Gynecologic & Breast Pathology, Joint Pathology Center, Silver Spring, Maryland (Dr Branton); the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Dr Crothers); the Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha (Dr Cushman-Vokoun); IHC-ISH Laboratory and Breast Subspecialty Service, University of Rochester Medical Center, Rochester, New York (Dr Hicks); the Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Khoury); the Department of Pathology and Laboratory Medicine, Northwell Health, New Hyde Park, New York (Dr Laser); the Department of Pathology, University of Colorado, Aurora (Dr Marshall); the Department of Pathology, Newton-Wellesley Hospital, Newton, Massachusetts (Dr Misialek); the Department of Pathology, Walter Reed National Military Medical Center, Bethesda, Maryland (Dr Natale); the Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York (Dr Nowak); he Department of Pathology, Children's Hospitals and Clinics, Minneapolis, Minnesota (Dr Olson); the Department of Pathology, Washington University School of Medicine, St. Louis, Missouri (Dr Pfeifer); Lilly Research Labs, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Dr Schade); he Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (Dr Vance); Medical & Scientific Affairs, Roche Tissue Diagnostics, Tucson, Arizona (Dr Walk); and Special Hematology MMC, University of Minnesota Medical Center, Minneapolis (Dr Yohe)
| | - James A Robb
- From School of Life Sciences, Arizona State University and Mayo Clinic School of Medicine, Scottsdale (Dr Compton); Consulting Pathologist, Boca Raton, Florida (Dr Robb); Versiti Diagnostic Laboratories, Milwaukee, Wisconsin (Dr Anderson); Molecular Pathology and Genomics, Swedish Cancer Institute, Seattle, Washington (Dr Berry); Anatomic Pathology, Grady Health System, Atlanta, Georgia (Dr Birdsong); Advanced Genomic Services, Ambry Genetics, Aliso Viejo, California (Dr Bloom); Gynecologic & Breast Pathology, Joint Pathology Center, Silver Spring, Maryland (Dr Branton); the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Dr Crothers); the Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha (Dr Cushman-Vokoun); IHC-ISH Laboratory and Breast Subspecialty Service, University of Rochester Medical Center, Rochester, New York (Dr Hicks); the Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Khoury); the Department of Pathology and Laboratory Medicine, Northwell Health, New Hyde Park, New York (Dr Laser); the Department of Pathology, University of Colorado, Aurora (Dr Marshall); the Department of Pathology, Newton-Wellesley Hospital, Newton, Massachusetts (Dr Misialek); the Department of Pathology, Walter Reed National Military Medical Center, Bethesda, Maryland (Dr Natale); the Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York (Dr Nowak); he Department of Pathology, Children's Hospitals and Clinics, Minneapolis, Minnesota (Dr Olson); the Department of Pathology, Washington University School of Medicine, St. Louis, Missouri (Dr Pfeifer); Lilly Research Labs, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Dr Schade); he Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (Dr Vance); Medical & Scientific Affairs, Roche Tissue Diagnostics, Tucson, Arizona (Dr Walk); and Special Hematology MMC, University of Minnesota Medical Center, Minneapolis (Dr Yohe)
| | - Matthew W Anderson
- From School of Life Sciences, Arizona State University and Mayo Clinic School of Medicine, Scottsdale (Dr Compton); Consulting Pathologist, Boca Raton, Florida (Dr Robb); Versiti Diagnostic Laboratories, Milwaukee, Wisconsin (Dr Anderson); Molecular Pathology and Genomics, Swedish Cancer Institute, Seattle, Washington (Dr Berry); Anatomic Pathology, Grady Health System, Atlanta, Georgia (Dr Birdsong); Advanced Genomic Services, Ambry Genetics, Aliso Viejo, California (Dr Bloom); Gynecologic & Breast Pathology, Joint Pathology Center, Silver Spring, Maryland (Dr Branton); the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Dr Crothers); the Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha (Dr Cushman-Vokoun); IHC-ISH Laboratory and Breast Subspecialty Service, University of Rochester Medical Center, Rochester, New York (Dr Hicks); the Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Khoury); the Department of Pathology and Laboratory Medicine, Northwell Health, New Hyde Park, New York (Dr Laser); the Department of Pathology, University of Colorado, Aurora (Dr Marshall); the Department of Pathology, Newton-Wellesley Hospital, Newton, Massachusetts (Dr Misialek); the Department of Pathology, Walter Reed National Military Medical Center, Bethesda, Maryland (Dr Natale); the Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York (Dr Nowak); he Department of Pathology, Children's Hospitals and Clinics, Minneapolis, Minnesota (Dr Olson); the Department of Pathology, Washington University School of Medicine, St. Louis, Missouri (Dr Pfeifer); Lilly Research Labs, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Dr Schade); he Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (Dr Vance); Medical & Scientific Affairs, Roche Tissue Diagnostics, Tucson, Arizona (Dr Walk); and Special Hematology MMC, University of Minnesota Medical Center, Minneapolis (Dr Yohe)
| | - Anna B Berry
- From School of Life Sciences, Arizona State University and Mayo Clinic School of Medicine, Scottsdale (Dr Compton); Consulting Pathologist, Boca Raton, Florida (Dr Robb); Versiti Diagnostic Laboratories, Milwaukee, Wisconsin (Dr Anderson); Molecular Pathology and Genomics, Swedish Cancer Institute, Seattle, Washington (Dr Berry); Anatomic Pathology, Grady Health System, Atlanta, Georgia (Dr Birdsong); Advanced Genomic Services, Ambry Genetics, Aliso Viejo, California (Dr Bloom); Gynecologic & Breast Pathology, Joint Pathology Center, Silver Spring, Maryland (Dr Branton); the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Dr Crothers); the Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha (Dr Cushman-Vokoun); IHC-ISH Laboratory and Breast Subspecialty Service, University of Rochester Medical Center, Rochester, New York (Dr Hicks); the Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Khoury); the Department of Pathology and Laboratory Medicine, Northwell Health, New Hyde Park, New York (Dr Laser); the Department of Pathology, University of Colorado, Aurora (Dr Marshall); the Department of Pathology, Newton-Wellesley Hospital, Newton, Massachusetts (Dr Misialek); the Department of Pathology, Walter Reed National Military Medical Center, Bethesda, Maryland (Dr Natale); the Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York (Dr Nowak); he Department of Pathology, Children's Hospitals and Clinics, Minneapolis, Minnesota (Dr Olson); the Department of Pathology, Washington University School of Medicine, St. Louis, Missouri (Dr Pfeifer); Lilly Research Labs, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Dr Schade); he Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (Dr Vance); Medical & Scientific Affairs, Roche Tissue Diagnostics, Tucson, Arizona (Dr Walk); and Special Hematology MMC, University of Minnesota Medical Center, Minneapolis (Dr Yohe)
| | - George G Birdsong
- From School of Life Sciences, Arizona State University and Mayo Clinic School of Medicine, Scottsdale (Dr Compton); Consulting Pathologist, Boca Raton, Florida (Dr Robb); Versiti Diagnostic Laboratories, Milwaukee, Wisconsin (Dr Anderson); Molecular Pathology and Genomics, Swedish Cancer Institute, Seattle, Washington (Dr Berry); Anatomic Pathology, Grady Health System, Atlanta, Georgia (Dr Birdsong); Advanced Genomic Services, Ambry Genetics, Aliso Viejo, California (Dr Bloom); Gynecologic & Breast Pathology, Joint Pathology Center, Silver Spring, Maryland (Dr Branton); the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Dr Crothers); the Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha (Dr Cushman-Vokoun); IHC-ISH Laboratory and Breast Subspecialty Service, University of Rochester Medical Center, Rochester, New York (Dr Hicks); the Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Khoury); the Department of Pathology and Laboratory Medicine, Northwell Health, New Hyde Park, New York (Dr Laser); the Department of Pathology, University of Colorado, Aurora (Dr Marshall); the Department of Pathology, Newton-Wellesley Hospital, Newton, Massachusetts (Dr Misialek); the Department of Pathology, Walter Reed National Military Medical Center, Bethesda, Maryland (Dr Natale); the Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York (Dr Nowak); he Department of Pathology, Children's Hospitals and Clinics, Minneapolis, Minnesota (Dr Olson); the Department of Pathology, Washington University School of Medicine, St. Louis, Missouri (Dr Pfeifer); Lilly Research Labs, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Dr Schade); he Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (Dr Vance); Medical & Scientific Affairs, Roche Tissue Diagnostics, Tucson, Arizona (Dr Walk); and Special Hematology MMC, University of Minnesota Medical Center, Minneapolis (Dr Yohe)
