1
|
Iyer KS, Maruri DP, Schmidtke DW, Petroll WM, Varner VD. Treatment with both TGF-β1 and PDGF-BB disrupts the stiffness-dependent myofibroblast differentiation of corneal keratocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.29.582803. [PMID: 38496568 PMCID: PMC10942298 DOI: 10.1101/2024.02.29.582803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
During corneal wound healing, stromal keratocytes transform into a repair phenotype that is driven by the release of cytokines, like transforming growth factor-beta 1 (TGF-β1) and platelet-derived growth factor-BB (PDGF-BB). Previous work has shown that TGF-β1 promotes the myofibroblast differentiation of corneal keratocytes in a manner that depends on PDGF signaling. In addition, changes in mechanical properties are known to regulate the TGF-β1-mediated differentiation of cultured keratocytes. While PDGF signaling acts synergistically with TGF-β1 during myofibroblast differentiation, how treatment with multiple growth factors affects stiffness-dependent differences in keratocyte behavior is unknown. Here, we treated primary corneal keratocytes with PDGF-BB and TGF-β1 and cultured them on polyacrylamide (PA) substrata of different stiffnesses. In the presence of TGF-β1 alone, the cells underwent stiffness-dependent myofibroblast differentiation. On stiff substrata, the cells developed robust stress fibers, exhibited high levels of ⍺-SMA staining, formed large focal adhesions (FAs), and exerted elevated contractile forces, whereas cells in a compliant microenvironment showed low levels of ⍺-SMA immunofluorescence, formed smaller focal adhesions, and exerted decreased contractile forces. When the cultured keratocytes were treated simultaneously with PDGF-BB however, increased levels of ⍺-SMA staining and stress fiber formation were observed on compliant substrata, even though the cells did not exhibit elevated contractility or focal adhesion size. Pharmacological inhibition of PDGF signaling disrupted the myofibroblast differentiation of cells cultured on substrata of all stiffnesses. These results indicate that treatment with PDGF-BB can decouple molecular markers of myofibroblast differentiation from the elevated contractile phenotype otherwise associated with these cells, suggesting that crosstalk in the mechanotransductive signaling pathways downstream of TGF-β1 and PDGF-BB can regulate the stiffness-dependent differentiation of cultured keratocytes. Statement of Significance In vitro experiments have shown that changes in ECM stiffness can regulate the differentiation of myofibroblasts. Typically, these assays involve the use of individual growth factors, but it is unclear how stiffness-dependent differences in cell behavior are affected by multiple cytokines. Here, we used primary corneal keratocytes to show that treatment with both TGF-β1 and PDGF-BB disrupts the dependency of myofibroblast differentiation on substratum stiffness. In the presence of both growth factors, keratocytes on soft substrates exhibited elevated ⍺-SMA immunofluorescence without a corresponding increase in contractility or focal adhesion formation. This result suggests that molecular markers of myofibroblast differentiation can be dissociated from the elevated contractile behavior associated with the myofibroblast phenotype, suggesting potential crosstalk in mechanotransductive signaling pathways downstream of TGF-β1 and PDGF-BB.
Collapse
|
2
|
Gladkauskas T, Bruland O, Abu Safieh L, Edward DP, Rødahl E, Bredrup C. Corneal Vascularization Associated With a Novel PDGFRB Variant. Invest Ophthalmol Vis Sci 2023; 64:9. [PMID: 37934158 PMCID: PMC10631511 DOI: 10.1167/iovs.64.14.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 10/16/2023] [Indexed: 11/08/2023] Open
Abstract
Purpose The purpose of this study was to identify the genetic cause of aggressive corneal vascularization in otherwise healthy children in one family. Further, to study molecular consequences associated with the identified variant and implications for possible treatment. Methods Exome sequencing was performed in affected individuals. HeLa cells were transduced with the identified c.1643C>A, p.(Ser548Tyr) variant in the platelet-derived growth factor receptor beta gene (PDGFRB) or wild-type PDGFRB. ELISA and immunoblot analysis were used to detect the phosphorylation levels of PDGFRβ and downstream signaling proteins in untreated and ligand-stimulated cells. Sensitivity to various receptor tyrosine kinase inhibitors (TKIs) was determined. Results A novel c.1643C>A, p.(Ser548Tyr) PDGFRB variant was found in affected family members. HeLa cells transduced with this variant did not have increased baseline levels of phosphorylated PDGFRβ. However, upon stimulation with ligand, excessive activation of PDGFRβ was observed compared to cells transduced with the wild-type variant. PDGFRβ with the p.(Ser548Tyr) amino acid substitution was successfully inhibited with tyrosine kinase inhibitors (axitinib, dasatinib, imatinib, and sunitinib) in vitro. Conclusions A novel c.1643C>A, p.(Ser548Tyr) PDGFRB variant was found in family members with isolated corneal vascularization. Cells transduced with the newly identified variant showed increased phosphorylation of PDGFRβ upon ligand stimulation. This suggests that PDGF-PDGFRβ signaling in these patients leads to overactivation of PDGFRβ, which could lead to abnormal wound healing of the cornea. The examined TKIs prevented such overactivation, introducing the possibility for targeted treatment in these patients.
Collapse
Affiliation(s)
- Titas Gladkauskas
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Ove Bruland
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Leen Abu Safieh
- Research Department, King Khaled Eye Specialist Hospital, Riyadh, Kingdom of Saudi Arabia
- Bioinformatics and Computational Biology Department, Research Center, King Fahad Medical City, Riyadh, Kingdom of Saudi Arabia
| | - Deepak P. Edward
- Research Department, King Khaled Eye Specialist Hospital, Riyadh, Kingdom of Saudi Arabia
- Department of Ophthalmology and Visual Sciences, University of Illinois College of Medicine, Chicago, Illinois, United States
- Department of Ophthalmology, Loyola University College of Medicine, Chicago, Illinois, United States
| | - Eyvind Rødahl
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Ophthalmology, Haukeland University Hospital, Bergen, Norway
| | - Cecilie Bredrup
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Ophthalmology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
3
|
Lam KH, Shihabeddin TZ, Awkal JA, Najjar AM, Miron-Mendoza M, Maruri DP, Varner VD, Petroll WM, Schmidtke DW. Effects of Topography and PDGF on the Response of Corneal Keratocytes to Fibronectin-Coated Surfaces. J Funct Biomater 2023; 14:217. [PMID: 37103307 PMCID: PMC10144166 DOI: 10.3390/jfb14040217] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/30/2023] [Accepted: 04/07/2023] [Indexed: 04/28/2023] Open
Abstract
During corneal wound healing, corneal keratocytes are exposed to both biophysical and soluble cues that cause them to transform from a quiescent state to a repair phenotype. How keratocytes integrate these multiple cues simultaneously is not well understood. To investigate this process, primary rabbit corneal keratocytes were cultured on substrates patterned with aligned collagen fibrils and coated with adsorbed fibronectin. After 2 or 5 days of culture, keratocytes were fixed and stained to assess changes in cell morphology and markers of myofibroblastic activation by fluorescence microscopy. Initially, adsorbed fibronectin had an activating effect on the keratocytes as evidenced by changes in cell shape, stress fiber formation, and expression of alpha-smooth muscle actin (α-SMA). The magnitude of these effects depended upon substrate topography (i.e., flat substrate vs aligned collagen fibrils) and decreased with culture time. When keratocytes were simultaneously exposed to adsorbed fibronectin and soluble platelet-derived growth factor-BB (PDGF-BB), the cells elongated and had reduced expression of stress fibers and α-SMA. In the presence of PDGF-BB, keratocytes plated on the aligned collagen fibrils elongated in the direction of the fibrils. These results provide new information on how keratocytes respond to multiple simultaneous cues and how the anisotropic topography of aligned collagen fibrils influences keratocyte behavior.
