1
|
Alajbeg IZ, Vrbanovic E, Alajbeg I, Orabovic I, Naka K, Mrla A, Boucher Y. Time-course of pain and salivary opiorphin release in response to oral capsaicin differ in burning mouth syndrome patients, temporomandibular disorders patients and control subjects. Clin Oral Investig 2024; 28:246. [PMID: 38589630 DOI: 10.1007/s00784-024-05653-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 04/03/2024] [Indexed: 04/10/2024]
Abstract
OBJECTIVES Opiorphin is an analgesic peptide released by salivary glands and capsaicin an agonist of TRPV1 receptors eliciting burning sensations. The primary objective of this study was to assess opiorphin release after stimulation of the tongue by capsaicin (STC). The secondary objectives were to compare opiorphin release after STC in 3 groups of subjects [healthy (CTRL), Burning Mouth Syndrome (BMS), painful Temporomandibular disorders (TMDp)] and pain evoked by STC in these 3 groups. MATERIALS AND METHODS Salivary opiorphin was assessed with high-performance liquid chromatography at 3 different time points (baseline, after 5 min and 20 min of STC). Pain was self-reported on a (0-10) numeric rating scale. RESULTS Three groups (N = 16) of adults were recruited at the Clinical Hospital Centre and School of Dental Medicine in Zagreb. Opiorphin levels were higher (1) in TMDp compared to CTRL in 1st (2.23 ± 1.72 pg/ul vs. 0.67 ± 0.44 pg/ul, p = 0.002) and 3rd sampling (2.44 ± 2.01 pg/ul vs. 0.74 ± 0.52 pg/ul, p = 0.020) and (2) within BMS group at 3rd sampling vs. baseline (p < 0.025). Pain scores were higher in BMS compared to TMDp (p < 0.025) and CTRL (p < 0.025). CONCLUSION This study evidenced (1) a differential basal amount of opiorphin in two pain conditions and control subjects (2) a differential kinetic of release of opiorphin after STC in CTRL, BMS and TMDp (3) a differential pain perception after STC in BMS and TMDp vs. CTRL, which can provide a readout for animal models. CLINICAL RELEVANCE The specific regulation of opiorphin release in patients with orofacial painful conditions provides valuable insights for clinicians and researchers in physiology and pathology and encourages further research in this area. TRIAL REGISTRATION ClinicalTrials.gov NCT04694274. Registered on 01/05/2021.
Collapse
Affiliation(s)
- Iva Z Alajbeg
- Department of Removable Prosthodontics, University of Zagreb School of Dental Medicine, University of Zagreb, Zagreb, 10000, Croatia.
- Department of Dental Medicine, Clinical Hospital Centre Zagreb, Zagreb, 10000, Croatia.
| | - Ema Vrbanovic
- Department of Removable Prosthodontics, University of Zagreb School of Dental Medicine, University of Zagreb, Zagreb, 10000, Croatia
| | - Ivan Alajbeg
- Department of Oral Medicine, University of Zagreb School of Dental Medicine, University of Zagreb, Zagreb, 10000, Croatia
- Department of Dental Medicine, Clinical Hospital Centre Zagreb, Zagreb, 10000, Croatia
| | - Ivan Orabovic
- Department of Removable Prosthodontics, University of Zagreb School of Dental Medicine, University of Zagreb, Zagreb, 10000, Croatia
| | - Klara Naka
- Department of Removable Prosthodontics, University of Zagreb School of Dental Medicine, University of Zagreb, Zagreb, 10000, Croatia
| | - Antonija Mrla
- Department of Removable Prosthodontics, University of Zagreb School of Dental Medicine, University of Zagreb, Zagreb, 10000, Croatia
| | - Yves Boucher
- Laboratoire de Neurobiologie Orofaciale, UFR Odontologie, Université Paris Cité, Paris, 75006, France
| |
Collapse
|
2
|
Potocka W, Assy Z, Bikker FJ, Laine ML. Current and Potential Applications of Monoterpenes and Their Derivatives in Oral Health Care. Molecules 2023; 28:7178. [PMID: 37894657 PMCID: PMC10609285 DOI: 10.3390/molecules28207178] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Plant products have been employed in medicine for centuries. As the world becomes more health-conscious, there is a growing interest in natural and minimally processed products for oral health care. This has led to an increase in research into the bioactive compounds found in plant products, particularly monoterpenes. Monoterpenes are known to have beneficial biological properties, but the specific mechanisms by which they exert their effects are not yet fully understood. Despite this, some monoterpenes are already being used in oral health care. For example, thymol, which has antibacterial properties, is an ingredient in varnish used for caries prevention. In addition to this, monoterpenes have also demonstrated antifungal, antiviral, and anti-inflammatory properties, making them versatile for various applications. As research continues, there is potential for even more discoveries regarding the benefits of monoterpenes in oral health care. This narrative literature review gives an overview of the biological properties and current and potential applications of selected monoterpenes and their derivatives in oral health care. These compounds demonstrate promising potential for future medical development, and their applications in future research are expected to expand.
