1
|
Ajay Castro S, Passmore IJ, Ndeh D, Shaw HA, Ruda A, Burns K, Thomson S, Nagar R, Alagesan K, Reglinski M, Lucas K, Abouelhadid S, Schwarz-Linek U, Mawas F, Widmalm G, Wren BW, Dorfmueller HC. Recombinant production platform for Group A Streptococcus glycoconjugate vaccines. NPJ Vaccines 2025; 10:16. [PMID: 39843476 PMCID: PMC11754613 DOI: 10.1038/s41541-025-01068-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 01/06/2025] [Indexed: 01/24/2025] Open
Abstract
Group A Streptococcus (Strep A) is a human-exclusive bacterial pathogen killing annually more than 500,000 patients, and no current licensed vaccine exists. Strep A bacteria are highly diverse, but all produce an essential, abundant, and conserved surface carbohydrate, the Group A Carbohydrate, which contains a rhamnose polysaccharide (RhaPS) backbone. RhaPS is a validated universal vaccine candidate in a glycoconjugate prepared by chemical conjugation of the native carbohydrate to a carrier protein. We engineered the Group A Carbohydrate biosynthesis pathway to enable recombinant production using the industry standard route to couple RhaPS to selected carrier proteins within Escherichia coli cells. The structural integrity of the produced recombinant glycoconjugate vaccines was confirmed by Nuclear Magnetic Resonance (NMR) spectroscopy and mass spectrometry. Purified RhaPS glycoconjugates elicited carbohydrate-specific antibodies in mice and rabbits and bound to the surface of multiple Strep A strains of diverse M-types, confirming the recombinantly produced RhaPS glycoconjugates as valuable vaccine candidates.
Collapse
Affiliation(s)
- Sowmya Ajay Castro
- Division of Molecular Microbiology, School of Life Sciences, Dundee, United Kingdom
| | - Ian J Passmore
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Didier Ndeh
- Division of Molecular Microbiology, School of Life Sciences, Dundee, United Kingdom
| | - Helen Alexandra Shaw
- The Medicines and Healthcare products Regulatory Agency (MHRA), Vaccines Division, Scientific Research & Innovation Group, London, United Kingdom
| | - Alessandro Ruda
- Department of Organic Chemistry, Stockholm University, Stockholm, Sweden
| | - Keira Burns
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
- The Medicines and Healthcare products Regulatory Agency (MHRA), Vaccines Division, Scientific Research & Innovation Group, London, United Kingdom
| | - Sarah Thomson
- Biological Services, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Rupa Nagar
- Division of Molecular Microbiology, School of Life Sciences, Dundee, United Kingdom
| | | | - Mark Reglinski
- Division of Molecular Microbiology, School of Life Sciences, Dundee, United Kingdom
| | - Kieron Lucas
- Division of Molecular Microbiology, School of Life Sciences, Dundee, United Kingdom
| | - Sherif Abouelhadid
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Ulrich Schwarz-Linek
- Biomedical Sciences Research Complex, University of St. Andrews, Fife, United Kingdom
| | - Fatme Mawas
- The Medicines and Healthcare products Regulatory Agency (MHRA), Vaccines Division, Scientific Research & Innovation Group, London, United Kingdom
| | - Göran Widmalm
- Department of Organic Chemistry, Stockholm University, Stockholm, Sweden
| | - Brendan W Wren
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom.
| | - Helge C Dorfmueller
- Division of Molecular Microbiology, School of Life Sciences, Dundee, United Kingdom.
| |
Collapse
|
2
|
Shoji M, Reynolds EC, Veith PD. Analyses of biosynthesis mutants reveal that the fifth and sixth sugars of the Porphyromonas gingivalis O-glycan are L-fucose and N-acetylgalactosamine respectively. Gene 2024; 939:149182. [PMID: 39701196 DOI: 10.1016/j.gene.2024.149182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/05/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
The oral pathogen, Porphyromonas gingivalis has a general O-glycosylation system which it utilises to modify hundreds of proteins localised outside of the cytoplasm. The O-glycan is a heptasaccharide that includes a putative L-fucose and N-acetylgalactosamine (GalNAc) as the 5th and 6th sugar residues respectively. The putative L-fucose is expected to be synthesized as GDP-L-fucose involving the enzymes Gmd (PGN_1078) and Fcl (PGN_1079), while GalNAc is putatively epimerised from GlcNAc by GalE (PGN_1614). In this study we created mutants lacking each of these three enzymes and analysed the resultant glycosylation defects. Immunoblot analysis using antibodies against the model glycoproteins Mfa2, PGN_0742 and PGN_1037 detected bands of reduced size, consistent with glycan truncation. Mass spectrometry analysis of tryptic digests of whole cell lysate proteins revealed that O-glycans in the galE mutant were predominantly pentasaccharides consistent with the 6th sugar being GalNAc. For the gmd and fcl mutants, tetrasaccharides were observed confirming the 5th sugar as L-fucose. The confirmation of these sugars also confirmed PGN_1135 as a GalNAc transferase as the previously analysed PGN_1135 mutant produced the same O-glycan truncation as the galE mutant.
Collapse
Affiliation(s)
- Mikio Shoji
- Department of Microbiology and Oral Infection, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Eric C Reynolds
- Melbourne Dental School, Bio21 Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Paul D Veith
- Melbourne Dental School, Bio21 Institute, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
3
|
Sutherland E, Veth TS, Barshop WD, Russell JH, Kothlow K, Canterbury JD, Mullen C, Bergen D, Huang J, Zabrouskov V, Huguet R, McAlister GC, Riley NM. Autonomous Dissociation-type Selection for Glycoproteomics Using a Real-Time Library Search. J Proteome Res 2024; 23:5606-5614. [PMID: 39531532 DOI: 10.1021/acs.jproteome.4c00723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Tandem mass spectrometry (MS/MS) is the gold standard for intact glycopeptide identification, enabling peptide sequence elucidation and site-specific localization of glycan compositions. Beam-type collisional activation is generally sufficient for N-glycopeptides, while electron-driven dissociation is crucial for site localization in O-glycopeptides. Modern glycoproteomic methods often employ multiple dissociation techniques within a single LC-MS/MS analysis, but this approach frequently sacrifices sensitivity when analyzing multiple glycopeptide classes simultaneously. Here we explore the utility of intelligent data acquisition for glycoproteomics through real-time library searching (RTLS) to match oxonium ion patterns for on-the-fly selection of the appropriate dissociation method. By matching dissociation method with glycopeptide class, this autonomous dissociation-type selection (ADS) generates equivalent numbers of N-glycopeptide identifications relative to traditional beam-type collisional activation methods while also yielding comparable numbers of site-localized O-glycopeptide identifications relative to conventional electron transfer dissociation-based methods. The ADS approach represents a step forward in glycoproteomics throughput by enabling site-specific characterization of both N-and O-glycopeptides within the same LC-MS/MS acquisition.