Collapse
Affiliation(s)
- Kevin H. Lam
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Tarik Z. Shihabeddin
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Jacob A. Awkal
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Alex M. Najjar
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Miguel Miron-Mendoza
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Daniel P. Maruri
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Victor D. Varner
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - W. Matthew Petroll
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - David W. Schmidtke
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
4
|
Iyer KS, Maruri DP, Peak KE, Schmidtke DW, Petroll WM, Varner VD. ECM stiffness modulates the proliferation but not the motility of primary corneal keratocytes in response to PDGF-BB. Exp Eye Res 2022; 220:109112. [PMID: 35595094 PMCID: PMC10163834 DOI: 10.1016/j.exer.2022.109112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/25/2022] [Accepted: 05/11/2022] [Indexed: 11/04/2022]
Abstract
During corneal wound healing, keratocytes present within the corneal stroma become activated into a repair phenotype upon the release of growth factors, such as transforming growth factor-beta 1 (TGF-β1) and platelet-derived growth factor-BB (PDGF-BB). The process of injury and repair can lead to changes in the mechanical properties of the tissue, and previous work has shown that the TGF-β1-mediated myofibroblast differentiation of corneal keratocytes depends on substratum stiffness. It is still unclear, however, if changes in stiffness can modulate keratocyte behavior in response to other growth factors, such as PDGF-BB. Here, we used a polyacrylamide (PA) gel system to determine whether changes in stiffness influence the proliferation and motility of primary corneal keratocytes treated with PDGF-BB. In the presence of PDGF-BB, cells on stiffer substrata exhibited a more elongated morphology and had higher rates of proliferation than cells in a more compliant microenvironment. Using a freeze-injury to assay cell motility, however, we did not observe any stiffness-dependent differences in the migration of keratocytes treated with PDGF-BB. Taken together, these data highlight the importance of biophysical cues during corneal wound healing and suggest that keratocytes respond differently to changes in ECM stiffness in the presence of different growth factors.
Collapse
Affiliation(s)
- Krithika S Iyer
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - Daniel P Maruri
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - Kara E Peak
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - David W Schmidtke
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA; Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - W Matthew Petroll
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Victor D Varner
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA; Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
5
|
Comparison of Two Preparation Methods for Platelet-Rich Plasma Eye Drops for Release of Growth Factors and De-Epithelization Rabbit Model. J Ophthalmol 2020; 2020:6634744. [PMID: 35873527 PMCID: PMC9301758 DOI: 10.1155/2020/6634744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/17/2020] [Accepted: 11/23/2020] [Indexed: 12/02/2022] Open
Abstract
Purpose To compare two platelet-rich plasma (PRP) preparation methods (double spin (D-PRP) and TriCell PRP (T-PRP)) for eye drops, concentration yields of platelets and other cells, release of growth factors, and efficacy of the de-epithelization rabbit model. Methods PRP was extracted by D-PRP and T-PRP from 30 ml blood from healthy adults. After extraction, platelets and leukocytes were counted. D-PRP and T-PRP were preserved during A: 1 h storage at room temperature, B: 1 h storage at −20°C, C: 24 h storage at 4°C, and D: 24 h storage at −20°C. Platelet-derived growth factor (PDGF) was measured. Freezing/thawing PRP eye drops and control were instilled in the de-epithelization rabbit model four times per day for 5 days. Histology was compared between eyes treated with control, D-PRP, and T-PRP. Results 14 ml of D-PRP and 4 ml of T-PRP were extracted from 30 ml whole blood samples. D-PRP and T-PRP had 41.36 ± 8.43 × 104 and 67.02 ± 13.55 × 104 platelets and 0.41 ± 0.24 × 103/ml and 10.09 ± 4.29 × 103/ml leucocytes, respectively. In the four storage methods, PDGF concentrations in T-PRP were higher than those in D-PRP eye drops. Freezing/thawing D-PRP and T-PRP increased PDGF concentrations. Histology showed corneal epithelium thickness in T-PRP-treated eyes after healing (38.41 ± 9.10 μm) was significantly higher than that in control-treated (27.77 ± 4.76 μm) and D-PRP-treated eyes (18.32 ± 3.14 μm) (P < 0.05). There was no corneal damage with inflammation in corneal stroma and epithelium of all tested groups. Electron microscopy revealed strong adhesion between cell junctions in T-PRP-treated eyes. Conclusions Freezing/thawing of PRP extracted with the T-PRP kit may result in high platelet and leukocyte concentration and produce high PDGF concentration. PRP eye drops including leucocytes could increase thickness of corneal epithelium without corneal inflammation.
Collapse
|
6
|
Hernáez-Moya R, González S, Urkaregi A, Pijoan JI, Deng SX, Andollo N. Expansion of Human Limbal Epithelial Stem/Progenitor Cells Using Different Human Sera: A Multivariate Statistical Analysis. Int J Mol Sci 2020; 21:ijms21176132. [PMID: 32854428 PMCID: PMC7503296 DOI: 10.3390/ijms21176132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/23/2020] [Accepted: 08/24/2020] [Indexed: 12/13/2022] Open
Abstract
Transplantation of human cultured limbal epithelial stem/progenitor cells (LESCs) has demonstrated to restore the integrity and functionality of the corneal surface in about 76% of patients with limbal stem cell deficiency. However, there are different protocols for the expansion of LESCs, and many of them use xenogeneic products, being a risk for the patients’ health. We compared the culture of limbal explants on the denuded amniotic membrane in the culture medium—supplemental hormone epithelial medium (SHEM)—supplemented with FBS or two differently produced human sera. Cell morphology, cell size, cell growth rate, and the expression level of differentiation and putative stem cell markers were examined. Several bioactive molecules were quantified in the human sera. In a novel approach, we performed a multivariate statistical analysis of data to investigate the culture factors, such as differently expressed molecules of human sera that specifically influence the cell phenotype. Our results showed that limbal cells cultured with human sera grew faster and contained similar amounts of small-sized cells, higher expression of the protein p63α, and lower of cytokeratin K12 than FBS cultures, thus, maintaining the stem/progenitor phenotype of LESCs. Furthermore, the multivariate analysis provided much data to better understand the obtaining of different cell phenotypes as a consequence of the use of different culture methodologies or different culture components.