Collapse
Affiliation(s)
- Wiktoria Potocka
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands; (Z.A.); (F.J.B.)
- Department of Periodontology, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands;
| | - Zainab Assy
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands; (Z.A.); (F.J.B.)
- Department of Periodontology, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands;
| | - Floris J. Bikker
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands; (Z.A.); (F.J.B.)
| | - Marja L. Laine
- Department of Periodontology, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands;
| |
Collapse
|
3
|
Tsuchiya H. Treatments of COVID-19-Associated Taste and Saliva Secretory Disorders. Dent J (Basel) 2023; 11:140. [PMID: 37366663 DOI: 10.3390/dj11060140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
Since the worldwide spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, treating taste and saliva secretory disorders associated with coronavirus disease 2019 (COVID-19) has become a critical issue. The aim of the present study was to update information on treatments applicable to such oral symptoms and discuss their pathogenic mechanisms. The literature search indicated that different treatments using tetracycline, corticosteroids, zinc, stellate ganglion block, phytochemical curcumin, traditional herbal medicine, nutraceutical vitamin D, photobiomodulation, antiviral drugs, malic acid sialagogue, chewing gum, acupuncture, and/or moxibustion have potential effects on COVID-19-associated ageusia/dysgeusia/hypogeusia and xerostomia/dry mouth/hyposalivation. These treatments have multiple modes of action on viral cellular entry and replication, cell proliferation and differentiation, immunity, and/or SARS-CoV-2 infection-induced pathological conditions such as inflammation, cytokine storm, pyroptosis, neuropathy, zinc dyshomeostasis, and dysautonomia. An understanding of currently available treatment options is required for dental professionals because they may treat patients who were infected with SARS-CoV-2 or who recovered from COVID-19, and become aware of their abnormal taste and salivary secretion. By doing so, dentists and dental hygienists could play a crucial role in managing COVID-19 oral symptoms and contribute to improving the oral health-related quality of life of the relevant patients.
Collapse
Affiliation(s)
- Hironori Tsuchiya
- Department of Dental Basic Education, Asahi University School of Dentistry, Mizuho, Gifu 501-0296, Japan
| |
Collapse
|
4
|
Shang YF, Shen YY, Zhang MC, Lv MC, Wang TY, Chen XQ, Lin J. Progress in salivary glands: Endocrine glands with immune functions. Front Endocrinol (Lausanne) 2023; 14:1061235. [PMID: 36817607 PMCID: PMC9935576 DOI: 10.3389/fendo.2023.1061235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/09/2023] [Indexed: 02/05/2023] Open
Abstract
The production and secretion of saliva is an essential function of the salivary glands. Saliva is a complicated liquid with different functions, including moistening, digestion, mineralization, lubrication, and mucosal protection. This review focuses on the mechanism and neural regulation of salivary secretion, and saliva is secreted in response to various stimuli, including odor, taste, vision, and mastication. The chemical and physical properties of saliva change dynamically during physiological and pathophysiological processes. Moreover, the central nervous system modulates salivary secretion and function via various neurotransmitters and neuroreceptors. Smell, vision, and taste have been investigated for the connection between salivation and brain function. The immune and endocrine functions of the salivary glands have been explored recently. Salivary glands play an essential role in innate and adaptive immunity and protection. Various immune cells such as B cells, T cells, macrophages, and dendritic cells, as well as immunoglobins like IgA and IgG have been found in salivary glands. Evidence supports the synthesis of corticosterone, testosterone, and melatonin in salivary glands. Saliva contains many potential biomarkers derived from epithelial cells, gingival crevicular fluid, and serum. High level of matrix metalloproteinases and cytokines are potential markers for oral carcinoma, infectious disease in the oral cavity, and systemic disease. Further research is required to monitor and predict potential salivary biomarkers for health and disease in clinical practice and precision medicine.