Collapse
Affiliation(s)
- Emmajay Sutherland
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Tim S Veth
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | | | - Jacob H Russell
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Kathryn Kothlow
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | | | | | - David Bergen
- Thermo Fisher Scientific, San Jose, California 95134, United States
| | - Jingjing Huang
- Thermo Fisher Scientific, San Jose, California 95134, United States
| | - Vlad Zabrouskov
- Thermo Fisher Scientific, San Jose, California 95134, United States
| | - Romain Huguet
- Thermo Fisher Scientific, San Jose, California 95134, United States
| | | | - Nicholas M Riley
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
4
|
Chen F, Gao K, Li Y, Li Y, Wu Y, Dong L, Yang Z, Shi J, Guo K, Gao Q, Lu H, Zhang S. ST3GAL1 Promotes Malignant Phenotypes in Intrahepatic Cholangiocarcinoma. Mol Cell Proteomics 2024; 23:100821. [PMID: 39069074 PMCID: PMC11385758 DOI: 10.1016/j.mcpro.2024.100821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 07/14/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024] Open
Abstract
Intrahepatic cholangiocarcinoma (iCCA) has a poor prognosis, and elucidation of the molecular mechanisms underlying iCCA malignancy is of great significance. Glycosylation, an important post-translational modification, is closely associated with tumor progression. Altered glycosylation, including aberrant sialylation resulting from abnormal expression of sialyltransferases (STs) and neuraminidases (NEUs), is a significant feature of cancer cells. However, there is limited information on the roles of STs and NEUs in iCCA malignancy. Here, utilizing our proteogenomic resources from a cohort of 262 patients with iCCA, we identified ST3GAL1 as a prognostically relevant molecule in iCCA. Moreover, overexpression of ST3GAL1 promoted proliferation, migration, and invasion and inhibited apoptosis of iCCA cells in vitro. Through proteomic analyses, we identified the downstream pathway potentially regulated by ST3GAL1, which was the NF-κB signaling pathway, and further demonstrated that this pathway was positively correlated with malignancy in iCCA cells. Notably, glycoproteomics showed that O-glycosylation was changed in iCCA cells with high ST3GAL1 expression. Importantly, the altered O-glycopeptides underscored the potential utility of O-glycosylation profiling as a discriminatory marker for iCCA cells with ST3GAL1 overexpression. Additionally, miR-320b was identified as a post-transcriptional regulator of ST3GAL1, capable of suppressing ST3GAL1 expression and then reducing the proliferation, migration, and invasion abilities of iCCA cell lines. Taken together, these results suggest ST3GAL1 could serve as a promising therapeutic target for iCCA.
Collapse
Affiliation(s)
- Fanghua Chen
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Ke Gao
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Yan Li
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Yin Li
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yingcheng Wu
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Liangqing Dong
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Zijian Yang
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Jieyi Shi
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Kun Guo
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Qiang Gao
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Haojie Lu
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China; Department of Chemistry and NHC Key Laboratory of Glycoconjugates Research, Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| | - Shu Zhang
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China.
| |
Collapse
|
5
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2021-2022. MASS SPECTROMETRY REVIEWS 2024. [PMID: 38925550 DOI: 10.1002/mas.21873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 06/28/2024]
Abstract
The use of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry for the analysis of carbohydrates and glycoconjugates is a well-established technique and this review is the 12th update of the original article published in 1999 and brings coverage of the literature to the end of 2022. As with previous review, this review also includes a few papers that describe methods appropriate to analysis by MALDI, such as sample preparation, even though the ionization method is not MALDI. The review follows the same format as previous reviews. It is divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of computer software for structural identification. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other general areas such as medicine, industrial processes, natural products and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. MALDI is still an ideal technique for carbohydrate analysis, particularly in its ability to produce single ions from each analyte and advancements in the technique and range of applications show little sign of diminishing.
Collapse
|
6
|
Cao W. Advancing mass spectrometry-based glycoproteomic software tools for comprehensive site-specific glycoproteome analysis. Curr Opin Chem Biol 2024; 80:102442. [PMID: 38460452 DOI: 10.1016/j.cbpa.2024.102442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 03/11/2024]
Abstract
Glycoproteome analysis at a site-specific level and proteome scale stands out as a highly promising approach for gaining insights into the intricate roles of glycans in biological systems. Recent years have witnessed an upsurge in the development of innovative methodologies tailored for precisely this purpose. Breakthroughs in mass spectrometry-based glycoproteomic techniques, enabling the identification, quantification, and systematic exploration of site-specific glycans, have significantly enhanced our capacity to comprehensively and thoroughly characterize glycoproteins. In this short review, we delve into novel tools in advancing site-specific glycoproteomic analysis and summarize pertinent studies published in the past two years. Lastly, we discuss the ongoing challenges and outline future prospects in the field, considering both the analytical strategies of mass spectrometry and the tools employed for data interpretation.
Collapse
Affiliation(s)
- Weiqian Cao
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences, NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
7
|
Zhao Y, Zhang Y, Meng B, Luo M, Li G, Liu F, Chang C, Dai X, Fang X. A Novel Integrated Pipeline for Site-Specific Quantification of N-glycosylation. PHENOMICS (CHAM, SWITZERLAND) 2024; 4:213-226. [PMID: 39398429 PMCID: PMC11467155 DOI: 10.1007/s43657-023-00150-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 10/15/2024]
Abstract
The site-specific N-glycosylation changes of human plasma immunoglobulin gamma molecules (IgGs) have been shown to modulate the immune response and could serve as potential biomarkers for the accurate diagnosis of various diseases. However, quantifying intact N-glycopeptides accurately in large-scale clinical samples remains a challenge, and the quantitative N-glycosylation of plasma IgGs in patients with chronic kidney diseases (CKDs) has not yet been studied. In this study, we present a novel integrated intact N-glycopeptide quantitative pipeline (termed GlycoQuant), which combines our recently developed mass spectrometry fragmentation method (EThcD-sceHCD) and an intact N-glycopeptide batch quantification software tool (the upgraded PANDA v.1.2.5). We purified and digested human plasma IgGs from 58 healthy controls (HCs), 48 patients with membranous nephropathy (MN), and 35 patients with IgA nephropathy (IgAN) within an hour. Then, we analyzed the digested peptides without enrichment using EThcD-sceHCD-MS/MS, which provided higher spectral quality and greater identified depth. Using upgraded PANDA, we performed site-specific N-glycosylation quantification of IgGs. Several quantified intact N-glycopeptides not only distinguished CKDs from HCs, but also different types of CKD (MN and IgAN) and may serve as accurate diagnostic tools for renal tubular function. In addition, we proved the applicability of this pipeline to complex samples by reanalyzing the intact N-glycopeptides from cell, urine, plasma, and tissue samples that we had previously identified. We believe that this pipeline can be applied to large-scale clinical N-glycoproteomic studies, facilitating the discovery of novel glycosylated biomarkers. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s43657-023-00150-w.