Collapse
Affiliation(s)
- Raquel Hernáez-Moya
- Department of Cell Biology and Histology, School of Medicine and Nursing, Biocruces Bizkaia Health Research Institute, University of the Basque Country UPV/EHU, 48940 Leioa, Bizkaia, Spain;
| | - Sheyla González
- Cornea Division, Stein Eye Institute, University of California, Los Angeles, CA 90095, USA; (S.G.); (S.X.D.)
| | - Arantza Urkaregi
- Department of Applied Mathematics and Statistics and Operational Research, Biocruces Bizkaia Health Research Institute, University of the Basque Country UPV/EHU, 48940 Leioa, Bizkaia, Spain;
| | - Jose Ignacio Pijoan
- Clinical Epidemiology Unit, Cruces University Hospital, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Bizkaia, Spain;
| | - Sophie X. Deng
- Cornea Division, Stein Eye Institute, University of California, Los Angeles, CA 90095, USA; (S.G.); (S.X.D.)
| | - Noelia Andollo
- Department of Cell Biology and Histology, School of Medicine and Nursing, Biocruces Bizkaia Health Research Institute, University of the Basque Country UPV/EHU, 48940 Leioa, Bizkaia, Spain;
- Correspondence: ; Tel.: +34-94-601-3295
| |
Collapse
|
7
|
Pflugfelder SC, Stern ME. Biological functions of tear film. Exp Eye Res 2020; 197:108115. [PMID: 32561483 DOI: 10.1016/j.exer.2020.108115] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023]
Abstract
Tears have a vital function to protect and lubricate the ocular surface. Tear production, distribution and clearance is tightly regulated by the lacrimal functional unit (LFU) to meet ocular surface demands. The tear film consists of an aqueous-mucin layer, containing fluid and soluble factors produced by the lacrimal glands and mucin secreted by the goblet cells, that is covered by a lipid layer. The array of proteins, glycoproteins and lipids in tears function to maintain a stable, well-lubricated and smooth optical surface. Tear factors also promote wound healing, suppress inflammation, scavenge free radicals, and defend against microbial infection. Disease and dysfunction of the LFU leads to tear instability, increased evaporation, inflammation, and blurred and fluctuating vision. The function of tear components and the consequences of tear deficiency on the ocular surface are reviewed.
Collapse
Affiliation(s)
- Stephen C Pflugfelder
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States.
| | - Michael E Stern
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States; ImmunEyez, Mission Viejo, CA, United States.
| |
Collapse
|
8
|
Characterization of Tear Immunoglobulins in a Small-Cohort of Keratoconus Patients. Sci Rep 2020; 10:9426. [PMID: 32523038 PMCID: PMC7287105 DOI: 10.1038/s41598-020-66442-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 04/29/2020] [Indexed: 12/31/2022] Open
Abstract
Keratoconus (KC) is classically considered a non-inflammatory condition caused by central corneal thinning that leads to astigmatism and reduced visual acuity. Previous studies have identified increased systemic levels of pro-inflammatory factors, including interleukin-6, tumor necrosis factor-α, and matrix metalloproteinase-9, suggesting that KC may have an inflammatory component in at least a subset of patients. In this study, we evaluated the levels of different immunoglobulins (light and heavy chains) based on Ig α, Ig λ, Ig κ, Ig µ, and Ig heavy chain subunits in non-KC tears (n = 7 control individuals) and KC tears (n = 7 KC patients) using tandem-liquid chromatography mass spectrometry. The most abundant Ig heavy chains detected in both control individuals and KC patients were Ig α-1 and Ig α-2 likely correlating to the higher IgA levels reported in human tears. We identified significant differences in immunoglobulin κ-chain V-II levels in KC patients compared to control individuals with no significant difference in Ig κ/Ig λ ratios or heavy chain levels. Our study supports previous findings suggesting that KC possesses a systemic component that may contribute to the KC pathology. Further studies are required to define causality and establish a role for systemic immune system-dependent factors and pro-inflammatory processes in KC development or progression.
Collapse
|
9
|
McKay TB, Hutcheon AEK, Zieske JD, Ciolino JB. Extracellular Vesicles Secreted by Corneal Epithelial Cells Promote Myofibroblast Differentiation. Cells 2020; 9:cells9051080. [PMID: 32357574 PMCID: PMC7290736 DOI: 10.3390/cells9051080] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/20/2020] [Accepted: 04/24/2020] [Indexed: 12/13/2022] Open
Abstract
The corneal epithelium mediates the initial response to injury of the ocular surface and secretes a number of profibrotic factors that promote corneal scar development within the stroma. Previous studies have shown that corneal epithelial cells also secrete small extracellular vesicles (EVs) in response to corneal wounding. In this paper, we hypothesized that EVs released from corneal epithelial cells in vitro contain protein cargo that promotes myofibroblast differentiation, the key cell responsible for scar development. We focused on the interplay between corneal epithelial-derived EVs and the stroma to determine if the corneal fibroblast phenotype, contraction, proliferation, or migration were promoted following vesicle uptake by corneal fibroblasts. Our results showed an increase in myofibroblast differentiation based on α-smooth muscle actin expression and elevated contractility following EV treatment compared to controls. Furthermore, we characterized the contents of epithelial cell-derived EVs using proteomic analysis and identified the presence of provisional matrix proteins, fibronectin and thrombospondin-1, as the dominant encapsulated protein cargo secreted by corneal epithelial cells in vitro. Proteins associated with the regulation of protein translation were also abundant in EVs. This paper reveals a novel role and function of EVs secreted by the corneal epithelium that may contribute to corneal scarring.
Collapse
|
10
|
Di Zazzo A, Lee SM, Sung J, Niutta M, Coassin M, Mashaghi A, Inomata T. Variable Responses to Corneal Grafts: Insights from Immunology and Systems Biology. J Clin Med 2020; 9:E586. [PMID: 32098130 PMCID: PMC7074162 DOI: 10.3390/jcm9020586] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 02/18/2020] [Indexed: 12/13/2022] Open
Abstract
Corneal grafts interact with their hosts via complex immunobiological processes that sometimes lead to graft failure. Prediction of graft failure is often a tedious task due to the genetic and nongenetic heterogeneity of patients. As in other areas of medicine, a reliable prediction method would impact therapeutic decision-making in corneal transplantation. Valuable insights into the clinically observed heterogeneity of host responses to corneal grafts have emerged from multidisciplinary approaches, including genomics analyses, mechanical studies, immunobiology, and theoretical modeling. Here, we review the emerging concepts, tools, and new biomarkers that may allow for the prediction of graft survival.
Collapse
Affiliation(s)
- Antonio Di Zazzo
- Ophthalmology Complex Operative Unit, Campus Bio Medico University, 00128 Rome, Italy; (A.D.Z.); (M.N.); (M.C.)
| | - Sang-Mok Lee
- Department of Ophthalmology, Catholic Kwandong University College of Medicine, Gangneung-si, Gangwon-do 25601, Korea;
- Department of Cornea, External Disease & Refractive Surgery, HanGil Eye Hospital, Incheon 21388, Korea
| | - Jaemyoung Sung
- University of South Florida, Morsani College of Medicine, Tampa, FL 33612, USA;
- Department of Ophthalmology, Juntendo University Faculty of Medicine, Tokyo 1130033, Japan
| | - Matteo Niutta
- Ophthalmology Complex Operative Unit, Campus Bio Medico University, 00128 Rome, Italy; (A.D.Z.); (M.N.); (M.C.)
| | - Marco Coassin
- Ophthalmology Complex Operative Unit, Campus Bio Medico University, 00128 Rome, Italy; (A.D.Z.); (M.N.); (M.C.)
