1
|
Shaw JR, Nopp S, Stavik B, Youkhana K, Michels AL, Kennes S, Rak J, Ten Cate H. Thrombosis, Translational Medicine, and Biomarker Research: Moving the Needle. J Am Heart Assoc 2025; 14:e038782. [PMID: 39719414 DOI: 10.1161/jaha.124.038782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
Arterial and venous thromboembolism are leading causes of morbidity and death worldwide. Despite significant advances in the diagnosis, prognostication, and treatment of thrombotic diseases over the past 3 decades, the adoption of findings stemming from translational biomarker research in clinical practice remains limited. Biomarkers provide an opportunity to enhance our understanding of pathophysiological processes and optimize treatment strategies. They hold the promise of revolutionizing patient care. Still, this potential remains untapped, and several factors impede their use for near-patient applications. We sought to provide an overview of biomarker research in arterial and venous thromboembolic disease. We then aimed to discuss key barriers to the broader clinical implementation of biomarker research and highlight promising strategies to overcome them. We emphasize the merits of translational and implementation science to bridge the gaps from bench to bedside. Innovative trial design, data sharing, and collaborative efforts between academia and industry will be essential. Purposeful regression methodology using rational conceptual framework design, causal mediation analysis, and artificial intelligence might better leverage the use of observational data. Dedicated translational science training programs geared toward educating physicians on the appropriate measurement, interpretation, and integration of biomarker data in clinical practice should foster endorsement by frontline physicians. Finally, we make the case in support of a paradigm shift in cardiovascular medicine. Improved recognition of biomarker research and a greater emphasis on mechanistic evidence can better equip clinicians to deal with the uncertainty that defines the practice of thrombosis medicine.
Collapse
Affiliation(s)
- Joseph R Shaw
- Department of Medicine University of Ottawa, and The Ottawa Hospital Research Institute Ottawa Canada
| | - Stephan Nopp
- Clinical Division of Hematology and Hemostaseology Medical University of Vienna Austria
| | - Benedicte Stavik
- Department of Hematology and The Research Institute of Internal Medicine Oslo University Hospital Oslo Norway
| | | | - Alison L Michels
- Department of Surgery, Division of Vascular Surgery McMaster University Hamilton Canada
| | - Soetkin Kennes
- Department of Hematology Ghent University Hospital Ghent Belgium
| | - Janusz Rak
- Department of Pediatrics and the Division of Experimental Medicine McGill University Montreal Canada
| | - Hugo Ten Cate
- Cardiovascular Research Institute Maastricht, Maastricht University Maastricht Netherlands
| |
Collapse
|
2
|
Heywood WE, Searle J, Collis R, Doykov I, Ashworth M, Sebire N, Bamber A, Gautel M, Eaton S, Coats CJ, Elliott PM, Mills K. A Proof of Principle 2D Spatial Proteome Mapping Analysis Reveals Distinct Regional Differences in the Cardiac Proteome. Life (Basel) 2024; 14:970. [PMID: 39202712 PMCID: PMC11355120 DOI: 10.3390/life14080970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 09/03/2024] Open
Abstract
Proteomics studies often explore phenotypic differences between whole organs and systems. Within the heart, more subtle variation exists. To date, differences in the underlying proteome are only described between whole cardiac chambers. This study, using the bovine heart as a model, investigates inter-regional differences and assesses the feasibility of measuring detailed, cross-tissue variance in the cardiac proteome. Using a bovine heart, we created a two-dimensional section through a plane going through two chambers. This plane was further sectioned into 4 × 4 mm cubes and analysed using label-free proteomics. We identified three distinct proteomes. When mapped to the extracted sections, the proteomes corresponded largely to the outer wall of the right ventricle and secondly to the outer wall of the left ventricle, right atrial appendage, tricuspid and mitral valves, modulator band, and parts of the left atrium. The third separate proteome corresponded to the inner walls of the left and right ventricles, septum, and left atrial appendage. Differential protein abundancies indicated differences in energy metabolism between regions. Data analyses of the mitochondrial proteins revealed a variable pattern of abundances of complexes I-V between the proteomes, indicating differences in the bioenergetics of the different cardiac sub-proteomes. Mapping of disease-associated proteins interestingly showed desmoglein-2, for which defects in this protein are known to cause Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy, which was present predominantly in the outer wall of the left ventricle. This study highlights that organs can have variable proteomes that do not necessarily correspond to anatomical features.
Collapse
Affiliation(s)
- Wendy E. Heywood
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK; (W.E.H.); (I.D.)
| | - Jon Searle
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK; (W.E.H.); (I.D.)
| | - Richard Collis
- Institute of Cardiovascular Science, University College London, Gower Street, London WC1E 6BT, UK; (R.C.); (P.M.E.)
| | - Ivan Doykov
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK; (W.E.H.); (I.D.)
| | - Michael Ashworth
- Histopathology Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 1EH, UK (N.S.)
| | - Neil Sebire
- Histopathology Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 1EH, UK (N.S.)
| | - Andrew Bamber
- Histopathology Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 1EH, UK (N.S.)
| | - Mathias Gautel
- Randall Division of Cell and Molecular Biophysics, Muscle Signalling Section, King’s College, London WC2E 2LS, UK
| | - Simon Eaton
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK; (W.E.H.); (I.D.)
| | - Caroline J. Coats
- Institute of Cardiovascular Science, University College London, Gower Street, London WC1E 6BT, UK; (R.C.); (P.M.E.)
| | - Perry M. Elliott
- Institute of Cardiovascular Science, University College London, Gower Street, London WC1E 6BT, UK; (R.C.); (P.M.E.)
- Barts Heart Centre, and the Inherited Cardiovascular Diseases Unit, St Bartholomew’s Hospital, West Smithfield, London EC1A 7BE, UK
| | - Kevin Mills
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK; (W.E.H.); (I.D.)
| |
Collapse
|
3
|
Torkamannejad S, Chang G, Aroge FA, Sun B. Single Isotopologue for In-Sample Calibration and Absolute Quantitation by LC-MS/MS. J Proteome Res 2024; 23:1351-1359. [PMID: 38445850 DOI: 10.1021/acs.jproteome.3c00848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Targeted mass spectrometry (MS)-based absolute quantitative analysis has been increasingly used in biomarker discovery. The ability to accurately measure the masses by MS enabled the use of isotope-incorporated surrogates having virtually identical physiochemical properties with the target analytes as calibrators. Such a unique capacity allowed for accurate in-sample calibration. Current in-sample calibration uses multiple isotopologues or structural analogues for both the surrogate and the internal standard. Here, we simplified this common practice by using endogenous light peptides as the internal standards and used a mathematical deduction of "heavy matching light, HML" to directly quantify an endogenous analyte. This method provides all necessary assay performance parameters in the authentic matrix, including the lower limit of quantitation (LLOQ) and intercept of the calibration curve, by using only a single isotopologue of the analyte. This method can be applied to the quantitation of proteins, peptides, and small molecules. Using this method, we quantified the efficiency of heart tissue digestion and recovery using sodium deoxycholate as a detergent and two spiked exogenous proteins as mimics of heart proteins. The results demonstrated the robustness of the assay.
Collapse
Affiliation(s)
- Soroush Torkamannejad
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A1S6, Canada
| | - Ge Chang
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A1S6, Canada
| | - Fabusuyi A Aroge
- School of Mechatronic Systems Engineering, Simon Fraser University, Surrey, British Columbia V3T0A3, Canada
| | - Bingyun Sun
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A1S6, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A1S6, Canada
| |
Collapse
|
4
|
Perpetuo L, Ferreira R, Thongboonkerd V, Guedes S, Amado F, Vitorino R. Urinary exosomes: Diagnostic impact with a bioinformatic approach. Adv Clin Chem 2022; 111:69-99. [DOI: 10.1016/bs.acc.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
5
|
Seaweeds as a Fermentation Substrate: A Challenge for the Food Processing Industry. Processes (Basel) 2021. [DOI: 10.3390/pr9111953] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Seaweeds are gaining momentum as novel and functional food and feed products. From whole consumption to small bioactive compounds, seaweeds have remarkable flexibility in their applicability, ranging from food production to fertilizers or usages in chemical industries. Regarding food production, there is an increasing interest in the development of novel foods that, at the same time, present high nutritious content and are sustainably developed. Seaweeds, because they require no arable land, no usage of fresh water, and they have high nutritious and bioactive content, can be further explored for the development of newer and functional food products. Fermentation, especially performed by lactic acid bacteria, is a method used to produce functional foods. However, fermentation of seaweed biomass remains an underdeveloped topic that nevertheless demonstrates high potential for the production of new alimentary products that hold and further improve the organoleptic and beneficial properties that these organisms are characterized for. Although further research has to be deployed in this field, the prebiotic and probiotic potential demonstrated by fermented seaweed can boost the development of new functional foods.
Collapse
|
6
|
Xu B, Lei Y, Ren X, Yin F, Wu W, Sun Y, Wang X, Sun Q, Yang X, Wang X, Zhang R, Li Z, Fang S, Liu J. SOD1 is a Possible Predictor of COVID-19 Progression as Revealed by Plasma Proteomics. ACS OMEGA 2021; 6:16826-16836. [PMID: 34250342 PMCID: PMC8247781 DOI: 10.1021/acsomega.1c01375] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/10/2021] [Indexed: 05/12/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a worldwide health emergency. Patients infected with SARS-CoV-2 present with diverse symptoms related to the severity of the disease. Determining the proteomic changes associated with these diverse symptoms and in different stages of infection is beneficial for clinical diagnosis and management. Here, we performed a tandem mass tag-labeling proteomic study on the plasma of healthy controls and COVID-19 patients, including those with asymptomatic infection (NS), mild syndrome, and severe syndrome in the early phase and the later phase. Although the number of patients included in each group is low, our comparative proteomic analysis revealed that complement and coagulation cascades, cholesterol metabolism, and glycolysis-related proteins were affected after infection with SARS-CoV-2. Compared to healthy controls, ELISA analysis confirmed that SOD1, PRDX2, and LDHA levels were increased in the patients with severe symptoms. Both gene set enrichment analysis and receiver operator characteristic analysis indicated that SOD1 could be a pivotal indicator for the severity of COVID-19. Our results indicated that plasma proteome changes differed based on the symptoms and disease stages and SOD1 could be a predictor protein for indicating COVID-19 progression. These results may also provide a new understanding for COVID-19 diagnosis and treatment.