Collapse
Affiliation(s)
- Yang Zhao
- Mass Spectrometry Engineering Technology Research Center, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 102206 China
| | - Yong Zhang
- Department of Nephrology, Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Bo Meng
- Mass Spectrometry Engineering Technology Research Center, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 102206 China
| | - Mengqi Luo
- Department of Nephrology, Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Guisen Li
- Renal Department and Institute of Nephrology, Sichuan Provincial People’s Hospital, Sichuan Clinical Research Center for Kidney Diseases, University of Electronic Science and Technology of China, Chengdu, 611731 China
| | - Fang Liu
- Department of Nephrology, Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Cheng Chang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206 China
- Research Unit of Proteomics Driven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Beijing, 102206 China
| | - Xinhua Dai
- Mass Spectrometry Engineering Technology Research Center, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 102206 China
| | - Xiang Fang
- Mass Spectrometry Engineering Technology Research Center, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 102206 China
| |
Collapse
|
8
|
Zhang Q, Ma C, Chin LS, Pan S, Li L. Human brain glycoform coregulation network and glycan modification alterations in Alzheimer's disease. SCIENCE ADVANCES 2024; 10:eadk6911. [PMID: 38579000 PMCID: PMC10997212 DOI: 10.1126/sciadv.adk6911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 03/05/2024] [Indexed: 04/07/2024]
Abstract
Despite the importance of protein glycosylation to brain health, current knowledge of glycosylated proteoforms or glycoforms in human brain and their alterations in Alzheimer's disease (AD) is limited. Here, we report a proteome-wide glycoform profiling study of human AD and control brains using intact glycopeptide-based quantitative glycoproteomics coupled with systems biology. Our study identified more than 10,000 human brain N-glycoforms from nearly 1200 glycoproteins and uncovered disease signatures of altered glycoforms and glycan modifications, including reduced sialylation and N-glycan branching and elongation as well as elevated mannosylation and N-glycan truncation in AD. Network analyses revealed a higher-order organization of brain glycoproteome into networks of coregulated glycoforms and glycans and discovered glycoform and glycan modules associated with AD clinical phenotype, amyloid-β accumulation, and tau pathology. Our findings provide valuable insights into disease pathogenesis and a rich resource of glycoform and glycan changes in AD and pave the way forward for developing glycosylation-based therapies and biomarkers for AD.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Pharmacology and Chemical Biology, Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Cheng Ma
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Lih-Shen Chin
- Department of Pharmacology and Chemical Biology, Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Sheng Pan
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Lian Li
- Department of Pharmacology and Chemical Biology, Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
9
|
Ye X, Paul B, Mo J, Reynolds EC, Ghosal D, Veith PD. Ultrastructural and glycoproteomic characterization of Prevotella intermedia: Insights into O-glycosylation and outer membrane vesicles. Microbiologyopen 2024; 13:e1401. [PMID: 38409911 PMCID: PMC10897501 DOI: 10.1002/mbo3.1401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/08/2024] [Accepted: 02/16/2024] [Indexed: 02/28/2024] Open
Abstract
Prevotella intermedia, a Gram-negative bacterium from the Bacteroidota phylum, is associated with periodontitis. Other species within this phylum are known to possess the general O-glycosylation system. The O-glycoproteome has been characterized in several species, including Tannerella forsythia, Porphyromonas gingivalis, and Flavobacterium johnsoniae. In our study, we used electron cryotomography (cryoET) and glycoproteomics to reveal the ultrastructure of P. intermedia and characterize its O-glycoproteome. Our cryoET analysis unveiled the ultrastructural details of the cell envelope and outer membrane vesicles (OMVs) of P. intermedia. We observed an electron-dense surface layer surrounding both cells and OMVs. The OMVs were often large (>200 nm) and presented two types, with lumens being either electron-dense or translucent. LC-MS/MS analyses of P. intermedia fractions led to the identification of 1655 proteins, which included 62 predicted T9SS cargo proteins. Within the glycoproteome, we identified 443 unique O-glycosylation sites within 224 glycoproteins. Interestingly, the O-glycosylation motif exhibited a broader range than reported in other species, with O-glycosylation found at D(S/T)(A/I/L/M/T/V/S/C/G/F/N/E/Q/D/P). We identified a single O-glycan with a delta mass of 1531.48 Da. Its sequence was determined by MS2 and MS3 analyses using both collision-induced dissociation and high-energy collisional dissociation fragmentation modes. After partial deglycosylation with trifluoromethanesulfonic acid, the O-glycan sequence was confirmed to be dHex-dHex-HexNAc (HPO3 -C6 H12 O5 )-dHex-Hex-HexA-Hex(dHex). Bioinformatic analyses predicted the localization of O-glycoproteins, with 73 periplasmic proteins, 53 inner membrane proteins, 52 lipoproteins, 26 outer membrane proteins, and 14 proteins secreted by the T9SS.
Collapse
Affiliation(s)
- Xi Ye
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneMelbourneVictoriaAustralia
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 InstituteThe University of MelbourneParkvilleVictoriaAustralia
| | - Bindusmita Paul
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneMelbourneVictoriaAustralia
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 InstituteThe University of MelbourneParkvilleVictoriaAustralia
| | - Joyce Mo
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneMelbourneVictoriaAustralia
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 InstituteThe University of MelbourneParkvilleVictoriaAustralia
| | - Eric C. Reynolds
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 InstituteThe University of MelbourneParkvilleVictoriaAustralia
| | - Debnath Ghosal
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneMelbourneVictoriaAustralia
- ARC Centre for Cryo‐electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology InstituteUniversity of MelbourneParkvilleVictoriaAustralia
| | - Paul D. Veith
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 InstituteThe University of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|
10
|
Jiang P, Huang Y, Gutierrez Reyes CD, Zhong J, Mechref Y. Isomeric Separation of α2,3/α2,6-Linked 2-Aminobenzamide (2AB)-Labeled Sialoglycopeptides by C18-LC-MS/MS. Anal Chem 2023; 95:18388-18397. [PMID: 38069741 DOI: 10.1021/acs.analchem.3c03118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Determination of the relative expression levels of the α2,3/α2,6-sialic acid linkage isomers on glycoproteins is critical to the analysis of various human diseases such as cancer, inflammation, and viral infection. However, it remains a challenge to separate and differentiate site-specific linkage isomers at the glycopeptide level. Some derivatization methods on the carboxyl group of sialic acid have been developed to generate mass differences between linkage isomers. In this study, we utilized chemical derivatization that occurred on the vicinal diol of sialic acid to separate linkage isomers on a reverse-phase column using a relatively short time. 2-Aminobenzamide (2AB) labeling derivatization, including periodate oxidation and reductive amination, took only ∼3 h and achieved high labeling efficiency (>90%). Within a 66 min gradient, the sialic acid linkage isomers of 2AB-labeled glycopeptides from model glycoproteins can be efficiently resolved compared to native glycopeptides. Two different methods, neuraminidase digestion and higher-energy collision dissociation tandem mass spectrometry (HCD-MS2) fragmentation, were utilized to differentiate those isomeric peaks. By calculating the diagnostic oxonium ion ratio of Gal2ABNeuAc and 2ABNeuAc fragments, significant differences in chromatographic retention times and in mass spectral peak abundances were observed between linkage isomers. Their corresponding MS2 PCA plots also helped to elucidate the linkage information. This method was successfully applied to human blood serum. A total of 514 2AB-labeled glycopeptide structures, including 152 sets of isomers, were identified, proving the applicability of this method in linkage-specific structural characterization and relative quantification of sialic acid isomers.