| | - Kenneth J Bloom
- From School of Life Sciences, Arizona State University and Mayo Clinic School of Medicine, Scottsdale (Dr Compton); Consulting Pathologist, Boca Raton, Florida (Dr Robb); Versiti Diagnostic Laboratories, Milwaukee, Wisconsin (Dr Anderson); Molecular Pathology and Genomics, Swedish Cancer Institute, Seattle, Washington (Dr Berry); Anatomic Pathology, Grady Health System, Atlanta, Georgia (Dr Birdsong); Advanced Genomic Services, Ambry Genetics, Aliso Viejo, California (Dr Bloom); Gynecologic & Breast Pathology, Joint Pathology Center, Silver Spring, Maryland (Dr Branton); the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Dr Crothers); the Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha (Dr Cushman-Vokoun); IHC-ISH Laboratory and Breast Subspecialty Service, University of Rochester Medical Center, Rochester, New York (Dr Hicks); the Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Khoury); the Department of Pathology and Laboratory Medicine, Northwell Health, New Hyde Park, New York (Dr Laser); the Department of Pathology, University of Colorado, Aurora (Dr Marshall); the Department of Pathology, Newton-Wellesley Hospital, Newton, Massachusetts (Dr Misialek); the Department of Pathology, Walter Reed National Military Medical Center, Bethesda, Maryland (Dr Natale); the Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York (Dr Nowak); he Department of Pathology, Children's Hospitals and Clinics, Minneapolis, Minnesota (Dr Olson); the Department of Pathology, Washington University School of Medicine, St. Louis, Missouri (Dr Pfeifer); Lilly Research Labs, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Dr Schade); he Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (Dr Vance); Medical & Scientific Affairs, Roche Tissue Diagnostics, Tucson, Arizona (Dr Walk); and Special Hematology MMC, University of Minnesota Medical Center, Minneapolis (Dr Yohe)
| | - Philip A Branton
- From School of Life Sciences, Arizona State University and Mayo Clinic School of Medicine, Scottsdale (Dr Compton); Consulting Pathologist, Boca Raton, Florida (Dr Robb); Versiti Diagnostic Laboratories, Milwaukee, Wisconsin (Dr Anderson); Molecular Pathology and Genomics, Swedish Cancer Institute, Seattle, Washington (Dr Berry); Anatomic Pathology, Grady Health System, Atlanta, Georgia (Dr Birdsong); Advanced Genomic Services, Ambry Genetics, Aliso Viejo, California (Dr Bloom); Gynecologic & Breast Pathology, Joint Pathology Center, Silver Spring, Maryland (Dr Branton); the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Dr Crothers); the Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha (Dr Cushman-Vokoun); IHC-ISH Laboratory and Breast Subspecialty Service, University of Rochester Medical Center, Rochester, New York (Dr Hicks); the Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Khoury); the Department of Pathology and Laboratory Medicine, Northwell Health, New Hyde Park, New York (Dr Laser); the Department of Pathology, University of Colorado, Aurora (Dr Marshall); the Department of Pathology, Newton-Wellesley Hospital, Newton, Massachusetts (Dr Misialek); the Department of Pathology, Walter Reed National Military Medical Center, Bethesda, Maryland (Dr Natale); the Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York (Dr Nowak); he Department of Pathology, Children's Hospitals and Clinics, Minneapolis, Minnesota (Dr Olson); the Department of Pathology, Washington University School of Medicine, St. Louis, Missouri (Dr Pfeifer); Lilly Research Labs, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Dr Schade); he Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (Dr Vance); Medical & Scientific Affairs, Roche Tissue Diagnostics, Tucson, Arizona (Dr Walk); and Special Hematology MMC, University of Minnesota Medical Center, Minneapolis (Dr Yohe)
| | - Jessica W Crothers
- From School of Life Sciences, Arizona State University and Mayo Clinic School of Medicine, Scottsdale (Dr Compton); Consulting Pathologist, Boca Raton, Florida (Dr Robb); Versiti Diagnostic Laboratories, Milwaukee, Wisconsin (Dr Anderson); Molecular Pathology and Genomics, Swedish Cancer Institute, Seattle, Washington (Dr Berry); Anatomic Pathology, Grady Health System, Atlanta, Georgia (Dr Birdsong); Advanced Genomic Services, Ambry Genetics, Aliso Viejo, California (Dr Bloom); Gynecologic & Breast Pathology, Joint Pathology Center, Silver Spring, Maryland (Dr Branton); the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Dr Crothers); the Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha (Dr Cushman-Vokoun); IHC-ISH Laboratory and Breast Subspecialty Service, University of Rochester Medical Center, Rochester, New York (Dr Hicks); the Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Khoury); the Department of Pathology and Laboratory Medicine, Northwell Health, New Hyde Park, New York (Dr Laser); the Department of Pathology, University of Colorado, Aurora (Dr Marshall); the Department of Pathology, Newton-Wellesley Hospital, Newton, Massachusetts (Dr Misialek); the Department of Pathology, Walter Reed National Military Medical Center, Bethesda, Maryland (Dr Natale); the Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York (Dr Nowak); he Department of Pathology, Children's Hospitals and Clinics, Minneapolis, Minnesota (Dr Olson); the Department of Pathology, Washington University School of Medicine, St. Louis, Missouri (Dr Pfeifer); Lilly Research Labs, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Dr Schade); he Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (Dr Vance); Medical & Scientific Affairs, Roche Tissue Diagnostics, Tucson, Arizona (Dr Walk); and Special Hematology MMC, University of Minnesota Medical Center, Minneapolis (Dr Yohe)
| | - Allison M Cushman-Vokoun
- From School of Life Sciences, Arizona State University and Mayo Clinic School of Medicine, Scottsdale (Dr Compton); Consulting Pathologist, Boca Raton, Florida (Dr Robb); Versiti Diagnostic Laboratories, Milwaukee, Wisconsin (Dr Anderson); Molecular Pathology and Genomics, Swedish Cancer Institute, Seattle, Washington (Dr Berry); Anatomic Pathology, Grady Health System, Atlanta, Georgia (Dr Birdsong); Advanced Genomic Services, Ambry Genetics, Aliso Viejo, California (Dr Bloom); Gynecologic & Breast Pathology, Joint Pathology Center, Silver Spring, Maryland (Dr Branton); the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Dr Crothers); the Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha (Dr Cushman-Vokoun); IHC-ISH Laboratory and Breast Subspecialty Service, University of Rochester Medical Center, Rochester, New York (Dr Hicks); the Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Khoury); the Department of Pathology and Laboratory Medicine, Northwell Health, New Hyde Park, New York (Dr Laser); the Department of Pathology, University of Colorado, Aurora (Dr Marshall); the Department of Pathology, Newton-Wellesley Hospital, Newton, Massachusetts (Dr Misialek); the Department of Pathology, Walter Reed National Military Medical Center, Bethesda, Maryland (Dr Natale); the Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York (Dr Nowak); he Department of Pathology, Children's Hospitals and Clinics, Minneapolis, Minnesota (Dr Olson); the Department of Pathology, Washington University School of Medicine, St. Louis, Missouri (Dr Pfeifer); Lilly Research Labs, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Dr Schade); he Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (Dr Vance); Medical & Scientific Affairs, Roche Tissue Diagnostics, Tucson, Arizona (Dr Walk); and Special Hematology MMC, University of Minnesota Medical Center, Minneapolis (Dr Yohe)
| | - David G Hicks
