1
|
Panickar A, Manoharan A, Anbarasu A, Ramaiah S. Respiratory tract infections: an update on the complexity of bacterial diversity, therapeutic interventions and breakthroughs. Arch Microbiol 2024; 206:382. [PMID: 39153075 DOI: 10.1007/s00203-024-04107-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/30/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024]
Abstract
Respiratory tract infections (RTIs) have a significant impact on global health, especially among children and the elderly. The key bacterial pathogens Streptococcus pneumoniae, Haemophilus influenzae, Klebsiella pneumoniae, Staphylococcus aureus and non-fermenting Gram Negative bacteria such as Acinetobacter baumannii and Pseudomonas aeruginosa are most commonly associated with RTIs. These bacterial pathogens have evolved a diverse array of resistance mechanisms through horizontal gene transfer, often mediated by mobile genetic elements and environmental acquisition. Treatment failures are primarily due to antimicrobial resistance and inadequate bacterial engagement, which necessitates the development of alternative treatment strategies. To overcome this, our review mainly focuses on different virulence mechanisms and their resulting pathogenicity, highlighting different therapeutic interventions to combat resistance. To prevent the antimicrobial resistance crisis, we also focused on leveraging the application of artificial intelligence and machine learning to manage RTIs. Integrative approaches combining mechanistic insights are crucial for addressing the global challenge of antimicrobial resistance in respiratory infections.
Collapse
Affiliation(s)
- Avani Panickar
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
- Department of Bio-Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Anand Manoharan
- Infectious Diseases Medical and Scientific Affairs, GlaxoSmithKline (GSK), Worli, Maharashtra, India
| | - Anand Anbarasu
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Sudha Ramaiah
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
- Department of Bio-Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
2
|
Deforet F, Carrière R, Dufour PL'A, Prat R, Desbiolles C, Cottin N, Reuzeau A, Dauwalder O, Dupieux-Chabert C, Tristan A, Cecchini T, Lemoine J, Vandenesch F. Proteomic assay for rapid characterisation of Staphylococcus aureus antimicrobial resistance mechanisms directly from blood cultures. Eur J Clin Microbiol Infect Dis 2024; 43:1329-1342. [PMID: 38750334 DOI: 10.1007/s10096-024-04811-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/11/2024] [Indexed: 07/20/2024]
Abstract
PURPOSE Staphylococcus aureus is one of the most common pathogens causing bloodstream infection. A rapid characterisation of resistance to methicillin and, occasionally, to aminoglycosides for particular indications, is therefore crucial to quickly adapt the treatment and improve the clinical outcomes of septic patients. Among analytical technologies, targeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) has emerged as a promising tool to detect resistance mechanisms in clinical samples. METHODS A rapid proteomic method was developed to detect and quantify the most clinically relevant antimicrobial resistance effectors in S. aureus in the context of sepsis: PBP2a, PBP2c, APH(3')-III, ANT(4')-I, and AAC(6')-APH(2''), directly from positive blood cultures and in less than 70 min including a 30-min cefoxitin-induction step. The method was tested on spiked blood culture bottles inoculated with 124 S.aureus, accounting for the known genomic diversity of SCCmec types and the genetic background of the strains. RESULTS This method provided 99% agreement for PBP2a (n = 98/99 strains) detection. Agreement was 100% for PBP2c (n = 5/5), APH(3')-III (n = 16/16), and ANT(4')-I (n = 20/20), and 94% for AAC(6')-APH(2'') (n = 16/17). Across the entire strain collection, 100% negative agreement was reported for each of the 5 resistance proteins. Additionally, relative quantification of ANT(4')-I expression allowed to discriminate kanamycin-susceptible and -resistant strains, in all strains harbouring the ant(4')-Ia gene. CONCLUSION The LC-MS/MS method presented herein demonstrates its ability to provide a reliable determination of S. aureus resistance mechanisms, directly from positive blood cultures and in a short turnaround time, as required in clinical laboratories.
Collapse
Affiliation(s)
- Francis Deforet
- Institut des Sciences Analytiques, Université de Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique (CNRS), UMR 5280, Villeurbanne, France
| | - Romain Carrière
- Institut des Sciences Analytiques, Université de Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique (CNRS), UMR 5280, Villeurbanne, France
| | - Pierre L 'Aour Dufour
- Institut des Sciences Analytiques, Université de Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique (CNRS), UMR 5280, Villeurbanne, France
- Hospices Civils de Lyon, Institut des Agents Infectieux, Lyon, France
| | - Roxane Prat
- Hospices Civils de Lyon, Institut des Agents Infectieux, Lyon, France
| | - Chloé Desbiolles
- Hospices Civils de Lyon, Institut des Agents Infectieux, Lyon, France
| | - Noémie Cottin
- Hospices Civils de Lyon, Institut des Agents Infectieux, Lyon, France
| | - Alicia Reuzeau
- Hospices Civils de Lyon, Institut des Agents Infectieux, Lyon, France
| | - Olivier Dauwalder
- Hospices Civils de Lyon, Institut des Agents Infectieux, Lyon, France
| | - Céline Dupieux-Chabert
- Centre National de Référence des Staphylocoques, Institut des agents infectieux, Hospices Civils de Lyon, Lyon, France
| | - Anne Tristan
- Centre National de Référence des Staphylocoques, Institut des agents infectieux, Hospices Civils de Lyon, Lyon, France
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique (CNRS), UMR5308, École Normale Supérieure (ENS) de Lyon, Lyon, France
| | - Tiphaine Cecchini
- Hospices Civils de Lyon, Institut des Agents Infectieux, Lyon, France
| | - Jérôme Lemoine
- Institut des Sciences Analytiques, Université de Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique (CNRS), UMR 5280, Villeurbanne, France
| | - François Vandenesch
- Hospices Civils de Lyon, Institut des Agents Infectieux, Lyon, France.