Collapse
Affiliation(s)
- Peilin Jiang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Yifan Huang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Cristian D Gutierrez Reyes
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Jieqiang Zhong
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| |
Collapse
|
11
|
Luo M, Su T, Cheng Q, Zhang X, Cai F, Yin Z, Li F, Yang H, Liu F, Zhang Y. GlycoTCFM: Glycoproteomics Based on Two Complementary Fragmentation Methods Reveals Distinctive O-Glycosylation in Human Sperm and Seminal Plasma. J Proteome Res 2023; 22:3833-3842. [PMID: 37943980 DOI: 10.1021/acs.jproteome.3c00489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Human semen, consisting of spermatozoa (sperm) and seminal plasma, represents a special clinical sample type in human body fluid. Protein glycosylation in sperm and seminal plasma plays key roles in spermatogenesis, maturation, capacitation, sperm-egg recognition, motility of sperm, and fertilization. In this study, we profiled the most comprehensive O-glycoproteome map of human sperm and seminal plasma using our recently presented Glycoproteomics based on Two Complementary Fragmentation Methods (GlycoTCFM). We showed that sperm and seminal plasma contain many novel and distinctive O-glycoproteins, which are mostly located in the extracellular region (seminal plasma) and sperm membrane, enriched in the biological processes of cell adhesion and angiogenesis, and mainly involved in multiple biological functions including extracellular matrix structural constituents and binding. Based on GlycoTCFM, we created a comprehensive human sperm and seminal plasma O-glycoprotein database that contains 371 intact O-glycopeptides and 202 O-glycosites from 68 O-glycoproteins. Interestingly, 105 manually confirmed O-glycosites from 25 O-glycoproteins were reported for the first time, and they were mainly modified by core 1 O-glycans. We also found that three highly abundant, highly complex, and highly O-glycosylated proteins (semenogelin-1, semenogelin-2, and equatorin) may play important roles in sperm or seminal plasma composition and function. These data deepen our knowledge about O-glycosylation in sperm and seminal plasma and lay the foundation for the functional study of O-glycoproteins in male infertility.
Collapse
Affiliation(s)
- Mengqi Luo
- Department of Nephrology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tao Su
- Department of Nephrology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qingyuan Cheng
- Human Sperm Bank, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu 610041, China
| | - Xue Zhang
- Department of Nephrology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Fei Cai
- Department of Nephrology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zaiwen Yin
- Department of Nephrology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Fuping Li
- Human Sperm Bank, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu 610041, China
| | - Hao Yang
- Department of Nephrology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Fang Liu
- Department of Nephrology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yong Zhang
- Department of Nephrology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
12
|
Veith PD, Gorasia DG, Reynolds EC. Characterization of the O-Glycoproteome of Flavobacterium johnsoniae. J Bacteriol 2023; 205:e0009323. [PMID: 37162352 PMCID: PMC10294664 DOI: 10.1128/jb.00093-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/17/2023] [Indexed: 05/11/2023] Open
Abstract
Flavobacterium johnsoniae is a free-living member of the Bacteroidota phylum that is found in soil and water. It is frequently used as a model species for studying a type of gliding motility dependent on the type IX secretion system (T9SS). O-Glycosylation has been reported in several Bacteroidota species, and the O-glycosylation of S-layer proteins in Tannerella forsythia was shown to be important for certain virulence features. In this study, we characterized the O-glycoproteome of F. johnsoniae and identified 325 O-glycosylation sites within 226 glycoproteins. The structure of the major glycan was found to be a hexasaccharide with the sequence Hex-(Me-dHex)-Me-HexA-Pent-HexA-Me-HexNAcA. Bioinformatic localization of the glycoproteins predicted 68 inner membrane proteins, 60 periplasmic proteins, 26 outer membrane proteins, 57 lipoproteins, and 9 proteins secreted by the T9SS. The glycosylated sites were predominantly located in the periplasm, where they are postulated to be beneficial for protein folding/stability. Six proteins associated with gliding motility or the T9SS were demonstrated to be O-glycosylated. IMPORTANCE Flavobacterium johnsoniae is a Gram-negative bacterium that is found in soil and water. It is frequently used as a model species for studying gliding motility and the T9SS. In this study, we characterized the O-glycoproteome of F. johnsoniae and identified 325 O-glycosylation sites within 226 glycoproteins. The glycosylated domains were mainly localized to the periplasm. The function of O-glycosylation is likely related to protein folding and stability; therefore, the finding of the glycosylation sites has relevance for studies involving expression of the proteins. Six proteins associated with gliding motility or the T9SS were demonstrated to be O-glycosylated, which may impact the structure and function of these components.
Collapse
Affiliation(s)
- Paul D. Veith
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Dhana G. Gorasia
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Eric C. Reynolds
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
13
|
Waldenmaier HE, Gorre E, Poltash ML, Gunawardena HP, Zhai XA, Li J, Zhai B, Beil EJ, Terzo JC, Lawler R, English AM, Bern M, Mahan AD, Carlson E, Nanda H. "Lab of the Future"─Today: Fully Automated System for High-Throughput Mass Spectrometry Analysis of Biotherapeutics. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023. [PMID: 37186948 DOI: 10.1021/jasms.3c00036] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Here we describe a state-of-the-art, integrated, multi-instrument automated system designed to execute methods involved in mass spectrometry characterization of biotherapeutics. The system includes liquid and microplate handling robotics and utilities, integrated LC-MS, along with data analysis software, to perform sample purification, preparation, and analysis as a seamless integrated unit. The automated process begins with tip-based purification of target proteins from expression cell-line supernatants, which is initiated once the samples are loaded onto the automated system and the metadata are retrieved from our corporate data aggregation system. Subsequently, the purified protein samples are prepared for MS, including deglycosylation and reduction steps for intact and reduced mass analysis, and proteolytic digestions, desalting, and buffer exchange via centrifugation for peptide map analysis. The prepared samples are then loaded into the LC-MS instrumentation for data acquisition. The acquired raw data are initially stored on a local area network storage system that is monitored by watcher scripts that then upload the raw MS data to a network of cloud-based servers. The raw MS data are processed with the appropriately configured analysis workflows such as database search for peptide mapping or charge deconvolution for undigested proteins. The results are verified and formatted for expert curation directly in the cloud. Finally, the curated results are appended to sample metadata in the corporate data aggregation system to accompany the biotherapeutic cell lines in subsequent processes.
Collapse
Affiliation(s)
- Hans E Waldenmaier
- Janssen Research & Development, The Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania 19477, United States
| | - Elsa Gorre
- Janssen Research & Development, The Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania 19477, United States
| | - Michael L Poltash
- Janssen Research & Development, The Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania 19477, United States
| | - Harsha P Gunawardena
- Janssen Research & Development, The Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania 19477, United States
| | | | - Jing Li
- Protein Metrics LLC., Cupertino, California 95014, United States
| | - Bo Zhai
- Janssen Research & Development, The Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania 19477, United States
| | - Eric J Beil
- Janssen Research & Development, The Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania 19477, United States
| | - Joseph C Terzo
- Janssen Research & Development, The Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania 19477, United States
| | - Rose Lawler
- Protein Metrics LLC., Cupertino, California 95014, United States
| | | | - Marshall Bern
- Protein Metrics LLC., Cupertino, California 95014, United States
| | - Andrew D Mahan
- Janssen Research & Development, The Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania 19477, United States
| | - Eric Carlson
- Protein Metrics LLC., Cupertino, California 95014, United States
| | - Hirsh Nanda
- Janssen Research & Development, The Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania 19477, United States
| |
Collapse
|
14
|
Seo Y, Park J, Lee HJ, Kim M, Kang I, Son J, Oh MK, Min H. Development and validation of a method for analyzing the sialylated glycopeptides of recombinant erythropoietin in urine using LC-HRMS. Sci Rep 2023; 13:3860. [PMID: 36890204 PMCID: PMC9995342 DOI: 10.1038/s41598-023-31030-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/06/2023] [Indexed: 03/10/2023] Open
Abstract
Erythropoietin (EPO) is a glycoprotein hormone that stimulates red blood cell production. It is produced naturally in the body and is used to treat patients with anemia. Recombinant EPO (rEPO) is used illicitly in sports to improve performance by increasing the blood's capacity to carry oxygen. The World Anti-Doping Agency has therefore prohibited the use of rEPO. In this study, we developed a bottom-up mass spectrometric method for profiling the site-specific N-glycosylation of rEPO. We revealed that intact glycopeptides have a site-specific tetra-sialic glycan structure. Using this structure as an exogenous marker, we developed a method for use in doping studies. The profiling of rEPO N-glycopeptides revealed the presence of tri- and tetra-sialylated N-glycopeptides. By selecting a peptide with a tetra-sialic acid structure as the target, its limit of detection (LOD) was estimated to be < 500 pg/mL. Furthermore, we confirmed the detection of the target rEPO glycopeptide using three other rEPO products. We additionally validated the linearity, carryover, selectivity, matrix effect, LOD, and intraday precision of this method. To the best of our knowledge, this is the first report of a doping analysis using liquid chromatography/mass spectrometry-based detection of the rEPO glycopeptide with a tetra-sialic acid structure in human urine samples.