| | - Alireza Mashaghi
- Systems Biomedicine and Pharmacology Division, Leiden Academic Centre for Drug Research, Leiden University, 2333CC Leiden, The Netherlands
| | - Takenori Inomata
- Department of Ophthalmology, Juntendo University Faculty of Medicine, Tokyo 1130033, Japan
- Department of Strategic Operating Room Management and Improvement, Juntendo University Faculty of Medicine, Tokyo 1130033, Japan
- Department of Hospital Administration, Juntendo University Faculty of Medicine, Tokyo 1130033, Japan
| |
Collapse
|
11
|
Morrow CM, Mukherjee A, Traore MA, Leaman EJ, Kim A, Smith EM, Nain AS, Behkam B. Integrating nanofibers with biochemical gradients to investigate physiologically-relevant fibroblast chemotaxis. LAB ON A CHIP 2019; 19:3641-3651. [PMID: 31560021 DOI: 10.1039/c9lc00602h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Persistent cell migration can occur due to anisotropy in the extracellular matrix (ECM), the gradient of a chemo-effector, or a combination of both. Through a variety of in vitro platforms, the contributions of either stimulus have been extensively studied, while the combined effect of both cues remains poorly described. Here, we report an integrative microfluidic chemotaxis assay device that enables the study of single cell chemotaxis on ECM-mimicking, aligned, and suspended nanofibers. Using this assay, we evaluated the effect of fiber spacing on the morphology and chemotaxis response of embryonic murine NIH/3T3 fibroblasts in the presence of temporally invariant, linear gradients of platelet-derived growth factor-BB (PDGF-BB). We found that the strength of PDGF-mediated chemotaxis response depends on not only the gradient slope but also the cell morphology. Low aspect ratio (3.4 ± 0.2) cells on flat substrata exhibited a chemotaxis response only at a PDGF-BB gradient of 0-10 ng mL-1. However, high aspect ratio (19.1 ± 0.7) spindle-shaped cells attached to individual fibers exhibited maximal chemotaxis response at a ten-fold shallower gradient of 0-1 ng mL-1, which was robustly maintained up to 0-10 ng mL-1. Quadrilateral-shaped cells of intermediate aspect ratio (13.6 ± 0.8) attached to two fibers exhibited a weaker response compared to the spindle-shaped cells, but still stronger compared to cells attached to 2D featureless substrata. Through pharmacological inhibition, we show that the mesenchymal chemotaxis pathway is conserved in cells on fibers. Altogether, our findings show that chemotaxis on ECM-mimicking fibers is modulated by fiber spacing-driven cell shape and can be significantly different from the behavior observed on flat 2D substrata. We envisage that this microfluidic platform will have wide applicability in understanding the combined role of ECM architecture and chemotaxis in physiological and pathological processes.
Collapse
Affiliation(s)
- Carmen M Morrow
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Apratim Mukherjee
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Mahama A Traore
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA. and School of Biomedical Engineering & Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Eric J Leaman
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA.
| | - AhRam Kim
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Evan M Smith
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Amrinder S Nain
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA. and School of Biomedical Engineering & Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Bahareh Behkam
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA. and School of Biomedical Engineering & Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
12
|
Abstract
The cornea is a transparent outermost structure of the eye anterior segment comprising the highest density of innervated tissue. In the process of corneal innervation, trigeminal ganglion originated corneal nerves diligently traverse different corneal cell types in different corneal layers including the corneal stroma and epithelium. While crossing the stromal and epithelial cell layers during innervation, due to the existing physical contacts, close interactions occur between stromal keratocytes, epithelial cells, resident immune cells and corneal nerves. Furthermore, by producing various trophic and growth factors corneal cells assist in maintaining the growth and function of corneal nerves. Similarly, corneal nerve generated growth factors critically modify the corneal cell function in all the corneal layers. Due to their close association and contacts, on-going cross-communication between these cell types and corneal nerves play a vital role in the modulation of corneal nerve function, regeneration during wound healing. The present review highlights the influence of different corneal cell types and growth factors released from these cells on corneal nerve regeneration and function.
Collapse
Affiliation(s)
- Bhavani S Kowtharapu
- Department of Ophthalmology, Rostock University Medical Centre, Rostock, Germany
| | - Oliver Stachs
- Department of Ophthalmology, Rostock University Medical Centre, Rostock, Germany
| |
Collapse
|
13
|
Etxebarria J, Sanz-Lázaro S, Hernáez-Moya R, Freire V, Durán JA, Morales MC, Andollo N. Serum from plasma rich in growth factors regenerates rabbit corneas by promoting cell proliferation, migration, differentiation, adhesion and limbal stemness. Acta Ophthalmol 2017; 95:e693-e705. [PMID: 28266180 DOI: 10.1111/aos.13371] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 11/18/2016] [Indexed: 12/22/2022]
Abstract
PURPOSE To evaluate the regenerating potential and the mechanisms through which the autologous serum derived from plasma rich in growth factors (s-PRGF) favours corneal wound healing in vitro and in vivo. METHODS We compared the effect of various concentrations of s-PRGF versus fetal bovine serum (FBS) and control treatment in rabbit primary corneal epithelial and stromal cells and wounded rabbit corneas. Cell proliferation was measured using an enzymatic colorimetric assay. In vitro and in vivo wound-healing progression was assessed by image-analysis software. Migration and invasion were evaluated using transfilter assays. Histological structure was analysed in stained sections. Protein expression was evaluated by immunohistochemistry. RESULTS s-PRGF promoted the robust proliferation of epithelial cultures at any concentration, similar to FBS. Likewise, s-PRGF and FBS produced similar re-epithelialization rates in in vitro wound-healing assays. In vivo, s-PRGF treatment accelerated corneal wound healing in comparison with control treatment. This difference was significant only for 100% s-PRGF treatment in our healthy rabbit model. Histological analysis confirmed normal epithelialization in all cases. Immunohistochemistry showed a higher expression of cytokeratins 3/76 and 15, zonula occludens-1 and alpha-smooth muscle actin proteins as a function of s-PRGF concentration. Notably, keratocyte density in the anterior third of the stroma increased with increase in s-PRGF concentration, suggesting an in vivo chemotactic effect of s-PRGF on keratocytes that was further confirmed in vitro. CONCLUSION s-PRGF promotes proliferation and migration and influences limbal stemness, adhesion and fibrosis during corneal healing.
Collapse
Affiliation(s)
- Jaime Etxebarria
- Department of Cell Biology and Histology; School of Medicine and Nursing; BioCruces Health Research Institute; University of the Basque Country; Begiker; Leioa Spain
- Department of Ophthalmology; BioCruces Health Research Institute; University Hospital of Cruces; Begiker; Barakaldo Spain
| | - Sara Sanz-Lázaro
- Department of Cell Biology and Histology; School of Medicine and Nursing; BioCruces Health Research Institute; University of the Basque Country; Begiker; Leioa Spain
| | - Raquel Hernáez-Moya
- Department of Cell Biology and Histology; School of Medicine and Nursing; BioCruces Health Research Institute; University of the Basque Country; Begiker; Leioa Spain
| | - Vanesa Freire
- Department of Cell Biology and Histology; School of Medicine and Nursing; BioCruces Health Research Institute; University of the Basque Country; Begiker; Leioa Spain
- R & D Department; Instituto Clínico-Quirúrgico de Oftalmología; Bilbao Spain
| | - Juan A. Durán
- R & D Department; Instituto Clínico-Quirúrgico de Oftalmología; Bilbao Spain
- Department of Ophthalmology; School of Medicine and Nursing; BioCruces Health Research Institute; University of the Basque Country; Begiker; Leioa Spain
| | - María-Celia Morales
- Department of Cell Biology and Histology; School of Medicine and Nursing; BioCruces Health Research Institute; University of the Basque Country; Begiker; Leioa Spain
| | - Noelia Andollo
- Department of Cell Biology and Histology; School of Medicine and Nursing; BioCruces Health Research Institute; University of the Basque Country; Begiker; Leioa Spain
| |
Collapse
|
14
|
Wound-Healing Studies in Cornea and Skin: Parallels, Differences and Opportunities. Int J Mol Sci 2017; 18:ijms18061257. [PMID: 28604651 PMCID: PMC5486079 DOI: 10.3390/ijms18061257] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 05/24/2017] [Accepted: 05/31/2017] [Indexed: 02/06/2023] Open
Abstract
The cornea and the skin are both organs that provide the outer barrier of the body. Both tissues have developed intrinsic mechanisms that protect the organism from a wide range of external threats, but at the same time also enable rapid restoration of tissue integrity and organ-specific function. The easy accessibility makes the skin an attractive model system to study tissue damage and repair. Findings from skin research have contributed to unravelling novel fundamental principles in regenerative biology and the repair of other epithelial-mesenchymal tissues, such as the cornea. Following barrier disruption, the influx of inflammatory cells, myofibroblast differentiation, extracellular matrix synthesis and scar formation present parallel repair mechanisms in cornea and skin wound healing. Yet, capillary sprouting, while pivotal in proper skin wound healing, is a process that is rather associated with pathological repair of the cornea. Understanding the parallels and differences of the cellular and molecular networks that coordinate the wound healing response in skin and cornea are likely of mutual importance for both organs with regard to the development of regenerative therapies and understanding of the disease pathologies that affect epithelial-mesenchymal interactions. Here, we review the principal events in corneal wound healing and the mechanisms to restore corneal transparency and barrier function. We also refer to skin repair mechanisms and their potential implications for regenerative processes in the cornea.