- Centre National de Référence des Staphylocoques, Institut des agents infectieux, Hospices Civils de Lyon, Lyon, France.
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique (CNRS), UMR5308, École Normale Supérieure (ENS) de Lyon, Lyon, France.
| |
Collapse
|
3
|
Kotimoole CN, Ramya VK, Kaur P, Reiling N, Shandil RK, Narayanan S, Flo TH, Prasad TSK. Discovery of Species-Specific Proteotypic Peptides To Establish a Spectral Library Platform for Identification of Nontuberculosis Mycobacteria from Mass Spectrometry-Based Proteomics. J Proteome Res 2024; 23:1102-1117. [PMID: 38358903 DOI: 10.1021/acs.jproteome.3c00850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Nontuberculous mycobacteria are opportunistic bacteria pulmonary and extra-pulmonary infections in humans that closely resemble Mycobacterium tuberculosis. Although genome sequencing strategies helped determine NTMs, a common assay for the detection of coinfection by multiple NTMs with M. tuberculosis in the primary attempt of diagnosis is still elusive. Such a lack of efficiency leads to delayed therapy, an inappropriate choice of drugs, drug resistance, disease complications, morbidity, and mortality. Although a high-resolution LC-MS/MS-based multiprotein panel assay can be developed due to its specificity and sensitivity, it needs a library of species-specific peptides as a platform. Toward this, we performed an analysis of proteomes of 9 NTM species with more than 20 million peptide spectrum matches gathered from 26 proteome data sets. Our metaproteomic analyses determined 48,172 species-specific proteotypic peptides across 9 NTMs. Notably, M. smegmatis (26,008), M. abscessus (12,442), M. vaccae (6487), M. fortuitum (1623), M. avium subsp. paratuberculosis (844), M. avium subsp. hominissuis (580), and M. marinum (112) displayed >100 species-specific proteotypic peptides. Finally, these peptides and corresponding spectra have been compiled into a spectral library, FASTA, and JSON formats for future reference and validation in clinical cohorts by the biomedical community for further translation.
Collapse
Affiliation(s)
- Chinmaya Narayana Kotimoole
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Vadageri Krishnamurthy Ramya
- Foundation for Neglected Disease Research, 20A, KIADB Industrial Area, Veerapura Village, Doddaballapur, Bengaluru 561203, India
| | - Parvinder Kaur
- Foundation for Neglected Disease Research, 20A, KIADB Industrial Area, Veerapura Village, Doddaballapur, Bengaluru 561203, India
| | - Norbert Reiling
- Microbial Interface Biology, Research Center Borstel, Leibniz Lung Center, Parkallee 22, D-23845 Borstel, Germany
- German Center for Infection Research (DZIF), Site Hamburg-Lübeck-Borstel-Riems, 23845 Borstel, Germany
| | - Radha Krishan Shandil
- Foundation for Neglected Disease Research, 20A, KIADB Industrial Area, Veerapura Village, Doddaballapur, Bengaluru 561203, India
| | - Shridhar Narayanan
- Foundation for Neglected Disease Research, 20A, KIADB Industrial Area, Veerapura Village, Doddaballapur, Bengaluru 561203, India
| | - Trude Helen Flo
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Kunnskapssenteret, Øya 424.04.035, Norway
| | | |
Collapse
|
4
|
Luo X, Bi Q, Huang D, Li Y, Yao C, Zhang J, Wei W, Li J, Li Z, Zhang J, Ji S, Wang Y, Guo DA. Characterization of natural peptides in Pheretima by integrating proteogenomics and label-free peptidomics. J Pharm Anal 2023; 13:1070-1079. [PMID: 37842652 PMCID: PMC10568111 DOI: 10.1016/j.jpha.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 10/17/2023] Open
Abstract
Pheretima, also called "earthworms", is a well-known animal-derived traditional Chinese medicine that is extensively used in over 50 Chinese patent medicines (CPMs) in Chinese Pharmacopoeia (2020 edition). However, its zoological origin is unclear, both in the herbal market and CPMs. In this study, a strategy for integrating in-house annotated protein databases constructed from close evolutionary relationship-sourced RNA sequencing data from public archival resources and various sequencing algorithms (restricted search, open search, and de novo) was developed to characterize the phenotype of natural peptides of three major commercial species of Pheretima, including Pheretima aspergillum (PA), Pheretima vulgaris (PV), and Metaphire magna (MM). We identified 10,477 natural peptides in the PA, 7,451 in PV, and 5,896 in MM samples. Five specific signature peptides were screened and then validated using synthetic peptides; these demonstrated robust specificity for the authentication of PA, PV, and MM. Finally, all marker peptides were successfully applied to identify the zoological origins of Brain Heart capsules and Xiaohuoluo pills, revealing the inconsistent Pheretima species used in these CPMs. In conclusion, our integrated strategy could be used for the in-depth characterization of natural peptides of other animal-derived traditional Chinese medicines, especially non-model species with poorly annotated protein databases.
Collapse
Affiliation(s)
- Xiaoxiao Luo
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Qirui Bi
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Dongdong Huang
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yun Li
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Changliang Yao
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jianqing Zhang
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Wenlong Wei
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jiayuan Li
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Zhenwei Li
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jingxian Zhang
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Shen Ji
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yurong Wang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - De-an Guo
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
5
|
Robinson JP, Ostafe R, Iyengar SN, Rajwa B, Fischer R. Flow Cytometry: The Next Revolution. Cells 2023; 12:1875. [PMID: 37508539 PMCID: PMC10378642 DOI: 10.3390/cells12141875] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/06/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Unmasking the subtleties of the immune system requires both a comprehensive knowledge base and the ability to interrogate that system with intimate sensitivity. That task, to a considerable extent, has been handled by an iterative expansion in flow cytometry methods, both in technological capability and also in accompanying advances in informatics. As the field of fluorescence-based cytomics matured, it reached a technological barrier at around 30 parameter analyses, which stalled the field until spectral flow cytometry created a fundamental transformation that will likely lead to the potential of 100 simultaneous parameter analyses within a few years. The simultaneous advance in informatics has now become a watershed moment for the field as it competes with mature systematic approaches such as genomics and proteomics, allowing cytomics to take a seat at the multi-omics table. In addition, recent technological advances try to combine the speed of flow systems with other detection methods, in addition to fluorescence alone, which will make flow-based instruments even more indispensable in any biological laboratory. This paper outlines current approaches in cell analysis and detection methods, discusses traditional and microfluidic sorting approaches as well as next-generation instruments, and provides an early look at future opportunities that are likely to arise.