Collapse
Affiliation(s)
- Yoondam Seo
- Doping Control Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea.,Department of Chemical and Biological Engineering, Korea University, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jisoo Park
- Doping Control Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Hyeon-Jeong Lee
- Doping Control Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Minyoung Kim
- Doping Control Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Inseon Kang
- Doping Control Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea.,Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Junghyun Son
- Doping Control Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Min-Kyu Oh
- Department of Chemical and Biological Engineering, Korea University, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Hophil Min
- Doping Control Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea.
| |
Collapse
|
15
|
Phetsanthad A, Vu NQ, Yu Q, Buchberger AR, Chen Z, Keller C, Li L. Recent advances in mass spectrometry analysis of neuropeptides. MASS SPECTROMETRY REVIEWS 2023; 42:706-750. [PMID: 34558119 PMCID: PMC9067165 DOI: 10.1002/mas.21734] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 08/22/2021] [Accepted: 08/28/2021] [Indexed: 05/08/2023]
Abstract
Due to their involvement in numerous biochemical pathways, neuropeptides have been the focus of many recent research studies. Unfortunately, classic analytical methods, such as western blots and enzyme-linked immunosorbent assays, are extremely limited in terms of global investigations, leading researchers to search for more advanced techniques capable of probing the entire neuropeptidome of an organism. With recent technological advances, mass spectrometry (MS) has provided methodology to gain global knowledge of a neuropeptidome on a spatial, temporal, and quantitative level. This review will cover key considerations for the analysis of neuropeptides by MS, including sample preparation strategies, instrumental advances for identification, structural characterization, and imaging; insightful functional studies; and newly developed absolute and relative quantitation strategies. While many discoveries have been made with MS, the methodology is still in its infancy. Many of the current challenges and areas that need development will also be highlighted in this review.
Collapse
Affiliation(s)
- Ashley Phetsanthad
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Nhu Q. Vu
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Qing Yu
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA
| | - Amanda R. Buchberger
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Zhengwei Chen
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Caitlin Keller
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA
| |
Collapse
|
16
|
Polasky DA, Nesvizhskii AI. Recent advances in computational algorithms and software for large-scale glycoproteomics. Curr Opin Chem Biol 2023; 72:102238. [PMID: 36525809 DOI: 10.1016/j.cbpa.2022.102238] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 12/15/2022]
Abstract
Glycoproteomics, or characterizing glycosylation events at a proteome scale, has seen rapid advances in methods for analyzing glycopeptides by tandem mass spectrometry in recent years. These advances have enabled acquisition of far more comprehensive and large-scale datasets, precipitating an urgent need for improved informatics methods to analyze the resulting data. A new generation of glycoproteomics search methods has recently emerged, using glycan fragmentation to split the identification of a glycopeptide into peptide and glycan components and solve each component separately. In this review, we discuss these new methods and their implications for large-scale glycoproteomics, as well as several outstanding challenges in glycoproteomics data analysis, including validation of glycan assignments and quantitation. Finally, we provide an outlook on the future of glycoproteomics from an informatics perspective, noting the key challenges to achieving widespread and reproducible glycopeptide annotation and quantitation.
Collapse
Affiliation(s)
- Daniel A Polasky
- University of Michigan Department of Pathology, Ann Arbor, MI, USA.
| | - Alexey I Nesvizhskii
- University of Michigan Department of Pathology, Ann Arbor, MI, USA; University of Michigan Department of Computational Medicine and Bioinformatics, Ann Arbor, MI, USA.
| |
Collapse
|
17
|
Alagesan K, Charpentier E. Systems-Wide Site-Specific Analysis of Glycoproteins. Methods Mol Biol 2023; 2718:151-165. [PMID: 37665459 DOI: 10.1007/978-1-0716-3457-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Glycosylation is one of the most common and complex post-translation modifications that influence the structural and functional properties of proteins. Glycoproteins are highly heterogeneous and exhibit site- and protein-specific expression differences. Mass spectrometry in combination with liquid chromatography has emerged as the most powerful tool for the comprehensive characterization of glycosylation. The analysis of intact glycopeptides has emerged as a promising strategy to analyze glycoproteins for their glycan heterogeneity at both protein- and site-specific levels. Nevertheless, intact glycopeptide characterization is challenging as elucidation of the glycan and peptide moieties requires specific sample preparation workflows that, combined with the tandem mass spectrometry approach, enable the identification of single glycopeptide species. In this chapter, we provide a detailed description of the methods that include procedures for (i) proteolytic digestion using specific proteases, (ii) optional glycopeptide enrichment using hydrophilic interaction liquid chromatography, (iii) nano-LC-MS/MS analysis of glycopeptides, and (iv) data analysis for identification of glycopeptides. Together, our workflow provides a framework for the system-wide site-specific analysis of N- and O-glycopeptides derived from complex biological or clinical samples.
Collapse
Affiliation(s)
| | - Emmanuelle Charpentier
- Max Planck Unit for the Science of Pathogens, Berlin, Germany
- Institute for Biology, Humboldt University, Berlin, Germany
| |
Collapse
|
18
|
Abstract
O-Glycoproteases are an emerging class of enzymes that selectively digest glycoproteins at positions decorated with specific O-linked glycans. O-Glycoprotease substrates range from any O-glycoprotein (albeit with specific O-glycan modifications) to only glycoproteins harboring specific O-glycosylated sequence motifs, such as those found in mucin domains. Their utility for multiple glycoproteomic applications is driving the search to both discover new O-glycoproteases and to understand how structural features of characterized O-glycoproteases influence their substrate specificities. One challenge of defining O-glycoprotease specificity restraints is the need to characterize O-glycopeptides with site-specific analysis of O-glycosites. Here, we demonstrate how O-Pair Search, a recently developed O-glycopeptide-centric identification platform that enables rapid searches and confident O-glycosite localization, can be used to determine substrate specificities of various O-glycoproteases de novo from LC-MS/MS data of O-glycopeptides. Using secreted protease of C1 esterase inhibitor (StcE) from enterohemorrhagic Escherichia coli and O-endoprotease OgpA from Akkermansia mucinophila, we explore numerous settings that effect O-glycopeptide identification and show how non-specific and semi-tryptic searches of O-glycopeptide data can produce candidate cleavage motifs. These putative motifs can be further used to define new protease cleavage settings that lower search times and improve O-glycopeptide identifications. We use this platform to generate a consensus motif for the recently characterized immunomodulating metalloprotease (IMPa) from Pseudomonas aeruginosa and show that IMPa is a favorable O-glycoprotease for characterizing densely O-glycosylated mucin-domain glycoproteins.