Collapse
Affiliation(s)
- Benhong Xu
- Shenzhen
Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Yuxuan Lei
- Shenzhen
Center for Disease Control and Prevention, Shenzhen 518055, China
- School
of Public Health (Shenzhen), Sun Yat-sen
University, Guangzhou 510275, China
| | - Xiaohu Ren
- Shenzhen
Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Feng Yin
- State
Key Laboratory of Chemical Oncogenomics, School of Chemical Biology
and Biotechnology, Peking University Shenzhen
Graduate School, Shenzhen 518055, China
- Pingshan
Translational Medicine Center, Shenzhen
Bay Laboratory, Shenzhen 518101, China
| | - Weihua Wu
- Shenzhen
Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Ying Sun
- Shenzhen
Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Xiaohui Wang
- Shenzhen
Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Qian Sun
- Shenzhen
Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Xifei Yang
- Shenzhen
Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Xin Wang
- Shenzhen
Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Renli Zhang
- Shenzhen
Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Zigang Li
- State
Key Laboratory of Chemical Oncogenomics, School of Chemical Biology
and Biotechnology, Peking University Shenzhen
Graduate School, Shenzhen 518055, China
- Pingshan
Translational Medicine Center, Shenzhen
Bay Laboratory, Shenzhen 518101, China
| | - Shisong Fang
- Shenzhen
Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Jianjun Liu
- Shenzhen
Center for Disease Control and Prevention, Shenzhen 518055, China
| |
Collapse
|
7
|
Sohag MMH, Raqib SM, Akhmad SA. OMICS approaches in cardiovascular diseases: a mini review. Genomics Inform 2021; 19:e13. [PMID: 34261298 PMCID: PMC8261269 DOI: 10.5808/gi.21002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 11/21/2022] Open
Abstract
Ranked in the topmost position among the deadliest diseases in the world, cardiovascular diseases (CVDs) are a global burden with alterations in heart and blood vessels. Early diagnostics and prognostics could be the best possible solution in CVD management. OMICS (genomics, proteomics, transcriptomics, and metabolomics) approaches could be able to tackle the challenges against CVDs. Genome-wide association studies along with next-generation sequencing with various computational biology tools could lead a new sight in early detection and possible therapeutics of CVDs. Human cardiac proteins are also characterized by mass spectrophotometry which could open the scope of proteomics approaches in CVD. Besides this, regulation of gene expression by transcriptomics approaches exhibits a new insight while metabolomics is the endpoint on the downstream of multi-omics approaches to confront CVDs from the early onset. Although a lot of challenges needed to overcome in CVD management, OMICS approaches are certainly a new prospect.
Collapse
Affiliation(s)
- Md. Mehadi Hasan Sohag
- Department of Genetic Engineering and Biotechnology, Jagannath University, Dhaka 1100, Bangladesh
- Biotechnology Research Initiative for Sustainable Development, Dhaka 1219, Bangladesh
| | | | - Syaefudin Ali Akhmad
- Department of Biochemistry, Faculty of Medicine, Islamic University of Indonesia, Yogyakarta 55584, Indonesia
| |
Collapse
|
8
|
Lumngwena EN, Skatulla S, Blackburn JM, Ntusi NAB. Mechanistic implications of altered protein expression in rheumatic heart disease. Heart Fail Rev 2020; 27:357-368. [PMID: 32653980 DOI: 10.1007/s10741-020-09993-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Rheumatic heart disease (RHD) is a major cause of cardiovascular morbidity and mortality in low- and middle-income countries, where living conditions promote spread of group A β-haemolytic streptococcus. Autoimmune reactions due to molecular mimicry of bacterial epitopes by host proteins cause acute rheumatic fever (ARF) and subsequent disease progression to RHD. Despite knowledge of the factors that predispose to ARF and RHD, determinants of the progression to valvular damage and the molecular events involved remain incompletely characterised. This review focuses on altered protein expression in heart valves, myocardial tissue and plasma of patients with RHD and pathogenic consequences on RHD. Proteins mainly involved in structural organization of the valve matrix, blood homeostasis and immune response were altered due to RHD pathogenesis. Study of secreted forms of these proteins may aid the development of non-invasive biomarkers for early diagnosis and monitoring outcomes in RHD. Valve replacement surgery, the single evidence-based strategy to improve outcomes in severe RHD, is costly, largely unavailable in low- and middle-income countries (LMIC) and requires specialised facilities. When diagnosed early, penicillin prophylaxis may be used to delay progression to severe valvular damage. Echocardiography and cardiovascular magnetic resonance and the standard imaging tools recommended to confirm early diagnosis remain largely unavailable and inaccessible in most LMIC and both require expensive equipment and highly skilled persons for manipulation as well as interpretation of results. Changes in protein expression in heart valves and myocardium are associated with progressive valvular deformation in RHD. Understanding these protein changes should shed more light on the mechanisms of pathogenicity, while secreted forms of these proteins may provide leads towards a biomarker for non-invasive early detection of RHD.
Collapse
Affiliation(s)
- Evelyn N Lumngwena
- Division of Cardiology, Department of Medicine, Faculty of Health Sciences and Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa.
- Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
- Hatter instititute for Cardiovascualar research in Africa, Departmenent of Medicine, 4th floor Chris Barnard Building, University of Cape Town, Cape Town, South Africa.
- Centre for the Study of Emerging and Re-emerging Infections (CREMER), Institute for Medical Research and Medicinal Plant Studies (IMPM), Ministry of Scientific Research and Innovation, Yaounde, Cameroon.
| | - Sebastian Skatulla
- Department of Civil Engineering, Faculty of Engineering and the Built Environment, University of Cape Town, Cape Town, South Africa
| | - Jonathan M Blackburn
- Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Ntobeko A B Ntusi
- Division of Cardiology, Department of Medicine, Faculty of Health Sciences and Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
- Hatter instititute for Cardiovascualar research in Africa, Departmenent of Medicine, 4th floor Chris Barnard Building, University of Cape Town, Cape Town, South Africa
- Cape Universities Body Imaging Centre, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
9
|
Boire G, Allard-Chamard H. The 4-H of Biomarkers in Arthritis: A Lot of Help, Occasional Harm, Some Hype, Increasing Hope. J Rheumatol 2019; 46:758-763. [DOI: 10.3899/jrheum.190375] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
(Gilles Boire): It was both a pleasure and an honor to present the 2019 Dunlop-Dottridge Lecture. My co-author and I will now discuss benefits and pitfalls of biomarkers developed through emerging techniques, evaluated through the experiential perspective of a seasoned clinician, as they apply to the quest for biomarker identification in rheumatic diseases.
Collapse
|
10
|
Giacomelli R, Afeltra A, Alunno A, Bartoloni-Bocci E, Berardicurti O, Bombardieri M, Bortoluzzi A, Caporali R, Caso F, Cervera R, Chimenti MS, Cipriani P, Coloma E, Conti F, D'Angelo S, De Vita S, Di Bartolomeo S, Distler O, Doria A, Feist E, Fisher BA, Gerosa M, Gilio M, Guggino G, Liakouli V, Margiotta DPE, Meroni P, Moroncini G, Perosa F, Prete M, Priori R, Rebuffi C, Ruscitti P, Scarpa R, Shoenfeld Y, Todoerti M, Ursini F, Valesini G, Vettori S, Vitali C, Tzioufas AG. Guidelines for biomarkers in autoimmune rheumatic diseases - evidence based analysis. Autoimmun Rev 2019; 18:93-106. [PMID: 30408582 DOI: 10.1016/j.autrev.2018.08.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 08/11/2018] [Indexed: 12/21/2022]
Abstract
Autoimmune rheumatic diseases are characterised by an abnormal immune system response, complement activation, cytokines dysregulation and inflammation. In last years, despite many progresses in managing these patients, it has been shown that clinical remission is reached in less than 50% of patients and a personalised and tailored therapeutic approach is still lacking resulting in a significant gap between guidelines and real-world practice. In this context, the need for biomarkers facilitating early diagnosis and profiling those individuals at the highest risk for a poor outcome has become of crucial interest. A biomarker generally refers to a measured characteristic which may be used as an indicator of some biological state or condition. Three different types of medical biomarkers has been suggested: i. mechanistic markers; ii. clinical disease markers; iii. therapeutic markers. A combination of biomarkers from these different groups could be used for an ideal more accurate diagnosis and treatment. However, although a growing body of evidence is focused on improving biomarkers, a significant amount of this information is not integrated on standard clinical care. The overarching aim of this work was to clarify the meaning of specific biomarkers during autoimmune diseases; their possible role in confirming diagnosis, predicting outcome and suggesting specific treatments.
Collapse
Affiliation(s)
- Roberto Giacomelli
- Department of Biotechnological and Applied Clinical Science, Rheumatology Unit, School of Medicine, University of L'Aquila, Delta 6 Building, Via dell'Ospedale, 67100 L'Aquila, Italy.