- From School of Life Sciences, Arizona State University and Mayo Clinic School of Medicine, Scottsdale (Dr Compton); Consulting Pathologist, Boca Raton, Florida (Dr Robb); Versiti Diagnostic Laboratories, Milwaukee, Wisconsin (Dr Anderson); Molecular Pathology and Genomics, Swedish Cancer Institute, Seattle, Washington (Dr Berry); Anatomic Pathology, Grady Health System, Atlanta, Georgia (Dr Birdsong); Advanced Genomic Services, Ambry Genetics, Aliso Viejo, California (Dr Bloom); Gynecologic & Breast Pathology, Joint Pathology Center, Silver Spring, Maryland (Dr Branton); the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Dr Crothers); the Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha (Dr Cushman-Vokoun); IHC-ISH Laboratory and Breast Subspecialty Service, University of Rochester Medical Center, Rochester, New York (Dr Hicks); the Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Khoury); the Department of Pathology and Laboratory Medicine, Northwell Health, New Hyde Park, New York (Dr Laser); the Department of Pathology, University of Colorado, Aurora (Dr Marshall); the Department of Pathology, Newton-Wellesley Hospital, Newton, Massachusetts (Dr Misialek); the Department of Pathology, Walter Reed National Military Medical Center, Bethesda, Maryland (Dr Natale); the Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York (Dr Nowak); he Department of Pathology, Children's Hospitals and Clinics, Minneapolis, Minnesota (Dr Olson); the Department of Pathology, Washington University School of Medicine, St. Louis, Missouri (Dr Pfeifer); Lilly Research Labs, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Dr Schade); he Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (Dr Vance); Medical & Scientific Affairs, Roche Tissue Diagnostics, Tucson, Arizona (Dr Walk); and Special Hematology MMC, University of Minnesota Medical Center, Minneapolis (Dr Yohe)
| | - Joseph D Khoury
- From School of Life Sciences, Arizona State University and Mayo Clinic School of Medicine, Scottsdale (Dr Compton); Consulting Pathologist, Boca Raton, Florida (Dr Robb); Versiti Diagnostic Laboratories, Milwaukee, Wisconsin (Dr Anderson); Molecular Pathology and Genomics, Swedish Cancer Institute, Seattle, Washington (Dr Berry); Anatomic Pathology, Grady Health System, Atlanta, Georgia (Dr Birdsong); Advanced Genomic Services, Ambry Genetics, Aliso Viejo, California (Dr Bloom); Gynecologic & Breast Pathology, Joint Pathology Center, Silver Spring, Maryland (Dr Branton); the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Dr Crothers); the Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha (Dr Cushman-Vokoun); IHC-ISH Laboratory and Breast Subspecialty Service, University of Rochester Medical Center, Rochester, New York (Dr Hicks); the Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Khoury); the Department of Pathology and Laboratory Medicine, Northwell Health, New Hyde Park, New York (Dr Laser); the Department of Pathology, University of Colorado, Aurora (Dr Marshall); the Department of Pathology, Newton-Wellesley Hospital, Newton, Massachusetts (Dr Misialek); the Department of Pathology, Walter Reed National Military Medical Center, Bethesda, Maryland (Dr Natale); the Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York (Dr Nowak); he Department of Pathology, Children's Hospitals and Clinics, Minneapolis, Minnesota (Dr Olson); the Department of Pathology, Washington University School of Medicine, St. Louis, Missouri (Dr Pfeifer); Lilly Research Labs, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Dr Schade); he Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (Dr Vance); Medical & Scientific Affairs, Roche Tissue Diagnostics, Tucson, Arizona (Dr Walk); and Special Hematology MMC, University of Minnesota Medical Center, Minneapolis (Dr Yohe)
| | - Jordan Laser
- From School of Life Sciences, Arizona State University and Mayo Clinic School of Medicine, Scottsdale (Dr Compton); Consulting Pathologist, Boca Raton, Florida (Dr Robb); Versiti Diagnostic Laboratories, Milwaukee, Wisconsin (Dr Anderson); Molecular Pathology and Genomics, Swedish Cancer Institute, Seattle, Washington (Dr Berry); Anatomic Pathology, Grady Health System, Atlanta, Georgia (Dr Birdsong); Advanced Genomic Services, Ambry Genetics, Aliso Viejo, California (Dr Bloom); Gynecologic & Breast Pathology, Joint Pathology Center, Silver Spring, Maryland (Dr Branton); the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Dr Crothers); the Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha (Dr Cushman-Vokoun); IHC-ISH Laboratory and Breast Subspecialty Service, University of Rochester Medical Center, Rochester, New York (Dr Hicks); the Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Khoury); the Department of Pathology and Laboratory Medicine, Northwell Health, New Hyde Park, New York (Dr Laser); the Department of Pathology, University of Colorado, Aurora (Dr Marshall); the Department of Pathology, Newton-Wellesley Hospital, Newton, Massachusetts (Dr Misialek); the Department of Pathology, Walter Reed National Military Medical Center, Bethesda, Maryland (Dr Natale); the Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York (Dr Nowak); he Department of Pathology, Children's Hospitals and Clinics, Minneapolis, Minnesota (Dr Olson); the Department of Pathology, Washington University School of Medicine, St. Louis, Missouri (Dr Pfeifer); Lilly Research Labs, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Dr Schade); he Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (Dr Vance); Medical & Scientific Affairs, Roche Tissue Diagnostics, Tucson, Arizona (Dr Walk); and Special Hematology MMC, University of Minnesota Medical Center, Minneapolis (Dr Yohe)
| | - Carrie B Marshall
- From School of Life Sciences, Arizona State University and Mayo Clinic School of Medicine, Scottsdale (Dr Compton); Consulting Pathologist, Boca Raton, Florida (Dr Robb); Versiti Diagnostic Laboratories, Milwaukee, Wisconsin (Dr Anderson); Molecular Pathology and Genomics, Swedish Cancer Institute, Seattle, Washington (Dr Berry); Anatomic Pathology, Grady Health System, Atlanta, Georgia (Dr Birdsong); Advanced Genomic Services, Ambry Genetics, Aliso Viejo, California (Dr Bloom); Gynecologic & Breast Pathology, Joint Pathology Center, Silver Spring, Maryland (Dr Branton); the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Dr Crothers); the Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha (Dr Cushman-Vokoun); IHC-ISH Laboratory and Breast Subspecialty Service, University of Rochester Medical Center, Rochester, New York (Dr Hicks); the Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Khoury); the Department of Pathology and Laboratory Medicine, Northwell Health, New Hyde Park, New York (Dr Laser); the Department of Pathology, University of Colorado, Aurora (Dr Marshall); the Department of Pathology, Newton-Wellesley Hospital, Newton, Massachusetts (Dr Misialek); the Department of Pathology, Walter Reed National Military Medical Center, Bethesda, Maryland (Dr Natale); the Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York (Dr Nowak); he Department of Pathology, Children's Hospitals and Clinics, Minneapolis, Minnesota (Dr Olson); the Department of Pathology, Washington University School of Medicine, St. Louis, Missouri (Dr Pfeifer); Lilly Research Labs, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Dr Schade); he Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (Dr Vance); Medical & Scientific Affairs, Roche Tissue Diagnostics, Tucson, Arizona (Dr Walk); and Special Hematology MMC, University of Minnesota Medical Center, Minneapolis (Dr Yohe)
| | - Michael J Misialek
- From School of Life Sciences, Arizona State University and Mayo Clinic School of Medicine, Scottsdale (Dr Compton); Consulting Pathologist, Boca Raton, Florida (Dr Robb); Versiti Diagnostic Laboratories, Milwaukee, Wisconsin (Dr Anderson); Molecular Pathology and Genomics, Swedish Cancer Institute, Seattle, Washington (Dr Berry); Anatomic Pathology, Grady Health System, Atlanta, Georgia (Dr Birdsong); Advanced Genomic Services, Ambry Genetics, Aliso Viejo, California (Dr Bloom); Gynecologic & Breast Pathology, Joint Pathology Center, Silver Spring, Maryland (Dr Branton); the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Dr Crothers); the Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha (Dr Cushman-Vokoun); IHC-ISH Laboratory and Breast Subspecialty Service, University of Rochester Medical Center, Rochester, New York (Dr Hicks); the Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Khoury); the Department of Pathology and Laboratory Medicine, Northwell Health, New Hyde Park, New York (Dr Laser); the Department of Pathology, University of Colorado, Aurora (Dr Marshall); the Department of Pathology, Newton-Wellesley Hospital, Newton, Massachusetts (Dr Misialek); the Department of Pathology, Walter Reed National Military Medical Center, Bethesda, Maryland (Dr Natale); the Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York (Dr Nowak); he Department of Pathology, Children's Hospitals and Clinics, Minneapolis, Minnesota (Dr Olson); the Department of Pathology, Washington University School of Medicine, St. Louis, Missouri (Dr Pfeifer); Lilly Research Labs, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Dr Schade); he Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (Dr Vance); Medical & Scientific Affairs, Roche Tissue Diagnostics, Tucson, Arizona (Dr Walk); and Special Hematology MMC, University of Minnesota Medical Center, Minneapolis (Dr Yohe)