Collapse
Affiliation(s)
- J Paul Robinson
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN 47907, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Raluca Ostafe
- Molecular Evolution, Protein Engineering and Production Facility (PI4D), Purdue University, West Lafayette, IN 47907, USA
| | | | - Bartek Rajwa
- Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA
| | - Rainer Fischer
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute of Inflammation, Immunology and Infectious Diseases, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
6
|
Bourganou MV, Kontopodis E, Tsangaris GT, Pierros V, Vasileiou NGC, Mavrogianni VS, Fthenakis GC, Katsafadou AI. Unique Peptides of Cathelicidin-1 in the Early Detection of Mastitis-In Silico Analysis. Int J Mol Sci 2023; 24:10160. [PMID: 37373309 DOI: 10.3390/ijms241210160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/31/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Based on the results of previously performed clinical studies, cathelicidin-1 has been proposed as a potential biomarker for the early diagnosis of mastitis in ewes. It has been hypothesized that the detection of unique peptides (defined as a peptide, irrespective of its length, that exists in only one protein of a proteome of interest) and core unique peptides (CUPs) (representing the shortest peptide that is unique) of cathelicidin-1 may potentially improve its identification and consequently the diagnosis of sheep mastitis. Peptides of sizes larger than those of the size of CUPs, which include consecutive or over-lapping CUPs, have been defined as 'composite core unique peptides' (CCUPs). The primary objective of the present study was the investigation of the sequence of cathelicidin-1 detected in ewes' milk in order to identify its unique peptides and core unique peptides, which would reveal potential targets for accurate detection of the protein. An additional objective was the detection of unique sequences among the tryptic digest peptides of cathelicidin-1, which would improve accuracy of identification of the protein when performing targeted MS-based proteomics. The potential uniqueness of each peptide of cathelicidin-1 was investigated using a bioinformatics tool built on a big data algorithm. A set of CUPs was created and CCUPs were also searched. Further, the unique sequences in the tryptic digest peptides of cathelicidin-1 were also detected. Finally, the 3D structure of the protein was analyzed from predicted models of proteins. In total, 59 CUPs and four CCUPs were detected in cathelicidin-1 of sheep origin. Among tryptic digest peptides, there were six peptides that were unique in that protein. After 3D structure analysis of the protein, 35 CUPs were found on the core of cathelicidin-1 of sheep origin and among them, 29 were located on amino acids in regions of the protein with 'very high' or 'confident' estimates of confidence of the structure. Ultimately, the following six CUPs: QLNEQ, NEQS, EQSSE, QSSEP, EDPD, DPDS, are proposed as potential antigenic targets for cathelicidin-1 of sheep. Moreover, another six unique peptides were detected in tryptic digests and offer novel mass tags to facilitate the detection of cathelicidin-1 during MS-based diagnostics.
Collapse
Affiliation(s)
- Maria V Bourganou
- Faculty of Public and One Health, University of Thessaly, 43100 Karditsa, Greece
- Proteomics Research Unit, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Evangelos Kontopodis
- Proteomics Research Unit, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - George Th Tsangaris
- Proteomics Research Unit, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Vasileios Pierros
- Proteomics Research Unit, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | | | | | | | | |
Collapse
|
7
|
Recent Studies on Advance Spectroscopic Techniques for the Identification of Microorganisms: A Review. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
8
|
Svetličić E, Dončević L, Ozdanovac L, Janeš A, Tustonić T, Štajduhar A, Brkić AL, Čeprnja M, Cindrić M. Direct Identification of Urinary Tract Pathogens by MALDI-TOF/TOF Analysis and De Novo Peptide Sequencing. Molecules 2022; 27:molecules27175461. [PMID: 36080229 PMCID: PMC9457756 DOI: 10.3390/molecules27175461] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/19/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
For mass spectrometry-based diagnostics of microorganisms, matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) is currently routinely used to identify urinary tract pathogens. However, it requires a lengthy culture step for accurate pathogen identification, and is limited by a relatively small number of available species in peptide spectral libraries (≤3329). Here, we propose a method for pathogen identification that overcomes the above limitations, and utilizes the MALDI-TOF/TOF MS instrument. Tandem mass spectra of the analyzed peptides were obtained by chemically activated fragmentation, which allowed mass spectrometry analysis in negative and positive ion modes. Peptide sequences were elucidated de novo, and aligned with the non-redundant National Center for Biotechnology Information Reference Sequence Database (NCBInr). For data analysis, we developed a custom program package that predicted peptide sequences from the negative and positive MS/MS spectra. The main advantage of this method over a conventional MALDI-TOF MS peptide analysis is identification in less than 24 h without a cultivation step. Compared to the limited identification with peptide spectra libraries, the NCBI database derived from genome sequencing currently contains 20,917 bacterial species, and is constantly expanding. This paper presents an accurate method that is used to identify pathogens grown on agar plates, and those isolated directly from urine samples, with high accuracy.