| | - Antonella Afeltra
- Department of Medicine, Unit of Allergology, Immunology, Rheumatology, Campus Bio-Medico University of Rome, Via Álvaro del Portillo 21, 00128 Rome, Italy
| | - Alessia Alunno
- Rheumatology Unit, Department of Medicine, University of Perugia, Perugia, Italy
| | | | - Onorina Berardicurti
- Department of Biotechnological and Applied Clinical Science, Rheumatology Unit, School of Medicine, University of L'Aquila, Delta 6 Building, Via dell'Ospedale, 67100 L'Aquila, Italy
| | - Michele Bombardieri
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Alessandra Bortoluzzi
- Department of Medical Science, Section of Rheumatology, University of Ferrara and Azienda Ospedaliero-Universitaria S.Anna, Cona, Ferrara, Italy
| | - Roberto Caporali
- IRCCS Policlinico San Matteo Foundation, Division of Rheumatology, University of Pavia, Pavia, Italy
| | - Francesco Caso
- Department of Clinical Medicine and Surgery, Rheumatology Unit, University of Naples Federico II, Naples, Italy
| | - Ricard Cervera
- Department of Autoimmune Diseases, Hospital Clínic, Barcelona, Catalonia, Spain
| | - Maria Sole Chimenti
- Department of Medicina dei Sistemi, Rheumatology, Allergology and Clinical Immunology, University of Rome Tor Vergata, Rome, Italy
| | - Paola Cipriani
- Department of Biotechnological and Applied Clinical Science, Rheumatology Unit, School of Medicine, University of L'Aquila, Delta 6 Building, Via dell'Ospedale, 67100 L'Aquila, Italy
| | - Emmanuel Coloma
- Department of Autoimmune Diseases, Hospital Clínic, Barcelona, Catalonia, Spain
| | - Fabrizio Conti
- Department of Internal Medicine and Medical Specialties, Rheumatology Unit, Sapienza University of Rome, Rome, Italy
| | - Salvatore D'Angelo
- PhD Scholarship in Life Sciences, Department of Health Sciences, University of Catanzaro "Magna Graecia", Catanzaro, Italy
| | - Salvatore De Vita
- Department of Medical and Biological Sciences, Rheumatology Clinic, Azienda Ospedaliero Universitaria S. Maria della Misericordia, University of Udine, Udine, Italy
| | - Salvatore Di Bartolomeo
- Department of Biotechnological and Applied Clinical Science, Rheumatology Unit, School of Medicine, University of L'Aquila, Delta 6 Building, Via dell'Ospedale, 67100 L'Aquila, Italy
| | - Oliver Distler
- Department of Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Andrea Doria
- Rheumatology Unit, Department of Medicine, DIMED, University of Padua, Padua, Italy
| | - Eugen Feist
- Department of Rheumatology and Clinical Immunology of the Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Benjamin A Fisher
- Rheumatology Research Group and Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE), University of Birmingham, Birmingham, UK; Department of Rheumatology, University Hospitals Birmingham NHS Trust, Birmingham, UK
| | - Maria Gerosa
- Immunorheumatology Research Laboratory, Istituto Auxologico Italiano, Milan, Italy
| | - Michele Gilio
- PhD Scholarship in Life Sciences, Department of Health Sciences, University of Catanzaro "Magna Graecia", Catanzaro, Italy
| | - Giuliana Guggino
- Dipartimento Biomedico di Medicina Interna e Specialistica, Rheumatology section, University of Palermo, Italy
| | - Vasiliki Liakouli
- Department of Biotechnological and Applied Clinical Science, Rheumatology Unit, School of Medicine, University of L'Aquila, Delta 6 Building, Via dell'Ospedale, 67100 L'Aquila, Italy
| | - Domenico Paolo Emanuele Margiotta
- Department of Medicine, Unit of Allergology, Immunology, Rheumatology, Campus Bio-Medico University of Rome, Via Álvaro del Portillo 21, 00128 Rome, Italy
| | - Pierluigi Meroni
- Immunorheumatology Research Laboratory, Istituto Auxologico Italiano, Milan, Italy
| | - Gianluca Moroncini
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Federico Perosa
- Department of Biomedical Sciences and Human Oncology (DIMO), Systemic Rheumatic and Autoimmune Diseases Unit, University of Bari Medical School, Bari, Italy
| | - Marcella Prete
- Department of Biomedical Sciences and Human Oncology (DIMO), Systemic Rheumatic and Autoimmune Diseases Unit, University of Bari Medical School, Bari, Italy
| | - Roberta Priori
- Department of Internal Medicine and Medical Specialties, Rheumatology Unit, Sapienza University of Rome, Rome, Italy
| | - Chiara Rebuffi
- Grant Office and Scientific Documentation Center, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - Piero Ruscitti
- Department of Biotechnological and Applied Clinical Science, Rheumatology Unit, School of Medicine, University of L'Aquila, Delta 6 Building, Via dell'Ospedale, 67100 L'Aquila, Italy
| | - Raffaele Scarpa
- Department of Clinical Medicine and Surgery, Rheumatology Unit, University of Naples Federico II, Naples, Italy
| | - Yehuda Shoenfeld
- Zabludowitz Centre for Autoimmune Diseases, Sheba Medical Centre, Tel-Hashomer, Israel
| | - Monica Todoerti
- IRCCS Policlinico San Matteo Foundation, Division of Rheumatology, University of Pavia, Pavia, Italy
| | - Francesco Ursini
- Department of Health Sciences, University of Catanzaro "Magna Graecia", Catanzaro, Italy
| | - Guido Valesini
- Department of Internal Medicine and Medical Specialties, Rheumatology Unit, Sapienza University of Rome, Rome, Italy
| | - Serena Vettori
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | | | - Athanasios G Tzioufas
- Pathophysiology Department, General Hospital of Athens "Laiko", Medical School, National and Kapodistrian University of Athens, Greece
| |
Collapse
|
11
|
Thomas A, Lenglet S, Chaurand P, Déglon J, Mangin P, Mach F, Steffens S, Wolfender JL, Staub C. Mass spectrometry for the evaluation of cardiovascular diseases based on proteomics and lipidomics. Thromb Haemost 2017; 106:20-33. [DOI: 10.1160/th10-12-0812] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 03/18/2011] [Indexed: 01/05/2023]
Abstract
SummaryThe identification and quantification of proteins and lipids is of major importance for the diagnosis, prognosis and understanding of the molecular mechanisms involved in disease development. Owing to its selectivity and sensitivity, mass spectrometry has become a key technique in analytical platforms for proteomic and lipidomic investigations. Using this technique, many strategies have been developed based on unbiased or targeted approaches to highlight or monitor molecules of interest from biomatrices. Although these approaches have largely been employed in cancer research, this type of investigation has been met by a growing interest in the field of cardiovascular disorders, potentially leading to the discovery of novel biomarkers and the development of new therapies. In this paper, we will review the different mass spectrometry- based proteomic and lipidomic strategies applied in cardiovascular diseases, especially atherosclerosis. Particular attention will be given to recent developments and the role of bioinformatics in data treatment. This review will be of broad interest to the medical community by providing a tutorial of how mass spectrometric strategies can support clinical trials.
Collapse
|
12
|
Azimzadeh O, Tapio S. Proteomics landscape of radiation-induced cardiovascular disease: somewhere over the paradigm. Expert Rev Proteomics 2017; 14:987-996. [PMID: 28976223 DOI: 10.1080/14789450.2017.1388743] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Epidemiological studies clearly show that thoracic or whole body exposure to ionizing radiation increases the risk of cardiac morbidity and mortality. Radiation-induced cardiovascular disease (CVD) has been intensively studied during the last ten years but the underlying molecular mechanisms are still poorly understood. Areas covered: Heart proteomics is a powerful tool holding promise for the future research. The central focus of this review is to compare proteomics data on radiation-induced CVD with data arising from proteomics of healthy and diseased cardiac tissue in general. In this context we highlight common and unique features of radiation-related and other heart pathologies. Future prospects and challenges of the field are discussed. Expert commentary: Data from comprehensive cardiac proteomics have deepened the knowledge of molecular mechanisms involved in radiation-induced cardiac dysfunction. State-of-the-art proteomics has the potential to identify novel diagnostic and therapeutic markers of this disease.
Collapse
Affiliation(s)
- Omid Azimzadeh
- a Institute of Radiation Biology , Helmholtz Zentrum München, German Research Center for Environmental Health GmbH , Neuherberg , Germany
| | - Soile Tapio
- a Institute of Radiation Biology , Helmholtz Zentrum München, German Research Center for Environmental Health GmbH , Neuherberg , Germany
| |
Collapse
|
13
|
Mani S, Cannon D, Ohls R, Oprea T, Mathias S, Ballard K, Ursu O, Bologa C. Protein biomarker druggability profiling. J Biomed Inform 2017; 66:241-247. [PMID: 28131723 DOI: 10.1016/j.jbi.2017.01.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 12/31/2016] [Accepted: 01/24/2017] [Indexed: 11/24/2022]
Abstract
Developing automated and interactive methods for building a model by incorporating mechanistic and potentially causal annotations of ranked biomarkers of a disease or clinical condition followed by a mapping into a contextual framework in disease-linked biochemical pathways can be used for potential drug-target evaluation and for proposing new drug targets. We demonstrate the potential of this approach using ranked protein biomarkers obtained in neonatal sepsis by enrolling 127 infants (39 infants with late onset neonatal sepsis and 88 control infants) and by performing a focused proteomic profile of the sera and by applying the interactive druggability profiling algorithm (DPA) developed by us.
Collapse
Affiliation(s)
- Subramani Mani
- University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States.
| | - Daniel Cannon
- University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States.
| | - Robin Ohls
- University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States.
| | - Tudor Oprea
- University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States.
| | - Stephen Mathias
- University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States.
| | | | - Oleg Ursu
- University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States.
| | - Cristian Bologa
- University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States.
| |
Collapse
|
14
|
Kim EH, Galchev VI, Kim JY, Misek SA, Stevenson TK, Campbell MD, Pagani FD, Day SM, Johnson TC, Washburn JG, Vikstrom KL, Michele DE, Misek DE, Westfall MV. Differential protein expression and basal lamina remodeling in human heart failure. Proteomics Clin Appl 2016; 10:585-96. [PMID: 26756417 DOI: 10.1002/prca.201500099] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/27/2015] [Accepted: 01/05/2016] [Indexed: 12/17/2022]
Abstract
PURPOSE A goal of this study was to identify and investigate previously unrecognized components of the remodeling process in the progression to heart failure by comparing protein expression in ischemic failing (F) and nonfailing (NF) human hearts. EXPERIMENTAL DESIGN Protein expression differences were investigated using multidimensional protein identification and validated by Western analysis. This approach detected basal lamina (BL) remodeling, and further studies analyzed samples for evidence of structural BL remodeling. A rat model of pressure overload (PO) was studied to determine whether nonischemic stressors also produce BL remodeling and impact cellular adhesion. RESULTS Differential protein expression of collagen IV, laminin α2, and nidogen-1 indicated BL remodeling develops in F versus NF hearts Periodic disruption of cardiac myocyte BL accompanied this process in F, but not NF heart. The rat PO myocardium also developed BL remodeling and compromised myocyte adhesion compared to sham controls. CONCLUSIONS AND CLINICAL RELEVANCE Differential protein expression and evidence of structural and functional BL alterations develop during heart failure. The compromised adhesion associated with this remodeling indicates a high potential for dysfunctional cellular integrity and tethering in failing myocytes. Therapeutically targeting BL remodeling could slow or prevent the progression of heart disease.