| | - Kristen E Natale
- From School of Life Sciences, Arizona State University and Mayo Clinic School of Medicine, Scottsdale (Dr Compton); Consulting Pathologist, Boca Raton, Florida (Dr Robb); Versiti Diagnostic Laboratories, Milwaukee, Wisconsin (Dr Anderson); Molecular Pathology and Genomics, Swedish Cancer Institute, Seattle, Washington (Dr Berry); Anatomic Pathology, Grady Health System, Atlanta, Georgia (Dr Birdsong); Advanced Genomic Services, Ambry Genetics, Aliso Viejo, California (Dr Bloom); Gynecologic & Breast Pathology, Joint Pathology Center, Silver Spring, Maryland (Dr Branton); the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Dr Crothers); the Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha (Dr Cushman-Vokoun); IHC-ISH Laboratory and Breast Subspecialty Service, University of Rochester Medical Center, Rochester, New York (Dr Hicks); the Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Khoury); the Department of Pathology and Laboratory Medicine, Northwell Health, New Hyde Park, New York (Dr Laser); the Department of Pathology, University of Colorado, Aurora (Dr Marshall); the Department of Pathology, Newton-Wellesley Hospital, Newton, Massachusetts (Dr Misialek); the Department of Pathology, Walter Reed National Military Medical Center, Bethesda, Maryland (Dr Natale); the Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York (Dr Nowak); he Department of Pathology, Children's Hospitals and Clinics, Minneapolis, Minnesota (Dr Olson); the Department of Pathology, Washington University School of Medicine, St. Louis, Missouri (Dr Pfeifer); Lilly Research Labs, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Dr Schade); he Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (Dr Vance); Medical & Scientific Affairs, Roche Tissue Diagnostics, Tucson, Arizona (Dr Walk); and Special Hematology MMC, University of Minnesota Medical Center, Minneapolis (Dr Yohe)
| | - Jan Anthony Nowak
- From School of Life Sciences, Arizona State University and Mayo Clinic School of Medicine, Scottsdale (Dr Compton); Consulting Pathologist, Boca Raton, Florida (Dr Robb); Versiti Diagnostic Laboratories, Milwaukee, Wisconsin (Dr Anderson); Molecular Pathology and Genomics, Swedish Cancer Institute, Seattle, Washington (Dr Berry); Anatomic Pathology, Grady Health System, Atlanta, Georgia (Dr Birdsong); Advanced Genomic Services, Ambry Genetics, Aliso Viejo, California (Dr Bloom); Gynecologic & Breast Pathology, Joint Pathology Center, Silver Spring, Maryland (Dr Branton); the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Dr Crothers); the Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha (Dr Cushman-Vokoun); IHC-ISH Laboratory and Breast Subspecialty Service, University of Rochester Medical Center, Rochester, New York (Dr Hicks); the Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Khoury); the Department of Pathology and Laboratory Medicine, Northwell Health, New Hyde Park, New York (Dr Laser); the Department of Pathology, University of Colorado, Aurora (Dr Marshall); the Department of Pathology, Newton-Wellesley Hospital, Newton, Massachusetts (Dr Misialek); the Department of Pathology, Walter Reed National Military Medical Center, Bethesda, Maryland (Dr Natale); the Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York (Dr Nowak); he Department of Pathology, Children's Hospitals and Clinics, Minneapolis, Minnesota (Dr Olson); the Department of Pathology, Washington University School of Medicine, St. Louis, Missouri (Dr Pfeifer); Lilly Research Labs, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Dr Schade); he Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (Dr Vance); Medical & Scientific Affairs, Roche Tissue Diagnostics, Tucson, Arizona (Dr Walk); and Special Hematology MMC, University of Minnesota Medical Center, Minneapolis (Dr Yohe)
| | - Damon Olson
- From School of Life Sciences, Arizona State University and Mayo Clinic School of Medicine, Scottsdale (Dr Compton); Consulting Pathologist, Boca Raton, Florida (Dr Robb); Versiti Diagnostic Laboratories, Milwaukee, Wisconsin (Dr Anderson); Molecular Pathology and Genomics, Swedish Cancer Institute, Seattle, Washington (Dr Berry); Anatomic Pathology, Grady Health System, Atlanta, Georgia (Dr Birdsong); Advanced Genomic Services, Ambry Genetics, Aliso Viejo, California (Dr Bloom); Gynecologic & Breast Pathology, Joint Pathology Center, Silver Spring, Maryland (Dr Branton); the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Dr Crothers); the Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha (Dr Cushman-Vokoun); IHC-ISH Laboratory and Breast Subspecialty Service, University of Rochester Medical Center, Rochester, New York (Dr Hicks); the Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Khoury); the Department of Pathology and Laboratory Medicine, Northwell Health, New Hyde Park, New York (Dr Laser); the Department of Pathology, University of Colorado, Aurora (Dr Marshall); the Department of Pathology, Newton-Wellesley Hospital, Newton, Massachusetts (Dr Misialek); the Department of Pathology, Walter Reed National Military Medical Center, Bethesda, Maryland (Dr Natale); the Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York (Dr Nowak); he Department of Pathology, Children's Hospitals and Clinics, Minneapolis, Minnesota (Dr Olson); the Department of Pathology, Washington University School of Medicine, St. Louis, Missouri (Dr Pfeifer); Lilly Research Labs, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Dr Schade); he Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (Dr Vance); Medical & Scientific Affairs, Roche Tissue Diagnostics, Tucson, Arizona (Dr Walk); and Special Hematology MMC, University of Minnesota Medical Center, Minneapolis (Dr Yohe)
| | - John D Pfeifer
- From School of Life Sciences, Arizona State University and Mayo Clinic School of Medicine, Scottsdale (Dr Compton); Consulting Pathologist, Boca Raton, Florida (Dr Robb); Versiti Diagnostic Laboratories, Milwaukee, Wisconsin (Dr Anderson); Molecular Pathology and Genomics, Swedish Cancer Institute, Seattle, Washington (Dr Berry); Anatomic Pathology, Grady Health System, Atlanta, Georgia (Dr Birdsong); Advanced Genomic Services, Ambry Genetics, Aliso Viejo, California (Dr Bloom); Gynecologic & Breast Pathology, Joint Pathology Center, Silver Spring, Maryland (Dr Branton); the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Dr Crothers); the Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha (Dr Cushman-Vokoun); IHC-ISH Laboratory and Breast Subspecialty Service, University of Rochester Medical Center, Rochester, New York (Dr Hicks); the Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Khoury); the Department of Pathology and Laboratory Medicine, Northwell Health, New Hyde Park, New York (Dr Laser); the Department of Pathology, University of Colorado, Aurora (Dr Marshall); the Department of Pathology, Newton-Wellesley Hospital, Newton, Massachusetts (Dr Misialek); the Department of Pathology, Walter Reed National Military Medical Center, Bethesda, Maryland (Dr Natale); the Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York (Dr Nowak); he Department of Pathology, Children's Hospitals and Clinics, Minneapolis, Minnesota (Dr Olson); the Department of Pathology, Washington University School of Medicine, St. Louis, Missouri (Dr Pfeifer); Lilly Research Labs, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Dr Schade); he Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (Dr Vance); Medical & Scientific Affairs, Roche Tissue Diagnostics, Tucson, Arizona (Dr Walk); and Special Hematology MMC, University of Minnesota Medical Center, Minneapolis (Dr Yohe)
| | - Andrew Schade
