1
|
Olanrewaju GO, Haveman NJ, Naldrett MJ, Paul AL, Ferl RJ, Wyatt SE. Integrative transcriptomics and proteomics profiling of Arabidopsis thaliana elucidates novel mechanisms underlying spaceflight adaptation. FRONTIERS IN PLANT SCIENCE 2023; 14:1260429. [PMID: 38089794 PMCID: PMC10712242 DOI: 10.3389/fpls.2023.1260429] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/08/2023] [Indexed: 10/16/2024]
Abstract
Spaceflight presents a unique environment with complex stressors, including microgravity and radiation, that can influence plant physiology at molecular levels. Combining transcriptomics and proteomics approaches, this research gives insights into the coordination of transcriptome and proteome in Arabidopsis' molecular and physiological responses to Spaceflight environmental stress. Arabidopsis seedlings were germinated and grown in microgravity (µg) aboard the International Space Station (ISS) in NASA Biological Research in Canisters - Light Emitting Diode (BRIC LED) hardware, with the ground control established on Earth. At 10 days old, seedlings were frozen in RNA-later and returned to Earth. RNA-seq transcriptomics and TMT-labeled LC-MS/MS proteomic analysis of cellular fractionates from the plant tissues suggest the alteration of the photosynthetic machinery (PSII and PSI) in spaceflight, with the plant shifting photosystem core-regulatory proteins in an organ-specific manner to adapt to the microgravity environment. An overview of the ribosome, spliceosome, and proteasome activities in spaceflight revealed a significant abundance of transcripts and proteins involved in protease binding, nuclease activities, and mRNA binding in spaceflight, while those involved in tRNA binding, exoribonuclease activity, and RNA helicase activity were less abundant in spaceflight. CELLULOSE SYNTHASES (CESA1, CESA3, CESA5, CESA7) and CELLULOSE-LIKE PROTEINS (CSLE1, CSLG3), involved in cellulose deposition and TUBULIN COFACTOR B (TFCB) had reduced abundance in spaceflight. This contrasts with the increased expression of UDP-ARABINOPYRANOSE MUTASEs, involved in the biosynthesis of cell wall non-cellulosic polysaccharides, in spaceflight. Both transcripts and proteome suggested an altered polar auxin redistribution, lipid, and ionic intracellular transportation in spaceflight. Analyses also suggest an increased metabolic energy requirement for plants in Space than on Earth, hence, the activation of several shunt metabolic pathways. This study provides novel insights, based on integrated RNA and protein data, on how plants adapt to the spaceflight environment and it is a step further at achieving sustainable crop production in Space.
Collapse
Affiliation(s)
- Gbolaga O. Olanrewaju
- Interdisciplinary Molecular and Cellular Biology Program, Ohio University, Athens, OH, United States
- Department of Environmental and Plant Biology, Ohio University Athens, OH, United States
| | - Natasha J. Haveman
- NASA Utilization & Life Sciences Office (UB-A), Kennedy Space Center, Merritt Island, FL, United States
| | - Michael J. Naldrett
- Proteomics & Metabolomics Facility, Nebraska Center for Biotechnology, University of Nebraska–Lincoln, Lincoln, NE, United States
| | - Anna-Lisa Paul
- Department of Horticultural Sciences, University of Florida, Gainesville, FL, United States
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, United States
| | - Robert J. Ferl
- Department of Horticultural Sciences, University of Florida, Gainesville, FL, United States
- Office of Research, University of Florida, Gainesville, FL, United States
| | - Sarah E. Wyatt
- Interdisciplinary Molecular and Cellular Biology Program, Ohio University, Athens, OH, United States
- Department of Environmental and Plant Biology, Ohio University Athens, OH, United States
| |
Collapse
|
2
|
Lim S. A Review of the Bacterial Phosphoproteomes of Beneficial Microbes. Microorganisms 2023; 11:microorganisms11040931. [PMID: 37110354 PMCID: PMC10145908 DOI: 10.3390/microorganisms11040931] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
The number and variety of protein post-translational modifications (PTMs) found and characterized in bacteria over the past ten years have increased dramatically. Compared to eukaryotic proteins, most post-translational protein changes in bacteria affect relatively few proteins because the majority of modified proteins exhibit substoichiometric modification levels, which makes structural and functional analyses challenging. In addition, the number of modified enzymes in bacterial species differs widely, and degrees of proteome modification depend on environmental conditions. Nevertheless, evidence suggests that protein PTMs play essential roles in various cellular processes, including nitrogen metabolism, protein synthesis and turnover, the cell cycle, dormancy, spore germination, sporulation, persistence, and virulence. Additional investigations on protein post-translational changes will undoubtedly close knowledge gaps in bacterial physiology and create new means of treating infectious diseases. Here, we describe the role of the post-translation phosphorylation of major bacterial proteins and review the progress of research on phosphorylated proteins depending on bacterial species.
Collapse
Affiliation(s)
- Sooa Lim
- Department of Pharmaceutical Engineering, Hoseo University, Asan-si 31499, Republic of Korea
| |
Collapse
|
3
|
Yagüe P, Willemse J, Xiao X, Zhang L, Manteca A, van Wezel GP. FtsZ phosphorylation pleiotropically affects Z-ladder formation, antibiotic production, and morphogenesis in Streptomyces coelicolor. Antonie Van Leeuwenhoek 2023; 116:1-19. [PMID: 36383329 PMCID: PMC9823044 DOI: 10.1007/s10482-022-01778-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 08/27/2022] [Indexed: 11/17/2022]
Abstract
The GTPase FtsZ forms the cell division scaffold in bacteria, which mediates the recruitment of the other components of the divisome. Streptomycetes undergo two different forms of cell division. Septa without detectable peptidoglycan divide the highly compartmentalised young hyphae during early vegetative growth, and cross-walls are formed that dissect the hyphae into long multinucleoid compartments in the substrate mycelium, while ladders of septa are formed in the aerial hyphae that lead to chains of uninucleoid spores. In a previous study, we analysed the phosphoproteome of Streptomyces coelicolor and showed that FtsZ is phosphorylated at Ser 317 and Ser389. Substituting Ser-Ser for either Glu-Glu (mimicking phosphorylation) or Ala-Ala (mimicking non-phosphorylation) hinted at changes in antibiotic production. Here we analyse development, colony morphology, spore resistance, and antibiotic production in FtsZ knockout mutants expressing FtsZ alleles mimicking Ser319 and Ser387 phosphorylation and non-phosphorylation: AA (no phosphorylation), AE, EA (mixed), and EE (double phosphorylation). The FtsZ-eGFP AE, EA and EE alleles were not able to form observable FtsZ-eGFP ladders when they were expressed in the S. coelicolor wild-type strain, whereas the AA allele could form apparently normal eGFP Z-ladders. The FtsZ mutant expressing the FtsZ EE or EA or AE alleles is able to sporulate indicating that the mutant alleles are able to form functional Z-rings leading to sporulation when the wild-type FtsZ gene is absent. The four mutants were pleiotropically affected in colony morphogenesis, antibiotic production, substrate mycelium differentiation and sporulation (sporulation timing and spore resistance) which may be an indirect result of the effect in sporulation Z-ladder formation. Each mutant showed a distinctive phenotype in antibiotic production, single colony morphology, and sporulation (sporulation timing and spore resistance) indicating that the different FtsZ phosphomimetic alleles led to different phenotypes. Taken together, our data provide evidence for a pleiotropic effect of FtsZ phosphorylation in colony morphology, antibiotic production, and sporulation.