Collapse
Affiliation(s)
- Ema Svetličić
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Lucija Dončević
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Luka Ozdanovac
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Andrea Janeš
- Clinical Department of Laboratory Diagnostics, University Hospital Dubrava, Avenija Gojka Šuška 6, 10000 Zagreb, Croatia
| | | | - Andrija Štajduhar
- Division for Medical Statistics, Andrija Štampar Teaching Institute of Public Health, Mirogojska cesta 16, 10000 Zagreb, Croatia
| | | | - Marina Čeprnja
- Special Hospital Agram, Agram EEIG, Trnjanska cesta 108, 10000 Zagreb, Croatia
| | - Mario Cindrić
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
- Correspondence: ; Tel.: +385-16384422
| |
Collapse
|
9
|
Hamidi H, Bagheri Nejad R, Es-Haghi A, Ghassempour A. A Combination of MALDI-TOF MS Proteomics and Species-Unique Biomarkers' Discovery for Rapid Screening of Brucellosis. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1530-1540. [PMID: 35816556 DOI: 10.1021/jasms.2c00110] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Brucellosis is considered to be a zoonotic infection with a predominant incidence in most parts of Iran that may even simply involve diagnostic laboratory personnel. In the present study, we apply matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS) for rapid and reliable discrimination of Brucella abortus and Brucella melitensis, based on proteomic mass patterns from chemically treated whole-cell analyses. Biomarkers of the low molecular weight proteome in the MALDI-TOF MS spectra were assigned to conserved ribosomal and structural protein families that were found in genome assemblies of B. abortus and B. melitensis in the NCBI database. Significant protein mass signals successfully mapped to ribosomal proteins and structural proteins, such as integration host factor subunit alpha, cold-shock proteins, HU family DNA-binding protein, ATP synthase subunit C, and GNAT family N-acetyltransferase, with specific biomarker peaks that have been identified for each virulent and vaccine strain. Web-accessible bioinformatics algorithms, with a robust data analysis workflow, followed by ribosomal and structural protein mapping, significantly enhanced the reliable assignment of key proteins and accurate identification of Brucella species. Furthermore, clinical samples were analyzed to confirm the most dominant protein biomarker candidates and their relevance for the identifications of B. melitensis and B. abortus. With proper optimization, we envision that the presented MALDI-TOF MS proteomics analyses, coupled with special usage of bioinformatics, could be used as a cost-efficient strategy for the diagnostics of brucellosis and introduce a reliable identification protocol for species of dangerous bacteria.
Collapse
Affiliation(s)
- Hamideh Hamidi
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, 19839-69411 Tehran, Iran
| | - Ramin Bagheri Nejad
- Department of Physico Chemistry, Razi Vaccine & Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), 31975/148 Karaj, Iran
| | - Ali Es-Haghi
- Department of Physico Chemistry, Razi Vaccine & Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), 31975/148 Karaj, Iran
| | - Alireza Ghassempour
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, 19839-69411 Tehran, Iran
| |
Collapse
|
10
|
Han T, Cong H, Yu B, Shen Y. Application of peptide biomarkers in life analysis based on liquid chromatography-mass spectrometry technology. Biofactors 2022; 48:725-743. [PMID: 35816279 DOI: 10.1002/biof.1875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/18/2022] [Indexed: 12/11/2022]
Abstract
Biomedicine is developing rapidly in the 21st century. Among them, the qualitative and quantitative analysis of peptide biomarkers is of considerable importance for the diagnosis and therapy of diseases and the quality evaluation of drugs and food. The identification and quantitative analysis of peptides have been going on for decades. Traditionally, immunoassays or biological assays are generally used to quantify peptides in biological matrices. However, the selectivity and sensitivity of these methods cannot meet the requirements of the application. The separation and analysis technique of liquid chromatography-mass spectrometry (LC-MS) supplies a reliable alternative. In contrast to immunoassays, LC-MS methods are capable of providing the analytical prowess necessary to satisfy the demands of peptide biomarker research in the life sciences arena. This review article provides a historical account of the in-roads made by LC-MS technology for the detection of peptide biomarkers in the past 10 years, with the focus on the qualification/quantification developments and their applications.
Collapse
Affiliation(s)
- Tingting Han
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, China
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, China
| | - Bing Yu
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, China
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, China
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
11
|
Alves G, Ogurtsov A, Karlsson R, Jaén-Luchoro D, Piñeiro-Iglesias B, Salvà-Serra F, Andersson B, Moore ERB, Yu YK. Identification of Antibiotic Resistance Proteins via MiCId's Augmented Workflow. A Mass Spectrometry-Based Proteomics Approach. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:917-931. [PMID: 35500907 PMCID: PMC9164240 DOI: 10.1021/jasms.1c00347] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 06/01/2023]
Abstract
Fast and accurate identifications of pathogenic bacteria along with their associated antibiotic resistance proteins are of paramount importance for patient treatments and public health. To meet this goal from the mass spectrometry aspect, we have augmented the previously published Microorganism Classification and Identification (MiCId) workflow for this capability. To evaluate the performance of this augmented workflow, we have used MS/MS datafiles from samples of 10 antibiotic resistance bacterial strains belonging to three different species: Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. The evaluation shows that MiCId's workflow has a sensitivity value around 85% (with a lower bound at about 72%) and a precision greater than 95% in identifying antibiotic resistance proteins. In addition to having high sensitivity and precision, MiCId's workflow is fast and portable, making it a valuable tool for rapid identifications of bacteria as well as detection of their antibiotic resistance proteins. It performs microorganismal identifications, protein identifications, sample biomass estimates, and antibiotic resistance protein identifications in 6-17 min per MS/MS sample using computing resources that are available in most desktop and laptop computers. We have also demonstrated other use of MiCId's workflow. Using MS/MS data sets from samples of two bacterial clonal isolates, one being antibiotic-sensitive while the other being multidrug-resistant, we applied MiCId's workflow to investigate possible mechanisms of antibiotic resistance in these pathogenic bacteria; the results showed that MiCId's conclusions agree with the published study. The new version of MiCId (v.07.01.2021) is freely available for download at https://www.ncbi.nlm.nih.gov/CBBresearch/Yu/downloads.html.
