1
|
Wei Q, Li J, He QY, Chen Y, Zhang G. Identifying PE2 and PE5 Proteins from Existing Mass Spectrometry Data Using pFind. J Proteome Res 2024; 23:2323-2331. [PMID: 38865581 DOI: 10.1021/acs.jproteome.3c00674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
The Chromosome-Centric Human Proteome Project (C-HPP) aims to identify all proteins encoded by the human genome. Currently, the human proteome still contains approximately 2000 PE2-PE5 proteins, referring to annotated coding genes that lack sufficient protein-level evidence. During the past 10 years, it has been increasingly difficult to identify PE2-PE5 proteins in C-HPP approaches due to the limited occurrence. Therefore, we proposed that reanalyzing massive MS data sets in repository with newly developed algorithms may increase the occurrence of the peptides of these proteins. In this study, we downloaded 1000 MS data sets via the ProteomeXchange database. Using pFind software, we identified peptides referring to 1788 PE2-PE5 proteins. Among them, 11 PE2 and 16 PE5 proteins were identified with at least 2 peptides, and 12 of them were identified using 2 peptides in a single data set, following the criteria of the HPP guidelines. We found translation evidence for 16 of the 11 PE2 and 16 PE5 proteins in our RNC-seq data, supporting their existence. The properties of the PE2 and PE5 proteins were similar to those of the PE1 proteins. Our approach demonstrated that mining PE2 and PE5 proteins in massive data repository is still worthy, and multidata set peptide identifications may support the presence of PE2 and PE5 proteins or at least prompt additional studies for validation. Extremely high throughput could be a solution to finding more PE2 and PE5 proteins.
Collapse
Affiliation(s)
- Qianzhou Wei
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| | - Jiamin Li
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| | - Qing-Yu He
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| | - Yang Chen
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| | - Gong Zhang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| |
Collapse
|
2
|
He G, He Q, Cheng J, Yu R, Shuai J, Cao Y. ProPept-MT: A Multi-Task Learning Model for Peptide Feature Prediction. Int J Mol Sci 2024; 25:7237. [PMID: 39000344 PMCID: PMC11241495 DOI: 10.3390/ijms25137237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
In the realm of quantitative proteomics, data-independent acquisition (DIA) has emerged as a promising approach, offering enhanced reproducibility and quantitative accuracy compared to traditional data-dependent acquisition (DDA) methods. However, the analysis of DIA data is currently hindered by its reliance on project-specific spectral libraries derived from DDA analyses, which not only limits proteome coverage but also proves to be a time-intensive process. To overcome these challenges, we propose ProPept-MT, a novel deep learning-based multi-task prediction model designed to accurately forecast key features such as retention time (RT), ion intensity, and ion mobility (IM). Leveraging advanced techniques such as multi-head attention and BiLSTM for feature extraction, coupled with Nash-MTL for gradient coordination, ProPept-MT demonstrates superior prediction performance. Integrating ion mobility alongside RT, mass-to-charge ratio (m/z), and ion intensity forms 4D proteomics. Then, we outline a comprehensive workflow tailored for 4D DIA proteomics research, integrating the use of 4D in silico libraries predicted by ProPept-MT. Evaluation on a benchmark dataset showcases ProPept-MT's exceptional predictive capabilities, with impressive results including a 99.9% Pearson correlation coefficient (PCC) for RT prediction, a median dot product (DP) of 96.0% for fragment ion intensity prediction, and a 99.3% PCC for IM prediction on the test set. Notably, ProPept-MT manifests efficacy in predicting both unmodified and phosphorylated peptides, underscoring its potential as a valuable tool for constructing high-quality 4D DIA in silico libraries.
Collapse
Affiliation(s)
- Guoqiang He
- Postgraduate Training Base Alliance, Wenzhou Medical University, Wenzhou 325000, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Qingzu He
- Department of Physics, and Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, China
| | - Jinyan Cheng
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Rongwen Yu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Jianwei Shuai
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Yi Cao
- Postgraduate Training Base Alliance, Wenzhou Medical University, Wenzhou 325000, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| |
Collapse
|
3
|
Schwarze J, Carolan JC, Stewart GS, McCabe PF, Kacprzyk J. The boundary of life and death: changes in mitochondrial and cytosolic proteomes associated with programmed cell death of Arabidopsis thaliana suspension culture cells. FRONTIERS IN PLANT SCIENCE 2023; 14:1194866. [PMID: 37593044 PMCID: PMC10431908 DOI: 10.3389/fpls.2023.1194866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/22/2023] [Indexed: 08/19/2023]
Abstract
Introduction Despite the critical role of programmed cell death (PCD) in plant development and defense responses, its regulation is not fully understood. It has been proposed that mitochondria may be important in the control of the early stages of plant PCD, but the details of this regulation are currently unknown. Methods We used Arabidopsis thaliana cell suspension culture, a model system that enables induction and precise monitoring of PCD rates, as well as chemical manipulation of this process to generate a quantitative profile of the alterations in mitochondrial and cytosolic proteomes associated with early stages of plant PCD induced by heat stress. The cells were subjected to PCD-inducing heat levels (10 min, 54°C), with/without the calcium channel inhibitor and PCD blocker LaCl3. The stress treatment was followed by separation of cytosolic and mitochondrial fractions and mass spectrometry-based proteome analysis. Results Heat stress induced rapid and extensive changes in protein abundance in both fractions, with release of mitochondrial proteins into the cytosol upon PCD induction. In our system, LaCl3 appeared to act downstream of cell death initiation signal, as it did not affect the release of mitochondrial proteins, but instead partially inhibited changes occurring in the cytosolic fraction, including upregulation of proteins with hydrolytic activity. Discussion We characterized changes in protein abundance and localization associated with the early stages of heat stress-induced PCD. Collectively, the generated data provide new insights into the regulation of cell death and survival decisions in plant cells.
Collapse
Affiliation(s)
- Johanna Schwarze
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | | | - Gavin S. Stewart
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Paul F. McCabe
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Joanna Kacprzyk
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
4
|
Lillis PE, Kennedy IP, Carolan JC, Griffin CT. Low-temperature exposure has immediate and lasting effects on the stress tolerance, chemotaxis and proteome of entomopathogenic nematodes. Parasitology 2023; 150:15-28. [PMID: 36328953 PMCID: PMC10090647 DOI: 10.1017/s0031182022001445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 11/07/2022]
Abstract
Temperature is one of the most important factors affecting soil organisms, including the infective stages of parasites and entomopathogenic nematodes, which are important biological control agents. We investigated the response of 2 species of entomopathogenic nematodes to different storage regimes: cold (9°C), culture temperature (20°C) and temperature swapped from 9 to 20°C. For Steinernema carpocapsae, cold storage had profound effects on chemotaxis, stress tolerance and protein expression that were retained in temperature-swapped individuals. These effects included reversal of chemotactic response for 3 (prenol, methyl salicylate and hexanol) of the 4 chemicals tested, and enhanced tolerance to freezing (−10°C) and desiccation (75% RH). Label-free quantitative proteomics showed that cold storage induced widespread changes in S. carpocapsae, including an increase in heat-shock proteins and late embryogenesis abundant proteins. For Heterorhabditis megidis, cold storage had a less dramatic effect on chemotaxis (as previously shown for proteomic expression) and changes were not maintained on return to 20°C. Thus, cold temperature exposure has significant effects on entomopathogenic nematodes, but the nature of the change depends on the species. Steinernema carpocapsae, in particular, displays significant plasticity, and its behaviour and stress tolerance may be manipulated by brief exposure to low temperatures, with implications for its use as a biological control agent.
Collapse
Affiliation(s)
- Peter E. Lillis
- Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland
| | - Ian P. Kennedy
- Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland
| | - James C. Carolan
- Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland
| | | |
Collapse
|
5
|
Lillis PE, Griffin CT, Carolan JC. The effect of temperature conditioning (9°C and 20°C) on the proteome of entomopathogenic nematode infective juveniles. PLoS One 2022; 17:e0266164. [PMID: 35390034 PMCID: PMC8989221 DOI: 10.1371/journal.pone.0266164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/15/2022] [Indexed: 11/19/2022] Open
Abstract
Entomopathogenic nematodes (EPN) of the genera Steinernema and Heterorhabditis are parasites which kill and reproduce within insects. While both have life cycles centred around their developmentally arrested, nonfeeding and stress tolerant infective juvenile (IJ) stage, they are relatively distantly related. These IJs are promising biocontrol agents, and their shelf life and stress tolerance may be enhanced by storage at low temperatures. The purpose of this study was to investigate how the proteome of the IJs of two distantly related EPN species is affected by storage at 9°C (for up to 9 weeks) and 20°C (for up to 6 weeks), using label-free quantitative proteomics. Overall, more proteins were detected in S. carpocapsae (2422) than in H. megidis (1582). The S. carpocapsae proteome was strongly affected by temperature, while the H. megidis proteome was affected by both time and temperature. The proteins which increased in abundance to the greatest extent in S. carpocapsae IJs after conditioning at 9°C were chaperone proteins, and proteins related to stress. The proteins which increased in abundance the most after storage at 20°C were proteins related to the cytoskeleton, cell signalling, proteases and their inhibitors, which may have roles in infection. The proteins which decreased in abundance to the greatest extent in S. carpocapsae after both 9°C and 20°C storage were those associated with metabolism, stress and the cytoskeleton. After storage at both temperatures, the proteins increased to the greatest extent in H. megidis IJs were those associated with the cytoskeleton, cell signalling and carbon metabolism, and the proteins decreased in abundance to the greatest extent were heat shock and ribosomal proteins, and those associated with metabolism. As the longest-lived stage of the EPN life cycle, IJs may be affected by proteostatic stress, caused by the accumulation of misfolded proteins and toxic aggregates. The substantial increase of chaperone proteins in S. carpocapsae, and to a greater extent at 9°C, and the general decrease in ribosomal and chaperone proteins in H. megidis may represent species-specific proteostasis mechanisms. Similarly, organisms accumulate reactive oxygen species (ROS) over time and both species exhibited a gradual increase in proteins which enhance ROS tolerance, such as catalase. The species-specific responses of the proteome in response to storage temperature, and over time, may reflect the phylogenetic distance and/or different ecological strategies.
Collapse
Affiliation(s)
- Peter E. Lillis
- Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland
| | | | - James C. Carolan
- Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland
- * E-mail:
| |
Collapse
|
6
|
Margalit A, Sheehan D, Carolan JC, Kavanagh K. Exposure to the Pseudomonas aeruginosa secretome alters the proteome and secondary metabolite production of Aspergillus fumigatus. MICROBIOLOGY (READING, ENGLAND) 2022; 168:001164. [PMID: 35333152 PMCID: PMC9558348 DOI: 10.1099/mic.0.001164] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/16/2022] [Indexed: 01/09/2023]
Abstract
The fungal pathogen Aspergillus fumigatus is frequently cultured from the sputum of cystic fibrosis (CF) patients along with the bacterium Pseudomonas aeruginosa. A. fumigatus secretes a range of secondary metabolites, and one of these, gliotoxin, has inhibitory effects on the host immune response. The effect of P. aeruginosa culture filtrate (CuF) on fungal growth and gliotoxin production was investigated. Exposure of A. fumigatus hyphae to P. aeruginosa cells induced increased production of gliotoxin and a decrease in fungal growth. In contrast, exposure of A. fumigatus hyphae to P. aeruginosa CuF led to increased growth and decreased gliotoxin production. Quantitative proteomic analysis was used to characterize the proteomic response of A. fumigatus upon exposure to P. aeruginosa CuF. Changes in the profile of proteins involved in secondary metabolite biosynthesis (e.g. gliotoxin, fumagillin, pseurotin A), and changes to the abundance of proteins involved in oxidative stress (e.g. formate dehydrogenase) and detoxification (e.g. thioredoxin reductase) were observed, indicating that the bacterial secretome had a profound effect on the fungal proteome. Alterations in the abundance of proteins involved in detoxification and oxidative stress highlight the ability of A. fumigatus to differentially regulate protein synthesis in response to environmental stresses imposed by competitors such as P. aeruginosa. Such responses may ultimately have serious detrimental effects on the host.
Collapse
Affiliation(s)
- Anatte Margalit
- Department of Biology, Maynooth University, Co. Kildare, Ireland
| | - David Sheehan
- Department of Biology, Maynooth University, Co. Kildare, Ireland
| | - James C. Carolan
- Department of Biology, Maynooth University, Co. Kildare, Ireland
| | - Kevin Kavanagh
- Department of Biology, Maynooth University, Co. Kildare, Ireland
| |
Collapse
|
7
|
Mehta D, Scandola S, Uhrig RG. BoxCar and Library-Free Data-Independent Acquisition Substantially Improve the Depth, Range, and Completeness of Label-Free Quantitative Proteomics. Anal Chem 2022; 94:793-802. [DOI: 10.1021/acs.analchem.1c03338] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Devang Mehta
- Department of Biological Sciences, University of Alberta, Edmonton T6G 2E9, Alberta, Canada
| | - Sabine Scandola
- Department of Biological Sciences, University of Alberta, Edmonton T6G 2E9, Alberta, Canada
| | - R. Glen Uhrig
- Department of Biological Sciences, University of Alberta, Edmonton T6G 2E9, Alberta, Canada
| |
Collapse
|
8
|
Margalit A, Carolan JC, Walsh F. Global protein responses of multi-drug resistant plasmid containing Escherichia coli to ampicillin, cefotaxime, imipenem and ciprofloxacin. J Glob Antimicrob Resist 2021; 28:90-96. [PMID: 34922055 DOI: 10.1016/j.jgar.2021.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 10/19/2022] Open
Abstract
OBJECTIVES This study compared the proteomics of Escherichia coli containing the multi-drug resistance pEK499 plasmid under antimicrobial stress and no antimicrobial. METHODS We utilised mass spectrometry-based proteomics to compare the proteomes of the bacteria and plasmid under antimicrobial stress and no antimicrobial. RESULTS Our analysis identified statistically significant differentially abundant proteins common to groups exposed to the β-lactam antimicrobials but not ciprofloxacin, indicating a β-lactam stress response to exposure from this class of drugs, irrespective of β-lactam resistance or susceptibility. Data arising from comparisons of the proteomes of ciprofloxacin-treated E. coli and controls detected an increase in the relative abundance of proteins associated with ribosomes, translation, the TCA-cycle and several proteins associated with detoxification and a decrease in the relative abundances of proteins associated with stress response, including oxidative stress. We identified changes in proteins associated with persister formation in the presence of ciprofloxacin but not the β-lactams. The plasmid proteome differed across each treatment and did not follow the pattern of antimicrobial - AMR protein associations: a relative increase in the amount of blaCTX-M-15 in the presence of cefotaxime and ciprofloxacin but not the other β-lactams, suggesting regulation of the blaCTX-M-15 protein production. CONCLUSIONS The proteomic data from the this study provided novel insights into the proteins produced from the chromosome and plasmid under different antimicrobial stresses. These data also identified novel proteins not previously associated with AMR or antimicrobials responses in pathogens, which may well represent potential targets of AMR inhibition.