- From School of Life Sciences, Arizona State University and Mayo Clinic School of Medicine, Scottsdale (Dr Compton); Consulting Pathologist, Boca Raton, Florida (Dr Robb); Versiti Diagnostic Laboratories, Milwaukee, Wisconsin (Dr Anderson); Molecular Pathology and Genomics, Swedish Cancer Institute, Seattle, Washington (Dr Berry); Anatomic Pathology, Grady Health System, Atlanta, Georgia (Dr Birdsong); Advanced Genomic Services, Ambry Genetics, Aliso Viejo, California (Dr Bloom); Gynecologic & Breast Pathology, Joint Pathology Center, Silver Spring, Maryland (Dr Branton); the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Dr Crothers); the Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha (Dr Cushman-Vokoun); IHC-ISH Laboratory and Breast Subspecialty Service, University of Rochester Medical Center, Rochester, New York (Dr Hicks); the Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Khoury); the Department of Pathology and Laboratory Medicine, Northwell Health, New Hyde Park, New York (Dr Laser); the Department of Pathology, University of Colorado, Aurora (Dr Marshall); the Department of Pathology, Newton-Wellesley Hospital, Newton, Massachusetts (Dr Misialek); the Department of Pathology, Walter Reed National Military Medical Center, Bethesda, Maryland (Dr Natale); the Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York (Dr Nowak); he Department of Pathology, Children's Hospitals and Clinics, Minneapolis, Minnesota (Dr Olson); the Department of Pathology, Washington University School of Medicine, St. Louis, Missouri (Dr Pfeifer); Lilly Research Labs, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Dr Schade); he Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (Dr Vance); Medical & Scientific Affairs, Roche Tissue Diagnostics, Tucson, Arizona (Dr Walk); and Special Hematology MMC, University of Minnesota Medical Center, Minneapolis (Dr Yohe)
| | - Gail H Vance
- From School of Life Sciences, Arizona State University and Mayo Clinic School of Medicine, Scottsdale (Dr Compton); Consulting Pathologist, Boca Raton, Florida (Dr Robb); Versiti Diagnostic Laboratories, Milwaukee, Wisconsin (Dr Anderson); Molecular Pathology and Genomics, Swedish Cancer Institute, Seattle, Washington (Dr Berry); Anatomic Pathology, Grady Health System, Atlanta, Georgia (Dr Birdsong); Advanced Genomic Services, Ambry Genetics, Aliso Viejo, California (Dr Bloom); Gynecologic & Breast Pathology, Joint Pathology Center, Silver Spring, Maryland (Dr Branton); the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Dr Crothers); the Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha (Dr Cushman-Vokoun); IHC-ISH Laboratory and Breast Subspecialty Service, University of Rochester Medical Center, Rochester, New York (Dr Hicks); the Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Khoury); the Department of Pathology and Laboratory Medicine, Northwell Health, New Hyde Park, New York (Dr Laser); the Department of Pathology, University of Colorado, Aurora (Dr Marshall); the Department of Pathology, Newton-Wellesley Hospital, Newton, Massachusetts (Dr Misialek); the Department of Pathology, Walter Reed National Military Medical Center, Bethesda, Maryland (Dr Natale); the Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York (Dr Nowak); he Department of Pathology, Children's Hospitals and Clinics, Minneapolis, Minnesota (Dr Olson); the Department of Pathology, Washington University School of Medicine, St. Louis, Missouri (Dr Pfeifer); Lilly Research Labs, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Dr Schade); he Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (Dr Vance); Medical & Scientific Affairs, Roche Tissue Diagnostics, Tucson, Arizona (Dr Walk); and Special Hematology MMC, University of Minnesota Medical Center, Minneapolis (Dr Yohe)
| | - Eric E Walk
- From School of Life Sciences, Arizona State University and Mayo Clinic School of Medicine, Scottsdale (Dr Compton); Consulting Pathologist, Boca Raton, Florida (Dr Robb); Versiti Diagnostic Laboratories, Milwaukee, Wisconsin (Dr Anderson); Molecular Pathology and Genomics, Swedish Cancer Institute, Seattle, Washington (Dr Berry); Anatomic Pathology, Grady Health System, Atlanta, Georgia (Dr Birdsong); Advanced Genomic Services, Ambry Genetics, Aliso Viejo, California (Dr Bloom); Gynecologic & Breast Pathology, Joint Pathology Center, Silver Spring, Maryland (Dr Branton); the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Dr Crothers); the Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha (Dr Cushman-Vokoun); IHC-ISH Laboratory and Breast Subspecialty Service, University of Rochester Medical Center, Rochester, New York (Dr Hicks); the Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Khoury); the Department of Pathology and Laboratory Medicine, Northwell Health, New Hyde Park, New York (Dr Laser); the Department of Pathology, University of Colorado, Aurora (Dr Marshall); the Department of Pathology, Newton-Wellesley Hospital, Newton, Massachusetts (Dr Misialek); the Department of Pathology, Walter Reed National Military Medical Center, Bethesda, Maryland (Dr Natale); the Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York (Dr Nowak); he Department of Pathology, Children's Hospitals and Clinics, Minneapolis, Minnesota (Dr Olson); the Department of Pathology, Washington University School of Medicine, St. Louis, Missouri (Dr Pfeifer); Lilly Research Labs, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Dr Schade); he Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (Dr Vance); Medical & Scientific Affairs, Roche Tissue Diagnostics, Tucson, Arizona (Dr Walk); and Special Hematology MMC, University of Minnesota Medical Center, Minneapolis (Dr Yohe)
| | - Sophia Louise Yohe
- From School of Life Sciences, Arizona State University and Mayo Clinic School of Medicine, Scottsdale (Dr Compton); Consulting Pathologist, Boca Raton, Florida (Dr Robb); Versiti Diagnostic Laboratories, Milwaukee, Wisconsin (Dr Anderson); Molecular Pathology and Genomics, Swedish Cancer Institute, Seattle, Washington (Dr Berry); Anatomic Pathology, Grady Health System, Atlanta, Georgia (Dr Birdsong); Advanced Genomic Services, Ambry Genetics, Aliso Viejo, California (Dr Bloom); Gynecologic & Breast Pathology, Joint Pathology Center, Silver Spring, Maryland (Dr Branton); the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Dr Crothers); the Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha (Dr Cushman-Vokoun); IHC-ISH Laboratory and Breast Subspecialty Service, University of Rochester Medical Center, Rochester, New York (Dr Hicks); the Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Khoury); the Department of Pathology and Laboratory Medicine, Northwell Health, New Hyde Park, New York (Dr Laser); the Department of Pathology, University of Colorado, Aurora (Dr Marshall); the Department of Pathology, Newton-Wellesley Hospital, Newton, Massachusetts (Dr Misialek); the Department of Pathology, Walter Reed National Military Medical Center, Bethesda, Maryland (Dr Natale); the Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York (Dr Nowak); he Department of Pathology, Children's Hospitals and Clinics, Minneapolis, Minnesota (Dr Olson); the Department of Pathology, Washington University School of Medicine, St. Louis, Missouri (Dr Pfeifer); Lilly Research Labs, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Dr Schade); he Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (Dr Vance); Medical & Scientific Affairs, Roche Tissue Diagnostics, Tucson, Arizona (Dr Walk); and Special Hematology MMC, University of Minnesota Medical Center, Minneapolis (Dr Yohe)
| |
Collapse
|
39
|
Ucal Y, Coskun A, Ozpinar A. Quality will determine the future of mass spectrometry imaging in clinical laboratories: the need for standardization. Expert Rev Proteomics 2019; 16:521-532. [DOI: 10.1080/14789450.2019.1624165] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Yasemin Ucal
- School of Medicine, Department of Medical Biochemistry, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Abdurrahman Coskun
- School of Medicine, Department of Medical Biochemistry, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Aysel Ozpinar
- School of Medicine, Department of Medical Biochemistry, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| |
Collapse
|
40
|
Steiner C, Lescuyer P, Tille JC, Cutler P, Ducret A. Development of a Highly Multiplexed SRM Assay for Biomarker Discovery in Formalin-Fixed Paraffin-Embedded Tissues. Methods Mol Biol 2019; 1959:185-203. [PMID: 30852824 DOI: 10.1007/978-1-4939-9164-8_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The search for novel and clinically relevant biomarkers still represents a major clinical challenge and mass-spectrometry-based technologies are essential tools to help in this process. In this application, we demonstrate how selected reaction monitoring (SRM) can be applied in a highly multiplexed way to analyze formalin-fixed paraffin-embedded (FFPE) tissues. Such an assay can be used to analyze numerous samples for narrowing down a list of potential biomarkers to the most relevant candidates. The use of FFPE tissues is of high relevance in this context as large sample collections linked with valuable clinical information are available in hospitals around the world. Here we describe in detail how we proceeded to develop such an assay for 200 proteins in breast tumor FFPE tissues. We cover the selection of suitable peptides, which are different in FFPE compared to fresh frozen tissues and show how we deliberately biased our assay toward proteins with a high probability of being measurable in human clinical samples.
