1
|
Butterfield ER, Obado SO, Scutts SR, Zhang W, Chait BT, Rout MP, Field MC. A lineage-specific protein network at the trypanosome nuclear envelope. Nucleus 2024; 15:2310452. [PMID: 38605598 PMCID: PMC11018031 DOI: 10.1080/19491034.2024.2310452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/18/2024] [Indexed: 04/13/2024] Open
Abstract
The nuclear envelope (NE) separates translation and transcription and is the location of multiple functions, including chromatin organization and nucleocytoplasmic transport. The molecular basis for many of these functions have diverged between eukaryotic lineages. Trypanosoma brucei, a member of the early branching eukaryotic lineage Discoba, highlights many of these, including a distinct lamina and kinetochore composition. Here, we describe a cohort of proteins interacting with both the lamina and NPC, which we term lamina-associated proteins (LAPs). LAPs represent a diverse group of proteins, including two candidate NPC-anchoring pore membrane proteins (POMs) with architecture conserved with S. cerevisiae and H. sapiens, and additional peripheral components of the NPC. While many of the LAPs are Kinetoplastid specific, we also identified broadly conserved proteins, indicating an amalgam of divergence and conservation within the trypanosome NE proteome, highlighting the diversity of nuclear biology across the eukaryotes, increasing our understanding of eukaryotic and NPC evolution.
Collapse
Affiliation(s)
| | - Samson O. Obado
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA
| | - Simon R. Scutts
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Wenzhu Zhang
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY, USA
| | - Brian T. Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY, USA
| | - Michael P. Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA
| | - Mark C. Field
- School of Life Sciences, University of Dundee, Dundee, UK
- Biology Centre, Czech Academy of Sciences, Institute of Parasitology, České Budějovice, Czech Republic
| |
Collapse
|
2
|
Swapna LS, Stevens GC, Sardinha-Silva A, Hu LZ, Brand V, Fusca DD, Wan C, Xiong X, Boyle JP, Grigg ME, Emili A, Parkinson J. ToxoNet: A high confidence map of protein-protein interactions in Toxoplasma gondii. PLoS Comput Biol 2024; 20:e1012208. [PMID: 38900844 PMCID: PMC11219001 DOI: 10.1371/journal.pcbi.1012208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 07/02/2024] [Accepted: 05/28/2024] [Indexed: 06/22/2024] Open
Abstract
The apicomplexan intracellular parasite Toxoplasma gondii is a major food borne pathogen that is highly prevalent in the global population. The majority of the T. gondii proteome remains uncharacterized and the organization of proteins into complexes is unclear. To overcome this knowledge gap, we used a biochemical fractionation strategy to predict interactions by correlation profiling. To overcome the deficit of high-quality training data in non-model organisms, we complemented a supervised machine learning strategy, with an unsupervised approach, based on similarity network fusion. The resulting combined high confidence network, ToxoNet, comprises 2,063 interactions connecting 652 proteins. Clustering identifies 93 protein complexes. We identified clusters enriched in mitochondrial machinery that include previously uncharacterized proteins that likely represent novel adaptations to oxidative phosphorylation. Furthermore, complexes enriched in proteins localized to secretory organelles and the inner membrane complex, predict additional novel components representing novel targets for detailed functional characterization. We present ToxoNet as a publicly available resource with the expectation that it will help drive future hypotheses within the research community.
Collapse
Affiliation(s)
| | - Grant C. Stevens
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Aline Sardinha-Silva
- Molecular Parasitology Section, Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Lucas Zhongming Hu
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Verena Brand
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Daniel D. Fusca
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Cuihong Wan
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Xuejian Xiong
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jon P. Boyle
- Department of Biological Sciences, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Michael E. Grigg
- Molecular Parasitology Section, Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Andrew Emili
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Department of Biology and Biochemistry, Boston University, Boston, Massachusetts, United States of America
| | - John Parkinson
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Dacheux D, Martinez G, Broster Reix CE, Beurois J, Lores P, Tounkara M, Dupuy JW, Robinson DR, Loeuillet C, Lambert E, Wehbe Z, Escoffier J, Amiri-Yekta A, Daneshipour A, Hosseini SH, Zouari R, Mustapha SFB, Halouani L, Jiang X, Shen Y, Liu C, Thierry-Mieg N, Septier A, Bidart M, Satre V, Cazin C, Kherraf ZE, Arnoult C, Ray PF, Toure A, Bonhivers M, Coutton C. Novel axonemal protein ZMYND12 interacts with TTC29 and DNAH1, and is required for male fertility and flagellum function. eLife 2023; 12:RP87698. [PMID: 37934199 PMCID: PMC10629824 DOI: 10.7554/elife.87698] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023] Open
Abstract
Male infertility is common and complex, presenting a wide range of heterogeneous phenotypes. Although about 50% of cases are estimated to have a genetic component, the underlying cause often remains undetermined. Here, from whole-exome sequencing on samples from 168 infertile men with asthenoteratozoospermia due to severe sperm flagellum, we identified homozygous ZMYND12 variants in four unrelated patients. In sperm cells from these individuals, immunofluorescence revealed altered localization of DNAH1, DNALI1, WDR66, and TTC29. Axonemal localization of ZMYND12 ortholog TbTAX-1 was confirmed using the Trypanosoma brucei model. RNAi knock-down of TbTAX-1 dramatically affected flagellar motility, with a phenotype similar to the sperm from men bearing homozygous ZMYND12 variants. Co-immunoprecipitation and ultrastructure expansion microscopy in T. brucei revealed TbTAX-1 to form a complex with TTC29. Comparative proteomics with samples from Trypanosoma and Ttc29 KO mice identified a third member of this complex: DNAH1. The data presented revealed that ZMYND12 is part of the same axonemal complex as TTC29 and DNAH1, which is critical for flagellum function and assembly in humans, and Trypanosoma. ZMYND12 is thus a new asthenoteratozoospermia-associated gene, bi-allelic variants of which cause severe flagellum malformations and primary male infertility.