Collapse
Affiliation(s)
- Gelio Alves
- National
Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, United States
| | - Aleksey Ogurtsov
- National
Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, United States
| | - Roger Karlsson
- Department
of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
- Department
of Clinical Microbiology, Sahlgrenska University
Hospital, 40234 Gothenburg, Sweden
- Center
for Antibiotic Resistance Research (CARe), University of Gothenburg, 40016 Gothenburg, Sweden
- Nanoxis
Consulting AB, 40234 Gothenburg, Sweden
| | - Daniel Jaén-Luchoro
- Department
of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
- Center
for Antibiotic Resistance Research (CARe), University of Gothenburg, 40016 Gothenburg, Sweden
- Culture Collection
University of Gothenburg (CCUG), Sahlgrenska
Academy of the University of Gothenburg, 40234 Gothenburg, Sweden
| | - Beatriz Piñeiro-Iglesias
- Department
of Clinical Microbiology, Sahlgrenska University
Hospital, 40234 Gothenburg, Sweden
- Center
for Antibiotic Resistance Research (CARe), University of Gothenburg, 40016 Gothenburg, Sweden
| | - Francisco Salvà-Serra
- Department
of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
- Department
of Clinical Microbiology, Sahlgrenska University
Hospital, 40234 Gothenburg, Sweden
- Center
for Antibiotic Resistance Research (CARe), University of Gothenburg, 40016 Gothenburg, Sweden
- Culture Collection
University of Gothenburg (CCUG), Sahlgrenska
Academy of the University of Gothenburg, 40234 Gothenburg, Sweden
- Microbiology,
Department of Biology, University of the
Balearic Islands, 07122 Palma de Mallorca, Spain
| | - Björn Andersson
- Bioinformatics
Core Facility at Sahlgrenska Academy, University
of Gothenburg, Box 413, 40530 Gothenburg, Sweden
| | - Edward R. B. Moore
- Department
of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
- Department
of Clinical Microbiology, Sahlgrenska University
Hospital, 40234 Gothenburg, Sweden
- Center
for Antibiotic Resistance Research (CARe), University of Gothenburg, 40016 Gothenburg, Sweden
- Culture Collection
University of Gothenburg (CCUG), Sahlgrenska
Academy of the University of Gothenburg, 40234 Gothenburg, Sweden
| | - Yi-Kuo Yu
- National
Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, United States
| |
Collapse
|
12
|
Lee H, Kim SI. Review of Liquid Chromatography-Mass Spectrometry-Based Proteomic Analyses of Body Fluids to Diagnose Infectious Diseases. Int J Mol Sci 2022; 23:ijms23042187. [PMID: 35216306 PMCID: PMC8878692 DOI: 10.3390/ijms23042187] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 01/27/2023] Open
Abstract
Rapid and precise diagnostic methods are required to control emerging infectious diseases effectively. Human body fluids are attractive clinical samples for discovering diagnostic targets because they reflect the clinical statuses of patients and most of them can be obtained with minimally invasive sampling processes. Body fluids are good reservoirs for infectious parasites, bacteria, and viruses. Therefore, recent clinical proteomics methods have focused on body fluids when aiming to discover human- or pathogen-originated diagnostic markers. Cutting-edge liquid chromatography-mass spectrometry (LC-MS)-based proteomics has been applied in this regard; it is considered one of the most sensitive and specific proteomics approaches. Here, the clinical characteristics of each body fluid, recent tandem mass spectroscopy (MS/MS) data-acquisition methods, and applications of body fluids for proteomics regarding infectious diseases (including the coronavirus disease of 2019 [COVID-19]), are summarized and discussed.
Collapse
Affiliation(s)
- Hayoung Lee
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Ochang 28119, Korea;
- Bio-Analytical Science Division, University of Science and Technology (UST), Daejeon 34113, Korea
| | - Seung Il Kim
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Ochang 28119, Korea;
- Bio-Analytical Science Division, University of Science and Technology (UST), Daejeon 34113, Korea
- Correspondence:
| |
Collapse
|
13
|
Kondori N, Kurtovic A, Piñeiro-Iglesias B, Salvà-Serra F, Jaén-Luchoro D, Andersson B, Alves G, Ogurtsov A, Thorsell A, Fuchs J, Tunovic T, Kamenska N, Karlsson A, Yu YK, Moore ERB, Karlsson R. Mass Spectrometry Proteotyping-Based Detection and Identification of Staphylococcus aureus, Escherichia coli, and Candida albicans in Blood. Front Cell Infect Microbiol 2021; 11:634215. [PMID: 34381737 PMCID: PMC8350517 DOI: 10.3389/fcimb.2021.634215] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 07/09/2021] [Indexed: 12/12/2022] Open
Abstract
Bloodstream infections (BSIs), the presence of microorganisms in blood, are potentially serious conditions that can quickly develop into sepsis and life-threatening situations. When assessing proper treatment, rapid diagnosis is the key; besides clinical judgement performed by attending physicians, supporting microbiological tests typically are performed, often requiring microbial isolation and culturing steps, which increases the time required for confirming positive cases of BSI. The additional waiting time forces physicians to prescribe broad-spectrum antibiotics and empirically based treatments, before determining the precise cause of the disease. Thus, alternative and more rapid cultivation-independent methods are needed to improve clinical diagnostics, supporting prompt and accurate treatment and reducing the development of antibiotic resistance. In this study, a culture-independent workflow for pathogen detection and identification in blood samples was developed, using peptide biomarkers and applying bottom-up proteomics analyses, i.e., so-called "proteotyping". To demonstrate the feasibility of detection of blood infectious pathogens, using proteotyping, Escherichia coli and Staphylococcus aureus were included in the study, as the most prominent bacterial causes of bacteremia and sepsis, as well as Candida albicans, one of the most prominent causes of fungemia. Model systems including spiked negative blood samples, as well as positive blood cultures, without further culturing steps, were investigated. Furthermore, an experiment designed to determine the incubation time needed for correct identification of the infectious pathogens in blood cultures was performed. The results for the spiked negative blood samples showed that proteotyping was 100- to 1,000-fold more sensitive, in comparison with the MALDI-TOF MS-based approach. Furthermore, in the analyses of ten positive blood cultures each of E. coli and S. aureus, both the MALDI-TOF MS-based and proteotyping approaches were successful in the identification of E. coli, although only proteotyping could identify S. aureus correctly in all samples. Compared with the MALDI-TOF MS-based approaches, shotgun proteotyping demonstrated higher sensitivity and accuracy, and required significantly shorter incubation time before detection and identification of the correct pathogen could be accomplished.