Collapse
Affiliation(s)
- Anatte Margalit
- Department of Biology, Maynooth University, Co. Kildare, Ireland
| | - James C Carolan
- Department of Biology, Maynooth University, Co. Kildare, Ireland
| | - Fiona Walsh
- Department of Biology, Maynooth University, Co. Kildare, Ireland.
| |
Collapse
|
9
|
Sheehan G, Margalit A, Sheehan D, Kavanagh K. Proteomic profiling of bacterial and fungal induced immune priming in Galleria mellonella larvae. JOURNAL OF INSECT PHYSIOLOGY 2021; 131:104213. [PMID: 33662378 DOI: 10.1016/j.jinsphys.2021.104213] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
Some insects display immunological priming as a result of elevated humoral and cellular responses which give enhanced survival against subsequent infection. The humoral immune response of Galleria mellonella larvae following pre-exposure to heat killed Staphylococcus aureus or Candida albicans cells was determined by quantitative mass spectrometry in order to assess the relationship between the humoral immune response and resistance to subsequent bacterial or fungal infection. Larvae pre-exposed to heat killed S. aureus showed increased resistance to subsequent bacterial and fungal infection. Larvae displayed an increased hemocyte density (14.08 ± 2.14 × 106 larva-1 (p < 0.05) compared to the PBS injected control [10.41 ± 1.67 × 106 larva-1]) and increased abundance of antimicrobial proteins (cecropin-D-like peptide (+22.23 fold), hdd11 (+12.61 fold) and prophenol oxidase activating enzyme 3 (+5.96 fold) in response to heat killed S. aureus. Larvae pre-exposed to heat killed C. albicans cells were resistant to subsequent fungal infection but not bacterial infection and showed a reduced hemocyte density (6.01 ± 1.63 × 106 larva-1 (p < 0.01) and increased abundance of hdd11 (+32.73 fold) and moricin-like peptide C1 (+16.76 fold). While immune priming is well recognised in G. mellonella larvae the results presented here indicate distinct differences in the response of larvae following exposure to heat killed bacterial and fungal cells.
Collapse
Affiliation(s)
- Gerard Sheehan
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Anatte Margalit
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - David Sheehan
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Kevin Kavanagh
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
10
|
Sengupta A, Naresh G, Mishra A, Parashar D, Narad P. Proteome analysis using machine learning approaches and its applications to diseases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 127:161-216. [PMID: 34340767 DOI: 10.1016/bs.apcsb.2021.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
With the tremendous developments in the fields of biological and medical technologies, huge amounts of data are generated in the form of genomic data, images in medical databases or as data on protein sequences, and so on. Analyzing this data through different tools sheds light on the particulars of the disease and our body's reactions to it, thus, aiding our understanding of the human health. Most useful of these tools is artificial intelligence and deep learning (DL). The artificially created neural networks in DL algorithms help extract viable data from the datasets, and further, to recognize patters in these complex datasets. Therefore, as a part of machine learning, DL helps us face all the various challenges that come forth during protein prediction, protein identification and their quantification. Proteomics is the study of such proteins, their structures, features, properties and so on. As a form of data science, Proteomics has helped us progress excellently in the field of genomics technologies. One of the major techniques used in proteomics studies is mass spectrometry (MS). However, MS is efficient with analysis of large datasets only with the added help of informatics approaches for data analysis and interpretation; these mainly include machine learning and deep learning algorithms. In this chapter, we will discuss in detail the applications of deep learning and various algorithms of machine learning in proteomics.
Collapse
Affiliation(s)
- Abhishek Sengupta
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - G Naresh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Astha Mishra
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Diksha Parashar
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Priyanka Narad
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India.
| |
Collapse
|
11
|
Kane LE, Mellotte GS, Conlon KC, Ryan BM, Maher SG. Multi-Omic Biomarkers as Potential Tools for the Characterisation of Pancreatic Cystic Lesions and Cancer: Innovative Patient Data Integration. Cancers (Basel) 2021; 13:769. [PMID: 33673153 PMCID: PMC7918773 DOI: 10.3390/cancers13040769] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 01/27/2021] [Accepted: 02/09/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer (PC) is regarded as one of the most lethal malignant diseases in the world, with GLOBOCAN 2020 estimates indicating that PC was responsible for almost half a million deaths worldwide in 2020. Pancreatic cystic lesions (PCLs) are fluid-filled structures found within or on the surface of the pancreas, which can either be pre-malignant or have no malignant potential. While some PCLs are found in symptomatic patients, nowadays many PCLs are found incidentally in patients undergoing cross-sectional imaging for other reasons-so called 'incidentalomas'. Current methods of characterising PCLs are imperfect and vary hugely between institutions and countries. As such, there is a profound need for improved diagnostic algorithms. This could facilitate more accurate risk stratification of those PCLs that have malignant potential and reduce unnecessary surveillance. As PC continues to have such a poor prognosis, earlier recognition and risk stratification of PCLs may lead to better treatment protocols. This review will focus on the importance of biomarkers in the context of PCLs and PCand outline how current 'omics'-related work could contribute to the identification of a novel integrated biomarker profile for the risk stratification of patients with PCLs and PC.
Collapse
Affiliation(s)
- Laura E. Kane
- Department of Surgery, Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin D08 W9RT, Ireland;
| | - Gregory S. Mellotte
- Department of Gastroenterology, Tallaght University Hospital, Dublin D24 NR0A, Ireland; (G.S.M.); (B.M.R.)
| | - Kevin C. Conlon
- Discipline of Surgery, School of Medicine, Trinity College Dublin, Dublin D02 PN40, Ireland;
| | - Barbara M. Ryan
- Department of Gastroenterology, Tallaght University Hospital, Dublin D24 NR0A, Ireland; (G.S.M.); (B.M.R.)
| | - Stephen G. Maher
- Department of Surgery, Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin D08 W9RT, Ireland;
| |
Collapse
|
12
|
Palafox MF, Desai HS, Arboleda VA, Backus KM. From chemoproteomic-detected amino acids to genomic coordinates: insights into precise multi-omic data integration. Mol Syst Biol 2021; 17:e9840. [PMID: 33599394 PMCID: PMC7890448 DOI: 10.15252/msb.20209840] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/31/2022] Open
Abstract
The integration of proteomic, transcriptomic, and genetic variant annotation data will improve our understanding of genotype-phenotype associations. Due, in part, to challenges associated with accurate inter-database mapping, such multi-omic studies have not extended to chemoproteomics, a method that measures the intrinsic reactivity and potential "druggability" of nucleophilic amino acid side chains. Here, we evaluated mapping approaches to match chemoproteomic-detected cysteine and lysine residues with their genetic coordinates. Our analysis revealed that database update cycles and reliance on stable identifiers can lead to pervasive misidentification of labeled residues. Enabled by this examination of mapping strategies, we then integrated our chemoproteomics data with computational methods for predicting genetic variant pathogenicity, which revealed that codons of highly reactive cysteines are enriched for genetic variants that are predicted to be more deleterious and allowed us to identify and functionally characterize a new damaging residue in the cysteine protease caspase-8. Our study provides a roadmap for more precise inter-database mapping and points to untapped opportunities to improve the predictive power of pathogenicity scores and to advance prioritization of putative druggable sites.
Collapse
Affiliation(s)
- Maria F Palafox
- Department of Human GeneticsDavid Geffen School of MedicineUCLALos AngelesCAUSA
- Department of Biological ChemistryDavid Geffen School of MedicineUCLALos AngelesCAUSA
- Department of Pathology and Laboratory MedicineDavid Geffen School of MedicineUCLALos AngelesCAUSA
| | - Heta S Desai
- Department of Biological ChemistryDavid Geffen School of MedicineUCLALos AngelesCAUSA
- Molecular Biology InstituteUCLALos AngelesCAUSA
| | - Valerie A Arboleda
- Department of Human GeneticsDavid Geffen School of MedicineUCLALos AngelesCAUSA
- Department of Pathology and Laboratory MedicineDavid Geffen School of MedicineUCLALos AngelesCAUSA
- Molecular Biology InstituteUCLALos AngelesCAUSA
- Jonsson Comprehensive Cancer CenterUCLALos AngelesCAUSA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell ResearchUCLALos AngelesCAUSA
| | - Keriann M Backus
- Department of Biological ChemistryDavid Geffen School of MedicineUCLALos AngelesCAUSA
- Molecular Biology InstituteUCLALos AngelesCAUSA
- Jonsson Comprehensive Cancer CenterUCLALos AngelesCAUSA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell ResearchUCLALos AngelesCAUSA
- Department of Chemistry and BiochemistryCollege of Arts and SciencesUCLALos AngelesCAUSA
- DOE Institute for Genomics and ProteomicsUCLALos AngelesCAUSA
| |
Collapse
|
13
|
Morales-Aparicio JC, Lara Vasquez P, Mishra S, Barrán-Berdón AL, Kamat M, Basso KB, Wen ZT, Brady LJ. The Impacts of Sortase A and the 4'-Phosphopantetheinyl Transferase Homolog Sfp on Streptococcus mutans Extracellular Membrane Vesicle Biogenesis. Front Microbiol 2020; 11:570219. [PMID: 33193163 PMCID: PMC7649765 DOI: 10.3389/fmicb.2020.570219] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022] Open
Abstract
Extracellular membrane vesicles (EMVs) are produced by many Gram-positive organisms, but information regarding vesiculogenesis is incomplete. We used single gene deletions to evaluate the impacts on Streptococcus mutans EMV biogenesis of Sortase A (SrtA), which affects S. mutans EMV composition, and Sfp, a 4'-phosphopantetheinyl transferase that affects Bacillus subtilis EMV stability. ΔsrtA EMVs were notably larger than Δsfp and wild-type (WT) EMVs. EMV proteins identified from all three strains are known to be involved in cell wall biogenesis and cell architecture, bacterial adhesion, biofilm cell density and matrix development, and microbial competition. Notably, the AtlA autolysin was not processed to its mature active form in the ΔsrtA mutant. Proteomic and lipidomic analyses of all three strains revealed multiple dissimilarities between vesicular and corresponding cytoplasmic membranes (CMs). A higher proportion of EMV proteins are predicted substrates of the general secretion pathway (GSP). Accordingly, the GSP component SecA was identified as a prominent EMV-associated protein. In contrast, CMs contained more multi-pass transmembrane (TM) protein substrates of co-translational transport machineries than EMVs. EMVs from the WT, but not the mutant strains, were enriched in cardiolipin compared to CMs, and all EMVs were over-represented in polyketide flavonoids. EMVs and CMs were rich in long-chain saturated, monounsaturated, and polyunsaturated fatty acids, except for Δsfp EMVs that contained exclusively polyunsaturated fatty acids. Lipoproteins were less prevalent in EMVs of all three strains compared to their CMs. This study provides insight into biophysical characteristics of S. mutans EMVs and indicates discrete partitioning of protein and lipid components between EMVs and corresponding CMs of WT, ΔsrtA, and Δsfp strains.
Collapse
Affiliation(s)
| | | | - Surabhi Mishra
- Department of Oral Biology, University of Florida, Gainesville, FL, United States
| | - Ana L. Barrán-Berdón
- Department of Oral Biology, University of Florida, Gainesville, FL, United States
| | - Manasi Kamat
- Department of Chemistry, University of Florida, Gainesville, FL, United States
| | - Kari B. Basso
- Department of Chemistry, University of Florida, Gainesville, FL, United States
| | - Zezhang T. Wen
- Department of Oral and Craniofacial Biology, Louisiana State University Health Sciences Center New Orleans, New Orleans, LA, United States
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center New Orleans, New Orleans, LA, United States
| | - L. Jeannine Brady
- Department of Oral Biology, University of Florida, Gainesville, FL, United States
| |
Collapse
|
14
|
Margalit A, Carolan JC, Sheehan D, Kavanagh K. The Aspergillus fumigatus Secretome Alters the Proteome of Pseudomonas aeruginosa to Stimulate Bacterial Growth: Implications for Co-infection. Mol Cell Proteomics 2020; 19:1346-1359. [PMID: 32447284 PMCID: PMC8015003 DOI: 10.1074/mcp.ra120.002059] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/07/2020] [Indexed: 12/30/2022] Open
Abstract
Individuals with cystic fibrosis are susceptible to co-infection by Aspergillus fumigatus and Pseudomonas aeruginosa Despite the persistence of A. fumigatus in the cystic fibrosis lung P. aeruginosa eventually predominates as the primary pathogen. Several factors are likely to facilitate P. aeruginosa colonization in the airways, including alterations to the microbial environment. The cystic fibrosis airways are hypoxic, nitrate-rich environments, and the sputum has higher amino acid concentrations than normal. In this study, significant growth proliferation was observed in P. aeruginosa when the bacteria were exposed to A. fumigatus culture filtrates (CuF) containing a high nitrate content. Proteomic analysis of the A. fumigatus CuF identified a significant number of environment-altering proteases and peptidases. The molecular mechanisms promoting bacterial growth were investigated using label-free quantitative (LFQ) proteomics to compare the proteome of P. aeruginosa grown in the A. fumigatus CuF and in CuF produced by a P. aeruginosa-A. fumigatus co-culture, to that cultured in P. aeruginosa CuF. LFQ proteomics revealed distinct changes in the proteome of P. aeruginosa when cultured in the different CuFs, including increases in the levels of proteins involved in denitrification, stress response, replication, amino acid metabolism and efflux pumps, and a down-regulation of pathways involving ABC transporters. These findings offer novel insights into the complex dynamics that exist between P. aeruginosa and A. fumigatus Understanding the molecular strategies that enable P. aeruginosa to predominate in an environment where A. fumigatus exists is important in the context of therapeutic development to target this pathogen.