Collapse
Affiliation(s)
- Denis Dacheux
- University of Bordeaux, CNRSBordeauxFrance
- Bordeaux INP, Microbiologie Fondamentale et PathogénicitéBordeauxFrance
| | | | | | - Julie Beurois
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, Université Grenoble Alpes, Team Genetics Epigenetics and Therapies of InfertilityGrenobleFrance
| | - Patrick Lores
- Institut Cochin, INSERM U1016, CNRS UMR 8104, Université Paris CiteParisFrance
| | | | | | | | - Corinne Loeuillet
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, Université Grenoble Alpes, Team Genetics Epigenetics and Therapies of InfertilityGrenobleFrance
| | - Emeline Lambert
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, Université Grenoble Alpes, Team Genetics Epigenetics and Therapies of InfertilityGrenobleFrance
| | - Zeina Wehbe
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, Université Grenoble Alpes, Team Genetics Epigenetics and Therapies of InfertilityGrenobleFrance
| | - Jessica Escoffier
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, Université Grenoble Alpes, Team Genetics Epigenetics and Therapies of InfertilityGrenobleFrance
| | - Amir Amiri-Yekta
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECRTehranIslamic Republic of Iran
| | - Abbas Daneshipour
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECRTehranIslamic Republic of Iran
| | - Seyedeh-Hanieh Hosseini
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECRTehranIslamic Republic of Iran
| | - Raoudha Zouari
- Polyclinique les Jasmins, Centre d'Aide Médicale à la Procréation, Centre Urbain NordTunisTunisia
| | | | - Lazhar Halouani
- Polyclinique les Jasmins, Centre d'Aide Médicale à la Procréation, Centre Urbain NordTunisTunisia
| | - Xiaohui Jiang
- Human Sperm Bank, West China Second University Hospital of Sichuan UniversitySichuanChina
- NHC Key Laboratory of Chronobiology, Sichuan UniversitySichuanChina
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of EducationSichuanChina
| | - Ying Shen
- NHC Key Laboratory of Chronobiology, Sichuan UniversitySichuanChina
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of EducationSichuanChina
| | - Chunyu Liu
- Obstetrics and Gynecology Hospital, Fudan UniversityFudanChina
| | | | | | - Marie Bidart
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, Université Grenoble Alpes, Team Genetics Epigenetics and Therapies of InfertilityGrenobleFrance
- CHU Grenoble Alpes, Laboratoire de Génétique Moléculaire: Maladies Héréditaires et OncologieGrenobleFrance
| | - Véronique Satre
- CHU Grenoble-Alpes, UM de Génétique ChromosomiqueGrenobleFrance
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, Université Grenoble Alpes, Team Genetics Epigenetics and Therapies of InfertilityGrenobleFrance
| | - Caroline Cazin
- CHU Grenoble-Alpes, UM de Génétique ChromosomiqueGrenobleFrance
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, Université Grenoble Alpes, Team Genetics Epigenetics and Therapies of InfertilityGrenobleFrance
- CHU de Grenoble, UM GI-DPIGrenobleFrance
| | - Zine Eddine Kherraf
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, Université Grenoble Alpes, Team Genetics Epigenetics and Therapies of InfertilityGrenobleFrance
- CHU de Grenoble, UM GI-DPIGrenobleFrance
| | - Christophe Arnoult
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, Université Grenoble Alpes, Team Genetics Epigenetics and Therapies of InfertilityGrenobleFrance
| | - Pierre F Ray
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, Université Grenoble Alpes, Team Genetics Epigenetics and Therapies of InfertilityGrenobleFrance
- CHU de Grenoble, UM GI-DPIGrenobleFrance
| | - Aminata Toure
- Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, Université Grenoble Alpes, Team Physiology and Pathophysiology of Sperm cellsGrenobleFrance
| | | | - Charles Coutton
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, Université Grenoble Alpes, Team Genetics Epigenetics and Therapies of InfertilityGrenobleFrance
| |
Collapse
|
4
|
Amodeo S, Bregy I, Ochsenreiter T. Mitochondrial genome maintenance-the kinetoplast story. FEMS Microbiol Rev 2023; 47:fuac047. [PMID: 36449697 PMCID: PMC10719067 DOI: 10.1093/femsre/fuac047] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 08/13/2022] [Accepted: 11/24/2022] [Indexed: 12/17/2023] Open
Abstract
Mitochondrial DNA replication is an essential process in most eukaryotes. Similar to the diversity in mitochondrial genome size and organization in the different eukaryotic supergroups, there is considerable diversity in the replication process of the mitochondrial DNA. In this review, we summarize the current knowledge of mitochondrial DNA replication and the associated factors in trypanosomes with a focus on Trypanosoma brucei, and provide a new model of minicircle replication for this protozoan parasite. The model assumes the mitochondrial DNA (kinetoplast DNA, kDNA) of T. brucei to be loosely diploid in nature and the replication of the genome to occur at two replication centers at the opposing ends of the kDNA disc (also known as antipodal sites, APS). The new model is consistent with the localization of most replication factors and in contrast to the current model, it does not require the assumption of an unknown sorting and transport complex moving freshly replicated DNA to the APS. In combination with the previously proposed sexual stages of the parasite in the insect vector, the new model provides a mechanism for maintenance of the mitochondrial genetic diversity.
Collapse
Affiliation(s)
- Simona Amodeo
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Hochschulstrasse 6, 3012 Bern, Switzerland
| | - Irina Bregy
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Hochschulstrasse 6, 3012 Bern, Switzerland
| | - Torsten Ochsenreiter
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland
| |
Collapse
|
5
|
Briggs EM, Marques CA, Oldrieve GR, Hu J, Otto TD, Matthews KR. Profiling the bloodstream form and procyclic form Trypanosoma brucei cell cycle using single-cell transcriptomics. eLife 2023; 12:e86325. [PMID: 37166108 PMCID: PMC10212563 DOI: 10.7554/elife.86325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/10/2023] [Indexed: 05/12/2023] Open
Abstract
African trypanosomes proliferate as bloodstream forms (BSFs) and procyclic forms in the mammal and tsetse fly midgut, respectively. This allows them to colonise the host environment upon infection and ensure life cycle progression. Yet, understanding of the mechanisms that regulate and drive the cell replication cycle of these forms is limited. Using single-cell transcriptomics on unsynchronised cell populations, we have obtained high resolution cell cycle regulated (CCR) transcriptomes of both procyclic and slender BSF Trypanosoma brucei without prior cell sorting or synchronisation. Additionally, we describe an efficient freeze-thawing protocol that allows single-cell transcriptomic analysis of cryopreserved T. brucei. Computational reconstruction of the cell cycle using periodic pseudotime inference allowed the dynamic expression patterns of cycling genes to be profiled for both life cycle forms. Comparative analyses identify a core cycling transcriptome highly conserved between forms, as well as several genes where transcript levels dynamics are form specific. Comparing transcript expression patterns with protein abundance revealed that the majority of genes with periodic cycling transcript and protein levels exhibit a relative delay between peak transcript and protein expression. This work reveals novel detail of the CCR transcriptomes of both forms, which are available for further interrogation via an interactive webtool.
Collapse
Affiliation(s)
- Emma M Briggs
- Institute for Immunology and Infection Research, School of Biological Sciences, University of EdinburghEdinburghUnited Kingdom
- Wellcome Centre for Integrative Parasitology, School of Infection & Immunity, University of GlasgowGlasgowUnited Kingdom
| | - Catarina A Marques
- Wellcome Centre for Integrative Parasitology, School of Infection & Immunity, University of GlasgowGlasgowUnited Kingdom
| | - Guy R Oldrieve
- Institute for Immunology and Infection Research, School of Biological Sciences, University of EdinburghEdinburghUnited Kingdom
| | - Jihua Hu
- Institute for Immunology and Infection Research, School of Biological Sciences, University of EdinburghEdinburghUnited Kingdom
| | - Thomas D Otto
- Wellcome Centre for Integrative Parasitology, School of Infection & Immunity, University of GlasgowGlasgowUnited Kingdom
| | - Keith R Matthews
- Institute for Immunology and Infection Research, School of Biological Sciences, University of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
6
|
Smircich P, Pérez-Díaz L, Hernández F, Duhagon MA, Garat B. Transcriptomic analysis of the adaptation to prolonged starvation of the insect-dwelling Trypanosoma cruzi epimastigotes. Front Cell Infect Microbiol 2023; 13:1138456. [PMID: 37091675 PMCID: PMC10117895 DOI: 10.3389/fcimb.2023.1138456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/20/2023] [Indexed: 04/25/2023] Open
Abstract
Trypanosoma cruzi is a digenetic unicellular parasite that alternates between a blood-sucking insect and a mammalian, host causing Chagas disease or American trypanosomiasis. In the insect gut, the parasite differentiates from the non-replicative trypomastigote forms that arrive upon blood ingestion to the non-infective replicative epimastigote forms. Epimastigotes develop into infective non-replicative metacyclic trypomastigotes in the rectum and are delivered via the feces. In addition to these parasite stages, transitional forms have been reported. The insect-feeding behavior, characterized by few meals of large blood amounts followed by long periods of starvation, impacts the parasite population density and differentiation, increasing the transitional forms while diminishing both epimastigotes and metacyclic trypomastigotes. To understand the molecular changes caused by nutritional restrictions in the insect host, mid-exponentially growing axenic epimastigotes were cultured for more than 30 days without nutrient supplementation (prolonged starvation). We found that the parasite population in the stationary phase maintains a long period characterized by a total RNA content three times smaller than that of exponentially growing epimastigotes and a distinctive transcriptomic profile. Among the transcriptomic changes induced by nutrient restriction, we found differentially expressed genes related to managing protein quality or content, the reported switch from glucose to amino acid consumption, redox challenge, and surface proteins. The contractile vacuole and reservosomes appeared as cellular components enriched when ontology term overrepresentation analysis was carried out, highlighting the roles of these organelles in starving conditions possibly related to their functions in regulating cell volume and osmoregulation as well as metabolic homeostasis. Consistent with the quiescent status derived from nutrient restriction, genes related to DNA metabolism are regulated during the stationary phase. In addition, we observed differentially expressed genes related to the unique parasite mitochondria. Finally, our study identifies gene expression changes that characterize transitional parasite forms enriched by nutrient restriction. The analysis of the here-disclosed regulated genes and metabolic pathways aims to contribute to the understanding of the molecular changes that this unicellular parasite undergoes in the insect vector.