Collapse
Affiliation(s)
- Evelyn H Kim
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | | | | | - Sean A Misek
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Tamara K Stevenson
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Matthew D Campbell
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Francis D Pagani
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Sharlene M Day
- Cardiovascular Division, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - T Craig Johnson
- DNA Sequencing and Microarray Facility, University of Michigan, Ann Arbor, MI, USA
| | - Joseph G Washburn
- DNA Sequencing and Microarray Facility, University of Michigan, Ann Arbor, MI, USA
| | - Karen L Vikstrom
- Cardiovascular Division, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Daniel E Michele
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.,Cardiovascular Division, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - David E Misek
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Margaret V Westfall
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI, USA.,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
15
|
Overview of proteomics studies in obstructive sleep apnea. Sleep Med 2015; 16:437-45. [PMID: 25770042 DOI: 10.1016/j.sleep.2014.11.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 11/25/2014] [Accepted: 11/27/2014] [Indexed: 02/06/2023]
Abstract
Obstructive sleep apnea (OSA) is an underdiagnosed common public health concern causing deleterious effects on metabolic and cardiovascular health. Although much has been learned regarding the pathophysiology and consequences of OSA in the past decades, the molecular mechanisms associated with such processes remain poorly defined. The advanced high-throughput proteomics-based technologies have become a fundamental approach for identifying novel disease mediators as potential diagnostic and therapeutic targets for many diseases, including OSA. Here, we briefly review OSA pathophysiology and the technological advances in proteomics and the first results of its application to address critical issues in the OSA field.
Collapse
|
16
|
Cuello F, Shankar-Hari M, Mayr U, Yin X, Marshall M, Suna G, Willeit P, Langley SR, Jayawardhana T, Zeller T, Terblanche M, Shah AM, Mayr M. Redox state of pentraxin 3 as a novel biomarker for resolution of inflammation and survival in sepsis. Mol Cell Proteomics 2014; 13:2545-57. [PMID: 24958171 PMCID: PMC4188985 DOI: 10.1074/mcp.m114.039446] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In an endotoxaemic mouse model of sepsis, a tissue-based proteomics approach for biomarker discovery identified long pentraxin 3 (PTX3) as the lead candidate for inflamed myocardium. When the redox-sensitive oligomerization state of PTX3 was further investigated, PTX3 accumulated as an octamer as a result of disulfide-bond formation in heart, kidney, and lung—common organ dysfunctions seen in patients with sepsis. Oligomeric moieties of PTX3 were also detectable in circulation. The oligomerization state of PTX3 was quantified over the first 11 days in critically ill adult patients with sepsis. On admission day, there was no difference in the oligomerization state of PTX3 between survivors and non-survivors. From day 2 onward, the conversion of octameric to monomeric PTX3 was consistently associated with a greater survival after 28 days of follow-up. For example, by day 2 post-admission, octameric PTX3 was barely detectable in survivors, but it still constituted more than half of the total PTX3 in non-survivors (p < 0.001). Monomeric PTX3 was inversely associated with cardiac damage markers NT-proBNP and high-sensitivity troponin I and T. Relative to the conventional measurements of total PTX3 or NT-proBNP, the oligomerization of PTX3 was a superior predictor of disease outcome.
Collapse
Affiliation(s)
- Friederike Cuello
- From the ‡King's British Heart Foundation Centre, King's College London, SE5 9NU London, UK; §Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Centre, University Medical Center Hamburg-Eppendorf, Hamburg, 20246 Germany; ¶DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany
| | - Manu Shankar-Hari
- ‖Critical Care Medicine, Guy's and St Thomas' NHS Foundation Trust, London, SE1 7EH UK; **Division of Asthma Allergy and Lung Biology, King's College, London SE1 9RT, UK
| | - Ursula Mayr
- From the ‡King's British Heart Foundation Centre, King's College London, SE5 9NU London, UK
| | - Xiaoke Yin
- From the ‡King's British Heart Foundation Centre, King's College London, SE5 9NU London, UK
| | - Melanie Marshall
- From the ‡King's British Heart Foundation Centre, King's College London, SE5 9NU London, UK
| | - Gonca Suna
- From the ‡King's British Heart Foundation Centre, King's College London, SE5 9NU London, UK
| | - Peter Willeit
- ‡‡Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; §§Department of Neurology, Innsbruck Medical University, Innsbruck, 6020 Austria
| | - Sarah R Langley
- From the ‡King's British Heart Foundation Centre, King's College London, SE5 9NU London, UK
| | - Tamani Jayawardhana
- From the ‡King's British Heart Foundation Centre, King's College London, SE5 9NU London, UK
| | - Tanja Zeller
- ¶¶Clinic for General and Interventional Cardiology, University Heart Centre Hamburg, Hamburg 20246, Germany
| | - Marius Terblanche
- ‖Critical Care Medicine, Guy's and St Thomas' NHS Foundation Trust, London, SE1 7EH UK
| | - Ajay M Shah
- From the ‡King's British Heart Foundation Centre, King's College London, SE5 9NU London, UK
| | - Manuel Mayr
- From the ‡King's British Heart Foundation Centre, King's College London, SE5 9NU London, UK;
| |
Collapse
|
17
|
Fu P, Yang L, Sun Y, Ye L, Cao Z, Tang K. Target network differences between western drugs and Chinese herbal ingredients in treating cardiovascular disease. BMC Bioinformatics 2014; 15 Suppl 4:S3. [PMID: 25104437 PMCID: PMC4095000 DOI: 10.1186/1471-2105-15-s4-s3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background Western drugs have achieved great successes in CVDs treatment. However, they may lead to some side effects and drug resistance. On the other hand, more and more studies found that Traditional Chinese herbs have efficient therapeutic effects for CVDs, while their therapeutic mechanism is still not very clear. It may be a good view towards molecules, targets and network to decipher whether difference exists between anti-CVD western drugs and Chinese herbal ingredients. Results Anti-CVD western drugs and Chinese herbal ingredients, as well as their targets were thoroughly collected in this work. The similarities and the differences between the herbal ingredients and the western drugs were deeply explored based on three target-based perspectives including biochemical property, regulated pathway and disease network. The biological function of herbal ingredients' targets is more complex than that of the western drugs' targets. The signal transduction and immune system associated signaling pathways, apoptosis associated pathways may be the most important pathway for herbal ingredients, however the western drugs incline to regulate vascular smooth muscle contraction associated pathways. Chinese herbal ingredients prefer to regulate the downstream proteins of apoptosis associated pathway; while the western drugs incline to regulate the upstream proteins of VECC (Vascular Epidermal Cells Contraction) related pathways. Conclusion In summary, the characteristics identified in this study would be valuable for designing new network-based multi-target CVD drugs or vaccine adjuvants.
Collapse
|
18
|
Fu Z, Wang M, Everett A, Lakatta E, Van Eyk J. Can proteomics yield insight into aging aorta? Proteomics Clin Appl 2013; 7:477-89. [PMID: 23788441 DOI: 10.1002/prca.201200138] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 06/13/2013] [Accepted: 06/14/2013] [Indexed: 12/16/2022]
Abstract
The aging aorta exhibits structural and physiological changes that are reflected in the proteome of its component cells types. The advance in proteomic technologies has made it possible to analyze the quantity of proteins associated with the natural history of aortic aging. These alterations reflect the molecular and cellular mechanisms of aging and could provide an opportunity to predict vascular health. This paper focuses on whether discoveries stemming from the application of proteomic approaches of the intact aging aorta or vascular smooth muscle cells can provide useful insights. Although there have been limited studies to date, a number of interesting proteins have been identified that are closely associated with aging in the rat aorta. Such proteins, including milk fat globule-EGF factor 8, matrix metalloproteinase type-2, and vitronectin, could be used as indicators of vascular health, or even explored as therapeutic targets for aging-related vascular diseases.
Collapse
Affiliation(s)
- Zongming Fu
- Department of Pediatrics, The Johns Hopkins University, Baltimore, MD 21224, USA
| | | | | | | | | |
Collapse
|
19
|
Mayr M, Zampetaki A, Willeit P, Willeit J, Kiechl S. MicroRNAs within the continuum of postgenomics biomarker discovery. Arterioscler Thromb Vasc Biol 2013; 33:206-14. [PMID: 23325478 DOI: 10.1161/atvbaha.112.300141] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 11/21/2012] [Indexed: 12/14/2022]
Abstract
The postgenomic shift in paradigm from reductionism to systems-wide network inference has increased recognition that cardiovascular diseases are not simply determined by the genome but arise from an interaction and dynamic dysregulation of gene regulatory networks, proteins, and metabolic alterations. The advent of postgenomic technologies promises to interrogate these complex pathophysiological perturbations by applying concepts of systemic relationships to biomarker discovery. A multibiomarker panel consisting of biomarkers capturing different levels of information (eg, microRNAs to assess endothelial and platelet activation, molecular lipid species to profile metabolic status, and proteolytic degradation products to assess vascular integrity) could outperform inflammatory biomarkers without vascular specificity in their ability of predicting cardiovascular risk. As atherosclerosis develops over decades, different biomarkers may be required for different stages of disease. Thus far, there is no simple blood test to directly assess the health of blood vessels or identify vulnerable patients. We discuss strategies for biomarker discovery using post genomics technologies, with a particular focus on circulating microRNAs. The aim is to reveal distinctive cardiovascular phenotypes and identify biomarker signatures that complement the Framingham risk scores in clinical decision-making and in a stratified medicine approach for early preventive treatment of disease.
Collapse
Affiliation(s)
- Manuel Mayr
- King's British Heart Foundation Centre, King's College London, 125 Coldharbour Lane, London SE5 9NU, United Kingdom.
| | | | | | | | | |
Collapse
|
20
|
Ning M, Lopez M, Cao J, Buonanno FS, Lo EH. Application of proteomics to cerebrovascular disease. Electrophoresis 2012; 33:3582-97. [PMID: 23161401 PMCID: PMC3712851 DOI: 10.1002/elps.201200481] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 10/04/2012] [Accepted: 10/05/2012] [Indexed: 12/12/2022]
Abstract
While neurovascular diseases such as ischemic and hemorrhagic stroke are the leading causes of disability in the world, the repertoire of therapeutic interventions has remained remarkably limited. There is a dire need to develop new diagnostic, prognostic, and therapeutic options. The study of proteomics is particularly enticing for cerebrovascular diseases such as stroke, which most likely involve multiple gene interactions resulting in a wide range of clinical phenotypes. Currently, rapidly progressing neuroproteomic techniques have been employed in clinical and translational research to help identify biologically relevant pathways, to understand cerebrovascular pathophysiology, and to develop novel therapeutics and diagnostics. Future integration of proteomic with genomic, transcriptomic, and metabolomic studies will add new perspectives to better understand the complexities of neurovascular injury. Here, we review cerebrovascular proteomics research in both preclinical (animal, cell culture) and clinical (blood, urine, cerebrospinal fluid, microdialyates, tissue) studies. We will also discuss the rewards, challenges, and future directions for the application of proteomics technology to the study of various disease phenotypes. To capture the dynamic range of cerebrovascular injury and repair with a translational targeted and discovery approach, we emphasize the importance of complementing innovative proteomic technology with existing molecular biology models in preclinical studies, and the need to advance pharmacoproteomics to directly probe clinical physiology and gauge therapeutic efficacy at the bedside.