Collapse
Affiliation(s)
- Paula Yagüe
- grid.5132.50000 0001 2312 1970Department of Molecular Biotechnology, Institute of Biology Leiden, Leiden University, PO Box 9505, 2300 AB Leiden, The Netherlands
| | - Joost Willemse
- grid.5132.50000 0001 2312 1970Department of Molecular Biotechnology, Institute of Biology Leiden, Leiden University, PO Box 9505, 2300 AB Leiden, The Netherlands
| | - Xiansha Xiao
- grid.5132.50000 0001 2312 1970Department of Molecular Biotechnology, Institute of Biology Leiden, Leiden University, PO Box 9505, 2300 AB Leiden, The Netherlands
| | - Le Zhang
- grid.5132.50000 0001 2312 1970Department of Molecular Biotechnology, Institute of Biology Leiden, Leiden University, PO Box 9505, 2300 AB Leiden, The Netherlands
| | - Angel Manteca
- grid.10863.3c0000 0001 2164 6351Departamento de Biología Funcional e IUOPA, Área de Microbiología, Facultad de Medicina, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Gilles P. van Wezel
- grid.5132.50000 0001 2312 1970Department of Molecular Biotechnology, Institute of Biology Leiden, Leiden University, PO Box 9505, 2300 AB Leiden, The Netherlands
| |
Collapse
|
4
|
Phosphoproteome Dynamics of Streptomyces rimosus during Submerged Growth and Antibiotic Production. mSystems 2022; 7:e0019922. [PMID: 36094082 PMCID: PMC9600765 DOI: 10.1128/msystems.00199-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Streptomyces rimosus is an industrial streptomycete, best known as a producer of oxytetracycline, one of the most widely used antibiotics. Despite the significant contribution of Streptomyces species to the pharmaceutical industry, most omics analyses have only been conducted on the model organism Streptomyces coelicolor. In recent years, protein phosphorylation on serine, threonine, and tyrosine (Ser, Thr, and Tyr, respectively) has been shown to play a crucial role in the regulation of numerous cellular processes, including metabolic changes leading to antibiotic production and morphological changes. In this study, we performed a comprehensive quantitative (phospho)proteomic analysis during the growth of S. rimosus under conditions of oxytetracycline production and pellet fragmentation. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis combined with phosphopeptide enrichment detected a total of 3,725 proteins, corresponding to 45.6% of the proteome and 417 phosphorylation sites from 230 phosphoproteins. Significant changes in abundance during three distinct growth phases were determined for 494 proteins and 98 phosphorylation sites. Functional analysis revealed changes in phosphorylation events of proteins involved in important cellular processes, including regulatory mechanisms, primary and secondary metabolism, cell division, and stress response. About 80% of the phosphoproteins detected during submerged growth of S. rimosus have not yet been reported in streptomycetes, and 55 phosphoproteins were not reported in any prokaryote studied so far. This enabled the creation of a unique resource that provides novel insights into the dynamics of (phospho)proteins and reveals many potential regulatory events during antibiotic production in liquid culture of an industrially important bacterium. IMPORTANCE Streptomyces rimosus is best known as a primary source of oxytetracycline (OTC). The significant global market value of OTC highlights the need for a better understanding of the regulatory mechanisms that lead to production of this antibiotic. Our study provides, for the first time, a detailed insight into the dynamics of (phospho)proteomic profiles during growth and antibiotic production in liquid culture of S. rimosus. Significant changes in protein synthesis and phosphorylation have been revealed for a number of important cellular proteins during the growth stages that coincide with OTC production and morphological changes of this industrially important bacterium. Most of these proteins have not been detected in previous studies. Therefore, our results significantly expand the insight into phosphorylation events associated with important cellular processes and antibiotic production; they also greatly increase the phosphoproteome of streptomycetes and contribute with newly discovered phosphoproteins to the database of prokaryotic phosphoproteomes. This can consequently lead to the design of novel research directions in elucidation of the complex regulatory network in Streptomyces.