Collapse
Affiliation(s)
- Pablo Smircich
- Sección Genómica Funcional, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- Laboratorio de Bioinformática, Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
- *Correspondence: Beatriz Garat, ; Pablo Smircich,
| | - Leticia Pérez-Díaz
- Sección Genómica Funcional, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Fabricio Hernández
- Sección Genómica Funcional, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - María Ana Duhagon
- Sección Genómica Funcional, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- Departamento de Genética, Facultad de Medicina Universidad de la República, Montevideo, Uruguay
| | - Beatriz Garat
- Sección Genómica Funcional, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- *Correspondence: Beatriz Garat, ; Pablo Smircich,
| |
Collapse
|
7
|
Genome-wide subcellular protein map for the flagellate parasite Trypanosoma brucei. Nat Microbiol 2023; 8:533-547. [PMID: 36804636 PMCID: PMC9981465 DOI: 10.1038/s41564-022-01295-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 11/21/2022] [Indexed: 02/22/2023]
Abstract
Trypanosoma brucei is a model trypanosomatid, an important group of human, animal and plant unicellular parasites. Understanding their complex cell architecture and life cycle is challenging because, as with most eukaryotic microbes, ~50% of genome-encoded proteins have completely unknown functions. Here, using fluorescence microscopy and cell lines expressing endogenously tagged proteins, we mapped the subcellular localization of 89% of the T. brucei proteome, a resource we call TrypTag. We provide clues to function and define lineage-specific organelle adaptations for parasitism, mapping the ultraconserved cellular architecture of eukaryotes, including the first comprehensive 'cartographic' analysis of the eukaryotic flagellum, which is vital for morphogenesis and pathology. To demonstrate the power of this resource, we identify novel organelle subdomains and changes in molecular composition through the cell cycle. TrypTag is a transformative resource, important for hypothesis generation for both eukaryotic evolutionary molecular cell biology and fundamental parasite cell biology.
Collapse
|
8
|
Genome-scale RNA interference profiling of Trypanosoma brucei cell cycle progression defects. Nat Commun 2022; 13:5326. [PMID: 36088375 PMCID: PMC9464253 DOI: 10.1038/s41467-022-33109-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/31/2022] [Indexed: 11/21/2022] Open
Abstract
Trypanosomatids, which include major pathogens of humans and livestock, are flagellated protozoa for which cell cycle controls and the underlying mechanisms are not completely understood. Here, we describe a genome-wide RNA-interference library screen for cell cycle defects in Trypanosoma brucei. We induced massive parallel knockdown, sorted the perturbed population using high-throughput flow cytometry, deep-sequenced RNAi-targets from each stage and digitally reconstructed cell cycle profiles at a genomic scale; also enabling data visualisation using an online tool ( https://tryp-cycle.pages.dev/ ). Analysis of several hundred genes that impact cell cycle progression reveals >100 flagellar component knockdowns linked to genome endoreduplication, evidence for metabolic control of the G1-S transition, surface antigen regulatory mRNA-binding protein knockdowns linked to G2M accumulation, and a putative nucleoredoxin required for both mitochondrial genome segregation and for mitosis. The outputs provide comprehensive functional genomic evidence for the known and novel machineries, pathways and regulators that coordinate trypanosome cell cycle progression.
Collapse
|
9
|
Falk F, Melo Palhares R, Waithaka A, Clayton C. Roles and interactions of the specialized initiation factors EIF4E2, EIF4E5 and EIF4E6 in Trypanosoma brucei: EIF4E2 maintains the abundances of S-phase mRNAs. Mol Microbiol 2022; 118:457-476. [PMID: 36056730 DOI: 10.1111/mmi.14978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/14/2022] [Accepted: 08/30/2022] [Indexed: 11/29/2022]
Abstract
Trypanosoma brucei has six versions of the cap-binding translation initiation factor EIF4E. We investigated the functions of EIF4E2, EIF4E3, EIF4E5 and EIF4E6 in bloodstream forms. We confirmed the protein associations previously found in procyclic forms, and detected specific co-purification of some RNA-binding proteins. Bloodstream forms lacking EIF4E5 grew normally and differentiated to replication-incompetent procyclic forms. Depletion of EIF4E6 inhibited bloodstream-form trypanosome growth and translation. EIF4E2 co-purified only the putative RNA binding protein SLBP2. Bloodstream forms lacking EIF4E2 multiplied slowly, had a low maximal cell density, and expressed the stumpy-form marker PAD1, but showed no evidence for enhanced stumpy-form signalling. EIF4E2 knock-out cells differentiated readily to replication-competent procyclic forms. EIF4E2 was strongly associated with a subset of mRNAs that are maximally abundant in S-phase, and these all had decreased abundances in EIF4E2 knock-out cells. Three EIF4E2 target mRNAs are also bound and stabilized by the Pumilio domain protein PUF9. Yeast 2-hybrid results suggested that PUF9 interacts directly with SLBP2, but PUF9 was not detected in EIF4E2 pull-downs. We speculate that the EIF4E2-SLBP2 complex might interact with its target mRNAs, perhaps via PUF9, only early during G1/S, stabilizing the mRNAs in preparation for translation later in S-phase or in early G2.
Collapse
Affiliation(s)
- Franziska Falk
- Heidelberg University Centre for Molecular Biology (ZMBH), Im Neuenheimer Feld, Heidelberg, Germany
| | - Rafael Melo Palhares
- Heidelberg University Centre for Molecular Biology (ZMBH), Im Neuenheimer Feld, Heidelberg, Germany.,Institut für Mikro- und Molekularbiologie, Justus-Liebig-Universität Giessen, IFZ, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Albina Waithaka
- Heidelberg University Centre for Molecular Biology (ZMBH), Im Neuenheimer Feld, Heidelberg, Germany
| | - Christine Clayton
- Heidelberg University Centre for Molecular Biology (ZMBH), Im Neuenheimer Feld, Heidelberg, Germany
| |
Collapse
|
10
|
Kent RS, Briggs EM, Colon BL, Alvarez C, Silva Pereira S, De Niz M. Paving the Way: Contributions of Big Data to Apicomplexan and Kinetoplastid Research. Front Cell Infect Microbiol 2022; 12:900878. [PMID: 35734575 PMCID: PMC9207352 DOI: 10.3389/fcimb.2022.900878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
In the age of big data an important question is how to ensure we make the most out of the resources we generate. In this review, we discuss the major methods used in Apicomplexan and Kinetoplastid research to produce big datasets and advance our understanding of Plasmodium, Toxoplasma, Cryptosporidium, Trypanosoma and Leishmania biology. We debate the benefits and limitations of the current technologies, and propose future advancements that may be key to improving our use of these techniques. Finally, we consider the difficulties the field faces when trying to make the most of the abundance of data that has already been, and will continue to be, generated.