Collapse
Affiliation(s)
- Nicholas M Riley
- Department of Chemistry, Sarafan ChEM-H, Stanford University, Stanford, California, USA.
| | - Carolyn R Bertozzi
- Department of Chemistry, Sarafan ChEM-H, Stanford University, Stanford, California, USA.
- Howard Hughes Medical Institute, Stanford, California, USA
| |
Collapse
|
19
|
Nalehua MR, Zaia J. Measuring change in glycoprotein structure. Curr Opin Struct Biol 2022; 74:102371. [PMID: 35452871 DOI: 10.1016/j.sbi.2022.102371] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/15/2022] [Accepted: 03/09/2022] [Indexed: 11/19/2022]
Abstract
Biosynthetic enzymes in the secretory pathway create distributions of glycans at each glycosite that elaborate the biophysical properties and biological functions of glycoproteins. Because the biosynthetic glycosylation reactions do not go to completion, each protein glycosite is heterogeneous with respect to glycosylation. This heterogeneity means that it is not sufficient to measure protein abundance in omics experiments. Rather, it is necessary to sample the distribution of glycosylation at each glycosite to quantify the changes that occur during biological processes. On the one hand, the use of data-dependent acquisition methods to sample glycopeptides is limited by the instrument duty cycle and the missing value problem. On the other, stepped window data-independent acquisition samples all precursors, but ion abundances are limited by duty cycle. Therefore, the ability to quantify accurately the flux in glycoprotein glycosylation that occurs during biological processes requires the exploitation of emerging mass spectrometry technologies capable of deep, comprehensive sampling and selective high confidence assignment of the complex glycopeptide mixtures. This review summarizes recent technical advances and mass spectral glycoproteomics analysis strategies and how these developments impact our ability to quantify the changes in glycosylation that occur during biological processes. We highlight specific improvements to glycopeptide characterization through activated electron dissociation, ion mobility trends and instrumentation, and efficient algorithmic approaches for glycopeptide assignment. We also discuss the emerging need for unified standards to enable interlaboratory collaborations and effective monitoring of structural changes in glycoproteins.
Collapse
Affiliation(s)
| | - Joseph Zaia
- Dept. of Biochemistry, Boston University, United States.
| |
Collapse
|
20
|
Abstract
Porphyromonas gingivalis is an important human pathogen and also a model organism for the Bacteroidetes phylum. O-glycosylation has been reported in this phylum with findings that include the O-glycosylation motif, the structure of the O-glycans in a few species, and an extensive O-glycoproteome analysis in Tannerella forsythia. However, O-glycosylation has not yet been confirmed in P. gingivalis. We therefore used glycoproteomics approaches including partial deglycosylation with trifluoromethanesulfonic acid as well as both HILIC and FAIMS based glycopeptide enrichment strategies leading to the identification of 257 putative glycosylation sites in 145 glycoproteins. The sequence of the major O-glycan was elucidated to be HexNAc-HexNAc(P-Gro-[Ac]0-2)-dHex-Hex-HexA-Hex(dHex). Western blot analyses of mutants lacking the glycosyltransferases PGN_1134 and PGN_1135 demonstrated their involvement in the biosynthesis of the glycan while mass spectrometry analysis of the truncated O-glycans suggested that PGN_1134 and PGN_1135 transfer the two HexNAc sugars. Interestingly, a strong bias against the O-glycosylation of abundant proteins exposed to the cell surface such as abundant T9SS cargo proteins, surface lipoproteins, and outer membrane β-barrel proteins was observed. In contrast, the great majority of proteins associated with the inner membrane or periplasm were glycosylated irrespective of their abundance. The P. gingivalis O-glycosylation system may therefore function to establish the desired physicochemical properties of the periplasm. IMPORTANCEPorphyromonas gingivalis is an oral pathogen primarily associated with severe periodontal disease and further associated with rheumatoid arthritis, dementia, cardiovascular disease, and certain cancers. Protein glycosylation can be important for a variety of reasons including protein function, solubility, protease resistance, and thermodynamic stability. This study has for the first time demonstrated the presence of O-linked glycosylation in this organism by determining the basic structure of the O-glycans and identifying 257 glycosylation sites in 145 proteins. It was found that most proteins exposed to the periplasm were O-glycosylated; however, the abundant surface exposed proteins were not. The O-glycans consisted of seven monosaccharides and a glycerol phosphate with 0–2 acetyl groups. These glycans are likely to have a stabilizing role to the proteins that bear them and must be taken into account when the proteins are produced in heterologous organisms.
Collapse
|
21
|
Kawahara R, Chernykh A, Alagesan K, Bern M, Cao W, Chalkley RJ, Cheng K, Choo MS, Edwards N, Goldman R, Hoffmann M, Hu Y, Huang Y, Kim JY, Kletter D, Liquet B, Liu M, Mechref Y, Meng B, Neelamegham S, Nguyen-Khuong T, Nilsson J, Pap A, Park GW, Parker BL, Pegg CL, Penninger JM, Phung TK, Pioch M, Rapp E, Sakalli E, Sanda M, Schulz BL, Scott NE, Sofronov G, Stadlmann J, Vakhrushev SY, Woo CM, Wu HY, Yang P, Ying W, Zhang H, Zhang Y, Zhao J, Zaia J, Haslam SM, Palmisano G, Yoo JS, Larson G, Khoo KH, Medzihradszky KF, Kolarich D, Packer NH, Thaysen-Andersen M. Community evaluation of glycoproteomics informatics solutions reveals high-performance search strategies for serum glycopeptide analysis. Nat Methods 2021; 18:1304-1316. [PMID: 34725484 DOI: 10.1101/2021.03.14.435332] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 09/22/2021] [Indexed: 05/18/2023]
Abstract
Glycoproteomics is a powerful yet analytically challenging research tool. Software packages aiding the interpretation of complex glycopeptide tandem mass spectra have appeared, but their relative performance remains untested. Conducted through the HUPO Human Glycoproteomics Initiative, this community study, comprising both developers and users of glycoproteomics software, evaluates solutions for system-wide glycopeptide analysis. The same mass spectrometrybased glycoproteomics datasets from human serum were shared with participants and the relative team performance for N- and O-glycopeptide data analysis was comprehensively established by orthogonal performance tests. Although the results were variable, several high-performance glycoproteomics informatics strategies were identified. Deep analysis of the data revealed key performance-associated search parameters and led to recommendations for improved 'high-coverage' and 'high-accuracy' glycoproteomics search solutions. This study concludes that diverse software packages for comprehensive glycopeptide data analysis exist, points to several high-performance search strategies and specifies key variables that will guide future software developments and assist informatics decision-making in glycoproteomics.