Collapse
|
5
|
Alonso-Fernández S, Arribas-Díez I, Fernández-García G, González-Quiñónez N, Jensen ON, Manteca A. Quantitative phosphoproteome analysis of Streptomyces coelicolor by immobilized zirconium (IV) affinity chromatography and mass spectrometry reveals novel regulated protein phosphorylation sites and sequence motifs. J Proteomics 2022; 269:104719. [PMID: 36089190 DOI: 10.1016/j.jprot.2022.104719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/25/2022] [Accepted: 09/03/2022] [Indexed: 11/12/2022]
Abstract
Streptomycetes are multicellular gram-positive bacteria that produce many bioactive compounds, including antibiotics, antitumorals and immunosuppressors. The Streptomyces phosphoproteome remains largely uncharted even though protein phosphorylation at Ser/Thr/Tyr is known to modulate morphological differentiation and specialized metabolic processes. We here expand the S. coelicolor phosphoproteome by optimised immobilized zirconium (IV) affinity chromatography and mass spectrometry to identify phosphoproteins at the vegetative and sporulating stages. We mapped 361 phosphorylation sites (41% pSer, 56.2% pThr, 2.8% pTyr) and discovered four novel Thr phosphorylation motifs ("Kxxxx(pT)xxxxK", "DxE(pT)", "D(pT)" and "Exxxxx(pT)") in 351 phosphopeptides derived from 187 phosphoproteins. We identified 154 novel phosphoproteins, thereby almost doubling the number of experimentally verified Streptomyces phosphoproteins. Novel phosphoproteins included cell division proteins (FtsK, CrgA) and specialized metabolism regulators (ArgR, AfsR, CutR and HrcA) that were differentially phosphorylated in the vegetative and in the antibiotic producing sporulating stages. Phosphoproteins involved in primary metabolism included 27 novel ribosomal proteins that were phosphorylated during the vegetative stage. Phosphorylation of these proteins likely participate in the intricate and incompletely understood regulation of Streptomyces development and secondary metabolism. We conclude that Zr(IV)-IMAC is an efficient and sensitive method to study protein phosphorylation and regulation in bacteria and enhance our understanding of bacterial signalling. SIGNIFICANCE: Two thirds of the secondary metabolites used in clinic, especially antibiotics, were discovered in Streptomyces strains. Antibiotic resistance became one of the major challenges in clinic, and new antibiotics are urgently required in clinic. Next-generation sequencing analyses revealed that streptomycetes harbour many cryptic secondary metabolite pathways, i.e. pathways not expressed in the laboratory. Secondary metabolism is tightly connected with hypha differentiation and sporulation, and understanding Streptomyces differentiation is one of the main challenges in industrial microbiology, in order to activate the expression of cryptic pathways in the laboratory. Protein phosphorylation at Ser/Thr/Tyr modulates development and secondary metabolism, but the Streptomyces phosphoproteome is still largely uncharted. Previous S. coelicolor phosphoproteomic studies used TiO2 affinity enrichment and LC-MS/MS identifying a total of 184 Streptomyces phosphoproteins. Here, we used by first time zirconium (IV) affinity chromatography and mass spectrometry, identifying 186 S. coelicolor phosphoproteins. Most of these phosphoproteins (154) were not identified in previous phosphoproteomic studies using TiO2 affinity enrichment. Thereby we almost doubling the number of experimentally verified Streptomyces phosphoproteins. Zr(IV)-IMAC affinity chromatography also worked in E. coli, allowing the identification of phosphoproteins that were not identified by TiO2 affinity chromatography. We conclude that Zr(IV)-IMAC is an efficient and sensitive method for studies of protein phosphorylation and regulation in bacteria to enhance our understanding of bacterial signalling networks. Moreover, the new Streptomyces phosphoproteins identified will contribute to design further works to understand and modulate Streptomyces secondary metabolism activation.
Collapse
Affiliation(s)
- Sergio Alonso-Fernández
- Área de Microbiología, Departamento de Biología Funcional, IUOPA, ISPA, Facultad de Medicina, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Ignacio Arribas-Díez
- Department of Biochemistry and Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Gemma Fernández-García
- Área de Microbiología, Departamento de Biología Funcional, IUOPA, ISPA, Facultad de Medicina, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Nathaly González-Quiñónez
- Área de Microbiología, Departamento de Biología Funcional, IUOPA, ISPA, Facultad de Medicina, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Ole N Jensen
- Department of Biochemistry and Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark.
| | - Angel Manteca
- Área de Microbiología, Departamento de Biología Funcional, IUOPA, ISPA, Facultad de Medicina, Universidad de Oviedo, 33006 Oviedo, Spain.
| |
Collapse
|
6
|
Linardi D, She W, Zhang Q, Yu Y, Qian PY, Lam H. Proteomining-Based Elucidation of Natural Product Biosynthetic Pathways in Streptomyces. Front Microbiol 2022; 13:913756. [PMID: 35898901 PMCID: PMC9309509 DOI: 10.3389/fmicb.2022.913756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/30/2022] [Indexed: 11/24/2022] Open
Abstract
The genus Streptomyces is known to harbor numerous biosynthetic gene clusters (BGCs) of potential utility in synthetic biology applications. However, it is often difficult to link uncharacterized BGCs with the secondary metabolites they produce. Proteomining refers to the strategy of identifying active BGCs by correlating changes in protein expression with the production of secondary metabolites of interest. In this study, we devised a shotgun proteomics-based workflow to identify active BGCs during fermentation when a variety of compounds are being produced. Mycelia harvested during the non-producing growth phase served as the background. Proteins that were differentially expressed were clustered based on the proximity of the genes in the genome to highlight active BGCs systematically from label-free quantitative proteomics data. Our software tool is easy-to-use and requires only 1 point of comparison where natural product biosynthesis was significantly different. We tested our proteomining clustering method on three Streptomyces species producing different compounds. In Streptomyces coelicolor A3(2), we detected the BGCs of calcium-dependent antibiotic, actinorhodin, undecylprodigiosin, and coelimycin P1. In Streptomyces chrestomyceticus BCC24770, 7 BGCs were identified. Among them, we independently re-discovered the type II PKS for albofungin production previously identified by genome mining and tedious heterologous expression experiments. In Streptomyces tenebrarius, 5 BGCs were detected, including the known apramycin and tobramycin BGC as well as a newly discovered caerulomycin A BGC in this species. The production of caerulomycin A was confirmed by LC-MS and the inactivation of the caerulomycin A BGC surprisingly had a significant impact on the secondary metabolite regulation of S. tenebrarius. In conclusion, we developed an unbiased, high throughput proteomics-based method to complement genome mining methods for the identification of biosynthetic pathways in Streptomyces sp.
Collapse
Affiliation(s)
- Darwin Linardi
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Weiyi She
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong, Hong Kong SAR, China
- SZU-HKUST Joint PhD Program in Marine Environmental Science, Shenzhen University, Shenzhen, China
- Department of Ocean Science and Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Qian Zhang
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, Department of Gastroenterology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Yi Yu
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, Department of Gastroenterology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Pei-Yuan Qian
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong, Hong Kong SAR, China
- Department of Ocean Science and Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Henry Lam
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
- *Correspondence: Henry Lam,
| |
Collapse
|
7
|
Skibiel AL, Koh J, Zhu N, Zhu F, Yoo MJ, Laporta J. Carry-over effects of dry period heat stress on the mammary gland proteome and phosphoproteome in the subsequent lactation of dairy cows. Sci Rep 2022; 12:6637. [PMID: 35459770 PMCID: PMC9033811 DOI: 10.1038/s41598-022-10461-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 04/01/2022] [Indexed: 11/15/2022] Open
Abstract
Exposure to heat stress during a cow's dry period disrupts mammary gland remodeling, impairing mammary function and milk production during the subsequent lactation. Yet, proteomic changes in the mammary gland underlying these effects are not yet known. We investigated alterations in the mammary proteome and phosphoproteome during lactation as a result of dry period heat stress using an isobaric tag for relative and absolute quantitation (iTRAQ)-based approach. Cows were cooled (CL; n = 12) with fans and water soakers in a free stall setting or were heat stressed through lack of access to cooling devices (HT; n = 12) during the entire dry period (approximately 46 days). All cows were cooled postpartum. Mammary biopsies were harvested from a subset of cows (n = 4 per treatment) at 14, 42, and 84 days in milk. Overall, 251 proteins and 224 phosphorylated proteins were differentially abundant in the lactating mammary gland of HT compared to CL cows. Top functions of differentially abundant proteins and phosphoproteins affected were related to immune function and inflammation, amino acid metabolism, reactive oxygen species production and metabolism, tissue remodeling, and cell stress response. Patterns of protein expression and phosphorylation are indicative of increased oxidative stress, mammary gland restructuring, and immune dysregulation due to prior exposure to dry period heat stress. This study provides insights into the molecular underpinnings of disrupted mammary function and health during lactation arising from prior exposure to dry period heat stress, which might have led to lower milk yields.