Collapse
Affiliation(s)
- Robyn S. Kent
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT, United States
| | - Emma M. Briggs
- Institute for Immunology and Infection Research, School of Biological Sciences, University Edinburgh, Edinburgh, United Kingdom
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Beatrice L. Colon
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Catalina Alvarez
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Sara Silva Pereira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Mariana De Niz
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
- Institut Pasteur, Paris, France
| |
Collapse
|
11
|
Bravo Ruiz G, Tinti M, Ridgway M, Horn D. Control of Variant Surface Glycoprotein Expression by CFB2 in Trypanosoma brucei and Quantitative Proteomic Connections to Translation and Cytokinesis. mSphere 2022; 7:e0006922. [PMID: 35306877 PMCID: PMC9044945 DOI: 10.1128/msphere.00069-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/23/2022] [Indexed: 01/17/2023] Open
Abstract
Variant surface glycoproteins (VSGs) coat parasitic African trypanosomes and underpin antigenic variation and immune evasion. These VSGs are superabundant virulence factors that are subject to posttranscriptional gene expression controls mediated via the VSG 3' untranslated region (UTR). To identify positive VSG regulators in bloodstream-form Trypanosoma brucei, we used genome-scale screening data to prioritize mRNA binding protein (mRBP) knockdowns that phenocopy VSG mRNA knockdown, displaying loss of fitness and precytokinesis accumulation. The top three candidates were CFB2 (cyclin F-box protein 2) (Tb927.1.4650), MKT1 (Tb927.6.4770), and PBP1 (polyadenylate binding protein 1) (Tb927.8.4540). Notably, CFB2 was recently found to regulate VSG transcript stability, and all three proteins were found to associate. We used data-independent acquisition for accurate label-free quantification and deep proteome coverage to quantify the expression profiles following the depletion of each mRBP. Only CFB2 knockdown significantly reduced VSG expression and the expression of a reporter under the control of the VSG 3' UTR. CFB2 knockdown also triggered the depletion of cytoplasmic ribosomal proteins, consistent with translation arrest observed when VSG synthesis is blocked. In contrast, PBP1 knockdown triggered the depletion of CFB2, MKT1, and other components of the PBP1 complex. Finally, all three knockdowns triggered the depletion of cytokinesis initiation factors, consistent with a cytokinesis defect, which was confirmed here for all three knockdowns. Thus, genome-scale knockdown data sets facilitate the triage and prioritization of candidate regulators. Quantitative proteomic analysis confirms the 3'-UTR-dependent positive control of VSG expression by CFB2 and interactions with additional mRBPs. Our results also reveal new insights into the connections between VSG expression control by CFB2, ribosomal protein expression, and cytokinesis. IMPORTANCE VSG expression represents a key parasite virulence mechanism and an example of extreme biology. Posttranscriptional gene expression controls in trypanosomatids also continue to be the subject of substantial research interest. We have identified three candidate VSG regulators and used knockdown and quantitative proteomics, in combination with other approaches, to assess their function. CFB2 is found to control VSG expression via the VSG 3' untranslated region, while other data support the view that MKT1 and PBP1 also form part of a CFB2 mRNA binding complex. Remarkably, we also find the depletion of cytoplasmic ribosomal proteins upon CFB2 knockdown, consistent with translation arrest observed when VSG synthesis is blocked. Proteomic profiles following knockdown further yield insights into cytokinesis defects. Taken together, our findings confirm and elaborate the role of CFB2 in controlling VSG expression and reveal new insights into connectivity with translation and cytokinesis controls.
Collapse
Affiliation(s)
- Gustavo Bravo Ruiz
- The Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Michele Tinti
- The Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Melanie Ridgway
- The Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - David Horn
- The Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
12
|
Perdomo D, Berdance E, Lallinger-Kube G, Sahin A, Dacheux D, Landrein N, Cayrel A, Ersfeld K, Bonhivers M, Kohl L, Robinson DR. TbKINX1B: a novel BILBO1 partner and an essential protein in bloodstream form Trypanosoma brucei. Parasite 2022; 29:14. [PMID: 35262485 PMCID: PMC8906236 DOI: 10.1051/parasite/2022015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 02/20/2022] [Indexed: 12/17/2022] Open
Abstract
The flagellar pocket (FP) of the pathogen Trypanosoma brucei is an important single copy structure that is formed by the invagination of the pellicular membrane. It is the unique site of endo- and exocytosis and is required for parasite pathogenicity. The FP consists of distinct structural sub-domains with the least explored being the flagellar pocket collar (FPC). TbBILBO1 is the first-described FPC protein of Trypanosoma brucei. It is essential for parasite survival, FP and FPC biogenesis. In this work, we characterize TbKINX1B, a novel TbBILBO1 partner. We demonstrate that TbKINX1B is located on the basal bodies, the microtubule quartet (a set of four microtubules) and the FPC in T. brucei. Down-regulation of TbKINX1B by RNA interference in bloodstream forms is lethal, inducing an overall disturbance in the endomembrane network. In procyclic forms, the RNAi knockdown of TbKINX1B leads to a minor phenotype with a small number of cells displaying epimastigote-like morphologies, with a misplaced kinetoplast. Our results characterize TbKINX1B as the first putative kinesin to be localized both at the basal bodies and the FPC with a potential role in transporting cargo along with the microtubule quartet.
Collapse
Affiliation(s)
- Doranda Perdomo
- University of Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234 33000 Bordeaux France
| | - Elodie Berdance
- University of Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234 33000 Bordeaux France
| | - Gertrud Lallinger-Kube
- Department of Genetics, Bldg. NW1, University of Bayreuth, Universitätsstraße 30 95440 Bayreuth Germany
| | - Annelise Sahin
- University of Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234 33000 Bordeaux France
| | - Denis Dacheux
- University of Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234 33000 Bordeaux France
- Institut Polytechnique de Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234 33000 Bordeaux France
| | - Nicolas Landrein
- University of Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234 33000 Bordeaux France
| | - Anne Cayrel
- University of Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234 33000 Bordeaux France
| | - Klaus Ersfeld
- Department of Genetics, Bldg. NW1, University of Bayreuth, Universitätsstraße 30 95440 Bayreuth Germany
| | - Mélanie Bonhivers
- University of Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234 33000 Bordeaux France
| | - Linda Kohl
- UMR 7245 Molécules de Communication et Adaptation des Micro-organismes, Muséum National d’Histoire Naturelle, CNRS, CP52 61 rue Buffon 75231 Paris Cedex 05 France
| | - Derrick R. Robinson
- University of Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234 33000 Bordeaux France
| |
Collapse
|
13
|
Abstract
The cell cycle is the series of events that take place in a cell that drives it to divide and produce two new daughter cells. Through more than 100 years of efforts by scientists, we now have a much clearer picture of cell cycle progression and its regulation. The typical cell cycle in eukaryotes is composed of the G1, S, G2, and M phases. The M phase is further divided into prophase, prometaphase, metaphase, anaphase, telophase, and cytokinesis. Cell cycle progression is mediated by cyclin-dependent kinases (Cdks) and their regulatory cyclin subunits. However, the driving force of cell cycle progression is growth factor-initiated signaling pathways that controls the activity of various Cdk-cyclin complexes. Most cellular events, including DNA duplication, gene transcription, protein translation, and post-translational modification of proteins, occur in a cell-cycle-dependent manner. To understand these cellular events and their underlying molecular mechanisms, it is desirable to have a population of cells that are traversing the cell cycle synchronously. This can be achieved through a process called cell synchronization. Many methods have been developed to synchronize cells to the various phases of the cell cycle. These methods could be classified into two groups: synchronization methods using chemical inhibitors and synchronization methods without using chemical inhibitors. All these methods have their own merits and shortcomings.