Collapse
|
15
|
Feng X, Pi L, Sriram S, Schultz GS, Gibson DJ. Connective tissue growth factor is not necessary for haze formation in excimer laser wounded mouse corneas. PLoS One 2017; 12:e0172304. [PMID: 28207886 PMCID: PMC5313228 DOI: 10.1371/journal.pone.0172304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 02/02/2017] [Indexed: 11/19/2022] Open
Abstract
We sought to determine if connective tissue growth factor (CTGF) is necessary for the formation of corneal haze after corneal injury. Mice with post-natal, tamoxifen-induced, knockout of CTGF were subjected to excimer laser phototherapeutic keratectomy (PTK) and the corneas were allowed to heal. The extent of scaring was observed in non-induced mice, heterozygotes, and full homozygous knockout mice and quantified by macrophotography. The eyes from these mice were collected after euthanization for re-genotyping to control for possible Cre-mosaicism. Primary corneal fibroblasts from CTGF knockout corneas were established in a gel plug assay. The plug was removed, simulating an injury, and the rate of hole closure and the capacity for these cells to form light reflecting cells in response to CTGF and platelet-derived growth factor B (PDGF-B) were tested and compared to wild-type cells. We found that independent of genotype, each group of mice was still capable of forming light reflecting haze in the cornea after laser ablation (p = 0.40). Results from the gel plug closure rate in primary cell cultures of knockout cells were not statistically different from serum starved wild-type cells, independent of treatment. Compared to the serum starved wild-type cells, stimulation with PDGF-BB significantly increased the KO cell culture's light reflection (p = 0.03). Most interestingly, both reflective cultures were positive for α-SMA, but the cellular morphology and levels of α-SMA were distinct and not in proportion to the light reflection seen. This new work demonstrates that corneas without CTGF can still form sub-epithelial haze, and that the light reflecting phenotype can be reproduced in culture. These data support the possibilities of growth factor redundancy and that multiple pro-haze pathways exist.
Collapse
Affiliation(s)
- Xiaodi Feng
- Institute of Wound Research, University of Florida, Gainesville, Florida, United States of America
| | - Liya Pi
- Department of Pediatrics, University of Florida, Gainesville, Florida, United States of America
| | - Sriniwas Sriram
- Department of Biomedical Engineering, University of Florida, Gainesville, Florida, United States of America
| | - Gregory S. Schultz
- Institute of Wound Research, University of Florida, Gainesville, Florida, United States of America
| | - Daniel J. Gibson
- Institute of Wound Research, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
16
|
Torricelli AAM, Santhanam A, Wu J, Singh V, Wilson SE. The corneal fibrosis response to epithelial-stromal injury. Exp Eye Res 2016; 142:110-8. [PMID: 26675407 DOI: 10.1016/j.exer.2014.09.012] [Citation(s) in RCA: 185] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 09/23/2014] [Accepted: 09/30/2014] [Indexed: 12/22/2022]
Abstract
The corneal wound healing response, including the development of stromal opacity in some eyes, is a process that often leads to scarring that occurs after injury, surgery or infection to the cornea. Immediately after epithelial and stromal injury, a complex sequence of processes contributes to wound repair and regeneration of normal corneal structure and function. In some corneas, however, often depending on the type and extent of injury, the response may also lead to the development of mature vimentin+ α-smooth muscle actin+ desmin+ myofibroblasts. Myofibroblasts are specialized fibroblastic cells generated in the cornea from keratocyte-derived or bone marrow-derived precursor cells. The disorganized extracellular matrix components secreted by myofibroblasts, in addition to decreased expression of corneal crystallins in these cells, are central biological processes that result in corneal stromal fibrosis associated with opacity or "haze". Several factors are associated with myofibroblast generation and haze development after PRK surgery in rabbits, a reproducible model of scarring, including the amount of tissue ablated, which may relate to the extent of keratocyte apoptosis in the early response to injury, irregularity of stromal surface after surgery, and changes in corneal stromal proteoglycans, but normal regeneration of the epithelial basement membrane (EBM) appears to be a critical factor determining whether a cornea heals with relative transparency or vision-limiting stromal opacity. Structural and functional abnormalities of the regenerated EBM facilitate prolonged entry of epithelium-derived growth factors such as transforming growth factor β (TGF-β) and platelet-derived growth factor (PDGF) into the stroma that both drive development of mature myofibroblasts from precursor cells and lead to persistence of the cells in the anterior stroma. A major discovery that has contributed to our understanding of haze development is that keratocytes and corneal fibroblasts produce critical EBM components, such as nidogen-1, nidogen-2 and perlecan, that are essential for complete regeneration of a normal EBM once laminin secreted by epithelial cells self-polymerizes into a nascent EBM. Mature myofibroblasts that become established in the anterior stroma are a barrier to keratocyte/corneal fibroblast contributions to the nascent EBM. These myofibroblasts, and the opacity they produce, often persist for months or years after the injury. Transparency is subsequently restored when the EBM is completely regenerated, myofibroblasts are deprived of TGFβ and undergo apoptosis, and the keratocytes re-occupy the anterior stroma and reabsorb disordered extracellular matrix. The aim of this review is to highlight factors involved in the generation of stromal haze and its subsequent removal.
Collapse
Affiliation(s)
- Andre A M Torricelli
- Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA; University of Sao Paulo, Sao Paulo, Brazil
| | | | - Jiahui Wu
- Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Vivek Singh
- Prof. Brien Holden Eye Research Centre, C-TRACER, LV Prasad Eye Institute, Hyderabad, Andhra Pradesh, India
| | | |
Collapse
|
17
|
Human Serum Eye Drops in Eye Alterations: An Insight and a Critical Analysis. J Ophthalmol 2015; 2015:396410. [PMID: 26504592 PMCID: PMC4609447 DOI: 10.1155/2015/396410] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 07/07/2015] [Indexed: 12/13/2022] Open
Abstract
Human serum contains a physiological plethora of bioactive elements naturally released by activated platelets which might have a significant effect on the regeneration of corneal layers by stimulating the cell growth. This mechanism supported the use of human serum eye drops in some ocular diseases associated with dystrophic changes and alterations of the tear film, such as persistent corneal epithelial defects and dry eye syndrome. We focused our effort on potential benefits and limitations of the use of human serum eye drops when conventional therapies failed. We reviewed the recent literature by reporting published studies from 2010 to 2014. Despite the limited evaluated study populations, most of the clinical studies have confirmed that serum eye drop therapy is effective in corneal healing by reducing ocular symptom, particularly during the short-term follow-up. In addition, three recent published studies have shown the efficacy of the serum eye drop therapy in comparison to traditional ones in intractable patients. Besides, reported ongoing clinical studies confirmed the open debate regarding the use of biologic tools for cornea regeneration. Results from these studies might open novel challenges and perspectives in the therapy of such refractory patients.