Collapse
Affiliation(s)
- Amy L Skibiel
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID, 83844, USA
| | - Jin Koh
- Interdisciplinary Center for Biotechnology Research, Proteomics and Mass Spectrometry Core, University of Florida, Gainesville, FL, 32611, USA
| | - Ning Zhu
- Interdisciplinary Center for Biotechnology Research, Proteomics and Mass Spectrometry Core, University of Florida, Gainesville, FL, 32611, USA
| | - Fanchao Zhu
- Interdisciplinary Center for Biotechnology Research, Proteomics and Mass Spectrometry Core, University of Florida, Gainesville, FL, 32611, USA
| | - Mi-Jeong Yoo
- Department of Biology, Clarkson University, Potsdam, NY, 13699, USA
| | - Jimena Laporta
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, 53715, USA.
| |
Collapse
|
8
|
Wang J, Pang H, Yin L, Zeng F, Wang N, Hoare R, Monaghan SJ, Li W, Jian J. A Comprehensive Analysis of the Lysine Acetylome in the Aquatic Animals Pathogenic Bacterium Vibrio mimicus. Front Microbiol 2022; 13:816968. [PMID: 35250932 PMCID: PMC8891801 DOI: 10.3389/fmicb.2022.816968] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/07/2022] [Indexed: 11/13/2022] Open
Abstract
Protein lysine acetylation is an evolutionarily conserved post-translational modification (PTM), which is dynamic and reversible, playing a crucial regulatory role in almost every aspect of metabolism, of both eukaryotes and prokaryotes. Several global lysine acetylome studies have been carried out in various bacteria, but thus far, there have been no reports of lysine acetylation for the commercially important aquatic animal pathogen Vibrio mimicus. In the present study, we used anti-Ac-K antibody beads to highly sensitive immune-affinity purification and combined high-resolution LC-MS/MS to perform the first global lysine acetylome analysis in V. mimicus, leading to the identification of 1,097 lysine-acetylated sites on 582 proteins, and more than half (58.4%) of the acetylated proteins had only one site. The analysis of acetylated modified peptide motifs revealed six significantly enriched motifs, namely, KacL, KacR, L(-2) KacL, LKacK, L(-7) EKac, and IEKac. In addition, bioinformatic assessments state clearly that acetylated proteins have a hand in many important biological processes in V. mimicus, such as purine metabolism, ribosome, pyruvate metabolism, glycolysis/gluconeogenesis, the TCA cycle, and so on. Moreover, 13 acetylated proteins were related to the virulence of V. mimicus. To sum up, this is a comprehensive analysis whole situation protein lysine acetylome in V. mimicus and provides an important foundation for in-depth study of the biological function of lysine acetylation in V. mimicus.
Collapse
Affiliation(s)
- Junlin Wang
- Fisheries College of Guangdong Ocean University and Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals and Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Huanying Pang
- Fisheries College of Guangdong Ocean University and Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals and Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
- *Correspondence: Huanying Pang,
| | - Linlin Yin
- Fisheries College of Guangdong Ocean University and Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals and Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Fuyuan Zeng
- Fisheries College of Guangdong Ocean University and Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals and Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Na Wang
- Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Rowena Hoare
- Institute of Aquaculture, University of Stirling, Stirling, United Kingdom
| | - Sean J. Monaghan
- Institute of Aquaculture, University of Stirling, Stirling, United Kingdom
| | - Wanxin Li
- School of Public Health, Fujian Medical University, Fuzhou, China
- Wanxin Li, ,
| | - Jichang Jian
- Fisheries College of Guangdong Ocean University and Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals and Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| |
Collapse
|
9
|
Clostridioides difficile Phosphoproteomics Shows an Expansion of Phosphorylated Proteins in Stationary Growth Phase. mSphere 2022; 7:e0091121. [PMID: 34986318 PMCID: PMC8730811 DOI: 10.1128/msphere.00911-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Phosphorylation is a posttranslational modification that can affect both housekeeping functions and virulence characteristics in bacterial pathogens. In the Gram-positive enteropathogen Clostridioides difficile, the extent and nature of phosphorylation events are poorly characterized, though a protein kinase mutant strain demonstrates pleiotropic phenotypes. Here, we used an immobilized metal affinity chromatography strategy to characterize serine, threonine, and tyrosine phosphorylation in C. difficile. We find limited protein phosphorylation in the exponential growth phase but a sharp increase in the number of phosphopeptides after the onset of the stationary growth phase. Our approach identifies expected targets and phosphorylation sites among the more than 1,500 phosphosites, including the protein kinase PrkC, the anti-sigma-F factor antagonist (SpoIIAA), the anti-sigma-B factor antagonist (RsbV), and HPr kinase/phosphorylase (HprK). Analysis of high-confidence phosphosites shows that phosphorylation on serine residues is most common, followed by threonine and tyrosine phosphorylation. This work forms the basis for a further investigation into the contributions of individual kinases to the overall phosphoproteome of C. difficile and the role of phosphorylation in C. difficile physiology and pathogenesis. IMPORTANCE In this paper, we present a comprehensive analysis of protein phosphorylation in the Gram-positive enteropathogen Clostridioides difficile. To date, only limited evidence on the role of phosphorylation in the regulation of this organism has been published; the current study is expected to form the basis for research on this posttranslational modification in C. difficile.