Collapse
Affiliation(s)
- Zhixiang Wang
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
14
|
Mycoplasma genitalium Protein of Adhesion Promotes the Early Proliferation of Human Urothelial Cells by Interacting with RPL35. Pathogens 2021; 10:pathogens10111449. [PMID: 34832605 PMCID: PMC8621731 DOI: 10.3390/pathogens10111449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/28/2021] [Accepted: 11/03/2021] [Indexed: 11/29/2022] Open
Abstract
Mycoplasma genitalium is a newly recognized pathogen associated with sexually transmitted diseases (STDs). MgPa, the adhesion protein of Mycoplasma genitalium, is the main adhesin and the key factor for M. genitalium interacting with host cells. Currently, the long-term survival mechanism of M. genitalium in the host is not clear. In this study, a T7 phage-displayed human urothelial cell (SV-HUC-1) cDNA library was constructed, and the interaction of MgPa was screened from this library using the recombinant MgPa (rMgPa) as a target molecule. We verified that 60S ribosomal protein L35 (RPL35) can interact with MgPa using far-Western blot and co-localization analysis. According to the results of tandem mass tag (TMT) labeling and proteome quantitative analysis, there were altogether 407 differentially expressed proteins between the pcDNA3.1(+)/MgPa-transfected cells and non-transfected cells, of which there were 6 downregulated proteins and 401 upregulated proteins. The results of qRT-PCR demonstrated that interaction between rMgPa and RPL35 could promote the expressions of EIF2, SRP68, SERBP1, RPL35A, EGF, and TGF-β. 3-(4,5)-Dimethylthiahiazo(-z-y1)-3,5-di-phenytetrazoliumromide bromide (MTT) assays corroborated that the interaction between rMgPa and RPL35 could promote SV-HUC-1 cell proliferation. Therefore, our findings indicated that the interaction between rMgPa and RPL35 can enhance the expressions of transcription-initiation and translation-related proteins and thus promote cell proliferation. This study elucidates a new biological function of MgPa and can explain this new mechanism of M. genitalium in the host.
Collapse
|
15
|
Extensive Translational Regulation through the Proliferative Transition of Trypanosoma cruzi Revealed by Multi-Omics. mSphere 2021; 6:e0036621. [PMID: 34468164 PMCID: PMC8550152 DOI: 10.1128/msphere.00366-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Trypanosoma cruzi is the etiological agent for Chagas disease, a neglected parasitic disease in Latin America. Gene transcription control governs the eukaryotic cell replication but is absent in trypanosomatids; thus, it must be replaced by posttranscriptional regulatory events. We investigated the entrance into the T. cruzi replicative cycle using ribosome profiling and proteomics on G1/S epimastigote cultures synchronized with hydroxyurea. We identified 1,784 translationally regulated genes (change > 2, false-discovery rate [FDR] < 0.05) and 653 differentially expressed proteins (change > 1.5, FDR < 0.05), respectively. A major translational remodeling accompanied by an extensive proteome change is found, while the transcriptome remains largely unperturbed at the replicative entrance of the cell cycle. The differentially expressed genes comprise specific cell cycle processes, confirming previous findings while revealing candidate cell cycle regulators that undergo previously unnoticed translational regulation. Clusters of genes showing a coordinated regulation at translation and protein abundance share related biological functions such as cytoskeleton organization and mitochondrial metabolism; thus, they may represent posttranscriptional regulons. The translatome and proteome of the coregulated clusters change in both coupled and uncoupled directions, suggesting that complex cross talk between the two processes is required to achieve adequate protein levels of different regulons. This is the first simultaneous assessment of the transcriptome, translatome, and proteome of trypanosomatids, which represent a paradigm for the absence of transcriptional control. The findings suggest that gene expression chronology along the T. cruzi cell cycle is controlled mainly by translatome and proteome changes coordinated using different mechanisms for specific gene groups. IMPORTANCE Trypanosoma cruzi is an ancient eukaryotic unicellular parasite causing Chagas disease, a potentially life-threatening illness that affects 6 to 7 million people, mostly in Latin America. The antiparasitic treatments for the disease have incomplete efficacy and adverse reactions; thus, improved drugs are needed. We study the mechanisms governing the replication of the parasite, aiming to find differences with the human host, valuable for the development of parasite-specific antiproliferative drugs. Transcriptional regulation is essential for replication in most eukaryotes, but in trypanosomatids, it must be replaced by subsequent gene regulation steps since they lack transcription initiation control. We identified the genome-wide remodeling of mRNA translation and protein abundance during the entrance to the replicative phase of the cell cycle. We found that translation is strongly regulated, causing variation in protein levels of specific cell cycle processes, representing the first simultaneous study of the translatome and proteome in trypanosomatids.
Collapse
|
16
|
A specific basal body linker protein provides the connection function for basal body inheritance in trypanosomes. Proc Natl Acad Sci U S A 2021; 118:2014040118. [PMID: 33597294 DOI: 10.1073/pnas.2014040118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Centrioles and basal bodies (CBBs) are found in physically linked pairs, and in mammalian cells intercentriole connections (G1-G2 tether and S-M linker) regulate centriole duplication and function. In trypanosomes BBs are not associated with the spindle and function in flagellum/cilia nucleation with an additional role in mitochondrial genome (kinetoplast DNA [kDNA]) segregation. Here, we describe BBLP, a BB/pro-BB (pBB) linker protein in Trypanosoma brucei predicted to be a large coiled-coil protein conserved in the kinetoplastida. Colocalization with the centriole marker SAS6 showed that BBLP localizes between the BB/pBB pair, throughout the cell cycle, with a stronger signal in the old flagellum BB/pBB pair. Importantly, RNA interference (RNAi) depletion of BBLP leads to a conspicuous splitting of the BB/pBB pair associated only with the new flagellum. BBLP RNAi is lethal in the bloodstream form of the parasite and perturbs mitochondrial kDNA inheritance. Immunogold labeling confirmed that BBLP is localized to a cytoskeletal component of the BB/pBB linker, and tagged protein induction showed that BBLP is incorporated de novo in both new and old flagella BB pairs of dividing cells. We show that the two aspects of CBB disengagement-loss of orthogonal orientation and ability to separate and move apart-are consistent but separable events in evolutionarily diverse cells and we provide a unifying model explaining centriole/BB linkage differences between such cells.
Collapse
|
17
|
Structural and functional studies of the first tripartite protein complex at the Trypanosoma brucei flagellar pocket collar. PLoS Pathog 2021; 17:e1009329. [PMID: 34339455 PMCID: PMC8360560 DOI: 10.1371/journal.ppat.1009329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 08/12/2021] [Accepted: 07/04/2021] [Indexed: 11/19/2022] Open
Abstract
The flagellar pocket (FP) is the only endo- and exocytic organelle in most trypanosomes and, as such, is essential throughout the life cycle of the parasite. The neck of the FP is maintained enclosed around the flagellum via the flagellar pocket collar (FPC). The FPC is a macromolecular cytoskeletal structure and is essential for the formation of the FP and cytokinesis. FPC biogenesis and structure are poorly understood, mainly due to the lack of information on FPC composition. To date, only two FPC proteins, BILBO1 and FPC4, have been characterized. BILBO1 forms a molecular skeleton upon which other FPC proteins can, theoretically, dock onto. We previously identified FPC4 as the first BILBO1 interacting partner and demonstrated that its C-terminal domain interacts with the BILBO1 N-terminal domain (NTD). Here, we report by yeast two-hybrid, bioinformatics, functional and structural studies the characterization of a new FPC component and BILBO1 partner protein, BILBO2 (Tb927.6.3240). Further, we demonstrate that BILBO1 and BILBO2 share a homologous NTD and that both domains interact with FPC4. We have determined a 1.9 Å resolution crystal structure of the BILBO2 NTD in complex with the FPC4 BILBO1-binding domain. Together with mutational analyses, our studies reveal key residues for the function of the BILBO2 NTD and its interaction with FPC4 and evidenced a tripartite interaction between BILBO1, BILBO2, and FPC4. Our work sheds light on the first atomic structure of an FPC protein complex and represents a significant step in deciphering the FPC function in Trypanosoma brucei and other pathogenic kinetoplastids. Trypanosomes belong to a group of zoonotic, protist, parasites that are found in Africa, Asia, South America, and Europe and are responsible for severe human and animal diseases. They all have a common structure called the flagellar pocket (FP). In most trypanosomes, all macromolecular exchanges between the trypanosome and the environment occur via the FP. The FP is thus essential for cell viability and evading the host immune response. We have been studying the flagellar pocket collar (FPC), an enigmatic macromolecular structure at the neck of the FP, and demonstrated its essentiality for the biogenesis of the FP. We demonstrated that BILBO1 is an essential protein of the FPC that interacts with other proteins including a microtubule-binding protein FPC4. Here we identify another bona fide FPC protein, BILBO2, so named because of close similarity with BILBO1 in protein localization and functional domains. We demonstrate that BILBO1 and BILBO2 share a common N-terminal domain involved in the interaction with FPC4, and illustrate a tripartite interaction between BILBO1, BILBO2, and FPC4. Our study also provides the first atomic view of two FPC components. These data represent an additional step in deciphering the FPC structure and function in T. brucei.