Collapse
Affiliation(s)
- Yu Feng Shang
- Department of Stomatology, Key Laboratory of Oral Biomedical Research of Zhejiang Province, The First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang University School of Stomatology, Hangzhou, China
| | - Yi Yang Shen
- Department of Stomatology, Key Laboratory of Oral Biomedical Research of Zhejiang Province, The First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang University School of Stomatology, Hangzhou, China
| | - Meng Chen Zhang
- National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Min Chao Lv
- Department of Orthopedics, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
| | - Tong Ying Wang
- National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
- Department of Neurobiology, Department of Neurology of the Second Affiliated Hospital, School of Brain Science and Brain Medicine, Hangzhou, China
| | - Xue Qun Chen
- National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
- Department of Neurobiology, Department of Neurology of the Second Affiliated Hospital, School of Brain Science and Brain Medicine, Hangzhou, China
| | - Jun Lin
- Department of Stomatology, Key Laboratory of Oral Biomedical Research of Zhejiang Province, The First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang University School of Stomatology, Hangzhou, China
- *Correspondence: Jun Lin,
| |
Collapse
|
5
|
Rahardjo HE, Ückert S, Kuczyk MA, Hedlund P. Expression and distribution of the transient receptor potential cationic channel ankyrin 1 (TRPA1) in the human seminal vesicles. Health Sci Rep 2023; 6:e987. [PMID: 36519080 PMCID: PMC9742597 DOI: 10.1002/hsr2.987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/24/2022] [Accepted: 11/27/2022] [Indexed: 12/14/2022] Open
Abstract
Background and Aims The transient receptor potential cationic channel ankyrin 1 (TRPA1), a channel protein permeable to most divalent cations, has been suggested to play a role in mechano-afferent/efferent signaling (including the release of neurotransmitters) in the human urinary tract (bladder, prostate, and urethra). To date, only a few studies have addressed the expression of this receptor in male and female reproductive tissues. The present study aimed to evaluate human seminal vesicles (SVs) for the expression and localization of TRPA1. Methods SV tissue was obtained from 5 males who had undergone pelvic surgery due to malignancies of the prostate or urinary bladder. The expression of messenger ribonucleic acid (mRNA) specifically encoding for the TRPA1 protein was elucidated by means of reverse transcriptase polymerase chain reaction (RT-PCR). Using immunohistochemical methods, the distribution of TRPA1 was examined in relation to the endothelial and neuronal nitric oxide synthases (eNOS, nNOS) and the neuropeptides calcitonin gene-related peptide (CGRP) and vasoactive intestinal polypeptide (VIP). Results RT-PCR revealed signals related to the expected molecular size of 656 bp. Immunohistochemistry demonstrated that TRPA1 is located in nerves running through the smooth muscle portion of the SV. Here, the protein is in part co-localized with nNOS and CGRP, whereas no co-localization with VIP was registered. Dot-like signals specific for TRPA1 were observed in the cytoplasm of epithelial cells lining the lumen of glandular spaces. The epithelial layer also presented staining for eNOS. The smooth musculature appeared free of immunosignals for TRPA1. Conclusion The results convincingly show the expression of TRPA1 in nerve endings as well as in epithelial cells of the SV. Based on its location in epithelial cells, TRPA1 might be involved in the mechanism of the NO/cyclic guanosine monophosphate (GMP)-mediated signaling and also the control of secretory function (mediated by cyclic GMP) in the human SV.