Collapse
Affiliation(s)
- Anatte Margalit
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - James C Carolan
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - David Sheehan
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Kevin Kavanagh
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
15
|
Kosanovic D, Grogan H, Kavanagh K. Exposure of Agaricus bisporus to Trichoderma aggressivum f. europaeum leads to growth inhibition and induction of an oxidative stress response. Fungal Biol 2020; 124:814-820. [PMID: 32883431 DOI: 10.1016/j.funbio.2020.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/06/2020] [Accepted: 07/05/2020] [Indexed: 12/27/2022]
Abstract
Green mould disease of mushroom, Agaricus bisporus,is caused by Trichodermaspecies and can result in substantial crop losses.Label free proteomic analysis of changes in the abundance of A. bisporusproteins following exposure to T. aggressivumsupernatantin vitroindicated increased abundance of proteins associated with an oxidative stress response (zinc ion binding (+6.6 fold); peroxidase activity (5.3-fold); carboxylic ester hydrolase (+2.4 fold); dipeptidase (+3.2 fold); [2Fe-2S] cluster assembly (+3.3 fold)). Proteins that decreased in relative abundance were associated with growth: structural constituent of ribosome, translation (-12 fold), deadenylation-dependent decapping of nuclear-transcribed mRNA (-3.4 fold), and small GTPase mediated signal transduction (-2.6 fold). In vivoanalysis revealed that 10-4 T. aggressivuminoculum decreased the mushroom yield by 29% to 56% and 10-3 T. aggressivuminoculum decreased the mushroom yield by 68% to 100%. Proteins that increased in abundance in A. bisporusin vivofollowing exposure to T. aggressivumindicated an oxidative stress response and included proteins with pyruvate kinase activity (+2.6 fold) and hydrolase activity (+2.1 fold)). The results indicate that exposure of A. bisporusmycelium to T. aggressivum in vitroand in vivoresulted in an oxidative stress response and reduction in growth.
Collapse
Affiliation(s)
- Dejana Kosanovic
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Helen Grogan
- Teagasc, Horticulture Development Department, Ashtown Research Centre, Dublin 15, Ireland
| | - Kevin Kavanagh
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
16
|
SNAIL Promotes Metastatic Behavior of Rhabdomyosarcoma by Increasing EZRIN and AKT Expression and Regulating MicroRNA Networks. Cancers (Basel) 2020; 12:cancers12071870. [PMID: 32664538 PMCID: PMC7408994 DOI: 10.3390/cancers12071870] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 02/06/2023] Open
Abstract
Rhabdomyosarcoma (RMS) is a predominant soft tissue tumor in children and adolescents. For high-grade RMS with metastatic involvement, the 3-year overall survival rate is only 25 to 30%. Thus, understanding the regulatory mechanisms involved in promoting the metastasis of RMS is important. Here, we demonstrate for the first time that the SNAIL transcription factor regulates the metastatic behavior of RMS both in vitro and in vivo. SNAIL upregulates the protein expression of EZRIN and AKT, known to promote metastatic behavior, by direct interaction with their promoters. Our data suggest that SNAIL promotes RMS cell motility, invasion and chemotaxis towards the prometastatic factors: HGF and SDF-1 by regulating RHO, AKT and GSK3β activity. In addition, miRNA transcriptome analysis revealed that SNAIL-miRNA axis regulates processes associated with actin cytoskeleton reorganization. Our data show a novel role of SNAIL in regulating RMS cell metastasis that may also be important in other mesenchymal tumor types and clearly suggests SNAIL as a promising new target for future RMS therapies.
Collapse
|
17
|
Ma J, Chen T, Wu S, Yang C, Bai M, Shu K, Li K, Zhang G, Jin Z, He F, Hermjakob H, Zhu Y. iProX: an integrated proteome resource. Nucleic Acids Res 2020; 47:D1211-D1217. [PMID: 30252093 PMCID: PMC6323926 DOI: 10.1093/nar/gky869] [Citation(s) in RCA: 1156] [Impact Index Per Article: 231.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 09/14/2018] [Indexed: 11/13/2022] Open
Abstract
Sharing of research data in public repositories has become best practice in academia. With the accumulation of massive data, network bandwidth and storage requirements are rapidly increasing. The ProteomeXchange (PX) consortium implements a mode of centralized metadata and distributed raw data management, which promotes effective data sharing. To facilitate open access of proteome data worldwide, we have developed the integrated proteome resource iProX (http://www.iprox.org) as a public platform for collecting and sharing raw data, analysis results and metadata obtained from proteomics experiments. The iProX repository employs a web-based proteome data submission process and open sharing of mass spectrometry-based proteomics datasets. Also, it deploys extensive controlled vocabularies and ontologies to annotate proteomics datasets. Users can use a GUI to provide and access data through a fast Aspera-based transfer tool. iProX is a full member of the PX consortium; all released datasets are freely accessible to the public. iProX is based on a high availability architecture and has been deployed as part of the proteomics infrastructure of China, ensuring long-term and stable resource support. iProX will facilitate worldwide data analysis and sharing of proteomics experiments.
Collapse
Affiliation(s)
- Jie Ma
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Life Omics, Beijing 102206, China
| | - Tao Chen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Life Omics, Beijing 102206, China
| | - Songfeng Wu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Life Omics, Beijing 102206, China
| | - Chunyuan Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Life Omics, Beijing 102206, China
| | - Mingze Bai
- Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Kunxian Shu
- Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Kenli Li
- National Supercomputing Center in Changsha, Hunan University, Changsha 410082, China
| | - Guoqing Zhang
- Shanghai Center for Bioinformation Technology, Shanghai Institutes of Biomedicine, Shanghai Academy of Science and Technology, Shanghai 200235, China
| | - Zhong Jin
- Computer Network Information Center, Chinese Academy of Sciences, Beijing 100190, China
| | - Fuchu He
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Life Omics, Beijing 102206, China
| | - Henning Hermjakob
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Life Omics, Beijing 102206, China.,European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Yunping Zhu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Life Omics, Beijing 102206, China
| |
Collapse
|
18
|
Sheehan G, Konings M, Lim W, Fahal A, Kavanagh K, van de Sande WWJ. Proteomic analysis of the processes leading to Madurella mycetomatis grain formation in Galleria mellonella larvae. PLoS Negl Trop Dis 2020; 14:e0008190. [PMID: 32267851 PMCID: PMC7141616 DOI: 10.1371/journal.pntd.0008190] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 03/02/2020] [Indexed: 02/06/2023] Open
Abstract
Mycetoma is a neglected chronic and granulomatous infection primarily associated with the fungal pathogen Madurella mycetomatis. Characteristic of this infection is the formation of grains. However, the processes leading to grain formation are not known. In this study, we employed a proteomic approach to characterise M. mycetomatis grain formation in Galleria mellonella larvae and map the processes leading to grain formation over time. For this, at 1 day, 3 days and 7 days post-inoculation, proteins from grains and hemolymph were extracted and analysed by label-free mass spectrometry. A total of 87, 51 and 48 M. mycetomatis proteins and 713, 997, 18 G. mellonella proteins were found in grains on day 1, 3 and 7 post-inoculation respectively. M. mycetomatis proteins were mainly involved in cellular metabolic processes and numerous enzymes were encountered. G. mellonella proteins were primarily involved in the nodulation process. The proteins identified were linked to nodulation and grain formation and four steps of grain formation were identified. The results of this proteomic approach could in the future be used to design novel strategies to interfere with mycetoma grain formation and to combat this difficult to treat infection. Although grain formation is the hallmark of mycetoma, so far the pathways leading to grain formation were not studied. Since our hypothesis is that both host and pathogen play a role in this process, we aimed to study this process in a model system. Grains can be formed in the invertebrate Galleria mellonella and different stages of grain formation can be noted within the larvae. We therefore infected G. mellonella with the mycetoma causative agent Madurella mycetomatis, and monitored grain formation over time. At day 1, day 3 and day 7 post-inoculation, grains and hemolymph were obtained from infected larvae. Proteins were isolated and identified by label-free mass spectrometry. By analyzing the proteins found in both host and pathogen on the different time points, we were able to develop a grain model over time. This grain model can in the future be used to identify novel treatments for this difficult to treat infection.
Collapse
Affiliation(s)
- Gerard Sheehan
- Medical Mycology Laboratory, Department of Biology, Maynooth University, Co. Kildare, Ireland
| | - Mickey Konings
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Wilson Lim
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | | | - Kevin Kavanagh
- Medical Mycology Laboratory, Department of Biology, Maynooth University, Co. Kildare, Ireland
| | - Wendy W. J. van de Sande
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
- * E-mail:
| |
Collapse
|
19
|
Ajdidi A, Sheehan G, Kavanagh K. Exposure of Aspergillus fumigatus to Atorvastatin Leads to Altered Membrane Permeability and Induction of an Oxidative Stress Response. J Fungi (Basel) 2020; 6:jof6020042. [PMID: 32225059 PMCID: PMC7344724 DOI: 10.3390/jof6020042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/18/2020] [Accepted: 03/23/2020] [Indexed: 12/31/2022] Open
Abstract
Aspergillus fumigatus is a serious cause of disease in immune-deficient patients and in those with pulmonary malfunction (e.g., cystic fibrosis (CF), asthma). Atorvastatin is a member of the statin drug family, which are the main therapeutic agents used to decrease high serum cholesterol levels by inhibiting (HMG-CoA) reductase enzyme. The aim of the work presented here was to analyse the antifungal activity of atorvastatin and assess its effect on the virulence of A. fumigatus. Atorvastatin demonstrated strong antifungal activity and reduced the growth and viability of A. fumigatus. Exposure of A. fumigatus to atorvastatin led to a reduction in ergosterol content and increased membrane permeability, as evidenced by the release of protein, amino acids and gliotoxin. Proteomic analysis revealed an increased abundance of proteins associated with an oxidative stress response, such as the glutathione s-transferase family protein (+8.43-fold), heat shock protein Hsp30/Hsp42 (+2.02-fold) and 5-demethoxyubiquinone hydroxylase, mitochondrial (+1.73-fold), as well as secondary metabolites such as isocyanide synthase A icsA (+8.52-fold) and non-ribosomal peptide synthetase fmpE (+3.06-fold). The results presented here indicate that atorvastatin has strong antifungal properties and may have potential application in the treatment of A. fumigatus infections alone or in combination with existing antifungal agents.
Collapse
|
20
|
Sheehan G, Tully L, Kavanagh KA. Candida albicans increases the pathogenicity of Staphylococcus aureus during polymicrobial infection of Galleria mellonella larvae. MICROBIOLOGY-SGM 2020; 166:375-385. [PMID: 32068530 PMCID: PMC7377259 DOI: 10.1099/mic.0.000892] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This study detailed the responses of Galleria mellonella larvae to disseminated infection caused by co-infection with Candida albicans and Staphylococcus aureus. Doses of C. albicans (1×105 larva-1) and S. aureus (1×104 larva-1) were non-lethal in mono-infection but when combined significantly (P<0.05) reduced larval survival at 24, 48 and 72 h relative to larvae receiving S. aureus (2×104 larva-1) alone. Co-infected larvae displayed a significantly higher density of S. aureus larva-1 compared to larvae infected solely with S. aureus. Co-infection resulted in dissemination throughout the host and the appearance of large nodules. Co-infection of larvae with C. albicans and S. aureus (2×104 larva-1) resulted in an increase in the density of circulating haemocytes compared to that in larvae infected with only S. aureus. Proteomic analysis of co-infected larval haemolymph revealed increased abundance of proteins associated with immune responses to bacterial and fungal infection such as cecropin-A (+45.4-fold), recognition proteins [e.g. peptidoglycan-recognition protein LB (+14-fold)] and proteins associated with nodule formation [e.g. Hdd11 (+33.3-fold)]. A range of proteins were also decreased in abundance following co-infection, including apolipophorin (-62.4-fold), alpha-esterase 45 (-7.7-fold) and serine proteinase (-6.2-fold). Co-infection of larvae resulted in enhanced proliferation of S. aureus compared to mono-infection and an immune response showing many similarities to the innate immune response of mammals to infection. The utility of G. mellonella larvae for studying polymicrobial infection is highlighted.
Collapse
Affiliation(s)
- Gerard Sheehan
- SSPC Pharma Research Centre, Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland.,Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Laura Tully
- SSPC Pharma Research Centre, Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Kevin A Kavanagh
- SSPC Pharma Research Centre, Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
21
|
Margalit A, Kavanagh K, Carolan JC. Characterization of the Proteomic Response of A549 Cells Following Sequential Exposure to Aspergillus fumigatus and Pseudomonas aeruginosa. J Proteome Res 2020; 19:279-291. [PMID: 31693381 DOI: 10.1021/acs.jproteome.9b00520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aspergillus fumigatus and Pseudomonas aeruginosa are the most prevalent fungal and bacterial pathogens associated with cystic-fibrosis-related infections, respectively. P. aeruginosa eventually predominates as the primary pathogen, though it is unknown why this is the case. Label-free quantitative proteomics was employed to investigate the cellular response of the alveolar epithelial cell line, A549, to coexposure of A. fumigatus and P. aeruginosa. These studies revealed a significant increase in the rate of P. aeruginosa proliferation where A. fumigatus was present. Shotgun proteomics performed on A549 cells exposed to either A. fumigatus or P. aeruginosa or to A. fumigatus and P. aeruginosa sequentially revealed distinct changes to the host cell proteome in response to either or both pathogens. While key signatures of infection were retained among all pathogen-exposed groups, including changes in mitochondrial activity and energy output, the relative abundance of proteins associated with endocytosis, phagosomes, and lysosomes was decreased in sequentially exposed cells compared to cells exposed to either pathogen. Our findings indicate that A. fumigatus renders A549 cells unable to internalize bacteria, thus providing an environment in which P. aeruginosa can proliferate. This research provides novel insights into the whole-cell proteomic response of A549 cells to A. fumigatus and P. aeruginosa and highlights distinct differences in the proteome following sequential exposure to both pathogens, which may explain why P. aeruginosa can predominate.