Collapse
|
18
|
Dean S. Basic Biology of Trypanosoma brucei with Reference to the Development of Chemotherapies. Curr Pharm Des 2021; 27:1650-1670. [PMID: 33463458 DOI: 10.2174/1381612827666210119105008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/01/2020] [Accepted: 12/08/2020] [Indexed: 11/22/2022]
Abstract
Trypanosoma brucei are protozoan parasites that cause the lethal human disease African sleeping sickness and the economically devastating disease of cattle, Nagana. African sleeping sickness, also known as Human African Trypanosomiasis (HAT), threatens 65 million people and animal trypanosomiasis makes large areas of farmland unusable. There is no vaccine and licensed therapies against the most severe, late-stage disease are toxic, impractical and ineffective. Trypanosomes are transmitted by tsetse flies, and HAT is therefore predominantly confined to the tsetse fly belt in sub-Saharan Africa. They are exclusively extracellular and they differentiate between at least seven developmental forms that are highly adapted to host and vector niches. In the mammalian (human) host they inhabit the blood, cerebrospinal fluid (late-stage disease), skin, and adipose fat. In the tsetse fly vector they travel from the tsetse midgut to the salivary glands via the ectoperitrophic space and proventriculus. Trypanosomes are evolutionarily divergent compared with most branches of eukaryotic life. Perhaps most famous for their extraordinary mechanisms of monoallelic gene expression and antigenic variation, they have also been investigated because much of their biology is either highly unconventional or extreme. Moreover, in addition to their importance as pathogens, many researchers have been attracted to the field because trypanosomes have some of the most advanced molecular genetic tools and database resources of any model system. The following will cover just some aspects of trypanosome biology and how its divergent biochemistry has been leveraged to develop drugs to treat African sleeping sickness. This is by no means intended to be a comprehensive survey of trypanosome features. Rather, I hope to present trypanosomes as one of the most fascinating and tractable systems to do discovery biology.
Collapse
Affiliation(s)
- Samuel Dean
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, United Kingdom
| |
Collapse
|
19
|
Liu Y, Nan B, Niu J, Kapler GM, Gao S. An Optimized and Versatile Counter-Flow Centrifugal Elutriation Workflow to Obtain Synchronized Eukaryotic Cells. Front Cell Dev Biol 2021; 9:664418. [PMID: 33959616 PMCID: PMC8093812 DOI: 10.3389/fcell.2021.664418] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/23/2021] [Indexed: 11/21/2022] Open
Abstract
Cell synchronization is a powerful tool to understand cell cycle events and its regulatory mechanisms. Counter-flow centrifugal elutriation (CCE) is a more generally desirable method to synchronize cells because it does not significantly alter cell behavior and/or cell cycle progression, however, adjusting specific parameters in a cell type/equipment-dependent manner can be challenging. In this paper, we used the unicellular eukaryotic model organism, Tetrahymena thermophila as a testing system for optimizing CCE workflow. Firstly, flow cytometry conditions were identified that reduced nuclei adhesion and improved the assessment of cell cycle stage. We then systematically examined how to achieve the optimal conditions for three critical factors affecting the outcome of CCE, including loading flow rate, collection flow rate and collection volume. Using our optimized workflow, we obtained a large population of highly synchronous G1-phase Tetrahymena as measured by 5-ethynyl-2'-deoxyuridine (EdU) incorporation into nascent DNA strands, bulk DNA content changes by flow cytometry, and cell cycle progression by light microscopy. This detailed protocol can be easily adapted to synchronize other eukaryotic cells.
Collapse
Affiliation(s)
- Yongqiang Liu
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Bei Nan
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Junhua Niu
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Geoffrey M. Kapler
- Department of Molecular and Cellular Medicine, Texas A&M University, College Station, TX, United States
| | - Shan Gao
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| |
Collapse
|
20
|
Santos Júnior ADCMD, Melo RM, Ferreira BVG, Pontes AH, Lima CMRD, Fontes W, Sousa MVD, Lima BDD, Ricart CAO. Quantitative proteomics and phosphoproteomics of Trypanosoma cruzi epimastigote cell cycle. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140619. [PMID: 33561577 DOI: 10.1016/j.bbapap.2021.140619] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 01/19/2021] [Accepted: 02/01/2021] [Indexed: 11/30/2022]
Abstract
The protozoan Trypanosoma cruzi is the causative agent of the neglected infectious illness Chagas disease. During its life cycle it differentiates into replicative and non-replicative life stages. So far, T. cruzi cell division has been investigated by transcriptomics but not by proteomics approaches. Here we show the first quantitative proteome analysis of T. cruzi cell division. T. cruzi epimastigote cultures were subject to synchronization with hydroxyurea and harvested at different time points. Analysis by flow cytometry, bright field and fluorescence microscopy indicated that samples collected at 0 h, 2 h, 6 h and 14 h overrepresented G1, G1-S, S and M cell cycle phases, respectively. After trypsin digestion of these samples, the resulting peptides were labelled with iTRAQ and subjected to LC-MS/MS. Also, iTRAQ-labelled phosphopeptides were enriched with TiO2 to access the phosphoproteome. Overall, 597 protein groups and 94 phosphopeptides presented regulation with the most remarkable variation in abundance at 6 h (S-phase). Comparison of our proteomic data to previous transcriptome-wise analysis of epimastigote cell cycle showed 16 sequence entries in common, with the highest mRNA/protein correlation observed in transcripts with peak abundance in G1-phase. Our data revealed regulated proteins and phosphopeptides which play important roles in the control of cell division in other organisms and some of them were previously detected in the nucleus or associated with T. cruzi chromatin.
Collapse
Affiliation(s)
- Agenor de Castro Moreira Dos Santos Júnior
- Laboratory Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasília, Brasília, DF, Brazil; Laboratory of Gene Biology, Department of Cell Biology, University of Brasília, Brasília, DF, Brazil
| | - Reynaldo Magalhães Melo
- Laboratory Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasília, Brasília, DF, Brazil
| | | | - Arthur Henriques Pontes
- Laboratory Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasília, Brasília, DF, Brazil
| | | | - Wagner Fontes
- Laboratory Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasília, Brasília, DF, Brazil
| | - Marcelo Valle de Sousa
- Laboratory Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasília, Brasília, DF, Brazil
| | - Beatriz Dolabela de Lima
- Laboratory of Gene Biology, Department of Cell Biology, University of Brasília, Brasília, DF, Brazil
| | - Carlos André Ornelas Ricart
- Laboratory Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasília, Brasília, DF, Brazil.