Collapse
Affiliation(s)
- Harrina E. Rahardjo
- Department of Urology, Faculty of Medicine, Cipto Mangunkusumo HospitalUniversity of IndonesiaJakartaIndonesia
- Department of Urology & Urological Oncology, Hannover Medical SchoolDivision of SurgeryHannoverGermany
| | - Stefan Ückert
- Department of Urology & Urological Oncology, Hannover Medical SchoolDivision of SurgeryHannoverGermany
| | - Markus A. Kuczyk
- Department of Urology, Faculty of Medicine, Cipto Mangunkusumo HospitalUniversity of IndonesiaJakartaIndonesia
| | - Petter Hedlund
- Department of Clinical Pharmacology, Faculty of MedicineLinköping UniversityLinköpingSweden
| |
Collapse
|
6
|
The role of saliva in taste dysfunction among cancer patients: Mechanisms and potential treatment. Oral Oncol 2022; 133:106030. [PMID: 35868097 DOI: 10.1016/j.oraloncology.2022.106030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/21/2022] [Accepted: 07/15/2022] [Indexed: 01/17/2023]
Abstract
Two of the highest prevalent symptoms reported by cancer patients are taste dysfunction (17.6-93%) and dry mouth/xerostomia (40.4-93%). While it has been hypothesized that reduced saliva may impair taste function, few studies investigate the co-occurrence of taste and dry mouth symptoms in cancer patients. This review provides a summary of the physiological relationship between saliva and taste, focusing on taste transduction mechanism, regulation of the taste sensitivity, and protection of taste receptor cells, including the impact of cancer treatments and malignancy on saliva function, salivary components, and the mechanisms in which it can negatively impact the taste function. Here, the authors present a scoping review of the recent literature reporting on the association between taste dysfunction and dry mouth in cancer patients, including reports of non-pharmaceutical liposomal agents or drugs taken to improve dry mouth symptoms that also assess taste dysfunction. Considering the complexities of cancer and cancer treatment, understanding the physiological relationship between saliva and taste function may provide important insight into identifying treatments for alleviating taste dysfunction and dry mouth symptoms. There are substantial research gaps given the limited studies assessing the co-occurrence of taste loss and dry mouth and inconsistencies in the assessment of these symptoms. Clinical studies examining taste dysfunction will provide a foundational groundwork that will help understand the relationship between taste and saliva. Considering the increased rates in survivorship and the significant negative impact of taste dysfunction on quality of life, more research is needed to reduce the suffering of cancer patients.
Collapse
|
7
|
Liu Y, Lyu Y, Wang H. TRP Channels as Molecular Targets to Relieve Endocrine-Related Diseases. Front Mol Biosci 2022; 9:895814. [PMID: 35573736 PMCID: PMC9095829 DOI: 10.3389/fmolb.2022.895814] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 03/28/2022] [Indexed: 12/03/2022] Open
Abstract
Transient receptor potential (TRP) channels are polymodal channels capable of sensing environmental stimuli, which are widely expressed on the plasma membrane of cells and play an essential role in the physiological or pathological processes of cells as sensors. TRPs often form functional homo- or heterotetramers that act as cation channels to flow Na+ and Ca2+, change membrane potential and [Ca2+]i (cytosolic [Ca2+]), and change protein expression levels, channel attributes, and regulatory factors. Under normal circumstances, various TRP channels respond to intracellular and extracellular stimuli such as temperature, pH, osmotic pressure, chemicals, cytokines, and cell damage and depletion of Ca2+ reserves. As cation transport channels and physical and chemical stimulation receptors, TRPs play an important role in regulating secretion, interfering with cell proliferation, and affecting neural activity in these glands and their adenocarcinoma cells. Many studies have proved that TRPs are widely distributed in the pancreas, adrenal gland, and other glands. This article reviews the specific regulatory mechanisms of various TRP channels in some common glands (pancreas, salivary gland, lacrimal gland, adrenal gland, mammary gland, gallbladder, and sweat gland).
Collapse
|
8
|
Abstract
Food oral processing (FOP) is a fast-emerging research area in the food science discipline. Since its first introduction about a decade ago, a large amount of literature has been published in this area, forming new frontiers and leading to new research opportunities. This review aims to summarize FOP research progress from current perspectives. Food texture, food flavor (aroma and taste), bolus swallowing, and eating behavior are covered in this review. The discussion of each topic is organized into three parts: a short background introduction, reflections on current research findings and achievements, and future directions and implications on food design. Physical, physiological, and psychological principles are the main concerns of discussion for each topic. The last part of the review shares views on the research challenges and outlooks of future FOP research. It is hoped that the review not only helps readers comprehend what has been achieved in the past decade but also, more importantly, identify where the knowledge gaps are and in which direction the FOP research will go.