Collapse
Affiliation(s)
- Anatte Margalit
- Department of Biology , Maynooth University , Maynooth, Co. Kildare W23F2H6 , Ireland
| | - Kevin Kavanagh
- Department of Biology , Maynooth University , Maynooth, Co. Kildare W23F2H6 , Ireland
| | - James C Carolan
- Department of Biology , Maynooth University , Maynooth, Co. Kildare W23F2H6 , Ireland
| |
Collapse
|
22
|
Colgan TJ, Finlay S, Brown MJF, Carolan JC. Mating precedes selective immune priming which is maintained throughout bumblebee queen diapause. BMC Genomics 2019; 20:959. [PMID: 31823732 PMCID: PMC6902353 DOI: 10.1186/s12864-019-6314-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 11/20/2019] [Indexed: 01/04/2023] Open
Abstract
Background Understanding the mechanisms by which organisms adapt to unfavourable conditions is a fundamental question in ecology and evolutionary biology. One such mechanism is diapause, a period of dormancy typically found in nematodes, fish, crustaceans and insects. This state is a key life-history event characterised by arrested development, suppressed metabolism and increased stress tolerance and allows an organism to avoid prolonged periods of harsh and inhospitable environmental conditions. For some species, diapause is preceded by mating which can have a profound effect on female behaviour, physiology and key biological processes, including immunity. However, our understanding of how mating impacts long-term immunity and whether these effects persist throughout diapause is currently limited. To address this, we explored molecular changes in the haemolymph of the ecologically important pollinator, the buff-tailed bumblebee Bombus terrestris. B. terrestris queens mate prior to entering diapause, a non-feeding period of arrested development that can last 6–9 months. Using mass-spectrometry-based proteomics, we quantified changes in the pre-diapause queen haemolymph after mating, as well as the subsequent protein expression of mated queens during and post-diapause. Results Our analysis identified distinct proteome profiles associated with diapause preparation, maintenance and termination. More specifically, mating pre-diapause was followed by an increase in the abundance of antimicrobial peptides, key effectors of the immune system. Furthermore, we identified the elevated abundance of these proteins to be maintained throughout diapause. This finding was in contrast to the general reduction observed in immune proteins during diapause suggestive of selective immune priming and expression during diapause. Diapause also affected the expression of proteins involved in cuticular maintenance, olfaction, as well as proteins of unknown function, which may have roles in diapause regulation. Conclusions Our results provide clear molecular evidence for the consequences and benefits of mating at the immune level as it precedes the selective increased abundance of antimicrobial peptides that are sustained throughout diapause. In addition, our results provide novel insights into the molecular mechanisms by which bumblebees prepare for, survive, and recover from diapause, insights that may have implications for our general understanding of these processes in other insect groups.
Collapse
Affiliation(s)
- Thomas J Colgan
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, County Cork, Ireland. .,School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| | - Sive Finlay
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
| | - Mark J F Brown
- Centre for Ecology, Evolution and Behaviour, Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
| | - James C Carolan
- Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland
| |
Collapse
|
23
|
Steckel A, Schlosser G. Citrulline Effect Is a Characteristic Feature of Deiminated Peptides in Tandem Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1586-1591. [PMID: 31300976 PMCID: PMC6695478 DOI: 10.1007/s13361-019-02271-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 06/11/2019] [Accepted: 06/18/2019] [Indexed: 05/05/2023]
Abstract
Tandem mass spectrometry of peptides is of utmost importance in proteomics. Collision-induced dissociation usually generates y type fragment ion series from tryptic peptides, carrying information on their primary structure. Amino acid side chains or differences in their basicity could alter fragmentation processes considerably. The well-known proline effect is a cleavage preference at the N-terminus of proline residues in peptides, usually yielding a very abundant y ion while suppressing others. Previously, we reported a similar phenomenon occurring at the C-terminus of citrulline residues and coined the term Cit effect. To confirm the presence of Cit effect in large proteomic datasets, we analyzed 293 peptides containing Cit residues based on the human proteome database mining work of Lee et al. (2018). The occurrence of Cit effect was found to be 44%. Comparing bond scissions at the amide linkage between Cit-Zzz (citrulline followed by a specified residue) to Aaa1-Aaa2 (Aaa can be any residue except Cit), 5 Cit-Zzz cleavages were significantly (CL = 95.0%) more frequent in > 85% of the cases in terms of relative sequential base beak occurrence. We used Pro effect to compare with Cit effect and obtained very similar results. On the other hand, our study showed that Cit effect is slightly inferior in the overall incidence to Pro effect (50% vs. 33%, CL = 95%) among deiminated peptides when Pro residues were also present in the sequence. Our results suggest that Cit effect is a characteristic feature and a possible biasing factor of deiminated peptides which can confirm the position of citrullination sites.
Collapse
Affiliation(s)
- Arnold Steckel
- Hevesy György PhD School of Chemistry, ELTE Eötvös Loránd University, Budapest, Hungary
- MTA-ELTE Research Group of Peptide Chemistry, Department of Organic Chemistry, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Gitta Schlosser
- MTA-ELTE Research Group of Peptide Chemistry, Department of Organic Chemistry, ELTE Eötvös Loránd University, Budapest, Hungary.
- Department of Analytical Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest, 1117, Hungary.
| |
Collapse
|
24
|
Ajdidi A, Sheehan G, Abu Elteen K, Kavanagh K. Assessment of the in vitro and in vivo activity of atorvastatin against Candida albicans. J Med Microbiol 2019; 68:1497-1506. [PMID: 31460860 DOI: 10.1099/jmm.0.001065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Aim. The aim of this work was to characterize the response of Candida albicans to atorvastatin, and to assess its in vivo antifungal capability.Methodology. The effect of atorvastatin on the growth and viability of C. albicans was assessed. The ability of the statin to alter cell permeability was quantified by measuring amino acid and protein leakage. The response of C. albicans to atorvastatin was assessed using label-free quantitative proteomics. The in vivo antifungal activity of atorvastatin was assessed using Galleria mellonella larvae infected with C. albicans.Results. Atorvastatin inhibited the growth of C. albicans. The atorvastatin-treated cells showed lower ergosterol levels than the controls, demonstrated increased calcofluor staining and released elevated quantities of amino acids and protein. Larvae infected with C. albicans showed a survival rate of 18.1±4.2 % at 144 h. In contrast, larvae administered atorvastatin (9.09 mg kg-1) displayed a survival rate of 60.2±6.4 % (P<0.05). Label-free quantitative proteomics identified 1575 proteins with 2 or more peptides and 465 proteins were differentially abundant (P<0.05). There was an increase in the abundance of enzymes with oxidoreductase and hydrolase activity in atorvastatin-treated cells, and squalene monooxygenase (4.52-fold increase) and lanosterol synthase (2.84-fold increase) were increased in abundance. Proteins such as small heat shock protein 21 (-6.33-fold) and glutathione peroxidase (-2.05-fold) were reduced in abundance.Conclusion. The results presented here indicate that atorvastatin inhibits the growth of C. albicans and is capable of increasing the survival of G. mellonella larvae infected with C. albicans.
Collapse
Affiliation(s)
- Ahmad Ajdidi
- SSPC Research Centre, Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Gerard Sheehan
- SSPC Research Centre, Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Khaled Abu Elteen
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Kevin Kavanagh
- SSPC Research Centre, Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
25
|
Deslyper G, Holland CV, Colgan TJ, Carolan JC. The liver proteome in a mouse model for Ascaris suum resistance and susceptibility: evidence for an altered innate immune response. Parasit Vectors 2019; 12:402. [PMID: 31412915 PMCID: PMC6693097 DOI: 10.1186/s13071-019-3655-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/03/2019] [Indexed: 01/08/2023] Open
Abstract
Background Ascariasis is a neglected tropical disease that affects 800 million people worldwide. Whereas most people only experience light worm burden, some people experience heavy worm burdens even after several rounds of chemotherapy, a phenomenon known as predisposition. Such heavy infections are associated with more severe symptoms and increased chronic morbidity. Methods In order to investigate potential mechanisms that may explain the observed predisposition, we infected mice with the porcine ascarid Ascaris suum using an established mouse model with two different mouse strains, where the C57BL/6J strain is more susceptible to infection and therefore a model for heavy infection and the CBA/Ca strain is more resistant and thus a model for light infection. At day 7 post-infection we investigated the liver proteome, using shotgun mass spectrometry, of both infected and control mice of each strain. Results We identified intrinsic differences, between the two mouse strains, in both oxidative phosphorylation proteins and proteins involved in retinol metabolism. Additionally, we found differences between the two mouse strains in activation of the complement system, where the CBA/Ca strain has higher protein abundances for lectin pathway proteins and the C57BL/6J strain has higher protein abundances for complement inhibiting proteins. The CBA/Ca strain had a higher abundance of proteins involved in the activation of the complement cascade via the lectin pathway. In contrast, the C57BL/6J strain demonstrated a higher abundance of proteins involved in arresting the complement pathway. Conclusions We observed clear differences between the two mouse strains both intrinsically and under infection. Electronic supplementary material The online version of this article (10.1186/s13071-019-3655-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gwendoline Deslyper
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland.
| | - Celia V Holland
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
| | - Thomas J Colgan
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland
| | - James C Carolan
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
26
|
Sheehan G, Dixon A, Kavanagh K. Utilization of Galleria mellonella larvae to characterize the development of Staphylococcus aureus infection. MICROBIOLOGY-SGM 2019; 165:863-875. [PMID: 31107207 DOI: 10.1099/mic.0.000813] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Staphylococcus aureus is a human opportunistic pathogen that causes a wide range of superficial and systemic infections in susceptible patients. Here we describe how an inoculum of S. aureus activates the cellular and humoral response of Galleria mellonella larvae while growing and disseminating throughout the host, forming nodules and ultimately killing the host. An inoculum of S. aureus (2×106 larva- 1 ) decreased larval viability at 24 (80±5.77 %), 48 (55.93±5.55 %) and 72 h (10.23±2.97 %) and was accompanied by significant proliferation and dissemination of S. aureus between 6 and 48 h and the formation of nodules in the host. The hemocyte (immune cell) densities increased between 4 and 24 h and hemocytes isolated from larvae after 24 h exposure to heat-killed S. aureus (2×106 larva- 1 ) showed altered killing kinetics as compared to those from control larvae. Alterations in the humoral immune response of larvae 6 and 24 h post-infection were also determined by quantitative shotgun proteomics. The proteome of 6 h-infected larvae was enriched for antimicrobial proteins, proteins of the prophenoloxidase cascade and a range of peptidoglycan recognition proteins. By 24 h there was a significant increase in the abundance of a range of antimicrobial peptides with anti-staphylococcal activity and proteins associated with nodule formation. The results presented here indicate how S. aureus interacts with the larval immune response, induces the expression of a variety of immune-related peptides and also forms nodules which are a hallmark of soft tissue infections during human infection.
Collapse
Affiliation(s)
- Gerard Sheehan
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Amy Dixon
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Kevin Kavanagh
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
27
|
Farooq QUA, Haq NU, Aziz A, Aimen S, Inam ul Haq M. Mass Spectrometry for Proteomics and Recent Developments in ESI, MALDI and other Ionization Methodologies. CURR PROTEOMICS 2019. [DOI: 10.2174/1570164616666190204154653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background:
Mass spectrometry is a tool used in analytical chemistry to identify components
in a chemical compound and it is of tremendous importance in the field of biology for high
throughput analysis of biomolecules, among which protein is of great interest.
Objective:
Advancement in proteomics based on mass spectrometry has led the way to quantify multiple
protein complexes, and proteins interactions with DNA/RNA or other chemical compounds which
is a breakthrough in the field of bioinformatics.
Methods:
Many new technologies have been introduced in electrospray ionization (ESI) and Matrixassisted
Laser Desorption/Ionization (MALDI) techniques which have enhanced sensitivity, resolution
and many other key features for the characterization of proteins.
Results:
The advent of ambient mass spectrometry and its different versions like Desorption Electrospray
Ionization (DESI), DART and ELDI has brought a huge revolution in proteomics research.
Different imaging techniques are also introduced in MS to map proteins and other significant biomolecules.
These drastic developments have paved the way to analyze large proteins of >200kDa easily.
Conclusion:
Here, we discuss the recent advancement in mass spectrometry, which is of great importance
and it could lead us to further deep analysis of the molecules from different perspectives and
further advancement in these techniques will enable us to find better ways for prediction of molecules
and their behavioral properties.
Collapse
Affiliation(s)
- Qurat ul Ain Farooq
- Department of Computer Science and Bioinformatics, Khushal Khan Khattak University, Karak, Khyber-Pakhtunkhwa, Pakistan
| | - Noor ul Haq
- Department of Computer Science and Bioinformatics, Khushal Khan Khattak University, Karak, Khyber-Pakhtunkhwa, Pakistan
| | - Abdul Aziz
- Department of Computer Science and Bioinformatics, Khushal Khan Khattak University, Karak, Khyber-Pakhtunkhwa, Pakistan
| | - Sara Aimen
- Department of Computer Science and Bioinformatics, Khushal Khan Khattak University, Karak, Khyber-Pakhtunkhwa, Pakistan
| | - Muhammad Inam ul Haq
- Department of Computer Science and Bioinformatics, Khushal Khan Khattak University, Karak, Khyber-Pakhtunkhwa, Pakistan
| |
Collapse
|
28
|
Using proteins to study how microbes contribute to soil ecosystem services: The current state and future perspectives of soil metaproteomics. J Proteomics 2019; 198:50-58. [DOI: 10.1016/j.jprot.2018.11.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/08/2018] [Accepted: 11/12/2018] [Indexed: 02/07/2023]
|
29
|
Sheehan G, Kavanagh K. Proteomic Analysis of the Responses of Candida albicans during Infection of Galleria mellonella Larvae. J Fungi (Basel) 2019; 5:jof5010007. [PMID: 30641883 PMCID: PMC6463115 DOI: 10.3390/jof5010007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 02/06/2023] Open
Abstract
This study assessed the development of disseminated candidiasis within Galleria mellonella larvae and characterized the proteomic responses of Candida albicans to larval hemolymph. Infection of larvae with an inoculum of 1 × 10⁶ yeast cells reduced larval viability 24 (53.33 ± 3.33%), 48 (33.33 ± 3.33%) and 72 (6.66 ± 3.33%) h post infection. C. albicans infection quickly disseminated from the site of inoculation and the presence of yeast and hyphal forms were found in nodules extracted from infected larvae at 6 and 24 h. A range of proteins secreted during infection of G. mellonella by C. albicans were detected in larval hemolymph and these were enriched for biological processes such as interaction with host and pathogenesis. The candicidal activity of hemolymph after immediate incubation of yeast cells resulted in a decrease in yeast cell viability (0.23 ± 0.03 × 10⁶ yeast cells/mL), p < 0.05) as compared to control (0.99 ± 0.01 × 10⁶ yeast cells/mL). C. albicans responded to incubation in hemolymph ex vivo by the induction of an oxidative stress response, a decrease in proteins associated with protein synthesis and an increase in glycolytic proteins. The results presented here indicate that C. albicans can overcome the fungicidal activity of hemolymph by altering protein synthesis and cellular respiration, and commence invasion and dissemination throughout the host.