Collapse
Affiliation(s)
- Rebeca Kawahara
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Anastasia Chernykh
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Kathirvel Alagesan
- Institute for Glycomics, Griffith University Gold Coast Campus, Southport, QLD, Australia
| | | | - Weiqian Cao
- Institutes of Biomedical Sciences, and the NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, China
| | - Robert J Chalkley
- UCSF, School of Pharmacy, Department of Pharmaceutical Chemistry, San Francisco, CA, USA
| | - Kai Cheng
- State University of New York, Buffalo, NY, USA
| | - Matthew S Choo
- Analytics Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore
| | - Nathan Edwards
- Clinical and Translational Glycoscience Research Center (CTGRC), Georgetown University, Washington, DC, USA
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, USA
| | - Radoslav Goldman
- Clinical and Translational Glycoscience Research Center (CTGRC), Georgetown University, Washington, DC, USA
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, USA
- Department of Oncology, Georgetown University, Washington, DC, USA
| | - Marcus Hoffmann
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany
| | - Yingwei Hu
- Department of Pathology, The Johns Hopkins University, Baltimore, MD, USA
| | - Yifan Huang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Jin Young Kim
- Research Center of Bioconvergence Analysis, Korea Basic Science Institute, Daejeon, Republic of Korea
| | | | - Benoit Liquet
- Department of Mathematics and Statistics, Macquarie University, Sydney, NSW, Australia
- CNRS, Laboratoire de Mathématiques et de leurs Applications de PAU, E2S-UPPA, Pau, France
| | - Mingqi Liu
- Institutes of Biomedical Sciences, and the NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, China
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Bo Meng
- State Key Laboratory of Proteomics, Beijing Institute of Lifeomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing, China
| | | | - Terry Nguyen-Khuong
- Analytics Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore
| | - Jonas Nilsson
- Proteomics Core Facility, Sahlgrenska academy, University of Gothenburg, Gothenburg, Sweden
| | - Adam Pap
- BRC, Laboratory of Proteomics Research, Szeged, Hungary
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Gun Wook Park
- Research Center of Bioconvergence Analysis, Korea Basic Science Institute, Daejeon, Republic of Korea
| | - Benjamin L Parker
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC, Australia
| | - Cassandra L Pegg
- School of Chemistry and Molecular Biosciences, University of Queensland, Queensland, QLD, Australia
| | - Josef M Penninger
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Toan K Phung
- School of Chemistry and Molecular Biosciences, University of Queensland, Queensland, QLD, Australia
| | - Markus Pioch
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany
| | - Erdmann Rapp
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany
- glyXera GmbH, Magdeburg, Germany
| | - Enes Sakalli
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Miloslav Sanda
- Clinical and Translational Glycoscience Research Center (CTGRC), Georgetown University, Washington, DC, USA
- Department of Oncology, Georgetown University, Washington, DC, USA
| | - Benjamin L Schulz
- School of Chemistry and Molecular Biosciences, University of Queensland, Queensland, QLD, Australia
| | - Nichollas E Scott
- Deparment of Microbiology and Immunology, University of Melbourne, Melbourne, VIC, Australia
| | - Georgy Sofronov
- Department of Mathematics and Statistics, Macquarie University, Sydney, NSW, Australia
| | - Johannes Stadlmann
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Sergey Y Vakhrushev
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Christina M Woo
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Hung-Yi Wu
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Pengyuan Yang
- Institutes of Biomedical Sciences, and the NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, China
| | - Wantao Ying
- State Key Laboratory of Proteomics, Beijing Institute of Lifeomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing, China
| | - Hui Zhang
- Department of Pathology, The Johns Hopkins University, Baltimore, MD, USA
| | - Yong Zhang
- State Key Laboratory of Proteomics, Beijing Institute of Lifeomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing, China
| | - Jingfu Zhao
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Joseph Zaia
- Department of Biochemistry, Boston University Medical Campus, Boston, MA, USA
| | - Stuart M Haslam
- Department of Life Sciences, Imperial College London, London, UK
| | - Giuseppe Palmisano
- Instituto de Ciências Biomédicas, Departamento de Parasitologia, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Jong Shin Yoo
- Research Center of Bioconvergence Analysis, Korea Basic Science Institute, Daejeon, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea
| | - Göran Larson
- Department of Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kai-Hooi Khoo
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Katalin F Medzihradszky
- UCSF, School of Pharmacy, Department of Pharmaceutical Chemistry, San Francisco, CA, USA
- BRC, Laboratory of Proteomics Research, Szeged, Hungary
| | - Daniel Kolarich
- Institute for Glycomics, Griffith University Gold Coast Campus, Southport, QLD, Australia
| | - Nicolle H Packer
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
- Institute for Glycomics, Griffith University Gold Coast Campus, Southport, QLD, Australia
- Biomolecular Discovery Research Centre, Macquarie University, Sydney, NSW, Australia
| | - Morten Thaysen-Andersen
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia.
- Biomolecular Discovery Research Centre, Macquarie University, Sydney, NSW, Australia.
| |
Collapse
|
22
|
Abstract
Tannerella forsythia is a Gram-negative oral pathogen known to possess an O-glycosylation system responsible for targeting multiple proteins associated with virulence at the three-residue motif (D)(S/T)(A/I/L/V/M/T). Multiple proteins have been identified to be decorated with a decasaccharide glycan composed of a poorly defined core plus a partially characterized species-specific section. To date, glycosylation studies have focused mainly on the two S-layer glycoproteins, TfsA and TfsB, so the true extent of glycosylation within this species has not been fully explored. In the present study, we characterize the glycoproteome of T. forsythia by employing FAIMS-based glycopeptide enrichment of a cell membrane fraction. We demonstrate that at least 13 glycans are utilized within the T. forsythia glycoproteome, varying with respect to the presence of the three terminal sugars and the presence of fucose and digitoxose residues at the reducing end. To improve the localization of glycosylation events and enhance the detection of glycopeptides, we utilized trifluoromethanesulfonic acid treatment to allow the selective chemical cleavage of glycans. Reducing the chemical complexity of glycopeptides dramatically improved the number of glycopeptides identified and our ability to localize glycosylation sites by ETD fragmentation, leading to the identification of 312 putative glycosylation sites in 145 glycoproteins. Glycosylation site analysis revealed that glycosylation occurs on a much broader motif than initially reported, with glycosylation found at (D)(S/T)(A/I/L/V/M/T/S/C/G/F). The prevalence of this broader glycosylation motif in the genome suggests the existence of hundreds of potential O-glycoproteins in this organism. IMPORTANCETannerella forsythia is an oral pathogen associated with severe forms of periodontal disease characterized by destruction of the tooth’s supporting tissues, including the bone. The bacterium releases a variety of proteins associated with virulence on the surface of outer membrane vesicles. There is evidence that these proteins are modified by glycosylation, and this modification is essential for virulence in producing disease. We have utilized novel techniques coupled with mass spectrometry to identify over 13 glycans and 312 putative glycosylation sites in 145 glycoproteins within T. forsythia. Glycosylation site analysis revealed that this modification occurs on a much broader motif than initially reported such that there is a high prevalence of potential glycoproteins in this organism that may help to explain its role in periodontal disease.