Collapse
|
10
|
Nagarajan SN, Lenoir C, Grangeasse C. Recent advances in bacterial signaling by serine/threonine protein kinases. Trends Microbiol 2021; 30:553-566. [PMID: 34836791 DOI: 10.1016/j.tim.2021.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 11/27/2022]
Abstract
It has been nearly three decades since the discovery of the first bacterial serine/threonine protein kinase (STPK). Since then, a blend of technological advances has led to the characterization of a multitude of STPKs and phosphorylation substrates in several bacterial species that finely regulate intricate signaling cascades. Years of intense research from several laboratories have demonstrated unexpected roles for serine/threonine phosphorylation, regulating not only bacterial growth and cell division but also antibiotic persistence, virulence and infection, metabolism, chromosomal biology, and cellular differentiation. This review aims to provide an account of the most recent and significant developments in this up and growing field in microbiology.
Collapse
Affiliation(s)
- Sathya Narayanan Nagarajan
- Molecular Microbiology and Structural Biochemistry, UMR 5086, Université de Lyon, CNRS, IBCP building, 7 passage du Vercors, 69367 Lyon Cedex 07, France
| | - Cassandra Lenoir
- Molecular Microbiology and Structural Biochemistry, UMR 5086, Université de Lyon, CNRS, IBCP building, 7 passage du Vercors, 69367 Lyon Cedex 07, France
| | - Christophe Grangeasse
- Molecular Microbiology and Structural Biochemistry, UMR 5086, Université de Lyon, CNRS, IBCP building, 7 passage du Vercors, 69367 Lyon Cedex 07, France.
| |
Collapse
|
11
|
Iannetta AA, Minton NE, Uitenbroek AA, Little JL, Stanton CR, Kristich CJ, Hicks LM. IreK-Mediated, Cell Wall-Protective Phosphorylation in Enterococcus faecalis. J Proteome Res 2021; 20:5131-5144. [PMID: 34672600 PMCID: PMC10037947 DOI: 10.1021/acs.jproteome.1c00635] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Enterococcus faecalis is a Gram-positive bacterium that is a major cause of hospital-acquired infections due, in part, to its intrinsic resistance to cell wall-active antimicrobials. One critical determinant of this resistance is the transmembrane kinase IreK, which belongs to the penicillin-binding protein and serine/threonine kinase-associated kinase family of bacterial signaling proteins involved with the regulation of cell wall homeostasis. The activity of IreK is enhanced in response to cell wall stress, but direct substrates of IreK phosphorylation, leading to antimicrobial resistance, are largely unknown. To better understand stress-modulated phosphorylation events contributing to antimicrobial resistance, wild type E. faecalis cells treated with cell wall-active antimicrobials, chlorhexidine or ceftriaxone, were examined via phosphoproteomics. Among the most prominent changes was increased phosphorylation of divisome components after both treatments, suggesting that E. faecalis modulates cell division in response to cell wall stress. Phosphorylation mediated by IreK was then determined via a similar analysis with a E. faecalis ΔireK mutant strain, revealing potential IreK substrates involved with the regulation of peptidoglycan biosynthesis and within the E. faecalis CroS/R two-component system, another signal transduction pathway that promotes antimicrobial resistance. These results reveal critical insights into the biological functions of IreK.
Collapse
Affiliation(s)
- Anthony A. Iannetta
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Nicole E. Minton
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Alexis A. Uitenbroek
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Jaime L. Little
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Caroline R. Stanton
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Christopher J. Kristich
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Leslie M. Hicks
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
12
|
Qi C, Sun F, Wei Q, Xu J, Li R, Zhang L, Lu F, Jiang X, Fu H, Zhang C, Li L. Quantitative phosphoproteomics reveals the effect of baeSR and acrB genes on protein phosphorylation in Salmonella enterica serovar Typhimurium. Res Microbiol 2021; 173:103886. [PMID: 34715324 DOI: 10.1016/j.resmic.2021.103886] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/26/2021] [Accepted: 10/10/2021] [Indexed: 10/20/2022]
Abstract
The BaeSR two-component system and the AcrB efflux pump are closely associated with Salmonella resistance to antibiotics. However, the relationship between the two-component system, efflux pumps and protein phosphorylation of Salmonella is poorly understood. In this study, S. typhimurium ciprofloxacin-resistant strain CR, baeSR gene deletion strain CRΔbaeSR, acrB gene deletion strain CRΔacrB, and double gene deletion strain CRΔbaeSRΔacrB were used to explore phosphorylated proteins with significant difference, based on non-marker, quantitative phosphorylation modified proteomics technique. Consequently, 363 phosphosites of 213 phosphoproteins were identified in the four strains. More than 70% of the phosphosites were serine phosphorylation. In the CRΔbaeSR/CR, CRΔacrB/CR and CRΔbaeSRΔacrB/CR comparison groups, 36, 37 and 49 phosphosites were significantly altered, respectively. Bioinformatic analysis revealed that the main enrichment pathways of these differentially phosphorylated proteins were metabolic pathways, biosynthesis of antibiotics, phosphotransferase system (PTS), ABC transporters, and lipopolysaccharide biosynthesis. Furthermore, 21 differentially phosphorylated proteins were identified to be associated with antibiotic resistance. These results suggest that the BaeSR two-component system and the AcrB efflux pump affect the phosphorylation of proteins in S. typhimurium and may influence the drug resistance and virulence of S. typhimurium by affecting protein phosphorylation, providing a new idea to explore the mechanism of drug resistance in Salmonella.
Collapse
Affiliation(s)
- Caili Qi
- Pharmacology and Toxicology Laboratory, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230026, P. R. China
| | - Feifei Sun
- Pharmacology and Toxicology Laboratory, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230026, P. R. China; Anhui Province Key Lab of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui 230036, P. R. China
| | - Qiling Wei
- Pharmacology and Toxicology Laboratory, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230026, P. R. China
| | - Jun Xu
- Pharmacology and Toxicology Laboratory, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230026, P. R. China
| | - Rui Li
- Pharmacology and Toxicology Laboratory, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230026, P. R. China
| | - Lin Zhang
- Pharmacology and Toxicology Laboratory, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230026, P. R. China
| | - Fang Lu
- Pharmacology and Toxicology Laboratory, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230026, P. R. China
| | - Xidi Jiang
- Pharmacology and Toxicology Laboratory, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230026, P. R. China
| | - Hengfeng Fu
- Pharmacology and Toxicology Laboratory, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230026, P. R. China
| | - Chunxiao Zhang
- Pharmacology and Toxicology Laboratory, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230026, P. R. China
| | - Lin Li
- Pharmacology and Toxicology Laboratory, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230026, P. R. China; Anhui Province Key Lab of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui 230036, P. R. China.