Collapse
|
18
|
Huang YH, I CC, Kuo CH, Hsu YY, Lee FT, Shi GY, Tseng SH, Wu HL. Thrombomodulin promotes corneal epithelial wound healing. PLoS One 2015; 10:e0122491. [PMID: 25816372 PMCID: PMC4376916 DOI: 10.1371/journal.pone.0122491] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 02/22/2015] [Indexed: 12/20/2022] Open
Abstract
Purpose To determine the role of thrombomodulin (TM) in corneal epithelial wound healing, and to investigate whether recombinant TM epidermal growth factor-like domain plus serine/threonine-rich domain (rTMD23) has therapeutic potential in corneal epithelial wound healing. Methods TM localization and expression in the murine cornea were examined by immunofluorescence staining. TM expression after injury was also studied. The effect of rTMD23 on corneal wound healing was evaluated by in vitro and in vivo assays. Results TM was expressed in the cornea in normal adult mice. TM expression increased in the early phase of wound healing and decreased after wound recovery. In the in vitro study, platelet-derived growth factor-BB (PDGF-BB) induced TM expression in murine corneal epithelial cells by mediating E26 transformation-specific sequence-1 (Ets-1) via the mammalian target of rapamycin (mTOR) signaling pathway. The administration of rTMD23 increased the rate of corneal epithelial wound healing. Conclusions TM expression in corneal epithelium was modulated during the corneal wound healing process, and may be regulated by PDGF-BB. In addition, rTMD23 has therapeutic potential in corneal injury.
Collapse
Affiliation(s)
- Yi-Hsun Huang
- Institute of Clinical Medicine, National Cheng Kung University Medical College, Tainan, Taiwan
- Department of Ophthalmology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ching-Chang I
- Cardiovascular Research Center, National Cheng Kung University Medical College, Tainan, Taiwan
- Department of Biochemistry and Molecular Biology, National Cheng Kung University Medical College, Tainan, Taiwan
| | - Cheng-Hsiang Kuo
- Cardiovascular Research Center, National Cheng Kung University Medical College, Tainan, Taiwan
- Department of Biochemistry and Molecular Biology, National Cheng Kung University Medical College, Tainan, Taiwan
| | - Yun-Yan Hsu
- Cardiovascular Research Center, National Cheng Kung University Medical College, Tainan, Taiwan
- Department of Biochemistry and Molecular Biology, National Cheng Kung University Medical College, Tainan, Taiwan
| | - Fang-Tzu Lee
- Cardiovascular Research Center, National Cheng Kung University Medical College, Tainan, Taiwan
- Department of Biochemistry and Molecular Biology, National Cheng Kung University Medical College, Tainan, Taiwan
| | - Guey-Yueh Shi
- Cardiovascular Research Center, National Cheng Kung University Medical College, Tainan, Taiwan
- Department of Biochemistry and Molecular Biology, National Cheng Kung University Medical College, Tainan, Taiwan
| | - Sung-Huei Tseng
- Institute of Clinical Medicine, National Cheng Kung University Medical College, Tainan, Taiwan
- Department of Ophthalmology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hua-Lin Wu
- Cardiovascular Research Center, National Cheng Kung University Medical College, Tainan, Taiwan
- Department of Biochemistry and Molecular Biology, National Cheng Kung University Medical College, Tainan, Taiwan
- * E-mail:
| |
Collapse
|
19
|
Tong L, Zhao Y, Lee R. Corneal refractive surgery-related dry eye: risk factors and management. EXPERT REVIEW OF OPHTHALMOLOGY 2014. [DOI: 10.1586/17469899.2013.851602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
20
|
Bai W, Gariano NA, Spivak DA. Macromolecular Amplification of Binding Response in Superaptamer Hydrogels. J Am Chem Soc 2013; 135:6977-84. [DOI: 10.1021/ja400576p] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Wei Bai
- Department
of Chemistry, Lousiana State University, Baton Rouge, Louisiana 70803, United States
| | - Nicholas A. Gariano
- Department
of Chemistry, Lousiana State University, Baton Rouge, Louisiana 70803, United States
| | - David A. Spivak
- Department
of Chemistry, Lousiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
21
|
Corneal Inflammation Following Corneal Photoablative Refractive Surgery With Excimer Laser. Surv Ophthalmol 2013; 58:11-25. [DOI: 10.1016/j.survophthal.2012.04.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 04/16/2012] [Accepted: 04/24/2012] [Indexed: 11/24/2022]
|
22
|
Srinivasan S, Thangavelu M, Zhang L, Green KB, Nichols KK. iTRAQ quantitative proteomics in the analysis of tears in dry eye patients. Invest Ophthalmol Vis Sci 2012; 53:5052-9. [PMID: 22736608 DOI: 10.1167/iovs.11-9022] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE We analyzed the change in protein expression of tear film proteins in dry eye (DE) and non-DE (NDE) patients using isobaric tag for relative and absolute quantitation (iTRAQ) technology. METHODS We categorized 24 participants into NDE, and mild (MDE), moderate-to-severe (MSDE), and mixed (MXDE) DE on the basis of clinical DE tests. Tear samples (n = 6 subjects/group) were collected using Schirmer's strips. Proteins were extracted from strips and were quantified using the Bradford assay. Protein from each sample was pooled as internal standard (IS), and 20 μg protein from each sample and the IS were digested and labeled with different tandem mass tag (TMT) isobaric mass tag labeling reagent. The reaction was quenched and the labeled peptides were mixed. Samples were injected for liquid chromatography-mass spectrometry (LC/MS/MS) analysis on the Orbitrap mass spectrometer. Bioinformatic analyses were performed using protein information resource (PIR). RESULTS Combined results showed a total of 386 proteins in tears as determined by the iTRAQ experiments. An average of 163 proteins was detected in each of 6 biologic replicates. Of those, 55% were detected 6 times and 90% were detected multiple times (>2). In addition to the down-regulation of commonly reported proteins, such as lipocalin-1, lysozyme, and prolactin-inducible protein across all sub groups of DE, a number of proteins were significantly differentially regulated in MSDE and other subgroups of DE. A greater number of proteins were down-regulated in MSDE versus MDE, and the specific functions involved include response to stimulus (8 vs. 6 proteins), immune system process (6 vs. 4), regulation of biologic processes (3 vs. 3), and ion transport (2 vs. 2). CONCLUSIONS iTRAQ is one of the newest tools for quantitative mass spectrometry in tear proteome research. Differences in the protein ratios can be detected between normal and DE patients. PIR is a useful resource to interpret pathways and functions of proteins.