Collapse
Affiliation(s)
- Gerard Sheehan
- Medical Mycology Laboratory, Department of Biology, Maynooth University, Maynooth, W23F2H6 Co. Kildare, Ireland.
| | - Kevin Kavanagh
- Medical Mycology Laboratory, Department of Biology, Maynooth University, Maynooth, W23F2H6 Co. Kildare, Ireland.
| |
Collapse
|
30
|
Sheehan G, Nagl M, Kavanagh K. Exposure to N-chlorotaurine induces oxidative stress responses in Aspergillus fumigatus. J Med Microbiol 2018; 68:279-288. [PMID: 30543319 DOI: 10.1099/jmm.0.000900] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
PURPOSE The neutrophil-derived oxidant N-chlorotaurine (NCT) displays remarkable in vivo tolerability and efficacy against a range of pathogens. The aim of this study was to characterize the response of the pulmonary pathogen Aspergillus fumigatus to NCT. METHODOLOGY The effect of NCT on the growth and viability of A. fumigatus was characterized. NCT-induced alteration of amino acids and gliotoxin from A. fumigatus mycelium was assessed. Label-free shotgun quantitative proteomic analysis was performed on A. fumigatus exposed to NCT for 24 h. RESULTS Incubation of A. fumigatus with NCT at concentrations ranging from 6.8 to 55 mM decreased conidial growth and viability, and mycelium biomass relative to the controls. Exposure to NCT (13.77 mM) resulted in increased amino acids and gliotoxin levels from A. fumigatus mycelium. Exposure of A. fumigatus mycelium to NCT (6.8 mM) revealed an enrichment in proteins associated with the ribosome, transcription and translation and non-ribosomal peptide biosynthesis (e.g. Pes1, Pes3), which play an essential role in oxidative stress resistance in A. fumigatus. A decrease in the abundance of proteins associated with fumagillin and pseurotin biosynthesis highlighted the anti-virulence activity of NCT. CONCLUSION These results indicate that NCT induces an oxidative stress response in A. fumigatus as evidenced by alterations in the proteome and inhibits conidial and mycelial growth. Clinical investigations of topical application of NCT to treat Aspergillus infections are encouraged.
Collapse
Affiliation(s)
- Gerard Sheehan
- 1Medical Mycology Laboratory, Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Markus Nagl
- 2Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Kevin Kavanagh
- 1Medical Mycology Laboratory, Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
31
|
Aslebagh R, Channaveerappa D, Arcaro KF, Darie CC. Proteomics analysis of human breast milk to assess breast cancer risk. Electrophoresis 2018; 39:653-665. [PMID: 29193311 DOI: 10.1002/elps.201700123] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 11/13/2017] [Accepted: 11/14/2017] [Indexed: 12/19/2022]
Abstract
Detection of breast cancer (BC) in young women is challenging because mammography, the most common tool for detecting BC, is not effective on the dense breast tissue characteristic of young women. In addition to the limited means for detecting their BC, young women face a transient increased risk of pregnancy-associated BC. As a consequence, reproductively active women could benefit significantly from a tool that provides them with accurate risk assessment and early detection of BC. One potential method for detection of BC is biochemical monitoring of proteins and other molecules in bodily fluids such as serum, nipple aspirate, ductal lavage, tear, urine, saliva and breast milk. Of all these fluids, only breast milk provides access to a large volume of breast tissue, in the form of exfoliated epithelial cells, and to the local breast environment, in the form of molecules in the milk. Thus, analysis of breast milk is a non-invasive method with significant potential for assessing BC risk. Here we analyzed human breast milk by mass spectrometry (MS)-based proteomics to build a biomarker signature for early detection of BC. Ten milk samples from eight women provided five paired-groups (cancer versus control) for analysis of dysregulatedproteins: two within woman comparisons (milk from a diseased breast versus a healthy breast of the same woman) and three across women comparisons (milk from a woman with cancer versus a woman without cancer). Despite a wide range in the time between milk donation and cancer diagnosis (cancer diagnosis occurred from 1 month before to 24 months after milk donation), the levels of some proteins differed significantly between cancer and control in several of the five comparison groups. These pilot data are supportive of the idea that molecular analysis of breast milk will identify proteins informative for early detection and accurate assessment of BC risk, and warrant further research. Data are available via ProteomeXchange with identifier PXD007066.
Collapse
Affiliation(s)
- Roshanak Aslebagh
- Biochemistry & Proteomics Group, Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, NY, USA
| | - Devika Channaveerappa
- Biochemistry & Proteomics Group, Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, NY, USA
| | - Kathleen F Arcaro
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Costel C Darie
- Biochemistry & Proteomics Group, Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, NY, USA
| |
Collapse
|
32
|
Namara LM, Griffin CT, Fitzpatrick D, Kavanagh K, Carolan JC. The effect of entomopathogenic fungal culture filtrate on the immune response and haemolymph proteome of the large pine weevil, Hylobius abietis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 101:1-13. [PMID: 30026094 DOI: 10.1016/j.ibmb.2018.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/25/2018] [Accepted: 07/14/2018] [Indexed: 06/08/2023]
Abstract
The large pine weevil Hylobius abietis L. is a major forestry pest in 15 European countries, where it is a threat to 3.4 million hectares of forest. A cellular and proteomic analysis of the effect of culture filtrate of three entomopathogenic fungi (EPF) species on the immune system of H. abietis was performed. Injection with Metarhizium brunneum or Beauvaria bassiana culture filtrate facilitated a significantly increased yeast cell proliferation in larvae. Larvae co-injected with either Beauvaria caledonica or B. bassiana culture filtrate and Candida albicans showed significantly increased mortality. Together these results suggest that EPF culture filtrate has the potential to modulate the insect immune system allowing a subsequent pathogen to proliferate. Injection with EPF culture filtrate was shown to alter the abundance of protease inhibitors, detoxifing enzymes, antimicrobial peptides and proteins involved in reception/detection and development in H. abietis larvae. Larvae injected with B. caledonica culture filtrate displayed significant alterations in abundance of proteins involved in cellulolytic and other metabolic processes in their haemolymph proteome. Screening EPF for their ability to modulate the insect immune response represents a means of assessing EPF for use as biocontrol agents, particularly if the goal is to use them in combination with other control agents.
Collapse
Affiliation(s)
- Louise Mc Namara
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland; Teagasc, Oak Park, Crop Research Centre, Co. Carlow, Ireland.
| | | | - David Fitzpatrick
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Kevin Kavanagh
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - James C Carolan
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
33
|
Characterisation of the cellular and proteomic response of Galleria mellonella larvae to the development of invasive aspergillosis. BMC Microbiol 2018; 18:63. [PMID: 29954319 PMCID: PMC6025711 DOI: 10.1186/s12866-018-1208-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 06/22/2018] [Indexed: 11/17/2022] Open
Abstract
Background Galleria mellonella larvae were infected with conidia of Aspergillus fumigatus and the cellular and humoral immune responses of larvae to the pathogen were characterized as invasive aspergillosis developed. Results At 2 h post-infection there was an increase in hemocyte density to 7.43 ± 0.50 × 106/ml from 0.98 ± 0.08 × 106/ml at 0 h. Hemocytes from larvae immune primed for 6 h with heat killed A. fumigatus conidia displayed superior anti-fungal activity. Examination of the spread of the fungus by Cryo-imaging and fluorescent microscopy revealed dissemination of the fungus through the larvae by 6 h and the formation of distinct nodules in tissue. By 24 h a range of nodules were visible at the site of infection and at sites distant from that indicating invasion of tissue. Proteomic analysis of larvae infected with viable conidia for 6 h demonstrated an increase in the abundance of gustatory receptor candidate 25 (37 fold), gloverin-like protein (14 fold), cecropin-A (11 fold). At 24 h post-infection gustatory receptor candidate 25 (126 fold), moricin-like peptide D (33 fold) and muscle protein 20-like protein (12 fold) were increased in abundance. Proteins decreased in abundance included fibrohexamerin (13 fold) and dimeric dihydrodiol dehydrogenase (8 fold). Conclusion The results presented here indicate that G. mellonella larvae may be a convenient model for studying the stages in the development of invasive aspergillosis and may offer an insight into this process in mammals. Electronic supplementary material The online version of this article (10.1186/s12866-018-1208-6) contains supplementary material, which is available to authorized users.
Collapse
|
34
|
The Human Cathelicidin Antimicrobial Peptide LL-37 Promotes the Growth of the Pulmonary Pathogen Aspergillus fumigatus. Infect Immun 2018; 86:IAI.00097-18. [PMID: 29712727 DOI: 10.1128/iai.00097-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/20/2018] [Indexed: 12/14/2022] Open
Abstract
The pulmonary mucus of cystic fibrosis (CF) patients displays elevated levels of the cathelicidin antimicrobial peptide LL-37, and the aim of this work was to assess the effect of LL-37 on the growth of Aspergillus fumigatus, a common pathogen of CF patients. Exposure of A. fumigatus to LL-37 and its derived fragment RK-31 (1.95 μg/ml) for 24 h had a positive effect on growth (199.94% ± 6.172% [P < 0.05] and 218.20% ± 4.63% [P < 0.05], respectively), whereas scrambled LL-37 peptide did not (85.12% ± 2.92%). Exposure of mycelium (preformed for 24 h) to 5 μg/ml intact LL-37 for 48 h increased hyphal wet weight (4.37 ± 0.23 g, P < 0.001) compared to the control (2.67 ± 0.05 g) and scrambled LL-37 (2.23 ± 0.09 g) treatments. Gliotoxin secretion from LL-37 exposed hyphae (169.1 ± 6.36 ng/mg hyphae, P < 0.05) was increased at 24 h compared to the results seen with the control treatment (102 ± 18.81 ng/mg hyphae) and the scrambled LL-37 treatment (96.09 ± 15.15 ng/mg hyphae). Shotgun proteomic analysis of 24-h LL-37-treated hyphae revealed an increase in the abundance of proteins associated with growth (eukaryotic translation initiation factor 5A [eIF-5A] [16.3-fold increased]), tissue degradation (aspartic endopeptidase [4.7-fold increased]), and allergic reactions (Asp F13 [10-fold increased]). By 48 h, there was an increase in protein levels indicative of cellular stress (glutathione peroxidase [9-fold increased]), growth (eIF-5A [6-fold increased]), and virulence (RNase mitogillin [3.7-fold increased]). These results indicate that LL-37 stimulates A. fumigatus growth and that this stimulation can result in increased fungal growth and secretion of toxins in the lungs of CF patients.
Collapse
|
35
|
Gallois N, Alpha-Bazin B, Ortet P, Barakat M, Piette L, Long J, Berthomieu C, Armengaud J, Chapon V. Proteogenomic insights into uranium tolerance of a Chernobyl's Microbacterium bacterial isolate. J Proteomics 2017; 177:148-157. [PMID: 29223802 DOI: 10.1016/j.jprot.2017.11.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/15/2017] [Accepted: 11/27/2017] [Indexed: 10/18/2022]
Abstract
Microbacterium oleivorans A9 is a uranium-tolerant actinobacteria isolated from the trench T22 located near the Chernobyl nuclear power plant. This site is contaminated with different radionuclides including uranium. To observe the molecular changes at the proteome level occurring in this strain upon uranyl exposure and understand molecular mechanisms explaining its uranium tolerance, we established its draft genome and used this raw information to perform an in-depth proteogenomics study. High-throughput proteomics were performed on cells exposed or not to 10μM uranyl nitrate sampled at three previously identified phases of uranyl tolerance. We experimentally detected and annotated 1532 proteins and highlighted a total of 591 proteins for which abundances were significantly differing between conditions. Notably, proteins involved in phosphate and iron metabolisms show high dynamics. A large ratio of proteins more abundant upon uranyl stress, are distant from functionally-annotated known proteins, highlighting the lack of fundamental knowledge regarding numerous key molecular players from soil bacteria. BIOLOGICAL SIGNIFICANCE Microbacterium oleivorans A9 is an interesting environmental model to understand biological processes engaged in tolerance to radionuclides. Using an innovative proteogenomics approach, we explored its molecular mechanisms involved in uranium tolerance. We sequenced its genome, interpreted high-throughput proteomic data against a six-reading frame ORF database deduced from the draft genome, annotated the identified proteins and compared protein abundances from cells exposed or not to uranyl stress after a cascade search. These data show that a complex cellular response to uranium occurs in Microbacterium oleivorans A9, where one third of the experimental proteome is modified. In particular, the uranyl stress perturbed the phosphate and iron metabolic pathways. Furthermore, several transporters have been identified to be specifically associated to uranyl stress, paving the way to the development of biotechnological tools for uranium decontamination.