Collapse
Affiliation(s)
- Nahid Kondori
- Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Amra Kurtovic
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | | | - Francisco Salvà-Serra
- Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Culture Collection University of Gothenburg (CCUG), Sahlgrenska Academy of the University of Gothenburg, Gothenburg, Sweden
- Microbiology, Department of Biology, University of the Balearic Islands, Palma de Mallorca, Spain
| | - Daniel Jaén-Luchoro
- Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Culture Collection University of Gothenburg (CCUG), Sahlgrenska Academy of the University of Gothenburg, Gothenburg, Sweden
| | - Björn Andersson
- Bioinformatics Core Facility at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Gelio Alves
- National Center for Biotechnology Information (NCBI), Bethesda, MD, United States
| | - Aleksey Ogurtsov
- National Center for Biotechnology Information (NCBI), Bethesda, MD, United States
| | - Annika Thorsell
- Proteomics Core Facility at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Johannes Fuchs
- Proteomics Core Facility at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Timur Tunovic
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Nina Kamenska
- Norra-Älvsborgs-Länssjukhus (NÄL), Trollhättan, Sweden
| | | | - Yi-Kuo Yu
- National Center for Biotechnology Information (NCBI), Bethesda, MD, United States
| | - Edward R. B. Moore
- Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Culture Collection University of Gothenburg (CCUG), Sahlgrenska Academy of the University of Gothenburg, Gothenburg, Sweden
| | - Roger Karlsson
- Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Nanoxis Consulting AB, Gothenburg, Sweden
| |
Collapse
|
14
|
Zhang Z, Wan J, Liu L, Ye M, Jiang X. Metagenomics reveals functional profiling of microbial communities in OCP contaminated sites with rapeseed oil and tartaric acid biostimulation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 289:112515. [PMID: 33819653 DOI: 10.1016/j.jenvman.2021.112515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/09/2021] [Accepted: 03/27/2021] [Indexed: 06/12/2023]
Abstract
Organochlorine pesticides (OCPs) contaminated sites pose great threats to both human health and environmental safety. Targeted bioremediation in these regions largely depends on microbial diversity and activity. This study applied metagenomics to characterize the microbial communities and functional groups composition features during independent or simultaneous rapeseed oil and tartaric acid applications, as well as the degradation kinetics of OCPs. Results showed that: the degradation rates of α-chlordane, β-chlordane and mirex were better when (0.50% w/w) rapeseed oil and (0.05 mol L-1) tartaric acid were applied simultaneously than singular use, yielding removal rates of 56.4%, 53.9%, and 49.4%, respectively. Meanwhile, bio-stimulation facilitated microbial enzyme (catalase/superoxide dismutase/peroxidase) activity in soils significantly, promoting the growth of dominant bacterial communities. Classification at phylum level showed that the relative abundance of Proteobacteria was significantly increased (p < 0.05). Network analysis showed that bio-stimulation substantially increased the dominant bacterial community's proportion, especially Proteobacteria. The functional gene results illustrated that bio-stimulation facilitated total relative abundance of degradation genes, phosphorus, carbon, nitrogen, sulfur metabolic genes, and iron transporting genes (p < 0.05). In metabolic pathways, functional genes related to methanogenesis and ammonia generation were markedly upregulated, indicating that bio-stimulation promoted the transformation of metabolic genes, such as carbon and nitrogen. This research is conducive to exploring the microbiological response mechanisms of bio-stimulation in indigenous flora, which may provide technical support for assessing the microbial ecological remediation outcomes of bio-stimulation in OCP contaminated sites.
Collapse
Affiliation(s)
- Zhongyun Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinzhong Wan
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection of China, Nanjing, 210008, China
| | - Li Liu
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection of China, Nanjing, 210008, China; School of Earth Science and Engineering, Hohai University, Nanjing, 210008, China
| | - Mao Ye
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Xin Jiang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| |
Collapse
|
15
|
López-López N, Gil-Campillo C, Díez-Martínez R, Garmendia J. Learning from -omics strategies applied to uncover Haemophilus influenzae host-pathogen interactions: Current status and perspectives. Comput Struct Biotechnol J 2021; 19:3042-3050. [PMID: 34136102 PMCID: PMC8178019 DOI: 10.1016/j.csbj.2021.05.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 11/15/2022] Open
Abstract
Haemophilus influenzae has contributed to key bacterial genome sequencing hallmarks, as being not only the first bacterium to be genome-sequenced, but also starring the first genome-wide analysis of chromosomes directly transformed with DNA from a divergent genotype, and pioneering Tn-seq methodologies. Over the years, the phenomenal and constantly evolving development of -omic technologies applied to a whole range of biological questions of clinical relevance in the H. influenzae-host interplay, has greatly moved forward our understanding of this human-adapted pathogen, responsible for multiple acute and chronic infections of the respiratory tract. In this way, essential genes, virulence factors, pathoadaptive traits, and multi-layer gene expression regulatory networks with both genomic and epigenomic complexity levels are being elucidated. Likewise, the unstoppable increasing whole genome sequencing information underpinning H. influenzae great genomic plasticity, mainly when referring to non-capsulated strains, poses major challenges to understand the genomic basis of clinically relevant phenotypes and even more, to clearly highlight potential targets of clinical interest for diagnostic, therapeutic or vaccine development. We review here how genomic, transcriptomic, proteomic and metabolomic-based approaches are great contributors to our current understanding of the interactions between H. influenzae and the human airways, and point possible strategies to maximize their usefulness in the context of biomedical research and clinical needs on this human-adapted bacterial pathogen.