Collapse
Affiliation(s)
- Sruthi Srinivasan
- School of Optometry, University of Waterloo, Waterloo, Ontario, Canada
| | | | | | | | | |
Collapse
|
23
|
Zhou L, Beuerman RW. Tear analysis in ocular surface diseases. Prog Retin Eye Res 2012; 31:527-50. [PMID: 22732126 DOI: 10.1016/j.preteyeres.2012.06.002] [Citation(s) in RCA: 185] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 06/06/2012] [Accepted: 06/08/2012] [Indexed: 01/20/2023]
Abstract
The thin layer of tears covering the ocular surface are a complex body fluid containing thousands of molecules of varied form and function of several origins. In this review, we have discussed some key issues in the analysis of tears in the context of understanding and diagnosing eye disease using current technologies of proteomics and metabolomics, and for their potential for clinical application. In the last several years, advances in proteomics/metabolomics/lipidomics technologies have greatly expanded our knowledge of the chemical composition of tear fluid. The quickened pace of studies has shown that tears as a complex extra-cellular fluid of the ocular surface contains a great deal of molecular information useful for the diagnosis, prognosis, and treatment of ocular surface diseases that has the ability to addresses the emphasis on personalized medicine and biomarkers of disease. Future research directions will likely include (1) standardize tear collection, storage, extraction, and sample preparation; (2) quantitative proteomic analysis of tear proteins using multiple reaction monitoring (MRM)-based mass spectrometry; (3) population based studies of human tear proteomics/metabolomics; (4) tear proteomics/metabolomics for systemic diseases; and (5) functional studies of tear proteins.
Collapse
Affiliation(s)
- Lei Zhou
- Singapore Eye Research Institute, Singapore
| | | |
Collapse
|
24
|
Stevenson W, Cheng SF, Dastjerdi MH, Ferrari G, Dana R. Corneal neovascularization and the utility of topical VEGF inhibition: ranibizumab (Lucentis) vs bevacizumab (Avastin). Ocul Surf 2012; 10:67-83. [PMID: 22482468 DOI: 10.1016/j.jtos.2012.01.005] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 01/10/2012] [Accepted: 01/14/2012] [Indexed: 12/21/2022]
Abstract
Corneal avascularity is necessary for the preservation of optimal vision. The cornea maintains a dynamic balance between pro- and antiangiogenic factors that allows it to remain avascular under normal homeostatic conditions; however, corneal avascularity can be compromised by pathologic conditions that negate the cornea's "angiogenic privilege." The clinical relevance of corneal neovascularization has long been recognized, but management of this condition has been hindered by a lack of safe and effective therapeutic modalities. Herein, the etiology, epidemiology, pathogenesis, and treatment of corneal neovascularization are reviewed. Additionally, the authors' recent findings regarding the clinical utility of topical ranibizumab (Lucentis®) and bevacizumab (Avastin®) in the treatment of corneal neovascularization are summarized. These findings clearly indicate that ranibizumab and bevacizumab are safe and effective treatments for corneal neovascularization when appropriate precautions are observed. Although direct comparisons are not conclusive, the results suggest that ranibizumab may be modestly superior to bevacizumab in terms of both onset of action and degree of efficacy. In order to justify the increased cost of ranibizumab, it will be necessary to demonstrate meaningful treatment superiority in a prospective, randomized, head-to-head comparison study.
Collapse
Affiliation(s)
- William Stevenson
- Schepens Eye Research Institute, Massachusetts Eye & Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | |
Collapse
|
25
|
|
26
|
|
27
|
|
28
|
Cytokine and chemokine levels in tears and in corneal fibroblast cultures before and after excimer laser treatment. J Cataract Refract Surg 2009; 35:240-7. [DOI: 10.1016/j.jcrs.2008.10.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 07/27/2008] [Accepted: 10/26/2008] [Indexed: 11/21/2022]
|
29
|
Sharma A, Mehan MM, Sinha S, Cowden JW, Mohan RR. Trichostatin a inhibits corneal haze in vitro and in vivo. Invest Ophthalmol Vis Sci 2009; 50:2695-701. [PMID: 19168895 DOI: 10.1167/iovs.08-2919] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Trichostatin A (TSA), a histone deacetylase inhibitor, has been shown to suppress TGF-beta-induced fibrogenesis in many nonocular tissues. The authors evaluated TSA cytotoxicity and its antifibrogenic activity on TGF-beta-driven fibrosis in the cornea with the use of in vitro and in vivo models. METHODS Human corneal fibroblasts (HSFs) were used for in vitro studies, and New Zealand White rabbits were used for in vivo studies. Haze in the rabbit cornea was produced with photorefractive keratectomy (PRK) using excimer laser. Trypan blue exclusion and MTT assays evaluated TSA cytotoxicity to the cornea. Density of haze in the rabbit eye was graded with slit lamp biomicroscopy. Real-time PCR, immunoblotting, or immunocytochemistry was used to measure alpha-smooth muscle actin (SMA), fibronectin, and collagen type IV mRNA or protein levels. TUNEL assay was used to detect cell death. RESULTS TSA concentrations of 250 nM or less were noncytotoxic and did not alter normal HSF morphology or proliferation. TGF-beta1 treatment of HSF significantly increased mRNA and protein levels of SMA (9-fold), fibronectin (2.5-fold), and collagen type IV (2-fold). TSA treatment showed 60% to 75% decreases in TGF-beta1-induced SMA and fibronectin mRNA levels and 1.5- to 3.0-fold decreases in protein levels but had no effect on collagen type IV mRNA or protein levels in vitro. Two-minute topical treatment of TSA on rabbit corneas subjected to -9 D PRK significantly decreased corneal haze in vivo. CONCLUSIONS TSA inhibits TGF-beta1-induced accumulation of extracellular matrix and myofibroblast formation in the human cornea in vitro and markedly decreases haze in rabbit cornea in vivo.
Collapse
Affiliation(s)
- Ajay Sharma
- Mason Eye Institute, University of Missouri-Columbia, Columbia, Missouri 65212, USA
| | | | | | | | | |
Collapse
|
30
|
Kaur H, Chaurasia SS, de Medeiros FW, Agrawal V, Salomao MQ, Singh N, Ambati BK, Wilson SE. Corneal stroma PDGF blockade and myofibroblast development. Exp Eye Res 2008; 88:960-5. [PMID: 19133260 DOI: 10.1016/j.exer.2008.12.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 12/11/2008] [Accepted: 12/12/2008] [Indexed: 10/21/2022]
Abstract
Myofibroblast development and haze generation in the corneal stroma is mediated by cytokines, including transforming growth factor-beta (TGF-beta), and possibly other cytokines. This study examined the effects of stromal PDGF-beta blockade on the development of myofibroblasts in response to -9.0 diopter photorefractive keratectomy in the rabbit. Rabbits that had haze generating photorefractive keratectomy (PRK, for 9 diopters of myopia) in one eye were divided into three different groups: stromal application of plasmid pCMV.PDGFRB.23KDEL expressing a subunit of PDGF receptor b (domains 2-3, which bind PDGF-B), stromal application of empty plasmid pCMV, or stromal application of balanced salt solution (BSS). The plasmids (at a concentration 1000ng/microl) or BSS was applied to the exposed stroma immediately after surgery and every 24h for 4-5 days until the epithelium healed. The group treated with pCMV.PDGFRB.23KDEL showed lower alphaSMA+ myofibroblast density in the anterior stroma compared to either control group (P<or=0.001). Although there was also lower corneal haze at the slit lamp at one month after surgery, the difference in haze after PDGF-B blockade was not statistically significant compared to either control group. Stromal PDGF-B blockade during the early postoperative period following PRK decreases stromal alphaSMA+ myofibroblast generation. PDGF is an important modulator of myofibroblast development in the cornea.