| |
Collapse
|
13
|
Martín JF, Liras P, Sánchez S. Modulation of Gene Expression in Actinobacteria by Translational Modification of Transcriptional Factors and Secondary Metabolite Biosynthetic Enzymes. Front Microbiol 2021; 12:630694. [PMID: 33796086 PMCID: PMC8007912 DOI: 10.3389/fmicb.2021.630694] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/04/2021] [Indexed: 12/20/2022] Open
Abstract
Different types of post-translational modifications are present in bacteria that play essential roles in bacterial metabolism modulation. Nevertheless, limited information is available on these types of modifications in actinobacteria, particularly on their effects on secondary metabolite biosynthesis. Recently, phosphorylation, acetylation, or phosphopantetheneylation of transcriptional factors and key enzymes involved in secondary metabolite biosynthesis have been reported. There are two types of phosphorylations involved in the control of transcriptional factors: (1) phosphorylation of sensor kinases and transfer of the phosphate group to the receiver domain of response regulators, which alters the expression of regulator target genes. (2) Phosphorylation systems involving promiscuous serine/threonine/tyrosine kinases that modify proteins at several amino acid residues, e.g., the phosphorylation of the global nitrogen regulator GlnR. Another post-translational modification is the acetylation at the epsilon amino group of lysine residues. The protein acetylation/deacetylation controls the activity of many short and long-chain acyl-CoA synthetases, transcriptional factors, key proteins of bacterial metabolism, and enzymes for the biosynthesis of non-ribosomal peptides, desferrioxamine, streptomycin, or phosphinic acid-derived antibiotics. Acetyltransferases catalyze acetylation reactions showing different specificity for the acyl-CoA donor. Although it functions as acetyltransferase, there are examples of malonylation, crotonylation, succinylation, or in a few cases acylation activities using bulky acyl-CoA derivatives. Substrates activation by nucleoside triphosphates is one of the central reactions inhibited by lysine acetyltransferases. Phosphorylation/dephosphorylation or acylation/deacylation reactions on global regulators like PhoP, GlnR, AfsR, and the carbon catabolite regulator glucokinase strongly affects the expression of genes controlled by these regulators. Finally, a different type of post-translational protein modification is the phosphopantetheinylation, catalized by phosphopantetheinyl transferases (PPTases). This reaction is essential to modify those enzymes requiring phosphopantetheine groups like non-ribosomal peptide synthetases, polyketide synthases, and fatty acid synthases. Up to five PPTases are present in S. tsukubaensis and S. avermitilis. Different PPTases modify substrate proteins in the PCP or ACP domains of tacrolimus biosynthetic enzymes. Directed mutations of genes encoding enzymes involved in the post-translational modification is a promising tool to enhance the production of bioactive metabolites.
Collapse
Affiliation(s)
- Juan F Martín
- Área de Microbiología, Departamento de Biología Molecular, Universidad de León, León, Spain
| | - Paloma Liras
- Área de Microbiología, Departamento de Biología Molecular, Universidad de León, León, Spain
| | - Sergio Sánchez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, Mexico
| |
Collapse
|
14
|
Lee N, Hwang S, Kim W, Lee Y, Kim JH, Cho S, Kim HU, Yoon YJ, Oh MK, Palsson BO, Cho BK. Systems and synthetic biology to elucidate secondary metabolite biosynthetic gene clusters encoded in Streptomyces genomes. Nat Prod Rep 2021; 38:1330-1361. [PMID: 33393961 DOI: 10.1039/d0np00071j] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Covering: 2010 to 2020 Over the last few decades, Streptomyces have been extensively investigated for their ability to produce diverse bioactive secondary metabolites. Recent advances in Streptomyces research have been largely supported by improvements in high-throughput technology 'omics'. From genomics, numerous secondary metabolite biosynthetic gene clusters were predicted, increasing their genomic potential for novel bioactive compound discovery. Additional omics, including transcriptomics, translatomics, interactomics, proteomics and metabolomics, have been applied to obtain a system-level understanding spanning entire bioprocesses of Streptomyces, revealing highly interconnected and multi-layered regulatory networks for secondary metabolism. The comprehensive understanding derived from this systematic information accelerates the rational engineering of Streptomyces to enhance secondary metabolite production, integrated with the exploitation of the highly efficient 'Design-Build-Test-Learn' cycle in synthetic biology. In this review, we describe the current status of omics applications in Streptomyces research to better understand the organism and exploit its genetic potential for higher production of valuable secondary metabolites and novel secondary metabolite discovery.
Collapse
Affiliation(s)
- Namil Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea. and Innovative Biomaterials Centre, KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Soonkyu Hwang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea. and Innovative Biomaterials Centre, KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Woori Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea. and Innovative Biomaterials Centre, KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Yongjae Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea. and Innovative Biomaterials Centre, KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Ji Hun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea. and Innovative Biomaterials Centre, KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Suhyung Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea. and Innovative Biomaterials Centre, KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Hyun Uk Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Yeo Joon Yoon
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.
| | - Min-Kyu Oh
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea.
| | - Bernhard O Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA. and Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA and Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Lyngby, 2800, Denmark
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea. and Innovative Biomaterials Centre, KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea and Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Lyngby, 2800, Denmark
| |
Collapse
|
15
|
Regulation of Protein Post-Translational Modifications on Metabolism of Actinomycetes. Biomolecules 2020; 10:biom10081122. [PMID: 32751230 PMCID: PMC7464533 DOI: 10.3390/biom10081122] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/16/2022] Open
Abstract
Protein post-translational modification (PTM) is a reversible process, which can dynamically regulate the metabolic state of cells through regulation of protein structure, activity, localization or protein–protein interactions. Actinomycetes are present in the soil, air and water, and their life cycle is strongly determined by environmental conditions. The complexity of variable environments urges Actinomycetes to respond quickly to external stimuli. In recent years, advances in identification and quantification of PTMs have led researchers to deepen their understanding of the functions of PTMs in physiology and metabolism, including vegetative growth, sporulation, metabolite synthesis and infectivity. On the other hand, most donor groups for PTMs come from various metabolites, suggesting a complex association network between metabolic states, PTMs and signaling pathways. Here, we review the mechanisms and functions of PTMs identified in Actinomycetes, focusing on phosphorylation, acylation and protein degradation in an attempt to summarize the recent progress of research on PTMs and their important role in bacterial cellular processes.