Collapse
Affiliation(s)
- Nahikari López-López
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas (IdAB-CSIC)-Gobierno de Navarra, Mutilva, Spain
| | - Celia Gil-Campillo
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas (IdAB-CSIC)-Gobierno de Navarra, Mutilva, Spain
| | | | - Junkal Garmendia
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas (IdAB-CSIC)-Gobierno de Navarra, Mutilva, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| |
Collapse
|
16
|
Bardet C, Barraud O, Clavel M, Fortin T, Charrier JP, Rodrigue M, François B, Yugueros-Marcos J, Lemoine J, Ploy MC. Early and specific targeted mass spectrometry-based identification of bacteria in endotracheal aspirates of patients suspected with ventilator-associated pneumonia. Eur J Clin Microbiol Infect Dis 2021; 40:1291-1301. [PMID: 33486654 PMCID: PMC7826153 DOI: 10.1007/s10096-020-04132-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/14/2020] [Indexed: 11/26/2022]
Abstract
Rapid and reliable pathogen identification is compulsory to confirm ventilator-associated pneumonia (VAP) in order to initiate appropriate antibiotic treatment. In the present proof of concept, the effectiveness of rapid microorganism identification with a targeted bottom-up proteomics approach was investigated in endotracheal aspirate (ETA) samples of VAP patients. To do so, a prototype selected-reaction monitoring (SRM)-based assay was developed on a triple quadrupole mass spectrometer tracking proteotypic peptide surrogates of bacterial proteomes. Through the concurrent monitoring of 97 species-specific peptides, this preliminary assay was dimensioned to characterize the occurrence of six most frequent bacterial species responsible for over more than 65% of VAP. Assay performance was subsequently evaluated by analyzing early and regular 37 ETA samples collected from 15 patients. Twenty-five samples were above the significant threshold of 105 CFU/mL and five samples showed mixed infections (both pathogens ≥ 105 CFU/mL). The targeted proteomics assay showed 100% specificity for Acinetobacter baumannii, Escherichia coli, Haemophilus influenzae, Pseudomonas aeruginosa, Staphylococcus aureus, and Streptococcus pneumoniae. No false bacterial identification was reported and no interference was detected arising from the commensal flora. The overall species identification sensitivity was 19/25 (76%) and was higher at the patient level (84.6%). This successful proof of concept provides a rational to broaden the panel of bacteria for further clinical evaluation.
Collapse
Affiliation(s)
- Chloé Bardet
- Université Limoges, INSERM, CHU Limoges, RESINFIT, U1092, F-87000, Limoges, France
- bioMerieux, MD3 & Microbiology Research Departments, Marcy l'Etoile, France
- Anaquant, 5 rue de La Doua, Villeurbanne, France
| | - Olivier Barraud
- Université Limoges, INSERM, CHU Limoges, RESINFIT, U1092, F-87000, Limoges, France
| | - Marc Clavel
- CHU Limoges, Service de Réanimation polyvalente, Limoges, France
- CHU Limoges, INSERM, CIC1435, Limoges, France
- Etablissement de médecine et SSR, Sainte-Feyre, France
| | - Tanguy Fortin
- bioMerieux, MD3 & Microbiology Research Departments, Marcy l'Etoile, France
- Anaquant, 5 rue de La Doua, Villeurbanne, France
| | | | - Marc Rodrigue
- bioMerieux, MD3 & Microbiology Research Departments, Marcy l'Etoile, France
- bioMérieux, Global Medical Affairs Department, Marcy l'Etoile, France
| | - Bruno François
- Université Limoges, INSERM, CHU Limoges, RESINFIT, U1092, F-87000, Limoges, France
- CHU Limoges, Service de Réanimation polyvalente, Limoges, France
- CHU Limoges, INSERM, CIC1435, Limoges, France
| | | | - Jerome Lemoine
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 rue de La Doua, 69100, Villeurbanne, France.
| | - Marie-Cécile Ploy
- Université Limoges, INSERM, CHU Limoges, RESINFIT, U1092, F-87000, Limoges, France.
| |
Collapse
|
17
|
Cardozo KHM, Lebkuchen A, Okai GG, Schuch RA, Viana LG, Olive AN, Lazari CDS, Fraga AM, Granato CFH, Pintão MCT, Carvalho VM. Establishing a mass spectrometry-based system for rapid detection of SARS-CoV-2 in large clinical sample cohorts. Nat Commun 2020; 11:6201. [PMID: 33273458 PMCID: PMC7713649 DOI: 10.1038/s41467-020-19925-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022] Open
Abstract
The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is pressing public health systems around the world, and large population testing is a key step to control this pandemic disease. Here, we develop a high-throughput targeted proteomics assay to detect SARS-CoV-2 nucleoprotein peptides directly from nasopharyngeal and oropharyngeal swabs. A modified magnetic particle-based proteomics approach implemented on a robotic liquid handler enables fully automated preparation of 96 samples within 4 hours. A TFC-MS system allows multiplexed analysis of 4 samples within 10 min, enabling the processing of more than 500 samples per day. We validate this method qualitatively (Tier 3) and quantitatively (Tier 1) using 985 specimens previously analyzed by real-time RT-PCR, and detect up to 84% of the positive cases with up to 97% specificity. The presented strategy has high sample stability and should be considered as an option for SARS-CoV-2 testing in large populations.