Collapse
Affiliation(s)
- Carine Steiner
- Division of Laboratory Medicine, Geneva University Hospitals, Geneva, Switzerland.
- Biomarkers, Bioinformatics and Omics, Pharmaceutical Sciences, Roche Pharma Research & Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Basel, Switzerland.
- Late Stage Analytical Development, Small Molecules Technical Development, Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Basel, Switzerland.
| | - Pierre Lescuyer
- Division of Laboratory Medicine, Geneva University Hospitals, Geneva, Switzerland
- Clinical Proteomics and Chemistry Group, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | - Paul Cutler
- Biomarkers, Bioinformatics and Omics, Pharmaceutical Sciences, Roche Pharma Research & Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Basel, Switzerland
- Translational Biomarkers and Bioanalysis, Development Sciences, UCB Pharma, Slough, UK
| | - Axel Ducret
- Biomarkers, Bioinformatics and Omics, Pharmaceutical Sciences, Roche Pharma Research & Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Basel, Switzerland
| |
Collapse
|
41
|
Hoffmann F, Umbreit C, Krüger T, Pelzel D, Ernst G, Kniemeyer O, Guntinas-Lichius O, Berndt A, von Eggeling F. Identification of Proteomic Markers in Head and Neck Cancer Using MALDI-MS Imaging, LC-MS/MS, and Immunohistochemistry. Proteomics Clin Appl 2018; 13:e1700173. [PMID: 30411850 DOI: 10.1002/prca.201700173] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 10/29/2018] [Indexed: 12/12/2022]
Abstract
PURPOSE The heterogeneity of squamous cell carcinoma tissue greatly complicates diagnosis and individualized therapy. Therefore, characterizing the heterogeneity of tissue spatially and identifying appropriate biomarkers is crucial. MALDI-MS imaging (MSI) is capable of analyzing spatially resolved tissue biopsies on a molecular level. EXPERIMENTAL DESIGN MALDI-MSI is used on snap frozen and formalin-fixed and paraffin-embedded (FFPE) tissue samples from patients with head and neck cancer (HNC) to analyze m/z values localized in tumor and nontumor regions. Peptide identification is performed using LC-MS/MS and immunohistochemistry (IHC). RESULTS In both FFPE and frozen tissue specimens, eight characteristic masses of the tumor's epithelial region are found. Using LC-MS/MS, the peaks are identified as vimentin, keratin type II, nucleolin, heat shock protein 90, prelamin-A/C, junction plakoglobin, and PGAM1. Lastly, vimentin, nucleolin, and PGAM1 are verified with IHC. CONCLUSIONS AND CLINICAL RELEVANCE The combination of MALDI-MSI, LC-MS/MS, and subsequent IHC furnishes a tool suitable for characterizing the molecular heterogeneity of tissue. It is also suited for use in identifying new representative biomarkers to enable a more individualized therapy.
Collapse
Affiliation(s)
- Franziska Hoffmann
- Department of Otorhinolaryngology, Jena University Hospital, Jena, Germany
| | - Claudia Umbreit
- Department of Otorhinolaryngology, Jena University Hospital, Jena, Germany.,Institute of Forensic Medicine, Section Pathology, Jena University Hospital, Jena, Germany
| | - Thomas Krüger
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Daniela Pelzel
- Department of Otorhinolaryngology, Jena University Hospital, Jena, Germany
| | - Günther Ernst
- Department of Otorhinolaryngology, Jena University Hospital, Jena, Germany
| | - Olaf Kniemeyer
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | | | - Alexander Berndt
- Institute of Forensic Medicine, Section Pathology, Jena University Hospital, Jena, Germany
| | - Ferdinand von Eggeling
- Department of Otorhinolaryngology, Jena University Hospital, Jena, Germany.,Institute of Physical Chemistry, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
42
|
Taverna D, Mignogna C, Santise G, Gaspari M, Cuda G. On‐Tissue Hydrogel‐Mediated Nondestructive Proteomic Characterization: Application to fr/fr and FFPE Tissues and Insights for Quantitative Proteomics Using a Case of Cardiac Myxoma. Proteomics Clin Appl 2018; 13:e1700167. [DOI: 10.1002/prca.201700167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 10/10/2018] [Indexed: 11/12/2022]
Affiliation(s)
- Domenico Taverna
- Research Center for Advanced Biochemistry and Molecular BiologyDepartment of Experimental and Clinical MedicineMagna Graecia University of CatanzaroCampus “S. Venuta,”Viale EuropaLoc. Germaneto 88100 Catanzaro Italy
| | - Chiara Mignogna
- Department of Health ScienceInterdepartmental Service CentreMagna Graecia University of CatanzaroViale Europa 88100 Catanzaro Italy
| | - Gianluca Santise
- Cardiothoracic Surgery UnitSant'Anna Hospital 88100 Catanzaro Italy
| | - Marco Gaspari
- Research Center for Advanced Biochemistry and Molecular BiologyDepartment of Experimental and Clinical MedicineMagna Graecia University of CatanzaroCampus “S. Venuta,”Viale EuropaLoc. Germaneto 88100 Catanzaro Italy
| | - Giovanni Cuda
- Research Center for Advanced Biochemistry and Molecular BiologyDepartment of Experimental and Clinical MedicineMagna Graecia University of CatanzaroCampus “S. Venuta,”Viale EuropaLoc. Germaneto 88100 Catanzaro Italy
| |
Collapse
|
43
|
Neumeister VM, Juhl H. Tumor Pre-Analytics in Molecular Pathology: Impact on Protein Expression and Analysis. CURRENT PATHOBIOLOGY REPORTS 2018; 6:265-274. [PMID: 30595971 PMCID: PMC6290693 DOI: 10.1007/s40139-018-0179-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Purpose of Review Precision medicine promises patient tailored, individualized diagnosis and treatment of diseases and relies on clinical specimen integrity and accuracy of companion diagnostic testing. Therefore, pre-analytics, which are defined as the collection, processing, and storage of clinical specimens, are critically important to enable optimal diagnostics, molecular profiling, and clinical decision-making around harvested specimens. This review article discusses the impact of tumor pre-analytics on molecular pathology focusing on biospecimen protein expression and analysis. Recent Findings Due to busy clinical schedules and workflows that have been established for many years and to lack of standardization and limited assessment tools to quantify variability in pre-analytical processing, the effects of pre-analytics on biospecimen integrity are often overlooked. Several studies have recently emphasized an emerging crisis in science and reproducibility of results. Summary Biomarker instability due to pre-analytical variables affects comprehensive analysis and molecular phenotyping of patients’ tissue. This problematic emphasizes the critical need for standardized protocols and technologies to be applied in the clinical and research setting.
Collapse
Affiliation(s)
| | - Hartmut Juhl
- Indivumed, GmbH, Falkenried 88, D-20251 Hamburg, Germany
| |
Collapse
|
44
|
Sharpnack MF, Ranbaduge N, Srivastava A, Cerciello F, Codreanu SG, Liebler DC, Mascaux C, Miles WO, Morris R, McDermott JE, Sharpnack JL, Amann J, Maher CA, Machiraju R, Wysocki VH, Govindan R, Mallick P, Coombes KR, Huang K, Carbone DP. Proteogenomic Analysis of Surgically Resected Lung Adenocarcinoma. J Thorac Oncol 2018; 13:1519-1529. [PMID: 30017829 DOI: 10.1016/j.jtho.2018.06.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 06/12/2018] [Accepted: 06/27/2018] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Despite apparently complete surgical resection, approximately half of resected early-stage lung cancer patients relapse and die of their disease. Adjuvant chemotherapy reduces this risk by only 5% to 8%. Thus, there is a need for better identifying who benefits from adjuvant therapy, the drivers of relapse, and novel targets in this setting. METHODS RNA sequencing and liquid chromatography/liquid chromatography-mass spectrometry proteomics data were generated from 51 surgically resected non-small cell lung tumors with known recurrence status. RESULTS We present a rationale and framework for the incorporation of high-content RNA and protein measurements into integrative biomarkers and show the potential of this approach for predicting risk of recurrence in a group of lung adenocarcinomas. In addition, we characterize the relationship between mRNA and protein measurements in lung adenocarcinoma and show that it is outcome specific. CONCLUSIONS Our results suggest that mRNA and protein data possess independent biological and clinical importance, which can be leveraged to create higher-powered expression biomarkers.