Collapse
|
23
|
Gaunitz S, Tjernberg LO, Schedin-Weiss S. What Can N-glycomics and N-glycoproteomics of Cerebrospinal Fluid Tell Us about Alzheimer Disease? Biomolecules 2021; 11:858. [PMID: 34207636 PMCID: PMC8226827 DOI: 10.3390/biom11060858] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/28/2021] [Accepted: 06/04/2021] [Indexed: 12/18/2022] Open
Abstract
Proteomics-large-scale studies of proteins-has over the last decade gained an enormous interest for studies aimed at revealing proteins and pathways involved in disease. To fully understand biological and pathological processes it is crucial to also include post-translational modifications in the "omics". To this end, glycomics (identification and quantification of glycans enzymatically or chemically released from proteins) and glycoproteomics (identification and quantification of peptides/proteins with the glycans still attached) is gaining interest. The study of protein glycosylation requires a workflow that involves an array of sample preparation and analysis steps that needs to be carefully considered. Herein, we briefly touch upon important steps such as sample preparation and preconcentration, glycan release, glycan derivatization and quantification and advances in mass spectrometry that today are the work-horse for glycomics and glycoproteomics studies. Several proteins related to Alzheimer disease pathogenesis have altered protein glycosylation, and recent glycomics studies have shown differences in cerebrospinal fluid as well as in brain tissue in Alzheimer disease as compared to controls. In this review, we discuss these techniques and how they have been used to shed light on Alzheimer disease and to find glycan biomarkers in cerebrospinal fluid.
Collapse
Affiliation(s)
- Stefan Gaunitz
- Department of Clinical Chemistry, Karolinska University Hospital, 14186 Stockholm, Sweden;
| | - Lars O. Tjernberg
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 17164 Solna, Sweden;
| | - Sophia Schedin-Weiss
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 17164 Solna, Sweden;
| |
Collapse
|
24
|
Hart GW, Wells L. Glycoproteomics: Making the Study of the Most Structurally Diverse and Most Abundant Post-Translational Modifications More Accessible to the Scientific Community. Mol Cell Proteomics 2021; 20:100086. [PMID: 34091217 PMCID: PMC8724864 DOI: 10.1016/j.mcpro.2021.100086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Gerald W Hart
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Lance Wells
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
25
|
Murray KJ, Carlson ES, Stornetta A, Balskus EP, Villalta PW, Balbo S. Extension of Diagnostic Fragmentation Filtering for Automated Discovery in DNA Adductomics. Anal Chem 2021; 93:5754-5762. [PMID: 33797876 DOI: 10.1021/acs.analchem.0c04895] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Development of high-resolution/accurate mass liquid chromatography-coupled tandem mass spectrometry (LC-MS/MS) methodology enables the characterization of covalently modified DNA induced by interaction with genotoxic agents in complex biological samples. Constant neutral loss monitoring of 2'-deoxyribose or the nucleobases using data-dependent acquisition represents a powerful approach for the unbiased detection of DNA modifications (adducts). The lack of available bioinformatics tools necessitates manual processing of acquired spectral data and hampers high throughput application of these techniques. To address this limitation, we present an automated workflow for the detection and curation of putative DNA adducts by using diagnostic fragmentation filtering of LC-MS/MS experiments within the open-source software MZmine. The workflow utilizes a new feature detection algorithm, DFBuilder, which employs diagnostic fragmentation filtering using a user-defined list of fragmentation patterns to reproducibly generate feature lists for precursor ions of interest. The DFBuilder feature detection approach readily fits into a complete small-molecule discovery workflow and drastically reduces the processing time associated with analyzing DNA adductomics results. We validate our workflow using a mixture of authentic DNA adduct standards and demonstrate the effectiveness of our approach by reproducing and expanding the results of a previously published study of colibactin-induced DNA adducts. The reported workflow serves as a technique to assess the diagnostic potential of novel fragmentation pattern combinations for the unbiased detection of chemical classes of interest.
Collapse
Affiliation(s)
- Kevin J Murray
- Masonic Cancer Center, University of Minnesota, 2231 6th Street SE, Minneapolis, Minnesota 55455, United States
| | - Erik S Carlson
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Alessia Stornetta
- Masonic Cancer Center, University of Minnesota, 2231 6th Street SE, Minneapolis, Minnesota 55455, United States
| | - Emily P Balskus
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Peter W Villalta
- Masonic Cancer Center, University of Minnesota, 2231 6th Street SE, Minneapolis, Minnesota 55455, United States.,Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Silvia Balbo
- Masonic Cancer Center, University of Minnesota, 2231 6th Street SE, Minneapolis, Minnesota 55455, United States.,Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
26
|
Towards structure-focused glycoproteomics. Biochem Soc Trans 2021; 49:161-186. [PMID: 33439247 PMCID: PMC7925015 DOI: 10.1042/bst20200222] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023]
Abstract
Facilitated by advances in the separation sciences, mass spectrometry and informatics, glycoproteomics, the analysis of intact glycopeptides at scale, has recently matured enabling new insights into the complex glycoproteome. While diverse quantitative glycoproteomics strategies capable of mapping monosaccharide compositions of N- and O-linked glycans to discrete sites of proteins within complex biological mixtures with considerable sensitivity, quantitative accuracy and coverage have become available, developments supporting the advancement of structure-focused glycoproteomics, a recognised frontier in the field, have emerged. Technologies capable of providing site-specific information of the glycan fine structures in a glycoproteome-wide context are indeed necessary to address many pending questions in glycobiology. In this review, we firstly survey the latest glycoproteomics studies published in 2018–2020, their approaches and their findings, and then summarise important technological innovations in structure-focused glycoproteomics. Our review illustrates that while the O-glycoproteome remains comparably under-explored despite the emergence of new O-glycan-selective mucinases and other innovative tools aiding O-glycoproteome profiling, quantitative glycoproteomics is increasingly used to profile the N-glycoproteome to tackle diverse biological questions. Excitingly, new strategies compatible with structure-focused glycoproteomics including novel chemoenzymatic labelling, enrichment, separation, and mass spectrometry-based detection methods are rapidly emerging revealing glycan fine structural details including bisecting GlcNAcylation, core and antenna fucosylation, and sialyl-linkage information with protein site resolution. Glycoproteomics has clearly become a mainstay within the glycosciences that continues to reach a broader community. It transpires that structure-focused glycoproteomics holds a considerable potential to aid our understanding of systems glycobiology and unlock secrets of the glycoproteome in the immediate future.
Collapse
|
27
|
Affiliation(s)
- Tobias
P. Wörner
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Tatiana M. Shamorkina
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Joost Snijder
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Albert J. R. Heck
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
28
|
Community evaluation of glycoproteomics informatics solutions reveals high-performance search strategies for serum glycopeptide analysis. Nat Methods 2021; 18:1304-1316. [PMID: 34725484 PMCID: PMC8566223 DOI: 10.1038/s41592-021-01309-x] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 09/22/2021] [Indexed: 12/17/2022]
Abstract
Glycoproteomics is a powerful yet analytically challenging research tool. Software packages aiding the interpretation of complex glycopeptide tandem mass spectra have appeared, but their relative performance remains untested. Conducted through the HUPO Human Glycoproteomics Initiative, this community study, comprising both developers and users of glycoproteomics software, evaluates solutions for system-wide glycopeptide analysis. The same mass spectrometrybased glycoproteomics datasets from human serum were shared with participants and the relative team performance for N- and O-glycopeptide data analysis was comprehensively established by orthogonal performance tests. Although the results were variable, several high-performance glycoproteomics informatics strategies were identified. Deep analysis of the data revealed key performance-associated search parameters and led to recommendations for improved 'high-coverage' and 'high-accuracy' glycoproteomics search solutions. This study concludes that diverse software packages for comprehensive glycopeptide data analysis exist, points to several high-performance search strategies and specifies key variables that will guide future software developments and assist informatics decision-making in glycoproteomics.
Collapse
|
29
|
Affiliation(s)
- Jeremy L Praissman
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA.
| | - Lance Wells
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA.
| |
Collapse
|