Collapse
|
16
|
Engel F, Ossipova E, Jakobsson PJ, Vockenhuber MP, Suess B. sRNA scr5239 Involved in Feedback Loop Regulation of Streptomyces coelicolor Central Metabolism. Front Microbiol 2020; 10:3121. [PMID: 32117084 PMCID: PMC7025569 DOI: 10.3389/fmicb.2019.03121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/24/2019] [Indexed: 12/26/2022] Open
Abstract
In contrast to transcriptional regulation, post-transcriptional regulation and the role of small non-coding RNAs (sRNAs) in streptomycetes are not well studied. Here, we focus on the highly conserved sRNA scr5239 in Streptomyces coelicolor. A proteomics approach revealed that the sRNA regulates several metabolic enzymes, among them phosphoenolpyruvate carboxykinase (PEPCK), a key enzyme of the central carbon metabolism. The sRNA scr5239 represses pepck at the post-transcriptional level and thus modulates the intracellular level of phosphoenolpyruvate (PEP). The expression of scr5239 in turn is dependent on the global transcriptional regulator DasR, thus creating a feedback loop regulation of the central carbon metabolism. By post-transcriptional regulation of PEPCK and in all likelihood other targets, scr5239 adds an additional layer to the DasR regulatory network and provides a tool to control the metabolism dependent on the available carbon source.
Collapse
Affiliation(s)
- Franziska Engel
- Synthetic Genetic Circuits, Department of Biology, Darmstadt University Technology, Darmstadt, Germany
| | - Elena Ossipova
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden
| | - Per-Johan Jakobsson
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden
| | - Michael-Paul Vockenhuber
- Synthetic Genetic Circuits, Department of Biology, Darmstadt University Technology, Darmstadt, Germany
- *Correspondence: Michael-Paul Vockenhuber,
| | - Beatrix Suess
- Synthetic Genetic Circuits, Department of Biology, Darmstadt University Technology, Darmstadt, Germany
- Beatrix Suess,
| |
Collapse
|
17
|
Goals and Challenges in Bacterial Phosphoproteomics. Int J Mol Sci 2019; 20:ijms20225678. [PMID: 31766156 PMCID: PMC6888350 DOI: 10.3390/ijms20225678] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/04/2019] [Accepted: 11/12/2019] [Indexed: 12/21/2022] Open
Abstract
Reversible protein phosphorylation at serine, threonine and tyrosine is a well-known dynamic post-translational modification with stunning regulatory and signalling functions in eukaryotes. Shotgun phosphoproteomic analyses revealed that this post-translational modification is dramatically lower in bacteria than in eukaryotes. However, Ser/Thr/Tyr phosphorylation is present in all analysed bacteria (24 eubacteria and 1 archaea). It affects central processes, such as primary and secondary metabolism development, sporulation, pathogenicity, virulence or antibiotic resistance. Twenty-nine phosphoprotein orthologues were systematically identified in bacteria: ribosomal proteins, enzymes from glycolysis and gluconeogenesis, elongation factors, cell division proteins, RNA polymerases, ATP synthases and enzymes from the citrate cycle. While Ser/Thr/Tyr phosphorylation exists in bacteria, there is a consensus that histidine phosphorylation is the most abundant protein phosphorylation in prokaryotes. Unfortunately, histidine shotgun phosphorproteomics is not possible due to the reduced phosphohistidine half-life under the acidic pH conditions used in standard LC-MS/MS analysis. However, considering the fast and continuous advances in LC-MS/MS-based phosphoproteomic methodologies, it is expected that further innovations will allow for the study of His phosphoproteomes and a better coverage of bacterial phosphoproteomes. The characterisation of the biological role of bacterial Ser/Thr/Tyr and His phosphorylations might revolutionise our understanding of prokaryotic physiology.
Collapse
|
18
|
Hirakata T, Urabe H, Sugita T. Phosphoproteomic and proteomic profiling of serine/threonine protein kinase PkaE of Streptomyces coelicolor A3(2) and its role in secondary metabolism and morphogenesis. Biosci Biotechnol Biochem 2019; 83:1843-1850. [DOI: 10.1080/09168451.2019.1618698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
ABSTRACT
This study aimed to investigate the role of serine/threonine kinase PkaE in Streptomyces coelicolor A3(2). Liquid chromatography tandem mass spectrometry was performed for comparative phosphoproteome and proteome analyses of S. coelicolor A3(2), followed by an in vitro phosphorylation assay. Actinorhodin production in the pkaE deletion mutant was lower than that in wild-type S. coelicolor A3(2), and the spores of the pkaE deletion mutant were damaged. Furthermore, phosphoproteome analysis revealed that 6 proteins were significantly differentially hypophosphorylated in pkaE deletion mutant (p < 0.05, fold-change ≤ 0.66), including BldG and FtsZ. In addition, the in vitro phosphorylation assay revealed that PkaE phosphorylated FtsZ. Comparative proteome analysis revealed 362 differentially expressed proteins (p < 0.05) and six downregulated proteins in the pkaE deletion mutant involved in actinorhodin biosynthesis. Gene ontology enrichment analysis revealed that PkaE participates in various biological and cellular processes. Hence, S. coelicolor PkaE participates in actinorhodin biosynthesis and morphogenesis.
Collapse
Affiliation(s)
- Toshiyuki Hirakata
- Department of Microbiology, Meiji Pharmaceutical University, Tokyo, Japan
| | - Hiroaki Urabe
- Education and Research Center for Pharmacy, Meiji Pharmaceutical University, Tokyo, Japan
| | - Takashi Sugita
- Department of Microbiology, Meiji Pharmaceutical University, Tokyo, Japan
| |
Collapse
|
19
|
Béthencourt L, Boubakri H, Taib N, Normand P, Armengaud J, Fournier P, Brochier-Armanet C, Herrera-Belaroussi A. Comparative genomics and proteogenomics highlight key molecular players involved in Frankia sporulation. Res Microbiol 2019; 170:202-213. [PMID: 31018159 DOI: 10.1016/j.resmic.2019.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 10/27/2022]
Abstract
Sporulation is a microbial adaptive strategy to resist inhospitable conditions for vegetative growth and to disperse to colonise more favourable environments. This microbial trait is widespread in Actinobacteria. Among them, Frankia strains are able to differentiate sporangia in pure culture, while others can sporulate even when in symbiosis with sporulation occurring within host cells. The molecular determinants controlling Frankia sporulation have not been yet described. In order to highlight, for the first time, the molecular players potentially involved in Frankia sporulation, we conducted (i) a comparison of protein contents between Frankia spores and hyphae and (ii) a comparative genomic analysis of Frankia proteomes with sporulating and non-sporulating Actinobacteria. Among the main results, glycogen-metabolism related proteins, as well as oxidative stress response and protease-like proteins were overdetected in hyphae, recalling lytic processes that allow Streptomyces cells to erect sporogenic hyphae. Several genes encoding transcriptional regulators, including GntR-like, appeared up-regulated in spores, as well as tyrosinase, suggesting their potential role in mature spore metabolism. Finally, our results highlighted new proteins potentially involved in Frankia sporulation, including a pyrophosphate-energized proton pump and YaaT, described as involved in the phosphorelay allowing sporulation in Bacillus subtilis, leading us to discuss the role of a phosphorelay in Frankia sporulation.