Collapse
Affiliation(s)
| | - Adriana Lebkuchen
- Division of Research and Development, Fleury Group, 04344-070, São Paulo, SP, Brazil
| | | | | | - Luciana Godoy Viana
- Division of Research and Development, Fleury Group, 04344-070, São Paulo, SP, Brazil
| | - Aline Nogueira Olive
- Division of Research and Development, Fleury Group, 04344-070, São Paulo, SP, Brazil
| | | | - Ana Maria Fraga
- Division of Research and Development, Fleury Group, 04344-070, São Paulo, SP, Brazil
| | | | | | | |
Collapse
|
18
|
Sauvage S, Hardouin J. Exoproteomics for Better Understanding Pseudomonas aeruginosa Virulence. Toxins (Basel) 2020; 12:E571. [PMID: 32899849 PMCID: PMC7551764 DOI: 10.3390/toxins12090571] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/25/2020] [Accepted: 09/01/2020] [Indexed: 12/12/2022] Open
Abstract
Pseudomonas aeruginosa is the most common human opportunistic pathogen associated with nosocomial diseases. In 2017, the World Health Organization has classified P. aeruginosa as a critical agent threatening human health, and for which the development of new treatments is urgently necessary. One interesting avenue is to target virulence factors to understand P. aeruginosa pathogenicity. Thus, characterising exoproteins of P. aeruginosa is a hot research topic and proteomics is a powerful approach that provides important information to gain insights on bacterial virulence. The aim of this review is to focus on the contribution of proteomics to the studies of P. aeruginosa exoproteins, highlighting its relevance in the discovery of virulence factors, post-translational modifications on exoproteins and host-pathogen relationships.
Collapse
Affiliation(s)
- Salomé Sauvage
- Polymers, Biopolymers, Surface Laboratory, UMR 6270 CNRS, University of Rouen, CEDEX, F-76821 Mont-Saint-Aignan, France;
- PISSARO Proteomics Facility, IRIB, F-76820 Mont-Saint-Aignan, France
| | - Julie Hardouin
- Polymers, Biopolymers, Surface Laboratory, UMR 6270 CNRS, University of Rouen, CEDEX, F-76821 Mont-Saint-Aignan, France;
- PISSARO Proteomics Facility, IRIB, F-76820 Mont-Saint-Aignan, France
| |
Collapse
|
19
|
Genomic and Proteomic Characterization of the Extended-Spectrum β-Lactamase (ESBL)-Producing Escherichia coli Strain CCUG 73778: A Virulent, Nosocomial Outbreak Strain. Microorganisms 2020; 8:microorganisms8060893. [PMID: 32545759 PMCID: PMC7355845 DOI: 10.3390/microorganisms8060893] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 01/23/2023] Open
Abstract
Escherichia coli strain CCUG 78773 is a virulent extended-spectrum β-lactamase (ESBL)-producing ST131-O25b type strain isolated during an outbreak at a regional university hospital. The complete and closed genome sequence, comprising one chromosome (5,076,638 bp) and six plasmids (1718–161,372 bp), is presented. Characterization of the genomic features detected the presence of 59 potential antibiotic resistance factors, including three prevalent β-lactamases. Several virulence associated elements were determined, mainly related with adherence, invasion, biofilm formation and antiphagocytosis. Twenty-eight putative type II toxin-antitoxin systems were found. The plasmids were characterized, through in silico analyses, confirming the two β-lactamase-encoding plasmids to be conjugative, while the remaining plasmids were mobilizable. BLAST analysis of the plasmid sequences showed high similarity with plasmids in E. coli from around the world. Expression of many of the described virulence and AMR factors was confirmed by proteomic analyses, using bottom-up, liquid chromatography-tandem mass spectrometry (LC-MS/MS). The detailed characterization of E. coli strain CCUG 78773 provides a reference for the relevance of genetic elements, as well as the characterization of antibiotic resistance and the spread of bacteria harboring ESBL genes in the hospital environment.
Collapse
|
20
|
Haag E, Molitor A, Gregoriano C, Müller B, Schuetz P. The value of biomarker-guided antibiotic therapy. Expert Rev Mol Diagn 2020; 20:829-840. [PMID: 32529871 DOI: 10.1080/14737159.2020.1782193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
INTRODUCTION There is an increasing interest to individualize patient management and decisions regarding antibiotic treatment. Biomarkers may provide relevant information for this purpose. AREAS COVERED Despite a growing number of clinical trials investigating several biomarkers, there remain open questions regarding the best type of biomarker, timing or frequency of testing, and optimal cutoffs among others. The most promising results in regard to diagnosis of bacterial infection and therapy monitoring are found for procalcitonin (PCT), although some recent trials were not able to validate the promising earlier findings. Furthermore, less specific markers like C-reactive protein (CRP) and new prognostic biomarkers such as proadrenomedullin (MR-proADM) may improve the prognostic assessment of patients and proteomics may help shorten time to microbiological results. The aim of this review is to summarize the current concept of biomarker-guided management and provide an outlook of promising ongoing investigations. EXPERT OPINION 'Antibiotic stewardship' is complex and needs more than just the measurement of one single biomarker. However, when integrated into the context of a thorough clinical examination, standard blood parameters and a well done risk stratification by clinical scores such as the SOFA-score, biomarkers have great potential to improve the diagnostic and prognostic assessment of patients.
Collapse
Affiliation(s)
- Ellen Haag
- University Department of Medicine, Kantonsspital Aarau , Aarau, Switzerland
| | - Alexandra Molitor
- University Department of Medicine, Kantonsspital Aarau , Aarau, Switzerland
| | - Claudia Gregoriano
- University Department of Medicine, Kantonsspital Aarau , Aarau, Switzerland
| | - Beat Müller
- University Department of Medicine, Kantonsspital Aarau , Aarau, Switzerland
| | - Philipp Schuetz
- University Department of Medicine, Kantonsspital Aarau , Aarau, Switzerland
| |
Collapse
|