Collapse
Affiliation(s)
- Yue He
- Laboratory of Food Oral Processing, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China;
| | - Xinmiao Wang
- Laboratory of Food Oral Processing, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China;
| | - Jianshe Chen
- Laboratory of Food Oral Processing, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China;
| |
Collapse
|
9
|
Arendt-Nielsen L, Carstens E, Proctor G, Boucher Y, Clavé P, Albin Nielsen K, Nielsen TA, Reeh PW. The Role of TRP Channels in Nicotinic Provoked Pain and Irritation from the Oral Cavity and Throat: Translating Animal Data to Humans. Nicotine Tob Res 2022; 24:1849-1860. [PMID: 35199839 PMCID: PMC9653082 DOI: 10.1093/ntr/ntac054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 01/19/2022] [Accepted: 02/22/2022] [Indexed: 01/03/2023]
Abstract
Tobacco smoking-related diseases are estimated to kill more than 8 million people/year and most smokers are willing to stop smoking. The pharmacological approach to aid smoking cessation comprises nicotine replacement therapy (NRT) and inhibitors of the nicotinic acetylcholine receptor, which is activated by nicotine. Common side effects of oral NRT products include hiccoughs, gastrointestinal disturbances and, most notably, irritation, burning and pain in the mouth and throat, which are the most common reasons for premature discontinuation of NRT and termination of cessation efforts. Attempts to reduce the unwanted sensory side effects are warranted, and research discovering the most optimal masking procedures is urgently needed. This requires a firm mechanistic understanding of the neurobiology behind the activation of sensory nerves and their receptors by nicotine. The sensory nerves in the oral cavity and throat express the so-called transient receptor potential (TRP) channels, which are responsible for mediating the nicotine-evoked irritation, burning and pain sensations. Targeting the TRP channels is one way to modulate the unwanted sensory side effects. A variety of natural (Generally Recognized As Safe [GRAS]) compounds interact with the TRP channels, thus making them interesting candidates as safe additives to oral NRT products. The present narrative review will discuss (1) current evidence on how nicotine contributes to irritation, burning and pain in the oral cavity and throat, and (2) options to modulate these unwanted side-effects with the purpose of increasing adherence to NRT. Nicotine provokes irritation, burning and pain in the oral cavity and throat. Managing these side effects will ensure better compliance to oral NRT products and hence increase the success of smoking cessation. A specific class of sensory receptors (TRP channels) are involved in mediating nicotine's sensory side effects, making them to potential treatment targets. Many natural (Generally Recognized As Safe [GRAS]) compounds are potentially beneficial modulators of TRP channels.
Collapse
Affiliation(s)
- Lars Arendt-Nielsen
- Corresponding Author: Lars Arendt-Nielsen PhD, Center for Neuroplasticity and Pain (CNAP), SMI, Department of Health Science and Technology, School of Medicine, Aalborg University, Aalborg, Denmark. Telephone: +45 99408831; E-mail:
| | - Earl Carstens
- Neurobiology, Physiology and Behavior, University of California, Davis
| | - Gordon Proctor
- Centre for Host-Microbiome Interactions, Professor of Salivary Biology, King´s CollegeLondon, UK
| | - Yves Boucher
- Laboratory of Orofacial Neurobiology, Paris Diderot University, Paris, France
| | - Pere Clavé
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Hospital de Mataró, Universitat Autònoma de Barcelona, Mataró, Barcelona, Spain
| | | | - Thomas A Nielsen
- Mech-Sense & Centre for Pancreatic Diseases, Department of Gastroenterology & Hepatology, Clinical Institute, Aalborg University Hospital, Aalborg, Denmark
| | - Peter W Reeh
- Institute Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
10
|