Collapse
Affiliation(s)
- Nicolas Gallois
- CEA, CNRS, Aix-Marseille Université, UMR 7265 Biologie Végétale et Microbiologie Environnementales, Laboratoire des Interactions Protéine Métal, 13108 Saint-Paul-lez-Durance, France
| | - Béatrice Alpha-Bazin
- Laboratoire Innovations technologiques pour la Détection et le Diagnostic (Li2D), Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, F-30207 Bagnols sur Cèze, France
| | - Philippe Ortet
- CEA, CNRS, Aix-Marseille Université, UMR 7265 Biologie Végétale et Microbiologie Environnementales, Laboratoire d'écologie microbienne de la rhizosphère et d'environnements extrêmes, 13108 Saint-Paul-lez-Durance, France
| | - Mohamed Barakat
- CEA, CNRS, Aix-Marseille Université, UMR 7265 Biologie Végétale et Microbiologie Environnementales, Laboratoire d'écologie microbienne de la rhizosphère et d'environnements extrêmes, 13108 Saint-Paul-lez-Durance, France
| | - Laurie Piette
- CEA, CNRS, Aix-Marseille Université, UMR 7265 Biologie Végétale et Microbiologie Environnementales, Laboratoire des Interactions Protéine Métal, 13108 Saint-Paul-lez-Durance, France
| | - Justine Long
- CEA, CNRS, Aix-Marseille Université, UMR 7265 Biologie Végétale et Microbiologie Environnementales, Laboratoire d'écologie microbienne de la rhizosphère et d'environnements extrêmes, 13108 Saint-Paul-lez-Durance, France
| | - Catherine Berthomieu
- CEA, CNRS, Aix-Marseille Université, UMR 7265 Biologie Végétale et Microbiologie Environnementales, Laboratoire des Interactions Protéine Métal, 13108 Saint-Paul-lez-Durance, France
| | - Jean Armengaud
- Laboratoire Innovations technologiques pour la Détection et le Diagnostic (Li2D), Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, F-30207 Bagnols sur Cèze, France.
| | - Virginie Chapon
- CEA, CNRS, Aix-Marseille Université, UMR 7265 Biologie Végétale et Microbiologie Environnementales, Laboratoire des Interactions Protéine Métal, 13108 Saint-Paul-lez-Durance, France
| |
Collapse
|
36
|
Bennike TB, Carlsen TG, Ellingsen T, Bonderup OK, Glerup H, Bøgsted M, Christiansen G, Birkelund S, Andersen V, Stensballe A. Proteomics dataset: The colon mucosa from inflammatory bowel disease patients, gastrointestinal asymptomic rheumatoid arthritis patients, and controls. Data Brief 2017; 15:511-516. [PMID: 29085871 PMCID: PMC5650644 DOI: 10.1016/j.dib.2017.09.059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/07/2017] [Accepted: 09/26/2017] [Indexed: 12/23/2022] Open
Abstract
The datasets presented in this article are related to the research articles entitled “Neutrophil Extracellular Traps in Ulcerative Colitis: A Proteome Analysis of Intestinal Biopsies” (Bennike et al., 2015 [1]), and “Proteome Analysis of Rheumatoid Arthritis Gut Mucosa” (Bennike et al., 2017 [2]). The colon mucosa represents the main interacting surface of the gut microbiota and the immune system. Studies have found an altered composition of the gut microbiota in rheumatoid arthritis patients (Zhang et al., 2015; Vaahtovuo et al., 2008; Hazenberg et al., 1992) [5], [6], [7] and inflammatory bowel disease patients (Morgan et al., 2012; Abraham and Medzhitov, 2011; Bennike, 2014) [8], [9], [10]. Therefore, we characterized the proteome of colon mucosa biopsies from 10 inflammatory bowel disease ulcerative colitis (UC) patients, 11 gastrointestinal healthy rheumatoid arthritis (RA) patients, and 10 controls. We conducted the sample preparation and liquid chromatography mass spectrometry (LC-MS/MS) analysis of all samples in one batch, enabling label-free comparison between all biopsies. The datasets are made publicly available to enable critical or extended analyses. The proteomics data and search results, have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifiers PXD001608 for ulcerative colitis and control samples, and PXD003082 for rheumatoid arthritis samples.
Collapse
Affiliation(s)
- Tue Bjerg Bennike
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | | | - Torkell Ellingsen
- Department of Rheumatology, Odense University Hospital, Odense, Denmark
| | - Ole Kristian Bonderup
- Diagnostic Center, Section of Gastroenterology, Regional Hospital Silkeborg, Silkeborg, Denmark.,University Research Clinic for Innovative Patient Pathways, Aarhus University, Aarhus, Denmark
| | - Henning Glerup
- Diagnostic Center, Section of Gastroenterology, Regional Hospital Silkeborg, Silkeborg, Denmark
| | - Martin Bøgsted
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.,Department of Haematology, Aalborg University Hospital, Aalborg, Denmark
| | | | - Svend Birkelund
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Vibeke Andersen
- Institute of Regional Health Research-Center Soenderjylland, University of Southern Denmark, Odense, Denmark.,Department of Internal Medicine, Regional Hospital Viborg, Viborg, Denmark
| | - Allan Stensballe
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
37
|
Sheehan G, Kavanagh K. Analysis of the early cellular and humoral responses of Galleria mellonella larvae to infection by Candida albicans. Virulence 2017; 9:163-172. [PMID: 28872999 PMCID: PMC5955201 DOI: 10.1080/21505594.2017.1370174] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Galleria mellonella larvae were administered an inoculum of Candida albicans and the response to infection over 24 hours was monitored. The yeast cell density in infected larvae declined initially but replication commenced six hours post-infection. The hemocyte density decreased from 5.2 × 106/ml to 2.5 × 106/ml at 2 hours but increased to 4.2 × 106 at 6 hours and decreased subsequently. Administration of β – glucan to larvae also caused a fluctuation in hemocyte density (5.1 ± 0.22 × 106/ml (0 hour) to 6.25 ± 0.25 × 106/ml (6 hour) (p < 0.05) to 5 ± 2.7 × 106 (24 hour)) and the population showed an increase in the density of small, granular cells at 24 hours (p < 0.05). Hemocytes from larvae inoculated with β – glucan for 6 or 24 hours showed faster killing of C. albicans cells (53 ± 4.1% (p < 0.01), 64 ± 3.7%, (p < 0.01), respectively) than hemocytes from control larvae (24 ± 11%) at 60 min. Proteomic analysis indicated increased abundance of immune related proteins cecropin-A (5 fold) and prophenoloxidase-activating proteinase-1 (5 fold) 6 hours post infection but by 24 hours there was elevated abundance of muscle (tropomyosin 2 (141 fold), calponin (66 fold), troponin I (62 fold)) and proteins indicative of cellular stress (glutathione-S-transferase-like protein (114 fold)), fungal dissemination (muscle protein 20-like protein (174 fold)) and tissue breakdown (mitochondrial cytochrome c (10 fold)). Proteins decreased in abundance at 24 hour included β – 1,3 – glucan recognition protein precursor (29 fold) and prophenoloxidase subunit 2 (25 fold).
Collapse
Affiliation(s)
- Gerard Sheehan
- a Department of Biology , Maynooth University , Maynooth, Co. Kildare , Ireland
| | - Kevin Kavanagh
- a Department of Biology , Maynooth University , Maynooth, Co. Kildare , Ireland
| |
Collapse
|
38
|
Guilbaud M, Bruzaud J, Bouffartigues E, Orange N, Guillot A, Aubert-Frambourg A, Monnet V, Herry JM, Chevalier S, Bellon-Fontaine MN. Proteomic Response of Pseudomonas aeruginosa PAO1 Adhering to Solid Surfaces. Front Microbiol 2017; 8:1465. [PMID: 28824592 PMCID: PMC5541441 DOI: 10.3389/fmicb.2017.01465] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/20/2017] [Indexed: 12/12/2022] Open
Abstract
Pseudomonas aeruginosa is a pathogenic micro-organism responsible for many hospital-acquired infections. It is able to adhere to solid surfaces and develop an immobilized community or so-called biofilm. Many studies have been focusing on the use of specific materials to prevent the formation of these biofilms, but the reactivity of the bacteria in contact to surfaces remains unknown. The aim of this study was to evaluate the impact of the abiotic surface on the physiology of adherent bacteria. Three different materials, stainless steel (SS), glass (G), and polystyrene (PS) that were relevant to industrial or medical environments were characterized at the physicochemical level in terms of their hydrophobicity and roughness. We showed that SS was moderately hydrophilic and rough, potentially containing crevices, G was hydrophilic and smooth while PS was hydrophobic and smooth. We further showed that P. aeruginosa cells were more likely able to adhere to SS and G rather than PS surfaces under our experimental conditions. The physiological response of P. aeruginosa when adhering to each of these materials was then evaluated by global proteomic analysis. The abundance of 70 proteins was shown to differ between the materials suggesting that their abundance was modified as a function of the material to which bacteria adhered. Our data lead to enabling the identification of abundance patterns that appeared to be specific to a given surface. Taken together, our data showed that P. aeruginosa is capable of sensing and responding to a surface probably via specific programmes to adapt its physiological response accordingly.
Collapse
Affiliation(s)
- Morgan Guilbaud
- Micalis Institute, INRA, AgroParisTech, Université Paris-SaclayJouy-en-Josas, France
| | - Jérôme Bruzaud
- Micalis Institute, INRA, AgroParisTech, Université Paris-SaclayJouy-en-Josas, France
| | - Emeline Bouffartigues
- Laboratoire de Microbiologie, Signaux et Microenvironnement, Normandie Université, Université de Rouen-NormandieRouen, France
| | - Nicole Orange
- Laboratoire de Microbiologie, Signaux et Microenvironnement, Normandie Université, Université de Rouen-NormandieRouen, France
| | - Alain Guillot
- Micalis Institute, INRA, AgroParisTech, Université Paris-SaclayJouy-en-Josas, France
| | - Anne Aubert-Frambourg
- Micalis Institute, INRA, AgroParisTech, Université Paris-SaclayJouy-en-Josas, France
| | - Véronique Monnet
- Micalis Institute, INRA, AgroParisTech, Université Paris-SaclayJouy-en-Josas, France
| | - Jean-Marie Herry
- Micalis Institute, INRA, AgroParisTech, Université Paris-SaclayJouy-en-Josas, France
| | - Sylvie Chevalier
- Laboratoire de Microbiologie, Signaux et Microenvironnement, Normandie Université, Université de Rouen-NormandieRouen, France
| | | |
Collapse
|
39
|
Mc Namara L, Carolan JC, Griffin CT, Fitzpatrick D, Kavanagh K. The effect of entomopathogenic fungal culture filtrate on the immune response of the greater wax moth, Galleria mellonella. JOURNAL OF INSECT PHYSIOLOGY 2017; 100:82-92. [PMID: 28545993 DOI: 10.1016/j.jinsphys.2017.05.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/19/2017] [Accepted: 05/21/2017] [Indexed: 06/07/2023]
Abstract
Galleria mellonella is a well-established model species regularly employed in the study of the insect immune response at cellular and humoral levels to investigate fungal pathogenesis and biocontrol agents. A cellular and proteomic analysis of the effect of culture filtrate of three entomopathogenic fungi (EPF) species on the immune system of G. mellonella was performed. Treatment with Beauveria caledonica and Metarhizium anisopliae 96h culture filtrate facilitated a significantly increased yeast cell density in larvae (3-fold and 3.8-fold, respectively). Larvae co-injected with either M. anisopliae or B. caledonica culture filtrate and Candida albicans showed significantly increased mortality. The same was not seen for larvae injected with Beauveria bassiana filtrate. Together these results suggest that B. caledonica and M. anisopliae filtrate are modulating the insect immune system allowing a subsequent pathogen to proliferate. B. caledonica and M. anisopliae culture filtrates impact upon the larval prophenoloxidase (ProPO) cascade (e.g. ProPO activating factor 3 and proPO activating enzyme 3 were increased in abundance relative to controls), while B. bassiana treated larvae displayed higher abundances of alpha-esterase when compared to control larvae (2.4-fold greater) and larvae treated with M. anisopliae and B. caledonica. Treatment with EPF culture filtrate had a significant effect on antimicrobial peptide abundances particularly in M. anisopliae treated larvae where cecropin-D precursor, hemolin and gloverin were differentially abundant in comparison to controls. Differences in proteomic profiles for different treatments may reflect or even partially explain the differences in their immunomodulatory potential. Screening EPF for their ability to modulate the insect immune response represents a means of assessing EPF for use as biocontrol agents, particularly if the goal is to use them in combination with other control agents. Additionally EPF represent a valuable resource pool in our search for natural products with insect immunomodulatory and biocontrol properties.
Collapse
Affiliation(s)
- Louise Mc Namara
- Department of Biology, Maynooth University, Maynooth, Kildare, Ireland.
| | - James C Carolan
- Department of Biology, Maynooth University, Maynooth, Kildare, Ireland
| | | | - David Fitzpatrick
- Department of Biology, Maynooth University, Maynooth, Kildare, Ireland
| | - Kevin Kavanagh
- Department of Biology, Maynooth University, Maynooth, Kildare, Ireland
| |
Collapse
|
40
|
Barbieri R, Guryev V, Brandsma CA, Suits F, Bischoff R, Horvatovich P. Proteogenomics: Key Driver for Clinical Discovery and Personalized Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 926:21-47. [PMID: 27686804 DOI: 10.1007/978-3-319-42316-6_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Proteogenomics is a multi-omics research field that has the aim to efficiently integrate genomics, transcriptomics and proteomics. With this approach it is possible to identify new patient-specific proteoforms that may have implications in disease development, specifically in cancer. Understanding the impact of a large number of mutations detected at the genomics level is needed to assess the effects at the proteome level. Proteogenomics data integration would help in identifying molecular changes that are persistent across multiple molecular layers and enable better interpretation of molecular mechanisms of disease, such as the causal relationship between single nucleotide polymorphisms (SNPs) and the expression of transcripts and translation of proteins compared to mainstream proteomics approaches. Identifying patient-specific protein forms and getting a better picture of molecular mechanisms of disease opens the avenue for precision and personalized medicine. Proteogenomics is, however, a challenging interdisciplinary science that requires the understanding of sample preparation, data acquisition and processing for genomics, transcriptomics and proteomics. This chapter aims to guide the reader through the technology and bioinformatics aspects of these multi-omics approaches, illustrated with proteogenomics applications having clinical or biological relevance.