Collapse
Affiliation(s)
- Mingming Ning
- Clinical Proteomics Research Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| | | | | | | | | |
Collapse
|
21
|
Abstract
The conventional reductionist approach to cardiovascular research investigates individual candidate factors or linear signalling pathways but ignores more complex interactions in biological systems. The advent of molecular profiling technologies that focus on a global characterization of whole complements allows an exploration of the interconnectivity of pathways during pathophysiologically relevant processes, but has brought about the issue of statistical analysis and data integration. Proteins identified by differential expression as well as those in protein–protein interaction networks identified through experiments and through computational modelling techniques can be used as an initial starting point for functional analyses. In combination with other ‘-omics’ technologies, such as transcriptomics and metabolomics, proteomics explores different aspects of disease, and the different pillars of observations facilitate the data integration in disease-specific networks. Ultimately, a systems biology approach may advance our understanding of cardiovascular disease processes at a ‘biological pathway’ instead of a ‘single molecule’ level and accelerate progress towards disease-modifying interventions.
Collapse
Affiliation(s)
- Sarah R Langley
- King's British Heart Foundation Centre, King's College London, 125 Coldharbour Lane, London SE5 9NU, UK
| | | | | | | | | |
Collapse
|
22
|
SHINOHARA M, SAKURAI T, SAKAO S, YANO T, BECKER C, MATSUMOTO C, OGAWA K, FUKUTAKE M, YAMAMOTO M, TATSUMI K. Plasma proteomic analysis in patients with obstructive sleep apnea syndrome. Sleep Biol Rhythms 2012. [DOI: 10.1111/j.1479-8425.2012.00536.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Pula G, Perera S, Prokopi M, Sidibe A, Boulanger CM, Mayr M. Proteomic analysis of secretory proteins and vesicles in vascular research. Proteomics Clin Appl 2012; 2:882-91. [PMID: 21136886 DOI: 10.1002/prca.200800040] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The release of proteins and membrane vesicles in the bloodstream regulates diverse vascular processes, both physiological, such as angiogenesis and haemostasis, and pathological, such as atherosclerosis and atherothrombosis. Proteomics, beside its canonical application for the expression profiling in cells and organs, can be applied to the study of secreted proteins and microvesicles, which play a significant role in the homeostasis of the vasculature, and the development of the atherosclerotic disease.
Collapse
Affiliation(s)
- Giordano Pula
- Cardiovascular Division, King's College London, London, UK
| | | | | | | | | | | |
Collapse
|
24
|
Zhang H, Ge Y. Comprehensive analysis of protein modifications by top-down mass spectrometry. ACTA ACUST UNITED AC 2012; 4:711. [PMID: 22187450 DOI: 10.1161/circgenetics.110.957829] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Mass spectrometry (MS)-based proteomics is playing an increasingly important role in cardiovascular research. Proteomics includes identification and quantification of proteins and the characterization of protein modifications, such as posttranslational modifications and sequence variants. The conventional bottom-up approach, involving proteolytic digestion of proteins into small peptides before MS analysis, is routinely used for protein identification and quantification with high throughput and automation. Nevertheless, it has limitations in the analysis of protein modifications, mainly because of the partial sequence coverage and loss of connections among modifications on disparate portions of a protein. An alternative approach, top-down MS, has emerged as a powerful tool for the analysis of protein modifications. The top-down approach analyzes whole proteins directly, providing a "bird's-eye" view of all existing modifications. Subsequently, each modified protein form can be isolated and fragmented in the mass spectrometer to locate the modification site. The incorporation of the nonergodic dissociation methods, such as electron-capture dissociation (ECD), greatly enhances the top-down capabilities. ECD is especially useful for mapping labile posttranslational modifications that are well preserved during the ECD fragmentation process. Top-down MS with ECD has been successfully applied to cardiovascular research, with the unique advantages in unraveling the molecular complexity, quantifying modified protein forms, complete mapping of modifications with full-sequence coverage, discovering unexpected modifications, identifying and quantifying positional isomers, and determining the order of multiple modifications. Nevertheless, top-down MS still needs to overcome some technical challenges to realize its full potential. Herein, we reviewed the advantages and challenges of the top-down method, with a focus on its application in cardiovascular research.
Collapse
Affiliation(s)
- Han Zhang
- Department of Physiology, School of Medicine and Public Health, University of Wisconsin-Madison, USA
| | | |
Collapse
|
25
|
Cordwell SJ, Edwards AVG, Liddy KA, Moshkanbaryans L, Solis N, Parker BL, Yong ASC, Wong C, Kritharides L, Hambly BD, White MY. Release of tissue-specific proteins into coronary perfusate as a model for biomarker discovery in myocardial ischemia/reperfusion injury. J Proteome Res 2012; 11:2114-26. [PMID: 22250753 DOI: 10.1021/pr2006928] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Diagnosis of acute coronary syndromes is based on protein biomarkers, such as the cardiac troponins (cTnI/cTnT) and creatine kinase (CK-MB) that are released into the circulation. Biomarker discovery is focused on identifying very low abundance tissue-derived analytes from within albumin-rich plasma, in which the wide dynamic range of the native protein complement hinders classical proteomic investigations. We employed an ex vivo rabbit model of myocardial ischemia/reperfusion (I/R) injury using Langendorff buffer perfusion. Nonrecirculating perfusate was collected over a temporal profile of 60 min reperfusion following brief, reversible ischemia (15 min; 15I/60R) for comparison with irreversible I/R (60I/60R). Perfusate proteins were separated using two-dimensional gel electrophoresis (2-DE) and identified by mass spectrometry (MS), revealing 26 tissue-specific proteins released during reperfusion post-15I. Proteins released during irreversible I/R (60I/60R) were profiled using gel-based (2-DE and one-dimensional gel electrophoresis coupled to liquid chromatography and tandem mass spectrometry; geLC-MS) and gel-free (LC-MS/MS) methods. A total of 192 tissue-specific proteins were identified during reperfusion post-60I. Identified proteins included those previously associated with I/R (myoglobin, CK-MB, cTnI, and cTnT), in addition to examples currently under investigation in large cohort studies (heart-type fatty acid binding protein; FABPH). The postischemic release profile of a novel cardiac-specific protein, cysteine and glycine-rich protein 3 (Csrp3; cardiac LIM domain protein) was validated by Western blot analysis. We also identified Csrp3 in serum from 6 of 8 patients postreperfusion following acute myocardial infarction. These studies indicate that animal modeling of biomarker release using ex vivo buffer perfused tissue to limit the presence of obfuscating plasma proteins may identify candidates for further study in humans.
Collapse
Affiliation(s)
- Stuart J Cordwell
- School of Molecular Bioscience, The University of Sydney, and Department of Cardiology, Concord Repatriation General Hospital, New South Wales, Australia 2006.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Lindsey ML, Weintraub ST, Lange RA. Using extracellular matrix proteomics to understand left ventricular remodeling. CIRCULATION. CARDIOVASCULAR GENETICS 2012; 5:o1-7. [PMID: 22337931 PMCID: PMC3282021 DOI: 10.1161/circgenetics.110.957803] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Survival following myocardial infarction (MI) has improved substantially over the last 40 years; however, the incidence of subsequent congestive heart failure has dramatically increased as a consequence. Discovering plasma markers that signify adverse cardiac remodeling may allow high-risk patients to be recognized earlier and may provide an improved way to assess treatment efficacy. Alterations in extracellular matrix (ECM) regulate cardiac remodeling following MI and potentially provide a large array of candidate indicators. The field of cardiac proteomics has progressed rapidly over the past 20 years, since publication of the first two-dimensional electrophoretic gels of left ventricle proteins. Proteomic approaches are now routinely utilized to better understand how the left ventricle responds to injury. In this review, we will discuss how methods have developed to allow comprehensive evaluation of the ECM proteome. We will explain how ECM proteomic data can be used to predict adverse remodeling for an individual patient and highlight future directions. Although this review will focus on the use of ECM proteomics to better understand post-MI remodeling responses, these approaches have applicability to a wide-range of cardiac pathologies, including pressure overload hypertrophy, viral myocarditis, and non-ischemic heart failure.
Collapse
Affiliation(s)
- Merry L Lindsey
- Department of Medicine and Department of Biochemistry, University of Texas Health Science Center at San Antonio, TX, USA.
| | | | | |
Collapse
|
27
|
Didangelos A, Yin X, Mayr M. Method for protein subfractionation of cardiovascular tissues before DIGE analysis. Methods Mol Biol 2012; 854:287-297. [PMID: 22311768 DOI: 10.1007/978-1-61779-573-2_20] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Difference gel electrophoresis (DIGE) (Electrophoresis 18, 2071-2077, 1997, 1) is widely used in cardiovascular research. However, the dynamic range limitations stemming from contaminating plasma proteins and highly abundant extracellular matrix components can make cardiovascular tissues difficult to analyze. Here we describe a novel methodology for biochemical subfractionation of cardiovascular tissues before DIGE analysis.
Collapse
|
28
|
Pathogenesis of Varicose Veins. J Vasc Interv Radiol 2012; 23:33-9; quiz 40. [DOI: 10.1016/j.jvir.2011.09.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2011] [Revised: 08/31/2011] [Accepted: 09/09/2011] [Indexed: 01/24/2023] Open
|
29
|
Zhang J, Guy MJ, Norman HS, Chen YC, Xu Q, Dong X, Guner H, Wang S, Kohmoto T, Young KH, Moss RL, Ge Y. Top-down quantitative proteomics identified phosphorylation of cardiac troponin I as a candidate biomarker for chronic heart failure. J Proteome Res 2011; 10:4054-65. [PMID: 21751783 DOI: 10.1021/pr200258m] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The rapid increase in the prevalence of chronic heart failure (CHF) worldwide underscores an urgent need to identify biomarkers for the early detection of CHF. Post-translational modifications (PTMs) are associated with many critical signaling events during disease progression and thus offer a plethora of candidate biomarkers. We have employed a top-down quantitative proteomics methodology for comprehensive assessment of PTMs in whole proteins extracted from normal and diseased tissues. We systematically analyzed 36 clinical human heart tissue samples and identified phosphorylation of cardiac troponin I (cTnI) as a candidate biomarker for CHF. The relative percentages of the total phosphorylated cTnI forms over the entire cTnI populations (%P(total)) were 56.4 ± 3.5%, 36.9 ± 1.6%, 6.1 ± 2.4%, and 1.0 ± 0.6% for postmortem hearts with normal cardiac function (n = 7), early stage of mild hypertrophy (n = 5), severe hypertrophy/dilation (n = 4), and end-stage CHF (n = 6), respectively. In fresh transplant samples, the %P(total) of cTnI from nonfailing donor (n = 4), and end-stage failing hearts (n = 10) were 49.5 ± 5.9% and 18.8 ± 2.9%, respectively. Top-down MS with electron capture dissociation unequivocally localized the altered phosphorylation sites to Ser22/23 and determined the order of phosphorylation/dephosphorylation. This study represents the first clinical application of top-down MS-based quantitative proteomics for biomarker discovery from tissues, highlighting the potential of PTMs as disease biomarkers.