Collapse
Affiliation(s)
- Lorine Béthencourt
- Écologie Microbienne, Centre National de la Recherche Scientifique UMR 5557, Université de Lyon, Université Claude Bernard Lyon I, INRA, UMR 1418, Villeurbanne, 69622 Cedex, France
| | - Hasna Boubakri
- Écologie Microbienne, Centre National de la Recherche Scientifique UMR 5557, Université de Lyon, Université Claude Bernard Lyon I, INRA, UMR 1418, Villeurbanne, 69622 Cedex, France
| | - Najwa Taib
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Évolutive, 43 bd du 11 novembre 1918, F-69622, Villeurbanne, France
| | - Philippe Normand
- Écologie Microbienne, Centre National de la Recherche Scientifique UMR 5557, Université de Lyon, Université Claude Bernard Lyon I, INRA, UMR 1418, Villeurbanne, 69622 Cedex, France
| | - Jean Armengaud
- Laboratoire Innovations Technologiques pour la Détection et le Diagnostic (Li2D), Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, Bagnols sur Cèze, F-30207, France
| | - Pascale Fournier
- Écologie Microbienne, Centre National de la Recherche Scientifique UMR 5557, Université de Lyon, Université Claude Bernard Lyon I, INRA, UMR 1418, Villeurbanne, 69622 Cedex, France
| | - Céline Brochier-Armanet
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Évolutive, 43 bd du 11 novembre 1918, F-69622, Villeurbanne, France
| | - Aude Herrera-Belaroussi
- Écologie Microbienne, Centre National de la Recherche Scientifique UMR 5557, Université de Lyon, Université Claude Bernard Lyon I, INRA, UMR 1418, Villeurbanne, 69622 Cedex, France.
| |
Collapse
|
20
|
Marcelino I, Colomé-Calls N, Holzmuller P, Lisacek F, Reynaud Y, Canals F, Vachiéry N. Sweet and Sour Ehrlichia: Glycoproteomics and Phosphoproteomics Reveal New Players in Ehrlichia ruminantium Physiology and Pathogenesis. Front Microbiol 2019; 10:450. [PMID: 30930869 PMCID: PMC6429767 DOI: 10.3389/fmicb.2019.00450] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/20/2019] [Indexed: 01/31/2023] Open
Abstract
Unraveling which proteins and post-translational modifications (PTMs) affect bacterial pathogenesis and physiology in diverse environments is a tough challenge. Herein, we used mass spectrometry-based assays to study protein phosphorylation and glycosylation in Ehrlichia ruminantium Gardel virulent (ERGvir) and attenuated (ERGatt) variants and, how they can modulate Ehrlichia biological processes. The characterization of the S/T/Y phosphoproteome revealed that both strains share the same set of phosphoproteins (n = 58), 36% being overexpressed in ERGvir. The percentage of tyrosine phosphorylation is high (23%) and 66% of the identified peptides are multi-phosphorylated. Glycoproteomics revealed a high percentage of glycoproteins (67% in ERGvir) with a subset of glycoproteins being specific to ERGvir (n = 64/371) and ERGatt (n = 36/343). These glycoproteins are involved in key biological processes such as protein, amino-acid and purine biosynthesis, translation, virulence, DNA repair, and replication. Label-free quantitative analysis revealed over-expression in 31 proteins in ERGvir and 8 in ERGatt. While further PNGase digestion confidently localized 2 and 5 N-glycoproteins in ERGvir and ERGatt, respectively, western blotting suggests that many glycoproteins are O-GlcNAcylated. Twenty-three proteins were detected in both the phospho- and glycoproteome, for the two variants. This work represents the first comprehensive assessment of PTMs on Ehrlichia biology, rising interesting questions regarding ER–host interactions. Phosphoproteome characterization demonstrates an increased versatility of ER phosphoproteins to participate in different mechanisms. The high number of glycoproteins and the lack of glycosyltransferases-coding genes highlight ER dependence on the host and/or vector cellular machinery for its own protein glycosylation. Moreover, these glycoproteins could be crucial to interact and respond to changes in ER environment. PTMs crosstalk between of O-GlcNAcylation and phosphorylation could be used as a major cellular signaling mechanism in ER. As little is known about the Ehrlichia proteins/proteome and its signaling biology, the results presented herein provide a useful resource for further hypothesis-driven exploration of Ehrlichia protein regulation by phosphorylation and glycosylation events. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium with the data set identifier PXD012589.
Collapse
Affiliation(s)
- Isabel Marcelino
- CIRAD, UMR ASTRE, Petit-Bourg, France.,ASTRE, CIRAD, INRA, Université de Montpellier, Montpellier, France.,Unitè TReD-Path (Transmission Rèservoirs et Diversitè des Pathogènes), Institut Pasteur de Guadeloupe, Les Abymes, France
| | - Núria Colomé-Calls
- Proteomics Laboratory, Vall Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Philippe Holzmuller
- ASTRE, CIRAD, INRA, Université de Montpellier, Montpellier, France.,CIRAD, UMR ASTRE, Montpellier, France
| | - Frédérique Lisacek
- Proteome Informatics, Swiss Institute of Bioinformatics, Geneva, Switzerland.,Computer Science Department and Section of Biology, University of Geneva, Geneva, Switzerland
| | - Yann Reynaud
- Unitè TReD-Path (Transmission Rèservoirs et Diversitè des Pathogènes), Institut Pasteur de Guadeloupe, Les Abymes, France
| | - Francesc Canals
- Proteomics Laboratory, Vall Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Nathalie Vachiéry
- ASTRE, CIRAD, INRA, Université de Montpellier, Montpellier, France.,CIRAD, UMR ASTRE, Montpellier, France
| |
Collapse
|
21
|
Greening DW, Simpson RJ. Understanding extracellular vesicle diversity – current status. Expert Rev Proteomics 2018; 15:887-910. [DOI: 10.1080/14789450.2018.1537788] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- David W. Greening
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University , Melbourne, Australia
| | - Richard J. Simpson
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University , Melbourne, Australia
| |
Collapse
|