| |
Collapse
|
21
|
Lyu YS, Shao YJ, Yang ZT, Liu JX. Quantitative Proteomic Analysis of ER Stress Response Reveals both Common and Specific Features in Two Contrasting Ecotypes of Arabidopsis thaliana. Int J Mol Sci 2020; 21:ijms21249741. [PMID: 33371194 PMCID: PMC7766468 DOI: 10.3390/ijms21249741] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 01/03/2023] Open
Abstract
Accumulation of unfolded and misfolded proteins in endoplasmic reticulum (ER) elicits a well-conserved response called the unfolded protein response (UPR), which triggers the upregulation of downstream genes involved in protein folding, vesicle trafficking, and ER-associated degradation (ERAD). Although dynamic transcriptomic responses and the underlying major transcriptional regulators in ER stress response in Arabidopsis have been well established, the proteome changes induced by ER stress have not been reported in Arabidopsis. In the current study, we found that the Arabidopsis Landsberg erecta (Ler) ecotype was more sensitive to ER stress than the Columbia (Col) ecotype. Quantitative mass spectrometry analysis with Tandem Mass Tag (TMT) isobaric labeling showed that, in total, 7439 and 7035 proteins were identified from Col and Ler seedlings, with 88 and 113 differentially regulated (FC > 1.3 or <0.7, p < 0.05) proteins by ER stress in Col and Ler, respectively. Among them, 40 proteins were commonly upregulated in Col and Ler, among which 10 were not upregulated in bzip28 bzip60 double mutant (Col background) plants. Of the 19 specifically upregulated proteins in Col, as compared with that in Ler, components in ERAD, N-glycosylation, vesicle trafficking, and molecular chaperones were represented. Quantitative RT-PCR showed that transcripts of eight out of 19 proteins were not upregulated (FC > 1.3 or <0.7, p < 0.05) by ER stress in Col ecotype, while transcripts of 11 out of 19 proteins were upregulated by ER stress in both ecotypes with no obvious differences in fold change between Col and Ler. Our results experimentally demonstrated the robust ER stress response at the proteome level in plants and revealed differentially regulated proteins that may contribute to the differed ER stress sensitivity between Col and Ler ecotypes in Arabidopsis.
Collapse
Affiliation(s)
- Yu-Shu Lyu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310027, China; (Y.-S.L.); (Y.-J.S.)
| | - Yu-Jian Shao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310027, China; (Y.-S.L.); (Y.-J.S.)
| | - Zheng-Ting Yang
- School of Life Sciences, Guizhou Normal University, Guiyang 550018, China;
| | - Jian-Xiang Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310027, China; (Y.-S.L.); (Y.-J.S.)
- Correspondence: ; Tel.: +86-571-88208114
| |
Collapse
|
22
|
Parthasarathy A, Kalesh K. Defeating the trypanosomatid trio: proteomics of the protozoan parasites causing neglected tropical diseases. RSC Med Chem 2020; 11:625-645. [PMID: 33479664 PMCID: PMC7549140 DOI: 10.1039/d0md00122h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/12/2020] [Indexed: 12/20/2022] Open
Abstract
Mass spectrometry-based proteomics enables accurate measurement of the modulations of proteins on a large scale upon perturbation and facilitates the understanding of the functional roles of proteins in biological systems. It is a particularly relevant methodology for studying Leishmania spp., Trypanosoma cruzi and Trypanosoma brucei, as the gene expression in these parasites is primarily regulated by posttranscriptional mechanisms. Large-scale proteomics studies have revealed a plethora of information regarding modulated proteins and their molecular interactions during various life processes of the protozoans, including stress adaptation, life cycle changes and interactions with the host. Important molecular processes within the parasite that regulate the activity and subcellular localisation of its proteins, including several co- and post-translational modifications, are also accurately captured by modern proteomics mass spectrometry techniques. Finally, in combination with synthetic chemistry, proteomic techniques facilitate unbiased profiling of targets and off-targets of pharmacologically active compounds in the parasites. This provides important data sets for their mechanism of action studies, thereby aiding drug development programmes.
Collapse
Affiliation(s)
- Anutthaman Parthasarathy
- Rochester Institute of Technology , Thomas H. Gosnell School of Life Sciences , 85 Lomb Memorial Dr , Rochester , NY 14623 , USA
| | - Karunakaran Kalesh
- Department of Chemistry , Durham University , Lower Mount Joy, South Road , Durham DH1 3LE , UK .
| |
Collapse
|
23
|
Saura A, Iribarren PA, Rojas‐Barros D, Bart JM, López‐Farfán D, Andrés‐León E, Vidal‐Cobo I, Boehm C, Alvarez VE, Field MC, Navarro M. SUMOylated SNF2PH promotes variant surface glycoprotein expression in bloodstream trypanosomes. EMBO Rep 2019; 20:e48029. [PMID: 31693280 PMCID: PMC6893287 DOI: 10.15252/embr.201948029] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 09/22/2019] [Accepted: 09/26/2019] [Indexed: 01/10/2023] Open
Abstract
SUMOylation is a post-translational modification that positively regulates monoallelic expression of the trypanosome variant surface glycoprotein (VSG). The presence of a highly SUMOylated focus associated with the nuclear body, where the VSG gene is transcribed, further suggests an important role of SUMOylation in regulating VSG expression. Here, we show that SNF2PH, a SUMOylated plant homeodomain (PH)-transcription factor, is upregulated in the bloodstream form of the parasite and enriched at the active VSG telomere. SUMOylation promotes the recruitment of SNF2PH to the VSG promoter, where it is required to maintain RNA polymerase I and thus to regulate VSG transcript levels. Further, ectopic overexpression of SNF2PH in insect forms, but not of a mutant lacking the PH domain, induces the expression of bloodstream stage-specific surface proteins. These data suggest that SNF2PH SUMOylation positively regulates VSG monoallelic transcription, while the PH domain is required for the expression of bloodstream-specific surface proteins. Thus, SNF2PH functions as a positive activator, linking expression of infective form surface proteins and VSG regulation, thereby acting as a major regulator of pathogenicity.
Collapse
Affiliation(s)
- Andreu Saura
- Instituto de Parasitología y Biomedicina “López‐Neyra”CSIC (IPBLN‐CSIC)GranadaSpain
| | | | - Domingo Rojas‐Barros
- Instituto de Parasitología y Biomedicina “López‐Neyra”CSIC (IPBLN‐CSIC)GranadaSpain
| | - Jean M Bart
- Instituto de Parasitología y Biomedicina “López‐Neyra”CSIC (IPBLN‐CSIC)GranadaSpain
| | - Diana López‐Farfán
- Instituto de Parasitología y Biomedicina “López‐Neyra”CSIC (IPBLN‐CSIC)GranadaSpain
| | - Eduardo Andrés‐León
- Instituto de Parasitología y Biomedicina “López‐Neyra”CSIC (IPBLN‐CSIC)GranadaSpain
| | - Isabel Vidal‐Cobo
- Instituto de Parasitología y Biomedicina “López‐Neyra”CSIC (IPBLN‐CSIC)GranadaSpain
| | | | | | - Mark C Field
- School of Life SciencesUniversity of DundeeDundeeUK
- Biology CentreInstitute of ParasitologyCzech Academy of SciencesCeske BudejoviceCzech Republic
| | - Miguel Navarro
- Instituto de Parasitología y Biomedicina “López‐Neyra”CSIC (IPBLN‐CSIC)GranadaSpain
| |
Collapse
|
24
|
Benz C, Urbaniak MD. Organising the cell cycle in the absence of transcriptional control: Dynamic phosphorylation co-ordinates the Trypanosoma brucei cell cycle post-transcriptionally. PLoS Pathog 2019; 15:e1008129. [PMID: 31830130 PMCID: PMC6907760 DOI: 10.1371/journal.ppat.1008129] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/07/2019] [Indexed: 11/18/2022] Open
Abstract
The cell division cycle of the unicellular eukaryote Trypanosome brucei is tightly regulated despite the paucity of transcriptional control that results from the arrangement of genes in polycistronic units and lack of dynamically regulated transcription factors. To identify the contribution of dynamic phosphorylation to T. brucei cell cycle control we have combined cell cycle synchronisation by centrifugal elutriation with quantitative phosphoproteomic analysis. Cell cycle regulated changes in phosphorylation site abundance (917 sites, average 5-fold change) were more widespread and of a larger magnitude than changes in protein abundance (443 proteins, average 2-fold change) and were mostly independent of each other. Hierarchical clustering of co-regulated phosphorylation sites according to their cell cycle profile revealed that a bulk increase in phosphorylation occurs across the cell cycle, with a significant enrichment of known cell cycle regulators and RNA binding proteins (RBPs) within the largest clusters. Cell cycle regulated changes in essential cell cycle kinases are temporally co-ordinated with differential phosphorylation of components of the kinetochore and eukaryotic initiation factors, along with many RBPs not previously linked to the cell cycle such as eight PSP1-C terminal domain containing proteins. The temporal profiles demonstrate the importance of dynamic phosphorylation in co-ordinating progression through the cell cycle, and provide evidence that RBPs play a central role in post-transcriptional regulation of the T. brucei cell cycle. Data are available via ProteomeXchange with identifier PXD013488.