Collapse
Affiliation(s)
- Jiang Zhang
- School of Medicine and Public Health and School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Didangelos A, Yin X, Mandal K, Saje A, Smith A, Xu Q, Jahangiri M, Mayr M. Extracellular matrix composition and remodeling in human abdominal aortic aneurysms: a proteomics approach. Mol Cell Proteomics 2011; 10:M111.008128. [PMID: 21593211 PMCID: PMC3149094 DOI: 10.1074/mcp.m111.008128] [Citation(s) in RCA: 164] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Abdominal aortic aneurysms (AAA) are characterized by pathological remodeling of the aortic extracellular matrix (ECM). However, besides the well-characterized elastolysis and collagenolysis little is known about changes in other ECM proteins. Previous proteomics studies on AAA focused on cellular changes without emphasis on the ECM. In the present study, ECM proteins and their degradation products were selectively extracted from aneurysmal and control aortas using a solubility-based subfractionation methodology and analyzed by gel-liquid chromatography-tandem MS and label-free quantitation. The proteomics analysis revealed novel changes in the ECM of AAA, including increased expression as well as degradation of collagen XII, thrombospondin 2, aortic carboxypeptidase-like protein, periostin, fibronectin and tenascin. Proteomics also confirmed the accumulation of macrophage metalloelastase (MMP-12). Incubation of control aortic tissue with recombinant MMP-12 resulted in the extensive fragmentation of these glycoproteins, most of which are novel substrates of MMP-12. In conclusion, our proteomics methodology allowed the first detailed analysis of the ECM in AAA and identified markers of pathological ECM remodeling related to MMP-12 activity.
Collapse
|
31
|
Abstract
The concept of using stem cells for cardiovascular repair holds great potential, but uncertainties in preclinical experiments must be addressed before their therapeutic application. Contemporary proteomic techniques can help to characterize cell preparations more thoroughly and identify some of the potential causes that may lead to a high failure rate in clinical trials. The first part of this review discusses the broader application of proteomics to stem cell research by providing an overview of the main proteomic technologies and how they might help the translation of stem cell therapy. The second part focuses on the controversy about endothelial progenitor cells (EPCs) and raises cautionary flags for marker assignment and assessment of cell purity. A proteomics-led approach in early outgrowth EPCs has already raised the awareness that markers used to define their endothelial potential may arise from an uptake of platelet proteins. A platelet microparticle-related transfer of endothelial characteristics to mononuclear cells can result in a misinterpretation of the assay. The necessity to perform counterstaining for platelet markers in this setting is not fully appreciated. Similarly, the presence of platelets and platelet microparticles is not taken into consideration when functional improvements are directly attributed to EPCs, whereas saline solutions or plain medium serve as controls. Thus, proteomics shed new light on the caveats of a common stem cell assay in cardiovascular research, which might explain some of the inconsistencies in the field.
Collapse
Affiliation(s)
- Marianna Prokopi
- King's British Heart Foundation Centre, King's College London, United Kingdom
| | | |
Collapse
|
32
|
Moxon JV, Parr A, Emeto TI, Walker P, Norman PE, Golledge J. Diagnosis and monitoring of abdominal aortic aneurysm: current status and future prospects. Curr Probl Cardiol 2011; 35:512-48. [PMID: 20932435 DOI: 10.1016/j.cpcardiol.2010.08.004] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abdominal aortic aneurysm (AAA) remains an important cause of morbidity and mortality in elderly men, and prevalence is predicted to increase in parallel with a global aging population. AAA is commonly asymptomatic, and in the absence of routine screening, diagnosis is usually incidental when imaging to assess unrelated medical complaints. In the absence of approved diagnostic and prognostic markers, AAAs are monitored conservatively via medical imaging until aortic diameter approaches 50-55 mm and surgical repair is performed. There is currently significant interest in identifying molecular markers of diagnostic and prognostic value for AAA. Here we outline the current guidelines for AAA management and discuss modern scientific techniques currently employed to identify improved diagnostic and prognostic markers.
Collapse
|
33
|
Liu X, Song C, Chen R, Jiang X, Jin Y, Zou H. Identification of Angiotensin I-Converting Enzyme Inhibitors in Peptides Mixture of Hydrolyzed Red Deer Plasma with Proteomic Approach. CHINESE J CHEM 2010. [DOI: 10.1002/cjoc.201090282] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
34
|
Techanukul T, Pereira F, Lipka A, Suckling J, Wood SL, Lewis P, Hassard S, Cass AEG, Nagy JM. CE-based sample quality assessment prior to 2-D gel electrophoresis: Towards the standardization of gel-based proteomics. J Sep Sci 2010; 33:2536-46. [DOI: 10.1002/jssc.200900819] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
35
|
Zampetaki A, Kiechl S, Drozdov I, Willeit P, Mayr U, Prokopi M, Mayr A, Weger S, Oberhollenzer F, Bonora E, Shah A, Willeit J, Mayr M. Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ Res 2010; 107:810-7. [PMID: 20651284 DOI: 10.1161/circresaha.110.226357] [Citation(s) in RCA: 1114] [Impact Index Per Article: 74.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
RATIONALE MicroRNAs (miRNAs) have been implicated in the epigenetic regulation of key metabolic, inflammatory, and antiangiogenic pathways in type 2 diabetes (DM) and may contribute to common disease complications. OBJECTIVE In this study, we explore plasma miRNA profiles in patients with DM. METHODS AND RESULTS Total RNA was extracted from plasma samples of the prospective population-based Bruneck study. A total of 13 candidate miRNAs identified by microarray screening and miRNA network inference were quantified by quantitative PCR in all diabetic patients of the Bruneck study and age- and sex-matched controls (1995 evaluation, n=80 each). Quantitative PCR assessment revealed lower plasma levels of miR-20b, miR-21, miR-24, miR-15a, miR-126, miR-191, miR-197, miR-223, miR-320, and miR-486 in prevalent DM, but a modest increase of miR-28-3p. Findings emerged as robust in multivariable analysis and were independent of the standardization procedure applied. For endothelial miR-126, results were confirmed in the entire Bruneck cohort (n=822) in univariate (odds ratio [95% confidence interval], 0.38 [0.26 to 0.55]; P=2.72 × 10(-7)) and multivariate analyses (0.57 [0.37 to 0.86]; P=0.0082). Importantly, reduced miR-15a, miR-29b, miR-126, miR-223, and elevated miR-28-3p levels antedated the manifestation of disease. Most differences in miRNA levels were replicated in plasma obtained from hyperglycemic Lep(ob) mice. High glucose concentrations reduced the miR-126 content of endothelial apoptotic bodies. Similarly in patients with DM, the reduction of miR-126 was confined to circulating vesicles in plasma. CONCLUSIONS We reveal a plasma miRNA signature for DM that includes loss of endothelial miR-126. These findings might explain the impaired peripheral angiogenic signaling in patients with DM.
Collapse
Affiliation(s)
- Anna Zampetaki
- King's British Heart Foundation Centre, King's College London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Moseley FL, Bicknell KA, Marber MS, Brooks G. The use of proteomics to identify novel therapeutic targets for the treatment of disease. J Pharm Pharmacol 2010; 59:609-28. [PMID: 17524226 DOI: 10.1211/jpp.59.5.0001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Abstract
The completion of the Human Genome Project has revealed a multitude of potential avenues for the identification of therapeutic targets. Extensive sequence information enables the identification of novel genes but does not facilitate a thorough understanding of how changes in gene expression control the molecular mechanisms underlying the development and regulation of a cell or the progression of disease. Proteomics encompasses the study of proteins expressed by a population of cells, and evaluates changes in protein expression, post-translational modifications, protein interactions, protein structure and splice variants, all of which are imperative for a complete understanding of protein function within the cell. From the outset, proteomics has been used to compare the protein profiles of cells in healthy and diseased states and as such can be used to identify proteins associated with disease development and progression. These candidate proteins might provide novel targets for new therapeutic agents or aid the development of assays for disease biomarkers. This review provides an overview of the current proteomic techniques available and focuses on their application in the search for novel therapeutic targets for the treatment of disease.
Collapse
Affiliation(s)
- Fleur L Moseley
- School of Pharmacy, The University of Reading, Whiteknights, Reading, Berkshire, RG6 6AP, UK
| | | | | | | |
Collapse
|
37
|
Yin X, Cuello F, Mayr U, Hao Z, Hornshaw M, Ehler E, Avkiran M, Mayr M. Proteomics analysis of the cardiac myofilament subproteome reveals dynamic alterations in phosphatase subunit distribution. Mol Cell Proteomics 2009; 9:497-509. [PMID: 20037178 PMCID: PMC2849712 DOI: 10.1074/mcp.m900275-mcp200] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Myofilament proteins are responsible for cardiac contraction. The myofilament subproteome, however, has not been comprehensively analyzed thus far. In the present study, cardiomyocytes were isolated from rodent hearts and stimulated with endothelin-1 and isoproterenol, potent inducers of myofilament protein phosphorylation. Subsequently, cardiomyocytes were “skinned,” and the myofilament subproteome was analyzed using a high mass accuracy ion trap tandem mass spectrometer (LTQ Orbitrap XL) equipped with electron transfer dissociation. As expected, a small number of myofilament proteins constituted the majority of the total protein mass with several known phosphorylation sites confirmed by electron transfer dissociation. More than 600 additional proteins were identified in the cardiac myofilament subproteome, including kinases and phosphatase subunits. The proteomic comparison of myofilaments from control and treated cardiomyocytes suggested that isoproterenol treatment altered the subcellular localization of protein phosphatase 2A regulatory subunit B56α. Immunoblot analysis of myocyte fractions confirmed that β-adrenergic stimulation by isoproterenol decreased the B56α content of the myofilament fraction in the absence of significant changes for the myosin phosphatase target subunit isoforms 1 and 2 (MYPT1 and MYPT2). Furthermore, immunolabeling and confocal microscopy revealed the spatial redistribution of these proteins with a loss of B56α from Z-disc and M-band regions but increased association of MYPT1/2 with A-band regions of the sarcomere following β-adrenergic stimulation. In summary, we present the first comprehensive proteomics data set of skinned cardiomyocytes and demonstrate the potential of proteomics to unravel dynamic changes in protein composition that may contribute to the neurohormonal regulation of myofilament contraction.