Collapse
Affiliation(s)
- Ruggero Barbieri
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Victor Guryev
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Corry-Anke Brandsma
- Department of Pathology & Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Frank Suits
- IBM T.J. Watson Research Centre, 1101 Kitchawan Road, Yorktown Heights, New York, 10598, NY, USA
| | - Rainer Bischoff
- Department of Analytical Biochemistry, Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Peter Horvatovich
- Department of Analytical Biochemistry, Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands.
| |
Collapse
|
41
|
Worst TS, von Hardenberg J, Gross JC, Erben P, Schnölzer M, Hausser I, Bugert P, Michel MS, Boutros M. Database-augmented Mass Spectrometry Analysis of Exosomes Identifies Claudin 3 as a Putative Prostate Cancer Biomarker. Mol Cell Proteomics 2017; 16:998-1008. [PMID: 28396511 DOI: 10.1074/mcp.m117.068577] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/23/2017] [Indexed: 01/01/2023] Open
Abstract
In prostate cancer and other malignancies sensitive and robust biomarkers are lacking or have relevant limitations. Prostate specific antigen (PSA), the only biomarker widely used in prostate cancer, is suffering from low specificity. Exosomes offer new perspectives in the discovery of blood-based biomarkers. Here we present a proof-of principle study for a proteomics-based identification pipeline, implementing existing data sources, to exemplarily identify exosome-based biomarker candidates in prostate cancer.Exosomes from malignant PC3 and benign PNT1A cells and from FBS-containing medium were isolated using sequential ultracentrifugation. Exosome and control samples were analyzed on an LTQ-Orbitrap XL mass spectrometer. Proteomic data is available via ProteomeXchange with identifier PXD003651. We developed a scoring scheme to rank 64 proteins exclusively found in PC3 exosomes, integrating data from four public databases and published mass spectrometry data sets. Among the top candidates, we focused on the tight junction protein claudin 3. Retests under serum-free conditions using immunoblotting and immunogold labeling confirmed the presence of claudin 3 on PC3 exosomes. Claudin 3 levels were determined in the blood plasma of patients with localized (n = 58; 42 with Gleason score 6-7, 16 with Gleason score ≥8) and metastatic prostate cancer (n = 11) compared with patients with benign prostatic hyperplasia (n = 15) and healthy individuals (n = 15) using ELISA, without prior laborious exosome isolation. ANOVA showed different CLDN3 plasma levels in these groups (p = 0.004). CLDN3 levels were higher in patients with Gleason ≥8 tumors compared with patients with benign prostatic hyperplasia (p = 0.012) and Gleason 6-7 tumors (p = 0.029). In patients with localized tumors CLDN3 levels predicted a Gleason score ≥ 8 (AUC = 0.705; p = 0.016) and did not correlate with serum PSA.By using the described workflow claudin 3 was identified and validated as a potential blood-based biomarker in prostate cancer. Furthermore this workflow could serve as a template to be used in other cancer entities.
Collapse
Affiliation(s)
- Thomas Stefan Worst
- From the ‡Department of Urology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; .,§Department of Signaling and Functional Genomics, German Cancer Research Center, Heidelberg, Germany
| | - Jost von Hardenberg
- From the ‡Department of Urology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.,§Department of Signaling and Functional Genomics, German Cancer Research Center, Heidelberg, Germany
| | - Julia Christina Gross
- §Department of Signaling and Functional Genomics, German Cancer Research Center, Heidelberg, Germany.,¶Haematology and Oncology and Developmental Biochemistry, University Medical Center, Göttingen, Germany
| | - Philipp Erben
- From the ‡Department of Urology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Martina Schnölzer
- ‖Genomics and Proteomics Core Facility, German Cancer Research Center, Heidelberg, Germany
| | - Ingrid Hausser
- **Institute of Pathology IPH, University Clinic Heidelberg and Electron Microscopy Core Facility, University of Heidelberg, Germany
| | - Peter Bugert
- ‡‡Institute of Transfusion Medicine and Immunology, Heidelberg University, Medical Faculty Mannheim, German Red Cross Blood Service Baden-Württemberg-Hessen, Mannheim, Germany
| | - Maurice Stephan Michel
- From the ‡Department of Urology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Michael Boutros
- §Department of Signaling and Functional Genomics, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
42
|
Groves JA, Maduka AO, O'Meally RN, Cole RN, Zachara NE. Fatty acid synthase inhibits the O-GlcNAcase during oxidative stress. J Biol Chem 2017; 292:6493-6511. [PMID: 28232487 DOI: 10.1074/jbc.m116.760785] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 02/10/2017] [Indexed: 01/01/2023] Open
Abstract
The dynamic post-translational modification O-linked β-N-acetylglucosamine (O-GlcNAc) regulates thousands of nuclear, cytoplasmic, and mitochondrial proteins. Cellular stress, including oxidative stress, results in increased O-GlcNAcylation of numerous proteins, and this increase is thought to promote cell survival. The mechanisms by which the O-GlcNAc transferase (OGT) and the O-GlcNAcase (OGA), the enzymes that add and remove O-GlcNAc, respectively, are regulated during oxidative stress to alter O-GlcNAcylation are not fully characterized. Here, we demonstrate that oxidative stress leads to elevated O-GlcNAc levels in U2OS cells but has little impact on the activity of OGT. In contrast, the expression and activity of OGA are enhanced. We hypothesized that this seeming paradox could be explained by proteins that bind to and control the local activity or substrate targeting of OGA, thereby resulting in the observed stress-induced elevations of O-GlcNAc. To identify potential protein partners, we utilized BioID proximity biotinylation in combination with stable isotopic labeling of amino acids in cell culture (SILAC). This analysis revealed 90 OGA-interacting partners, many of which exhibited increased binding to OGA upon stress. The associations of OGA with fatty acid synthase (FAS), filamin-A, heat shock cognate 70-kDa protein, and OGT were confirmed by co-immunoprecipitation. The pool of OGA bound to FAS demonstrated a substantial (∼85%) reduction in specific activity, suggesting that FAS inhibits OGA. Consistent with this observation, FAS overexpression augmented stress-induced O-GlcNAcylation. Although the mechanism by which FAS sequesters OGA remains unknown, these data suggest that FAS fine-tunes the cell's response to stress and injury by remodeling cellular O-GlcNAcylation.
Collapse
Affiliation(s)
- Jennifer A Groves
- From the Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2185
| | - Austin O Maduka
- From the Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2185.,the Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland 21250, and
| | - Robert N O'Meally
- From the Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2185.,the Mass Spectrometry and Proteomics Facility, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Robert N Cole
- From the Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2185.,the Mass Spectrometry and Proteomics Facility, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Natasha E Zachara
- From the Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2185,
| |
Collapse
|
43
|
Porte B, Hardouin J, Zerdoumi Y, Derambure C, Hauchecorne M, Dupre N, Obry A, Lequerre T, Bekri S, Gonzalez B, Flaman JM, Marret S, Cosette P, Leroux P. Major remodeling of brain microvessels during neonatal period in the mouse: A proteomic and transcriptomic study. J Cereb Blood Flow Metab 2017; 37:495-513. [PMID: 26873886 PMCID: PMC5381447 DOI: 10.1177/0271678x16630557] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Preterm infants born before 29 gestation weeks incur major risk of subependymal/intracerebral/intraventricular hemorrhage. In mice, neonate brain endothelial cells are more prone than adult cells to secrete proteases under glutamate challenge, and invalidation of the Serpine 1 gene is accompanied by high brain hemorrhage risk up to five days after birth. We hypothesized that the structural and functional states of microvessels might account for age-dependent vulnerability in mice up to five days after birth and might represent a pertinent paradigm to approach the hemorrhage risk window observed in extreme preterms. Mass spectrometry proteome analyses of forebrain microvessels at days 5, 10 and in adult mice revealed 899 proteins and 36 enriched pathways. Microarray transcriptomic study identified 5873 genes undergoing at least two-fold change between ages and 93 enriched pathways. Both approaches pointed towards extracellular matrix, cell adhesion and junction pathways, indicating delayed microvascular strengthening after P5. Furthermore, glutamate receptors, proteases and their inhibitors exhibited convergent evolutions towards excitatory aminoacid sensitivity and low proteolytic control likely accounting for vascular vulnerability in P5 mice. Thus, age vascular specificities must be considered in future therapeutic interventions in preterms. Data are available on ProteomeXchange (identifier PXD001718) and NCBI Gene-Expression-Omnibus repository (identification GSE67870).
Collapse
Affiliation(s)
- Baptiste Porte
- 1 INSERM-ERI28, NeoVasc Laboratory, Microvascular Endothelium and Neonate Brain Lesions, Normandie Université, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Julie Hardouin
- 2 UMR-6270, CNRS, Polymers, Biopolymers, Surfaces, Biofilm Resistance, Cell Surfaces Interactions Group (PBS), CNRS, IRIB, Normandie Université, Mont-Saint-Aignan, France.,3 Proteomic Facility PISSARO, IRIB, Normandie Université, Mont-Saint-Aignan, France
| | - Yasmine Zerdoumi
- 4 UMR-S1079, INSERM, Genetic of Cancer and Neurogenetics (GCM), IRIB, Normandie Université, Rouen, France
| | - Céline Derambure
- 5 UMR-S905, INSERM, Pathophysiology and Biotherapy of Inflammatory and Autoimmune Diseases, IRIB, Normandie Université, Rouen, France
| | - Michèle Hauchecorne
- 1 INSERM-ERI28, NeoVasc Laboratory, Microvascular Endothelium and Neonate Brain Lesions, Normandie Université, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Nicolas Dupre
- 1 INSERM-ERI28, NeoVasc Laboratory, Microvascular Endothelium and Neonate Brain Lesions, Normandie Université, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Antoine Obry
- 3 Proteomic Facility PISSARO, IRIB, Normandie Université, Mont-Saint-Aignan, France
| | - Thierry Lequerre
- 5 UMR-S905, INSERM, Pathophysiology and Biotherapy of Inflammatory and Autoimmune Diseases, IRIB, Normandie Université, Rouen, France
| | - Soumeya Bekri
- 1 INSERM-ERI28, NeoVasc Laboratory, Microvascular Endothelium and Neonate Brain Lesions, Normandie Université, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France.,6 Metabolic Biochemistry, Rouen University Hospital, Rouen, France
| | - Bruno Gonzalez
- 1 INSERM-ERI28, NeoVasc Laboratory, Microvascular Endothelium and Neonate Brain Lesions, Normandie Université, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Jean M Flaman
- 4 UMR-S1079, INSERM, Genetic of Cancer and Neurogenetics (GCM), IRIB, Normandie Université, Rouen, France
| | - Stéphane Marret
- 1 INSERM-ERI28, NeoVasc Laboratory, Microvascular Endothelium and Neonate Brain Lesions, Normandie Université, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France.,7 Neonatal Pediatrics and Intensive Care, Rouen University Hospital, Rouen, France
| | - Pascal Cosette
- 2 UMR-6270, CNRS, Polymers, Biopolymers, Surfaces, Biofilm Resistance, Cell Surfaces Interactions Group (PBS), CNRS, IRIB, Normandie Université, Mont-Saint-Aignan, France.,3 Proteomic Facility PISSARO, IRIB, Normandie Université, Mont-Saint-Aignan, France
| | - Philippe Leroux
- 1 INSERM-ERI28, NeoVasc Laboratory, Microvascular Endothelium and Neonate Brain Lesions, Normandie Université, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| |
Collapse
|
44
|
Porte B, Chatelain C, Hardouin J, Derambure C, Zerdoumi Y, Hauchecorne M, Dupré N, Bekri S, Gonzalez B, Marret S, Cosette P, Leroux P. Proteomic and transcriptomic study of brain microvessels in neonatal and adult mice. PLoS One 2017; 12:e0171048. [PMID: 28141873 PMCID: PMC5283732 DOI: 10.1371/journal.pone.0171048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/13/2017] [Indexed: 12/17/2022] Open
Abstract
Infants born before 29 weeks gestation incur a major risk of preterm encephalopathy and subependymal/intracerebral/intraventricular haemorrhage. In mice, an ontogenic window of haemorrhage risk was recorded up to 5 days after birth in serpine1 knock-out animals. Using proteome and transcriptome approaches in mouse forebrain microvessels, we previously described the remodelling of extracellular matrix and integrins likely strengthening the vascular wall between postnatal day 5 (P5) and P10. Haemorrhage is the ultimate outcome of vessel damage (i.e., during ischaemia), although discreet vessel insults may be involved in the aetiology of preterm encephalopathy. In this study, we examined proteins identified by mass spectrometry and segregating in gene ontology pathways in forebrain microvessels in P5, P10, and adult wild type mice. In parallel, comparative transcript levels were obtained using RNA hybridization microarrays and enriched biological pathways were extracted from genes exhibiting at least a two-fold change in expression. Five major biological functions were observed in those genes detected both as proteins and mRNA expression undergoing at least a two-fold change in expression in one or more age comparisons: energy metabolism, protein metabolism, antioxidant function, ion exchanges, and transport. Adult microvessels exhibited the highest protein and mRNA expression levels for a majority of genes. Energy metabolism-enriched gene ontology pathways pointed to the preferential occurrence of glycolysis in P5 microvessels cells versus P10 and adult preparations enriched in aerobic oxidative enzymes. Age-dependent levels of RNA coding transport proteins at the plasma membrane and mitochondria strengthened our findings based on protein data. The data suggest that immature microvessels have fewer energy supply alternatives to glycolysis than mature structures. In the context of high energy demand, this constraint might account for vascular damage and maintenance of the high bleeding occurrence in specific areas in immature brain.