Collapse
Affiliation(s)
- Michael F Sharpnack
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio
| | - Nilini Ranbaduge
- Department of Chemistry, The Ohio State University, Columbus, Ohio
| | - Arunima Srivastava
- Department of Computer Science and Engineering, The Ohio State University, Columbus, Ohio
| | | | - Simona G Codreanu
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee
| | - Daniel C Liebler
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee
| | - Celine Mascaux
- Department of Multidisciplinary Oncology and Therapeutic Innovations, Assistance Publique des Hôpitaux de Marseille, France; Aix-Marseille University, Marseille, France
| | - Wayne O Miles
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Robert Morris
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Jason E McDermott
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA
| | - James L Sharpnack
- Department of Statistics, University of California, Davis, California
| | - Joseph Amann
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Christopher A Maher
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Raghu Machiraju
- Department of Computer Science and Engineering, The Ohio State University, Columbus, Ohio
| | - Vicki H Wysocki
- Department of Chemistry, The Ohio State University, Columbus, Ohio
| | - Ramaswami Govindan
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Parag Mallick
- Department of Radiology, Stanford University, Palo Alto, California
| | - Kevin R Coombes
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio
| | - Kun Huang
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio
| | - David P Carbone
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.
| |
Collapse
|
45
|
Yun BH, Guo J, Turesky RJ. Formalin-Fixed Paraffin-Embedded Tissues-An Untapped Biospecimen for Biomonitoring DNA Adducts by Mass Spectrometry. TOXICS 2018; 6:E30. [PMID: 29865161 PMCID: PMC6027047 DOI: 10.3390/toxics6020030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 05/21/2018] [Accepted: 05/25/2018] [Indexed: 01/03/2023]
Abstract
The measurement of DNA adducts provides important information about human exposure to genotoxic chemicals and can be employed to elucidate mechanisms of DNA damage and repair. DNA adducts can serve as biomarkers for interspecies comparisons of the biologically effective dose of procarcinogens and permit extrapolation of genotoxicity data from animal studies for human risk assessment. One major challenge in DNA adduct biomarker research is the paucity of fresh frozen biopsy samples available for study. However, archived formalin-fixed paraffin-embedded (FFPE) tissues with clinical diagnosis of disease are often available. We have established robust methods to recover DNA free of crosslinks from FFPE tissues under mild conditions which permit quantitative measurements of DNA adducts by liquid chromatography-mass spectrometry. The technology is versatile and can be employed to screen for DNA adducts formed with a wide range of environmental and dietary carcinogens, some of which were retrieved from section-cuts of FFPE blocks stored at ambient temperature for up to nine years. The ability to retrospectively analyze FFPE tissues for DNA adducts for which there is clinical diagnosis of disease opens a previously untapped source of biospecimens for molecular epidemiology studies that seek to assess the causal role of environmental chemicals in cancer etiology.
Collapse
Affiliation(s)
- Byeong Hwa Yun
- Masonic Cancer Center and Department of Medicinal Chemistry, University of Minnesota, 2231 6th St. SE, Minneapolis, MN 55455, USA.
| | - Jingshu Guo
- Masonic Cancer Center and Department of Medicinal Chemistry, University of Minnesota, 2231 6th St. SE, Minneapolis, MN 55455, USA.
| | - Robert J Turesky
- Masonic Cancer Center and Department of Medicinal Chemistry, University of Minnesota, 2231 6th St. SE, Minneapolis, MN 55455, USA.
| |
Collapse
|
46
|
Chauvin A, Wang CS, Geha S, Garde-Granger P, Mathieu AA, Lacasse V, Boisvert FM. The response to neoadjuvant chemoradiotherapy with 5-fluorouracil in locally advanced rectal cancer patients: a predictive proteomic signature. Clin Proteomics 2018; 15:16. [PMID: 29681787 PMCID: PMC5898006 DOI: 10.1186/s12014-018-9192-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 04/04/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Colorectal cancer is the third most common and the fourth most lethal cancer in the world. In the majority of cases, patients are diagnosed at an advanced stage or even metastatic, thus explaining the high mortality. The standard treatment for patients with locally advanced non-metastatic rectal cancer is neoadjuvant radio-chemotherapy (NRCT) with 5-fluorouracil (5-FU) followed by surgery, but the resistance rate to this treatment remains high with approximately 30% of non-responders. The lack of evidence available in clinical practice to predict NRCT resistance to 5-FU and to guide clinical practice therefore encourages the search for biomarkers of this resistance. METHODS From twenty-three formalin-fixed paraffin-embedded (FFPE) biopsies performed before NRCT with 5-FU of locally advanced non-metastatic rectal cancer patients, we extracted and analysed the tumor proteome of these patients. From clinical data, we were able to classify the twenty-three patients in our cohort into three treatment response groups: non-responders (NR), partial responders (PR) and total responders (TR), and to compare the proteomes of these different groups. RESULTS We have highlighted 384 differentially abundant proteins between NR and PR, 248 between NR and TR and 417 between PR and TR. Among these proteins, we have identified many differentially abundant proteins identified as having a role in cancer (IFIT1, FASTKD2, PIP4K2B, ARID1B, SLC25A33: overexpressed in TR; CALD1, CPA3, B3GALT5, CD177, RIPK1: overexpressed in NR). We have also identified that DPYD, the main degradation enzyme of 5-FU, was overexpressed in NR, as well as several ribosomal and mitochondrial proteins also overexpressed in NR. Data are available via ProteomeXchange with identifier PXD008440. CONCLUSIONS From these retrospective study, we implemented a protein extraction protocol from FFPE biopsy to highlight protein differences between different response groups to RCTN with 5-FU in patients with locally advanced non-metastatic rectal cancer. These results will pave the way for a larger cohort for better sensitivity and specificity of the signature to guide decisions in the choice of treatment.
Collapse
Affiliation(s)
- Anaïs Chauvin
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3201 Jean-Mignault, Sherbrooke, QC J1E 4K8 Canada
| | - Chang-Shu Wang
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC Canada
| | - Sameh Geha
- Department of Pathology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC Canada
| | - Perrine Garde-Granger
- Department of Pathology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC Canada
| | - Alex-Ane Mathieu
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3201 Jean-Mignault, Sherbrooke, QC J1E 4K8 Canada
| | - Vincent Lacasse
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3201 Jean-Mignault, Sherbrooke, QC J1E 4K8 Canada
| | - François-Michel Boisvert
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3201 Jean-Mignault, Sherbrooke, QC J1E 4K8 Canada
| |
Collapse
|
47
|
Susman S, Berindan-Neagoe I, Petrushev B, Pirlog R, Florian IS, Mihu CM, Berce C, Craciun L, Grewal R, Tomuleasa C. The role of the pathology department in the preanalytical phase of molecular analyses. Cancer Manag Res 2018; 10:745-753. [PMID: 29695931 PMCID: PMC5903845 DOI: 10.2147/cmar.s150851] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
After introducing the new molecules for the treatment of patients with tumoral pathology, the therapeutical decision will be taken depending on the molecular profile performed upon the harvested tissues. This major modification makes the molecular and morphological analysis an essential part in the clinical management of patients and the pathologist plays an important role in this process. The quality and reproducibility of the results are imperative today and they depend on both the reliability of the molecular techniques and the quality of the tissue we use in the process. Also, the genomics and proteomics techniques, used increasingly often, require high-quality tissues, and pathology laboratories play a very significant role in the management of all phases of this process. In this paper the parameters which must be followed in order to obtain optimal results within the techniques which analyze nucleic acids and proteins were reviewed.