Chalazias A, Plemmenos G, Evangeliou E, Piperi C. Pivotal role of Transient Receptor Potential Channels in oral physiology. Curr Med Chem 2021; 29:1408-1425. [PMID: 34365940 DOI: 10.2174/0929867328666210806113132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Transient Receptor Potential (TRP) Channels constitute a large family of non-selective permeable ion channels involved in the perception of environmental stimuli with a central and continuously expanding role in oral tissue homeostasis. Recent studies indicate the regulatory role of TRPs in pulp physiology, oral mucosa sensation, dental pain nociception and salivary gland secretion. This review provides an update on the diverse functions of TRP channels in the physiology of oral cavity, with emphasis on their cellular location, the underlying molecular mechanisms and clinical significance. METHODS A structured search of bibliographic databases (PubMed and MEDLINE) was performed for peer reviewed studies on TRP channels function on oral cavity physiology the last ten years. A qualitative content analysis was performed in screened papers and a critical discussion of main findings is provided. RESULTS TRPs expression has been detected in major cell types of the oral cavity, including odontoblasts, periodontal ligament, oral epithelial, salivary gland cells, and chondrocytes of temporomandibular joints, where they mediate signal perception and transduction of mechanical, thermal, and osmotic stimuli. They contribute to pulp physiology through dentin formation, mineralization, and periodontal ligament formation along with alveolar bone remodeling in dental pulp and periodontal ligament cells. TRPs are also involved in oral mucosa sensation, dental pain nociception, saliva secretion, swallowing reflex and temporomandibular joints' development. CONCLUSION Various TRP channels regulate oral cavity homeostasis, playing an important role in the transduction of external stimuli to intracellular signals in a cell type-specific manner and presenting promising drug targets for the development of pharmacological strategies to manage oral diseases.
Collapse
Affiliation(s)
- Andreas Chalazias
- School of Dentistry, National and Kapodistrian University of Athens, 2 Thivon Str, Goudi, 115 27 Athens. Greece
| | - Grigorios Plemmenos
- School of Dentistry, National and Kapodistrian University of Athens, 2 Thivon Str, Goudi, 115 27 Athens. Greece
| | - Evangelos Evangeliou
- School of Dentistry, National and Kapodistrian University of Athens, 2 Thivon Str, Goudi, 115 27 Athens. Greece
| | - Christina Piperi
- School of Dentistry, National and Kapodistrian University of Athens, 2 Thivon Str, Goudi, 115 27 Athens. Greece
| |
Collapse
|
11
|
Proctor GB, Shaalan AM. Disease-Induced Changes in Salivary Gland Function and the Composition of Saliva. J Dent Res 2021; 100:1201-1209. [PMID: 33870742 PMCID: PMC8461045 DOI: 10.1177/00220345211004842] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Although the physiological control of salivary secretion has been well studied, the impact of disease on salivary gland function and how this changes the composition and function of saliva is less well understood and is considered in this review. Secretion of saliva is dependent upon nerve-mediated stimuli, which activate glandular fluid and protein secretory mechanisms. The volume of saliva secreted by salivary glands depends upon the frequency and intensity of nerve-mediated stimuli, which increase dramatically with food intake and are subject to facilitatory or inhibitory influences within the central nervous system. Longer-term changes in saliva secretion have been found to occur in response to dietary change and aging, and these physiological influences can alter the composition and function of saliva in the mouth. Salivary gland dysfunction is associated with different diseases, including Sjögren syndrome, sialadenitis, and iatrogenic disease, due to radiotherapy and medications and is usually reported as a loss of secretory volume, which can range in severity. Defining salivary gland dysfunction by measuring salivary flow rates can be difficult since these vary widely in the healthy population. However, saliva can be sampled noninvasively and repeatedly, which facilitates longitudinal studies of subjects, providing a clearer picture of altered function. The application of omics technologies has revealed changes in saliva composition in many systemic diseases, offering disease biomarkers, but these compositional changes may not be related to salivary gland dysfunction. In Sjögren syndrome, there appears to be a change in the rheology of saliva due to altered mucin glycosylation. Analysis of glandular saliva in diseases or therapeutic interventions causing salivary gland inflammation frequently shows increased electrolyte concentrations and increased presence of innate immune proteins, most notably lactoferrin. Altering nerve-mediated signaling of salivary gland secretion contributes to medication-induced dysfunction and may also contribute to altered saliva composition in neurodegenerative disease.
Collapse
Affiliation(s)
- G B Proctor
- Centre for Host Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - A M Shaalan
- Centre for Host Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| |
Collapse
|