Collapse
Affiliation(s)
- Xiaoke Yin
- King's British Heart Foundation Centre, King's College London, London SE5 9NU, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Tunica DG, Yin X, Sidibe A, Stegemann C, Nissum M, Zeng L, Brunet M, Mayr M. Proteomic analysis of the secretome of human umbilical vein endothelial cells using a combination of free-flow electrophoresis and nanoflow LC-MS/MS. Proteomics 2009; 9:4991-6. [PMID: 19810032 DOI: 10.1002/pmic.200900065] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Human umbilical vein endothelial cells are the most widely used in vitro model for endothelial cells. Their secreted proteins, however, have not been comprehensively analysed so far. In this study, we accomplished to map the secretome of human umbilical vein endothelial cells by combining free-flow electrophoresis with nanoflow LC-MS/MS. This comprehensive analysis provides a basis for future comparative studies of protein secretion by endothelial cells in response to cardiovascular risk factors and is available on our website http://www.vascular-proteomics.com.
Collapse
Affiliation(s)
- David Guillen Tunica
- Pharmacology Laboratory (CDB), Hospital Clinic, IDIBAPS, Barcelona University, CIBERehd, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Jacquet S, Yin X, Sicard P, Clark J, Kanaganayagam GS, Mayr M, Marber MS. Identification of cardiac myosin-binding protein C as a candidate biomarker of myocardial infarction by proteomics analysis. Mol Cell Proteomics 2009; 8:2687-99. [PMID: 19721077 DOI: 10.1074/mcp.m900176-mcp200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Acute myocardial infarction (AMI) is a common cause of death for which effective treatments are available provided that diagnosis is rapid. The current diagnostic gold standards are circulating cardiac troponins I and T. However, their slow release delays diagnosis, and their persistence limits their utility in the identification of reinfarction. The aim was to identify candidate biomarkers of AMI. Isolated mouse hearts were perfused with oxygenated protein-free buffer, and coronary effluent was collected after ischemia or during matched normoxic perfusion. Effluents were analyzed using proteomics approaches based on one- or two-dimensional initial separation. Of the 459 proteins identified after ischemia with one-dimensional separation, 320 were not detected in the control coronary effluent. Among these were all classic existing biomarkers of AMI. We also identified the cardiac isoform of myosin-binding protein C in its full-length form and as a 40-kDa degradation product. This protein was not detected in the other murine organs examined, increased markedly with even trivial myocardial infarction, and could be detected in the plasma after myocardial infarction in vivo, a profile compatible with a biomarker of AMI. Two-dimensional fluorescence DIGE of ischemic and control coronary effluents identified more than 200 asymmetric spots verified by swapping dyes. Once again existing biomarkers of injury were confirmed as well as posttranslational modifications of antioxidant proteins such as peroxiredoxins. Perfusing hearts with protein-free buffers provides a platform of graded ischemic injury that allows detailed analysis of protein release and identification of candidate cardiac biomarkers like myosin-binding protein C.
Collapse
Affiliation(s)
- Sebastien Jacquet
- King's College London British Heart Foundation Centre, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
40
|
Arjunan S, Reinartz M, Emde B, Zanger K, Schrader J. Limitations of the colloidal silica method in mapping the endothelial plasma membrane proteome of the mouse heart. Cell Biochem Biophys 2009; 53:135-43. [PMID: 19184541 DOI: 10.1007/s12013-009-9045-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The endothelial cell (EC) membrane is an important interface, which plays a crucial role in signal transduction. Our aim was to selectively purify luminal EC membrane proteins from the coronary vasculature of the isolated perfused mouse heart and analyze its composition with mass spectrometry (MS). To specifically label coronary ECs in the intact heart, the colloidal silica method was applied, which is based on the binding of positively charged colloidal silica to the surface of EC membranes. Transmission electron microscopy revealed the specific labeling of ECs of macro and microvessels. Two different methods of tissue homogenization (Teflon pestle and ultra blade) together with density centrifugation were used for membrane protein enrichment. Enrichment and purity was controlled by Western blot analysis using the EC-specific protein caveolin 1 and various intracellular marker proteins. The ultra blade method resulted in a tenfold enrichment of caveolin 1, while there was negligible contamination as judged by Western blot. However, protein yield was low and required pooling of ten hearts for MS. When enriched endothelial membrane proteins were digested with trypsin and analyzed by LC-MS, a total of 56 proteins could be identified, of which only 12 were membrane proteins. We conclude that coronary endothelial membranes can be conveniently labeled with colloidal silica. However, due to the ionic nature of interaction of colloidal silica with the EC membrane the shear rate required for cardiac homogenization resulted in a substantial loss of specificity.
Collapse
Affiliation(s)
- Selvam Arjunan
- Department of Cardiovascular Physiology, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
41
|
Prokopi M, Pula G, Mayr U, Devue C, Gallagher J, Xiao Q, Boulanger CM, Westwood N, Urbich C, Willeit J, Steiner M, Breuss J, Xu Q, Kiechl S, Mayr M. Proteomic analysis reveals presence of platelet microparticles in endothelial progenitor cell cultures. Blood 2009; 114:723-32. [PMID: 19369228 DOI: 10.1182/blood-2009-02-205930] [Citation(s) in RCA: 228] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The concept of endothelial progenitor cells (EPCs) has attracted considerable interest in cardiovascular research, but despite a decade of research there are still no specific markers for EPCs and results from clinical trials remain controversial. Using liquid chromatography-tandem mass spectrometry, we analyzed the protein composition of microparticles (MPs) originating from the cell surface of EPC cultures. Our data revealed that the conventional methods for isolating mononuclear cells lead to a contamination with platelet proteins. Notably, platelets readily disintegrate into platelet MPs. These platelet MPs are taken up by the mononuclear cell population, which acquires "endothelial" characteristics (CD31, von Willebrand factor [VWF], lectin-binding), and angiogenic properties. In a large population-based study (n = 526), platelets emerged as a positive predictor for the number of colony-forming units and early outgrowth EPCs. Our study provides the first evidence that the cell type consistent with current definitions of an EPC phenotype may arise from an uptake of platelet MPs by mononuclear cells resulting in a gross misinterpretation of their cellular progeny. These findings demonstrate the advantage of using an unbiased proteomic approach to assess cellular phenotypes and advise caution in attributing the benefits in clinical trials using unselected bone marrow mononuclear cells (BMCs) to stem cell-mediated repair.
Collapse
Affiliation(s)
- Marianna Prokopi
- King's British Heart Foundation Centre, King's College London, 125 Coldharbour Lane, London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Nordon I, Brar R, Hinchliffe R, Cockerill G, Loftus I, Thompson M. The role of proteomic research in vascular disease. J Vasc Surg 2009; 49:1602-12. [DOI: 10.1016/j.jvs.2009.02.242] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 02/20/2009] [Accepted: 02/28/2009] [Indexed: 12/23/2022]
|
43
|
McCully JD, Bhasin MK, Daly C, Guerrero MC, Dillon S, Liberman TA, Cowan DB, Mably JD, McGowan FX, Levitsky S. Transcriptomic and proteomic analysis of global ischemia and cardioprotection in the rabbit heart. Physiol Genomics 2009; 38:125-37. [PMID: 19454556 DOI: 10.1152/physiolgenomics.00033.2009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cardioplegia is used to partially alleviate the effects of surgically induced global ischemia injury; however, the molecular mechanisms involved in this cardioprotection remain to be elucidated. To improve the understanding of the molecular processes modulating the effects of global ischemia and the cardioprotection afforded by cardioplegia, we constructed rabbit heart cDNA libraries and isolated, sequenced, and identified a compendium of nonredundant cDNAs for use in transcriptomic and proteomic analyses. New Zealand White rabbits were used to compare the effects of global ischemia and cardioplegia compared with control (nonischemic) hearts. The effects of RNA and protein synthesis on the cardioprotection afforded by cardioplegia were investigated separately by preperfusion with either alpha-amanitin or cycloheximide. Our results demonstrate that cardioplegia partially ameliorates the effects of global ischemia and that the cardioprotection is modulated by RNA- and protein-dependent mechanisms. Transcriptomic and proteomic enrichment analyses indicated that global ischemia downregulated genes/proteins associated with mitochondrial function and energy production, cofactor catabolism, and the generation of precursor metabolites of energy. In contrast, cardioplegia significantly increased differentially expressed genes/proteins associated with the mitochondrion and mitochondrial function and significantly upregulated the biological processes of muscle contraction, involuntary muscle contraction, carboxylic acid and fatty acid catabolic processes, fatty acid beta-oxidation, and fatty acid metabolic processes.