Collapse
Affiliation(s)
- Sergiu Susman
- Department of Pathology, Imogen Research Center.,Department of Morphological Sciences
| | | | - Bobe Petrushev
- Research Center for Functional Genomics and Translational Medicine
| | | | - Ioan-Stefan Florian
- Department of Neurosurgery, Iuliu Hatieganu University of Medicine and Pharmacy
| | | | - Cristian Berce
- Research Center for Functional Genomics and Translational Medicine
| | | | - Ravnit Grewal
- Department of Hematology, Ion Chiricuta Oncology Institute
| | - Ciprian Tomuleasa
- Research Center for Functional Genomics and Translational Medicine.,Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Haematopathology, Tygerberg Academic Hospital, Tygerberg, South Africa
| |
Collapse
|
48
|
Föll MC, Fahrner M, Oria VO, Kühs M, Biniossek ML, Werner M, Bronsert P, Schilling O. Reproducible proteomics sample preparation for single FFPE tissue slices using acid-labile surfactant and direct trypsinization. Clin Proteomics 2018. [PMID: 29527141 PMCID: PMC5838928 DOI: 10.1186/s12014-018-9188-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Proteomic analyses of clinical specimens often rely on human tissues preserved through formalin-fixation and paraffin embedding (FFPE). Minimal sample consumption is the key to preserve the integrity of pathological archives but also to deal with minimal invasive core biopsies. This has been achieved by using the acid-labile surfactant RapiGest in combination with a direct trypsinization (DTR) strategy. A critical comparison of the DTR protocol with the most commonly used filter aided sample preparation (FASP) protocol is lacking. Furthermore, it is unknown how common histological stainings influence the outcome of the DTR protocol. Methods Four single consecutive murine kidney tissue specimens were prepared with the DTR approach or with the FASP protocol using both 10 and 30 k filter devices and analyzed by label-free, quantitative liquid chromatography–tandem mass spectrometry (LC–MS/MS). We compared the different protocols in terms of proteome coverage, relative label-free quantitation, missed cleavages, physicochemical properties and gene ontology term annotations of the proteins. Additionally, we probed compatibility of the DTR protocol for the analysis of common used histological stainings, namely hematoxylin & eosin (H&E), hematoxylin and hemalaun. These were proteomically compared to an unstained control by analyzing four human tonsil FFPE tissue specimens per condition. Results On average, the DTR protocol identified 1841 ± 22 proteins in a single, non-fractionated LC–MS/MS analysis, whereas these numbers were 1857 ± 120 and 1970 ± 28 proteins for the FASP 10 and 30 k protocol. The DTR protocol showed 15% more missed cleavages, which did not adversely affect quantitation and intersample comparability. Hematoxylin or hemalaun staining did not adversely impact the performance of the DTR protocol. A minor perturbation was observed for H&E staining, decreasing overall protein identification by 13%. Conclusions In essence, the DTR protocol can keep up with the FASP protocol in terms of qualitative and quantitative reproducibility and performed almost as well in terms of proteome coverage and missed cleavages. We highlight the suitability of the DTR protocol as a viable and straightforward alternative to the FASP protocol for proteomics-based clinical research. Electronic supplementary material The online version of this article (10.1186/s12014-018-9188-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Melanie Christine Föll
- 1Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Stefan Meier Strasse 17, 79104 Freiburg, Germany.,2Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Matthias Fahrner
- 1Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Stefan Meier Strasse 17, 79104 Freiburg, Germany.,2Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany.,3Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Victor Oginga Oria
- 1Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Stefan Meier Strasse 17, 79104 Freiburg, Germany.,2Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany.,3Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Markus Kühs
- 4Institute for Surgical Pathology, Medical Center - University of Freiburg, Freiburg, Germany.,5Comprehensive Cancer Center Freiburg, Medical Center - University of Freiburg, Freiburg, Germany.,6Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Martin Lothar Biniossek
- 1Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Stefan Meier Strasse 17, 79104 Freiburg, Germany
| | - Martin Werner
- 4Institute for Surgical Pathology, Medical Center - University of Freiburg, Freiburg, Germany.,5Comprehensive Cancer Center Freiburg, Medical Center - University of Freiburg, Freiburg, Germany.,6Faculty of Medicine, University of Freiburg, Freiburg, Germany.,7German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter Bronsert
- 4Institute for Surgical Pathology, Medical Center - University of Freiburg, Freiburg, Germany.,5Comprehensive Cancer Center Freiburg, Medical Center - University of Freiburg, Freiburg, Germany.,6Faculty of Medicine, University of Freiburg, Freiburg, Germany.,7German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Oliver Schilling
- 1Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Stefan Meier Strasse 17, 79104 Freiburg, Germany.,7German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany.,8BIOSS Centre for Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
49
|
Bateman NW, Conrads TP. Recent advances and opportunities in proteomic analyses of tumour heterogeneity. J Pathol 2018; 244:628-637. [PMID: 29344964 DOI: 10.1002/path.5036] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/04/2018] [Accepted: 01/05/2018] [Indexed: 01/27/2023]
Abstract
Solid tumour malignancies comprise a highly variable admixture of tumour and non-tumour cellular populations, forming a complex cellular ecosystem and tumour microenvironment. This tumour heterogeneity is not incidental, and is known to correlate with poor patient prognosis for many cancer types. Indeed, non-malignant cell populations, such as vascular endothelial and immune cells, are known to play key roles supporting and, in some cases, driving aggressive tumour biology, and represent targets of emerging therapeutics, such as antiangiogenesis and immune checkpoint inhibitors. The biochemical interplay between these cellular populations and how they contribute to molecular tumour heterogeneity remains enigmatic, particularly from the perspective of the tumour proteome. This review focuses on recent advances in proteomic methods, namely imaging mass spectrometry, single-cell proteomic techniques, and preanalytical sample processing, that are uniquely positioned to enable detailed analysis of discrete cellular populations within tumours to improve our understanding of tumour proteomic heterogeneity. This review further emphasizes the opportunity afforded by the application of these techniques to the analysis of tumour heterogeneity in formalin-fixed paraffin-embedded archival tumour tissues, as these represent an invaluable resource for retrospective analyses that is now routinely accessible, owing to recent technological and methodological advances in tumour tissue proteomics. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Nicholas W Bateman
- Gynecologic Cancer Center of Excellence, Department of Obstetrics and Gynecology, Uniformed Services University and Walter Reed National Military Medical Center, Bethesda, MD, USA.,The John P. Murtha Cancer Center, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Thomas P Conrads
- Gynecologic Cancer Center of Excellence, Department of Obstetrics and Gynecology, Uniformed Services University and Walter Reed National Military Medical Center, Bethesda, MD, USA.,The John P. Murtha Cancer Center, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD, USA.,Inova Schar Cancer Institute, Inova Center for Personalized Health, Falls Church, VA, USA
| |
Collapse
|
50
|
Lemchak D, Banerjee S, Digambar SS, Hood BL, Conrads TP, Jedrych J, Geskin L, Akilov OE. Therapeutic and prognostic significance of PARP-1 in advanced mycosis fungoides and Sezary syndrome. Exp Dermatol 2017; 27:188-190. [PMID: 29205518 DOI: 10.1111/exd.13477] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2017] [Indexed: 01/19/2023]
Abstract
While mycosis fungoides (MF) is typically an indolent malignancy, it may infrequently undertake an aggressive course. We used proteomic analyses to identify a biomarker of the aggressive course of MF. Results of this investigation demonstrated that PARP-1, heat-shock protein family A (Hsp70) member 1 like (HSAP1L), Hsp70 member 1A (HSPA1A), ATP-depending RNA helicase (DDX17) and the α-isoform of lamina-associated polypeptide 2 (TMPO) had higher expression in aggressive disease versus non-aggressive. Moreover, PARP-1 was overexpressed in patients with early stage of MF who developed later an aggressive disease. PARP-1 was evaluated as a new target for therapy, demonstrating the selective dose-dependent cytotoxic effect of PARP inhibitors on Sézary cells in comparison with non-malignant lymphocytes. In conclusion, we believe that PARP-1 may serve not only as a biomarker at initial biopsies for a disease that may become aggressive but also as a new therapeutic target of advanced MF and Sézary syndrome.
Collapse
Affiliation(s)
- David Lemchak
- Department of Dermatology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Swati Banerjee
- Department of Dermatology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shaunak S Digambar
- Department of Dermatology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brian L Hood
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Thomas P Conrads
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jaroslaw Jedrych
- Department of Dermatology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Larisa Geskin
- Department of Dermatology, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Dermatology, Columbia University, New York, NY, USA
| | - Oleg E Akilov
- Department of Dermatology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|