Collapse
Affiliation(s)
- Baptiste Porte
- Normandie Université, UNIROUEN, U1245, INSERM, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Clémence Chatelain
- Normandie Université, UNIROUEN, U1245, INSERM, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Julie Hardouin
- Normandie Université, UNIROUEN, UMR-6270, CNRS, IRIB, Mont-Saint-Aignan, France
- Normandie Université, UNIROUEN, Proteomic Facility PISSARO, IRIB, Mont-Saint-Aignan, France
| | - Céline Derambure
- Normandie Université, UNIROUEN, UMR-S905, INSERM, IRIB, Rouen, France
| | - Yasmine Zerdoumi
- Normandie Université, UNIROUEN, U1245, INSERM, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Michèle Hauchecorne
- Normandie Université, UNIROUEN, U1245, INSERM, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Nicolas Dupré
- Normandie Université, UNIROUEN, U1245, INSERM, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Soumeya Bekri
- Normandie Université, UNIROUEN, U1245, INSERM, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
- Metabolic Biochemistry Department, Rouen University Hospital, Rouen, France
| | - Bruno Gonzalez
- Normandie Université, UNIROUEN, U1245, INSERM, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Stéphane Marret
- Normandie Université, UNIROUEN, U1245, INSERM, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
- Neonatal Pediatrics and Intensive Care Department, Rouen University Hospital, Rouen, France
| | - Pascal Cosette
- Normandie Université, UNIROUEN, UMR-6270, CNRS, IRIB, Mont-Saint-Aignan, France
- Normandie Université, UNIROUEN, Proteomic Facility PISSARO, IRIB, Mont-Saint-Aignan, France
| | - Philippe Leroux
- Normandie Université, UNIROUEN, U1245, INSERM, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
- * E-mail:
| |
Collapse
|
45
|
Vinaiphat A, Thongboonkerd V. Prospects for proteomics in kidney stone disease. Expert Rev Proteomics 2017; 14:185-187. [DOI: 10.1080/14789450.2017.1283222] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Arada Vinaiphat
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital
- Center for Research in Complex Systems Science, Mahidol University, Bangkok, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital
- Center for Research in Complex Systems Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
46
|
Sanchez TW, Zhang G, Li J, Dai L, Mirshahidi S, Wall NR, Yates C, Wilson C, Montgomery S, Zhang JY, Casiano CA. Immunoseroproteomic Profiling in African American Men with Prostate Cancer: Evidence for an Autoantibody Response to Glycolysis and Plasminogen-Associated Proteins. Mol Cell Proteomics 2016; 15:3564-3580. [PMID: 27742740 DOI: 10.1074/mcp.m116.060244] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 10/12/2016] [Indexed: 01/21/2023] Open
Abstract
African American (AA) men suffer from a disproportionately high incidence and mortality of prostate cancer (PCa) compared with other racial/ethnic groups. Despite these disparities, African American men are underrepresented in clinical trials and in studies on PCa biology and biomarker discovery. We used immunoseroproteomics to profile antitumor autoantibody responses in AA and European American (EA) men with PCa, and explored differences in these responses. This minimally invasive approach detects autoantibodies to tumor-associated antigens that could serve as clinical biomarkers and immunotherapeutic agents. Sera from AA and EA men with PCa were probed by immunoblotting against PC3 cell proteins, with AA sera showing stronger immunoreactivity. Mass spectrometry analysis of immunoreactive protein spots revealed that several AA sera contained autoantibodies to a number of proteins associated with both the glycolysis and plasminogen pathways, particularly to alpha-enolase (ENO1). The proteomic data is deposited in ProteomeXchange with identifier PXD003968. Analysis of sera from 340 racially diverse men by enzyme-linked immunosorbent assays (ELISA) showed higher frequency of anti-ENO1 autoantibodies in PCa sera compared with control sera. We observed differences between AA-PCa and EA-PCa patients in their immunoreactivity against ENO1. Although EA-PCa sera reacted with higher frequency against purified ENO1 in ELISA and recognized by immunoblotting the endogenous cellular ENO1 across a panel of prostate cell lines, AA-PCa sera reacted weakly against this protein by ELISA but recognized it by immunoblotting preferentially in metastatic cell lines. These race-related differences in immunoreactivity to ENO1 could not be accounted by differential autoantibody recognition of phosphoepitopes within this antigen. Proteomic analysis revealed differences in the posttranslational modification profiles of ENO1 variants differentially recognized by AA-PCa and EA-PCa sera. These intriguing results suggest the possibility of race-related differences in the antitumor autoantibody response in PCa, and have implications for defining novel biological determinants of PCa health disparities.
Collapse
Affiliation(s)
- Tino W Sanchez
- From the ‡Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California 92350;
| | - Guangyu Zhang
- ¶Mass Spectrometry Core Facility, Division of Biochemistry, LLU School of Medicine, Loma Linda, California 92350
| | - Jitian Li
- §Department of Biological Sciences, University of Texas, El Paso, Texas 79968
| | - Liping Dai
- §Department of Biological Sciences, University of Texas, El Paso, Texas 79968
| | - Saied Mirshahidi
- From the ‡Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California 92350.,‖LLU Cancer Center Biospecimen Laboratory, Loma Linda, California 92350
| | - Nathan R Wall
- From the ‡Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California 92350
| | - Clayton Yates
- ‡‡Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee Alabama 36088
| | - Colwick Wilson
- From the ‡Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California 92350.,**LLU School of Behavioral Health, Loma Linda, California 92350
| | - Susanne Montgomery
- From the ‡Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California 92350.,**LLU School of Behavioral Health, Loma Linda, California 92350
| | - Jian-Ying Zhang
- §Department of Biological Sciences, University of Texas, El Paso, Texas 79968
| | - Carlos A Casiano
- From the ‡Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California 92350.,§§Department of Medicine, Division of Rheumatology, LLU School of Medicine, Loma Linda, California 92350
| |
Collapse
|
47
|
Hesse AM, Dupierris V, Adam C, Court M, Barthe D, Emadali A, Masselon C, Ferro M, Bruley C. hEIDI: An Intuitive Application Tool To Organize and Treat Large-Scale Proteomics Data. J Proteome Res 2016; 15:3896-3903. [PMID: 27560970 DOI: 10.1021/acs.jproteome.5b00853] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Advances in high-throughput proteomics have led to a rapid increase in the number, size, and complexity of the associated data sets. Managing and extracting reliable information from such large series of data sets require the use of dedicated software organized in a consistent pipeline to reduce, validate, exploit, and ultimately export data. The compilation of multiple mass-spectrometry-based identification and quantification results obtained in the context of a large-scale project represents a real challenge for developers of bioinformatics solutions. In response to this challenge, we developed a dedicated software suite called hEIDI to manage and combine both identifications and semiquantitative data related to multiple LC-MS/MS analyses. This paper describes how, through a user-friendly interface, hEIDI can be used to compile analyses and retrieve lists of nonredundant protein groups. Moreover, hEIDI allows direct comparison of series of analyses, on the basis of protein groups, while ensuring consistent protein inference and also computing spectral counts. hEIDI ensures that validated results are compliant with MIAPE guidelines as all information related to samples and results is stored in appropriate databases. Thanks to the database structure, validated results generated within hEIDI can be easily exported in the PRIDE XML format for subsequent publication. hEIDI can be downloaded from http://biodev.extra.cea.fr/docs/heidi .
Collapse
Affiliation(s)
- Anne-Marie Hesse
- Univ. Grenoble Alpes, BIG-BGE, F-38000 Grenoble, France.,CEA, BIG-BGE, F-38000 Grenoble, France.,Inserm U1038, BGE, F-38000 Grenoble, France
| | - Véronique Dupierris
- Univ. Grenoble Alpes, BIG-BGE, F-38000 Grenoble, France.,CEA, BIG-BGE, F-38000 Grenoble, France.,Inserm U1038, BGE, F-38000 Grenoble, France
| | - Claire Adam
- Univ. Grenoble Alpes, BIG-BGE, F-38000 Grenoble, France.,CEA, BIG-BGE, F-38000 Grenoble, France.,Inserm U1038, BGE, F-38000 Grenoble, France
| | - Magali Court
- Univ. Grenoble Alpes, BIG-BGE, F-38000 Grenoble, France.,CEA, BIG-BGE, F-38000 Grenoble, France.,Inserm U1038, BGE, F-38000 Grenoble, France
| | - Damien Barthe
- Univ. Grenoble Alpes, BIG-BGE, F-38000 Grenoble, France.,CEA, BIG-BGE, F-38000 Grenoble, France.,Inserm U1038, BGE, F-38000 Grenoble, France
| | - Anouk Emadali
- Univ. Grenoble Alpes, BIG-BGE, F-38000 Grenoble, France.,CEA, BIG-BGE, F-38000 Grenoble, France.,Inserm U1038, BGE, F-38000 Grenoble, France
| | - Christophe Masselon
- Univ. Grenoble Alpes, BIG-BGE, F-38000 Grenoble, France.,CEA, BIG-BGE, F-38000 Grenoble, France.,Inserm U1038, BGE, F-38000 Grenoble, France
| | - Myriam Ferro
- Univ. Grenoble Alpes, BIG-BGE, F-38000 Grenoble, France.,CEA, BIG-BGE, F-38000 Grenoble, France.,Inserm U1038, BGE, F-38000 Grenoble, France
| | - Christophe Bruley
- Univ. Grenoble Alpes, BIG-BGE, F-38000 Grenoble, France.,CEA, BIG-BGE, F-38000 Grenoble, France.,Inserm U1038, BGE, F-38000 Grenoble, France
| |
Collapse
|
48
|
Deslyper G, Colgan TJ, Cooper AJR, Holland CV, Carolan JC. A Proteomic Investigation of Hepatic Resistance to Ascaris in a Murine Model. PLoS Negl Trop Dis 2016; 10:e0004837. [PMID: 27490109 PMCID: PMC4974003 DOI: 10.1371/journal.pntd.0004837] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 06/20/2016] [Indexed: 12/15/2022] Open
Abstract
The helminth Ascaris causes ascariasis in both humans and pigs. Humans, especially children, experience significant morbidity including respiratory complications, growth deficits and intestinal obstruction. Given that 800 million people worldwide are infected by Ascaris, this represents a significant global public health concern. The severity of the symptoms and associated morbidity are related to the parasite burden and not all hosts are infected equally. While the pathology of the disease has been extensively examined, our understanding of the molecular mechanisms underlying resistance and susceptibility to this nematode infection is poor. In order to investigate host differences associated with heavy and light parasite burden, an experimental murine model was developed utilising Ascaris-susceptible and -resistant mice strains, C57BL/6J and CBA/Ca, respectively, which experience differential burdens of migratory Ascaris larvae in the host lungs. Previous studies identified the liver as the site where this difference in susceptibility occurs. Using a label free quantitative proteomic approach, we analysed the hepatic proteomes of day four post infection C57BL/6J and CBA/Ca mice with and without Ascaris infection to identify proteins changes potentially linked to both resistance and susceptibility amongst the two strains, respectively. Over 3000 proteins were identified in total and clear intrinsic differences were elucidated between the two strains. These included a higher abundance of mitochondrial proteins, particularly those associated with the oxidative phosphorylation pathway and reactive oxygen species (ROS) production in the relatively resistant CBA/Ca mice. We hypothesise that the increased ROS levels associated with higher levels of mitochondrial activity results in a highly oxidative cellular environment that has a dramatic effect on the nematode's ability to successfully sustain a parasitic association with its resistant host. Under infection, both strains had increased abundances in proteins associated with the oxidative phosphorylation pathway, as well as the tricarboxylic acid cycle, with respect to their controls, indicating a general stress response to Ascaris infection. Despite the early stage of infection, some immune-associated proteins were identified to be differentially abundant, providing a novel insight into the host response to Ascaris. In general, the susceptible C57BL/6J mice displayed higher abundances in immune-associated proteins, most likely signifying a more active nematode cohort with respect to their CBA/Ca counterparts. The complement component C8a and S100 proteins, S100a8 and S100a9, were highly differentially abundant in both infected strains, signifying a potential innate immune response and the importance of the complement pathway in defence against macroparasite infection. In addition, the signatures of an early adaptive immune response were observed through the presence of proteins, such as plastin-2 and dipeptidyl peptidase 1. A marked decrease in proteins associated with translation was also observed in both C57BL/6J and CBA/Ca mice under infection, indicative of either a general response to Ascaris or a modulatory effect by the nematode itself. Our research provides novel insights into the in vivo host-Ascaris relationship on the molecular level and provides new research perspectives in the development of Ascaris control and treatment strategies.
Collapse
Affiliation(s)
- Gwendoline Deslyper
- Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland
| | - Thomas J. Colgan
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Andrew J. R. Cooper
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Celia V. Holland
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - James C. Carolan
- Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland
| |
Collapse
|
49
|
Packialakshmi B, Liyanage R, Lay JO, Makkar SK, Rath NC. Proteomic Changes in Chicken Plasma Induced by Salmonella typhimurium Lipopolysaccharides. PROTEOMICS INSIGHTS 2016; 7:1-9. [PMID: 27053921 PMCID: PMC4818023 DOI: 10.4137/pri.s31609] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/03/2016] [Accepted: 02/12/2016] [Indexed: 12/25/2022]
Abstract
Lipopolysaccharides (LPS) are cell wall components of Gram-negative bacteria that produce inflammation and sickness in higher animals. The objective was to identify plasma proteomic changes in an avian model of inflammation. Chickens were treated with either saline or LPS, and blood was collected at 24 hours postinjection. The pooled plasma samples were depleted of high-abundant proteins and analyzed by matrix-assisted laser desorption ionization (MALDI)-time-of-flight mass spectrometry and liquid chromatography–tandem mass spectrometry (LC–MS/MS). MALDI analyses showed an increase in fibrinogen beta-derived peptide and a decrease in apolipoprotein-AII-derived peptide in LPS samples. Label-free quantitation of LC–MS/MS spectra revealed an increase in the levels of α1-acid glycoprotein, a chemokine CCLI10, and cathelicidin-2, but a decrease in an interferon-stimulated gene-12-2 protein in the LPS group. These differentially expressed proteins are associated with immunomodulation, cytokine changes, and defense mechanisms, which may be useful as candidate biomarkers of infection and inflammation.
Collapse
Affiliation(s)
- Balamurugan Packialakshmi
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, USA.; Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA.; Poultry Production and Product Safety Research Unit, Agricultural Research Service, USDA, Poultry Science Center, University of Arkansas, Fayetteville, AR, USA
| | - Rohana Liyanage
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - Jackson O Lay
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - Sarbjeet K Makkar
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA.; Poultry Production and Product Safety Research Unit, Agricultural Research Service, USDA, Poultry Science Center, University of Arkansas, Fayetteville, AR, USA
| | - Narayan C Rath
- Poultry Production and Product Safety Research Unit, Agricultural Research Service, USDA, Poultry Science Center, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
50
|
Martens L. Public proteomics data: How the field has evolved from sceptical inquiry to the promise of in silico proteomics. EUPA OPEN PROTEOMICS 2016; 11:42-44. [PMID: 29900110 PMCID: PMC5988554 DOI: 10.1016/j.euprot.2016.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 02/13/2016] [Accepted: 02/15/2016] [Indexed: 12/23/2022]
Abstract
Proteomics data sharing moved from validation to re-use. New tools and services make data very easily accessible. Metadata provision can still benefit from improvements. Quality control metrics will soon be reported along with submitted data. Data re-use will enable the advent of actual in silico proteomics.
Collapse
Affiliation(s)
- Lennart Martens
- Department of Medical Protein Research, VIB 9000 Ghent, Belgium.,Department of Biochemistry, Ghent University, 9000 Ghent, Belgium.,Bioinformatics Institute Ghent, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|