Collapse
Affiliation(s)
- Corinna Benz
- Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| | - Michael D. Urbaniak
- Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| |
Collapse
|
25
|
Hammarton TC. Who Needs a Contractile Actomyosin Ring? The Plethora of Alternative Ways to Divide a Protozoan Parasite. Front Cell Infect Microbiol 2019; 9:397. [PMID: 31824870 PMCID: PMC6881465 DOI: 10.3389/fcimb.2019.00397] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/06/2019] [Indexed: 01/21/2023] Open
Abstract
Cytokinesis, or the division of the cytoplasm, following the end of mitosis or meiosis, is accomplished in animal cells, fungi, and amoebae, by the constriction of an actomyosin contractile ring, comprising filamentous actin, myosin II, and associated proteins. However, despite this being the best-studied mode of cytokinesis, it is restricted to the Opisthokonta and Amoebozoa, since members of other evolutionary supergroups lack myosin II and must, therefore, employ different mechanisms. In particular, parasitic protozoa, many of which cause significant morbidity and mortality in humans and animals as well as considerable economic losses, employ a wide diversity of mechanisms to divide, few, if any, of which involve myosin II. In some cases, cell division is not only myosin II-independent, but actin-independent too. Mechanisms employed range from primitive mechanical cell rupture (cytofission), to motility- and/or microtubule remodeling-dependent mechanisms, to budding involving the constriction of divergent contractile rings, to hijacking host cell division machinery, with some species able to utilize multiple mechanisms. Here, I review current knowledge of cytokinesis mechanisms and their molecular control in mammalian-infective parasitic protozoa from the Excavata, Alveolata, and Amoebozoa supergroups, highlighting their often-underappreciated diversity and complexity. Billions of people and animals across the world are at risk from these pathogens, for which vaccines and/or optimal treatments are often not available. Exploiting the divergent cell division machinery in these parasites may provide new avenues for the treatment of protozoal disease.
Collapse
Affiliation(s)
- Tansy C Hammarton
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
26
|
Tinti M, Güther MLS, Crozier TWM, Lamond AI, Ferguson MAJ. Proteome turnover in the bloodstream and procyclic forms of Trypanosoma brucei measured by quantitative proteomics. Wellcome Open Res 2019; 4:152. [PMID: 31681858 PMCID: PMC6816455 DOI: 10.12688/wellcomeopenres.15421.1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2019] [Indexed: 12/20/2022] Open
Abstract
Background: Cellular proteins vary significantly in both abundance and turnover rates. These parameters depend upon their rates of synthesis and degradation and it is useful to have access to data on protein turnover rates when, for example, designing genetic knock-down experiments or assessing the potential usefulness of covalent enzyme inhibitors. Little is known about the nature and regulation of protein turnover in Trypanosoma brucei, the etiological agent of human and animal African trypanosomiasis. Methods: To establish baseline data on T. brucei proteome turnover, a Stable Isotope Labelling with Amino acids in Cell culture (SILAC)-based mass spectrometry analysis was performed to reveal the synthesis and degradation profiles for thousands of proteins in the bloodstream and procyclic forms of this parasite. Results: This analysis revealed a slower average turnover rate of the procyclic form proteome relative to the bloodstream proteome. As expected, many of the proteins with the fastest turnover rates have functions in the cell cycle and in the regulation of cytokinesis in both bloodstream and procyclic forms. Moreover, the cellular localization of T. brucei proteins correlates with their turnover, with mitochondrial and glycosomal proteins exhibiting slower than average turnover rates. Conclusions: The intention of this study is to provide the trypanosome research community with a resource for protein turnover data for any protein or group of proteins. To this end, bioinformatic analyses of these data are made available via an open-access web resource with data visualization functions.
Collapse
Affiliation(s)
- Michele Tinti
- The Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, UK
| | - Maria Lucia S Güther
- The Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, UK
| | - Thomas W M Crozier
- The Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, UK.,Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK.,Department of Medicine, Cambridge Institute for Medical Research, Cambridge, UK
| | - Angus I Lamond
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Michael A J Ferguson
- The Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, UK
| |
Collapse
|
27
|
Abstract
Trypanosomes have complex life cycles within which there are both proliferative and differentiation cell divisions. The coordination of the cell cycle to achieve these different divisions is critical for the parasite to infect both host and vector. From studying the regulation of the proliferative cell cycle of the Trypanosoma brucei procyclic life cycle stage, three subcycles emerge that control the duplication and segregation of ( a) the nucleus, ( b) the kinetoplast, and ( c) a set of cytoskeletal structures. We discuss how the clear dependency relationships within these subcycles, and the potential for cross talk between them, are likely required for overall cell cycle coordination. Finally, we look at the implications this interdependence has for proliferative and differentiation divisions through the T. brucei life cycle and in related parasitic trypanosomatid species.
Collapse
Affiliation(s)
- Richard J. Wheeler
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, United Kingdom
| | - Keith Gull
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Jack D. Sunter
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| |
Collapse
|
28
|
Zhou Q, An T, Pham KTM, Hu H, Li Z. The CIF1 protein is a master orchestrator of trypanosome cytokinesis that recruits several cytokinesis regulators to the cytokinesis initiation site. J Biol Chem 2018; 293:16177-16192. [PMID: 30171070 DOI: 10.1074/jbc.ra118.004888] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/28/2018] [Indexed: 12/13/2022] Open
Abstract
To proliferate, the parasitic protozoan Trypanosoma brucei undergoes binary fission in a unidirectional manner along the cell's longitudinal axis from the cell anterior toward the cell posterior. This unusual mode of cell division is controlled by a regulatory pathway composed of two evolutionarily conserved protein kinases, Polo-like kinase and Aurora B kinase, and three trypanosome-specific proteins, CIF1, CIF2, and CIF3, which act in concert at the cytokinesis initiation site located at the distal tip of the newly assembled flagellum attachment zone (FAZ). However, additional regulators that function in this cytokinesis signaling cascade remain to be identified and characterized. Using proximity biotinylation, co-immunofluorescence microscopy, and co-immunoprecipitation, we identified 52 CIF1-associated proteins and validated six CIF1-interacting proteins, including the putative protein phosphatase KPP1, the katanin p80 subunit KAT80, the cleavage furrow-localized proteins KLIF and FRW1, and the FAZ tip-localized proteins FAZ20 and FPRC. Further analyses of the functional interplay between CIF1 and its associated proteins revealed a requirement of CIF1 for localization of a set of CIF1-associated proteins, an interdependence between KPP1 and CIF1, and an essential role of katanin in the completion of cleavage furrow ingression. Together, these results suggest that CIF1 acts as a master regulator of cytokinesis in T. brucei by recruiting a cohort of cytokinesis regulatory proteins to the cytokinesis initiation site.
Collapse
Affiliation(s)
- Qing Zhou
- From the Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030
| | - Tai An
- From the Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030
| | - Kieu T M Pham
- From the Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030
| | - Huiqing Hu
- From the Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030
| | - Ziyin Li
- From the Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030
| |
Collapse
|