Collapse
Affiliation(s)
- James D McCully
- Division of Cardiothoracic Surgery, Beth Israel Deaconess Medical Center, Harvard Institutes of Medicine, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Mayr M, Grainger D, Mayr U, Leroyer AS, Leseche G, Sidibe A, Herbin O, Yin X, Gomes A, Madhu B, Griffiths JR, Xu Q, Tedgui A, Boulanger CM. Proteomics, metabolomics, and immunomics on microparticles derived from human atherosclerotic plaques. ACTA ACUST UNITED AC 2009; 2:379-88. [PMID: 20031610 DOI: 10.1161/circgenetics.108.842849] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Microparticles (MPs) with procoagulant activity are present in human atherosclerosis, but no detailed information is available on their composition. METHODS AND RESULTS To obtain insights into the role of MPs in atherogenesis, MP proteins were identified by tandem mass spectrometry, metabolite profiles were determined by high-resolution nuclear magnetic resonance spectroscopy, and antibody reactivity was assessed against combinatorial antigen libraries. Plaque MPs expressed surface antigens consistent with their leukocyte origin, including major histocompatibility complex classes I and II, and induced a dose-dependent stimulatory effect on T-cell proliferation. Notably, taurine, the most abundant free organic acid in human neutrophils, which scavenges myeloperoxidase-catalyzed free radicals, was highly enriched in plaque MPs. Moreover, fluorescent labeling of proteins on the MP surface suggested immunoglobulins to be trapped inside, which was confirmed by flow cytometry analysis on permeabilized and nonpermeabilized plaque MPs. Colabeling for CD14 and IgG established that more than 90% of the IgG containing MPs were CD14(+), indicating a macrophage origin. Screening against an antigen library revealed that the immunologic profiles of antibodies in MPs were similar to those found in plaques but differed profoundly from antibodies in plasma and unexpectedly, showed strong reactions with oligosaccharide antigens, in particular blood group antigen A. CONCLUSIONS This study provides the first evidence that immunoglobulins are present within MPs derived from plaque macrophages, that the portfolio of plaque antibodies is different from circulating antibodies in plasma, and that anticarbohydrate antibodies are retained in human atherosclerotic lesions.
Collapse
Affiliation(s)
- Manuel Mayr
- Cardiovascular Division, King's BHF Centre of Research Excellence, King's College London, London, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Kavazis AN, Alvarez S, Talbert E, Lee Y, Powers SK. Exercise training induces a cardioprotective phenotype and alterations in cardiac subsarcolemmal and intermyofibrillar mitochondrial proteins. Am J Physiol Heart Circ Physiol 2009; 297:H144-52. [PMID: 19429812 DOI: 10.1152/ajpheart.01278.2008] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endurance exercise is known to provide cardioprotection against ischemia-reperfusion-induced myocardial injury, and mitochondrial adaptations may play a critical role in this protection. To investigate exercise-induced changes in mitochondrial proteins, we compared the proteome of subsarcolemmal and intermyofibrillar mitochondria isolated from the myocardium of sedentary (control) and exercise-trained Sprague-Dawley rats. To achieve this goal, we utilized isobaric tags for relative and absolute quantitation, which allows simultaneous identification and quantification of proteins between multiple samples. This approach identified a total of 222 cardiac mitochondrial proteins. Importantly, repeated bouts of endurance exercise resulted in significant alterations in 11 proteins within intermyofibrillar mitochondria (seven increased; four decreased) compared with sedentary control animals. Furthermore, exercise training resulted in significant changes in two proteins within subsarcolemmal mitochondria (one increased; one decreased) compared with sedentary control animals. Differentially expressed proteins could be classified into seven functional groups, and several novel and potentially important cardioprotective mediators were identified. We conclude that endurance exercise induces alterations in mitochondrial proteome that may contribute to cardioprotective phenotype. Importantly, based on our findings, pharmacological or other interventions could be used to develop a strategy of protecting the myocardium during an ischemic attack.
Collapse
Affiliation(s)
- Andreas N Kavazis
- Applied Physiology and Kinesiology, Proteomics Division, University of Florida, Gainesville, FL 32611, USA.
| | | | | | | | | |
Collapse
|
46
|
Deford JH, Nuss JE, Amaning J, English RD, Tjernlund D, Papaconstantinou J. High-throughput liquid-liquid fractionation of multiple protein post-translational modifications. J Proteome Res 2009; 8:907-16. [PMID: 19099502 DOI: 10.1021/pr800519g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Post-translational protein modifications have contributed significantly to the identification of macromolecular biomarkers of biological processes. We have modified a two-dimensional HPLC system (Beckman Coulter PF2D ProteomeLab) to create proteome maps of post-translational protein modifications. This system resolves complex protein mixtures by anion exchange chromatofocusing in the first dimension and hydrophobicity (reverse phase chromatography) in the second dimension. The simultaneous identification of multiple protein modifications, accomplished by incorporating a photo diode array (PDA) detector into the PF2D system, facilitates the simultaneous production of three-dimensional proteome maps and visualization of both unmodified and post-translationally modified (PTM) proteins at their signature wavelengths within the proteome. We describe procedures for the simultaneous resolution of proteome maps, the identification of proteins modified by nitration, carbonylation, and phosphorylation, and proteins with unique spectra such as the heme containing proteins.
Collapse
Affiliation(s)
- James H Deford
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77555-0643, USA
| | | | | | | | | | | |
Collapse
|
47
|
Pan S, Aebersold R, Chen R, Rush J, Goodlett DR, McIntosh MW, Zhang J, Brentnall TA. Mass spectrometry based targeted protein quantification: methods and applications. J Proteome Res 2009; 8:787-97. [PMID: 19105742 PMCID: PMC2657955 DOI: 10.1021/pr800538n] [Citation(s) in RCA: 285] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The recent advance in technology for mass spectrometry-based targeted protein quantification has opened new avenues for a broad range of proteomic applications in clinical research. The major breakthroughs are highlighted by the capability of using a "universal" approach to perform quantitative assays for a wide spectrum of proteins with minimum restrictions and the ease of assembling multiplex detections in a single measurement. The quantitative approach relies on the use of synthetic stable isotope labeled peptides or proteins, which precisely mimic their endogenous counterparts and act as internal standards to quantify the corresponding candidate proteins. This report reviews recently developed platform technologies for emerging applications of clinical proteomics and biomarker development.
Collapse
Affiliation(s)
- Sheng Pan
- Department of Pathology, University of Washington, Seattle, Washington 98195, USA.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Alvarez-Llamas G, de la Cuesta F, Barderas MEG, Darde V, Padial LR, Vivanco F. Recent advances in atherosclerosis-based proteomics: new biomarkers and a future perspective. Expert Rev Proteomics 2009; 5:679-91. [PMID: 18937558 DOI: 10.1586/14789450.5.5.679] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Vascular proteomics is providing two main types of data: proteins that actively participate in vascular pathophysiological processes and novel protein candidates that can potentially serve as useful clinical biomarkers. Although both types of proteins can be identified by similar proteomic strategies and methods, it is important to clearly distinguish biomarkers from mediators of disease. A particular protein, or group of proteins, may participate in a pathogenic process but not serve as an effective biomarker. Alternatively, a useful biomarker may not mediate pathogenic pathways associated with disease (i.e., C-reactive protein). To date, there are no clear successful examples in which discovery proteomics has led to a novel useful clinical biomarker in cardiovascular diseases. Nevertheless, new sources of biomarkers are being explored (i.e., secretomes, circulating cells, exosomes and microparticles), an increasing number of novel proteins involved in atherogenesis are constantly described, and new technologies and analytical strategies (i.e., quantitative proteomics) are being developed to access low abundant proteins. Therefore, this presages a new era of discovery and a further step in the practical application to diagnosis, prognosis and early action by medical treatment of cardiovascular diseases.
Collapse
|
49
|
Pula G, Mayr U, Evans C, Prokopi M, Vara DS, Yin X, Astroulakis Z, Xiao Q, Hill J, Xu Q, Mayr M. Proteomics Identifies Thymidine Phosphorylase As a Key Regulator of the Angiogenic Potential of Colony-Forming Units and Endothelial Progenitor Cell Cultures. Circ Res 2009; 104:32-40. [DOI: 10.1161/circresaha.108.182261] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Endothelial progenitor cell (EPC) cultures and colony-forming units (CFUs) have been extensively studied for their therapeutic and diagnostic potential. Recent data suggest a role for EPCs in the release of proangiogenic factors. To identify factors secreted by EPCs, conditioned medium from EPC cultures and CFUs was analyzed using a matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometer combined with offline peptide separation by nanoflow liquid chromatography. Results were verified by RT-PCR and multiplex cytokine assays and complemented by a cellular proteomic analysis of cultured EPCs and CFUs using difference in-gel electrophoresis. This extensive proteomic analysis revealed the presence of the proangiogenic factor thymidine phosphorylase (TP). Functional experiments demonstrated that inhibition of TP by 5-bromo-6-amino-uracil or gene silencing resulted in a significant increase in basal and oxidative stress-induced apoptosis, whereas supplementation with 2-deoxy-
d
-ribose-1-phosphate (dRP), the enzymatic product of TP, abrogated this effect. Moreover, dRP produced in EPC cultures stimulated endothelial cell migration in a paracrine manner, as demonstrated by gene-silencing experiments in transmigration and wound repair assays. RGD peptides and inhibitory antibodies to integrin αvβ3 attenuated the effect of conditioned medium from EPC cultures on endothelial migration. Finally, the effect of TP on angiogenesis was investigated by implantation of Matrigel plugs in mice. In these in vivo experiments, dRP strongly promoted neovascularization. Our data support the concept that EPCs exert their proangiogenic activity in a paracrine manner and demonstrate a key role of TP activity in their survival and proangiogenic potential.
Collapse
Affiliation(s)
- Giordano Pula
- From the Cardiovascular Division, King’s College London School of Medicine, King’s College London, United Kingdom
| | - Ursula Mayr
- From the Cardiovascular Division, King’s College London School of Medicine, King’s College London, United Kingdom
| | - Colin Evans
- From the Cardiovascular Division, King’s College London School of Medicine, King’s College London, United Kingdom
| | - Marianna Prokopi
- From the Cardiovascular Division, King’s College London School of Medicine, King’s College London, United Kingdom
| | - Dina S. Vara
- From the Cardiovascular Division, King’s College London School of Medicine, King’s College London, United Kingdom
| | - Xiaoke Yin
- From the Cardiovascular Division, King’s College London School of Medicine, King’s College London, United Kingdom
| | - Zoe Astroulakis
- From the Cardiovascular Division, King’s College London School of Medicine, King’s College London, United Kingdom
| | - Qingzhong Xiao
- From the Cardiovascular Division, King’s College London School of Medicine, King’s College London, United Kingdom
| | - Jonathan Hill
- From the Cardiovascular Division, King’s College London School of Medicine, King’s College London, United Kingdom
| | - Qingbo Xu
- From the Cardiovascular Division, King’s College London School of Medicine, King’s College London, United Kingdom
| | - Manuel Mayr
- From the Cardiovascular Division, King’s College London School of Medicine, King’s College London, United Kingdom
| |
Collapse
|
50
|
Wang Y, Chiu JF, He QY. Genomics and Proteomics in Drug Design and Discovery. Pharmacology 2009. [DOI: 10.1016/b978-0-12-369521-5.00020-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|