Collapse
Affiliation(s)
- Harmeet Kaur
- Cole Eye Institute, The Cleveland Clinic, Cleveland, OH 44195, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
LaFrance MW, Kehinde LE, Fullard RJ. Multiple cytokine analysis in human tears: an optimized procedure for cytometric bead-based assay. Curr Eye Res 2008; 33:525-44. [PMID: 18600485 DOI: 10.1080/02713680802190085] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE To compare instruments and reagents used for cytometric bead-based assay (CBA) of cytokines in human tears. METHODS Two CBA instruments and reagent kits from five vendors were compared in parallel. Vendor protocols were modified to accommodate tear volumes. Precision, recovery, dilution linearity, and stability were evaluated. RESULTS Luminextrade mark and Bio-Radtrade mark proved optimal for tear CBA. Good correlation for dilution linearity was observed (r > 0.80, p < 0.05) for 1-4-mu l sample volumes. Samples were stable for 30 min at 25 degrees C. CONCLUSION Many tear cytokines can be reliably measured by CBA using an optimized protocol. Concentrations remain stable during periods consistent with collection.
Collapse
Affiliation(s)
- Martin W LaFrance
- School of Optometry, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | |
Collapse
|
32
|
Zhou L, Beuerman RW, Huang L, Barathi A, Foo YH, Li SFY, Chew FT, Tan D. Proteomic analysis of rabbit tear fluid: Defensin levels after an experimental corneal wound are correlated to wound closure. Proteomics 2007; 7:3194-206. [PMID: 17676663 DOI: 10.1002/pmic.200700137] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The cornea is the major refracting optical element of the eye and therefore critical for forming a retinal image. The exposed surface of the eye is protected from pathogens by the innate immune system whose components include defensins, naturally occurring peptides with antimicrobial properties, and the physical barrier formed by the outer epithelial layer of the cornea. The proteomic approach has revealed that tear levels of defensins are correlated with the course of healing of an experimental corneal wound. Tears were collected from New Zealand White rabbits prior to (day 0) and daily for 5 days (days 1-5) following a standard unilateral 6 mm diameter corneal epithelial abrasion. Tear protein profiles obtained from wounded and contra-lateral control eyes were compared using SELDI ProteinChip technology. Peptides and proteins of interest were purified by RP-HPLC and characterized by nanoESI-MS/MS. Mass spectra of tears on post-wound day 1, revealed 13 peaks whose level decreased and five that increased. During wound healing the tear protein profile correlated with wound closure. An important finding was that the levels of rabbit defensins (NP-1 and NP-2), which were elevated after wounding returned to normal levels by the time the corneal abrasion healed. Relative quantification of NP-2 in tear fluid prior to (day 0) and after corneal wounding (days 1- 3) was determined using iTRAQ technology. A corneal wound eliminates the barrier function of innate immunity and puts the cornea at risk from microbial attack until the epithelial cells restore the surface barrier. The increased availability of defensins in the tears during healing suggests that these peptides could protect the cornea from microbial attack during a period of increased vulnerability.
Collapse
Affiliation(s)
- Lei Zhou
- Singapore Eye Research Institute, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Smith CW, Binford RS, Holt DW, Webb DP. Quality assessment of platelet rich plasma during anti-platelet therapy. Perfusion 2007; 22:41-50. [PMID: 17633134 DOI: 10.1177/0267659107077950] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Platelet rich plasma (PRP) is being used with increased frequency in many surgical procedures for its known benefits of accelerated surgical wound site healing. Speculations in its efficacy in the presence of anti-platelet therapy have been proposed. To aid in defining a quality platelet rich plasma product in the presence of acetylsalicylic acid (ASA) and Plavix (clopidogrel bisulfate), we investigated three (3) groups (n = 18) of cardiac surgical patients receiving PRP. Platelet function test, platelet concentration, and quantification of growth factors (PDGF-bb and TGF-b1) were evaluated. Results showed no statistical evidence of decreased growth factors delivered to the surgical wound site in the presence of acetylsalicylic acid (ASA) and/or Plavix (clopidogrel bisulfate). Evidence in this pilot study supports the use of PRP for patients receiving Plavix and aspirin therapy without compromising the quantity of specific growth factors delivered to a wound site.
Collapse
Affiliation(s)
- Chad W Smith
- Tennessee Perfusion Services, PLLC, Centennial Medical Center, Cardiothoracic Surgery, Nashville, Tennessee 37027, USA
| | | | | | | |
Collapse
|
34
|
Klenkler B, Sheardown H, Jones L. Growth Factors in the Tear Film: Role in Tissue Maintenance, Wound Healing, and Ocular Pathology. Ocul Surf 2007; 5:228-39. [PMID: 17660896 DOI: 10.1016/s1542-0124(12)70613-4] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Numerous biologically active growth factors are secreted by the lacrimal gland and distributed via the tears over the ocular surface, where they affect cellular proliferation, migration, differentiation, and survival. The role of growth factors and their receptors in maintenance of tissue homeostasis and wound healing continues to be elucidated, and the effect of growth factor imbalances in ocular surface diseases is just beginning to be understood. For instance, in eyes with ocular surface diseases, including conjunctivitis, corneal erosion, keratitis, and corneal ulcers, epidermal growth factor release rates have been shown to be significantly lower than in normal eyes during reflex tearing. Future research into the mechanisms of dry eye disease will focus on reasons for decreased tear and growth factor production in the neuronal reflex loop or the acinar lacrimal gland cells. Animal models to test therapeutic approaches must be developed.
Collapse
Affiliation(s)
- Bettina Klenkler
- Department of Chemical Engineering, McMaster University, Hamilton, ON, Canada
| | | | | |
Collapse
|
35
|
Kallinikos P, Morgan P, Efron N. Assessment of stromal keratocytes and tear film inflammatory mediators during extended wear of contact lenses. Cornea 2006; 25:1-10. [PMID: 16331033 DOI: 10.1097/01.ico.0000167877.11687.7e] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE To monitor quantitative changes in stromal keratocyte density and the level of tear film inflammatory mediators following extended contact lens wear. METHODS Twenty-two subjects aged 32 +/- 11 years participated in this cross-sectional study. Eleven subjects had worn silicone hydrogel (Si-H) lenses on a 30-day continuous wear basis for 12 months. Eleven subjects had worn rigid gas permeable lenses on the same basis for 12 months. Eleven age-matched control subjects were also recruited. Ultrasound pachometry, confocal microscopy, and tear fluid sample collection were performed on all subjects. Tear samples were assayed for epidermal growth factor (EGF), hepatocyte growth factor (HGF) and interleukin (IL)-8. RESULTS Corneal thickness was similar for all subject groups. Total keratocyte density was not different between the 3 groups; however, keratocyte density was lower for rigid lens wearers in the anterior to mid stroma and lower for Si-H lens wearers in the posterior stroma compared with control subjects. Rigid lens wearers exhibited an irregular keratocyte distribution across the corneal stroma. EGF concentration and rate of release was greater in the tears collected from the rigid lens wearers and Si-H lens wearers, and IL-8 concentration was higher in the samples collected from the rigid lens wearers compared with the samples collected from the control subjects. CONCLUSIONS Mechanical stimulation of the corneal surface due to the physical presence of a contact lens and the consequent release of inflammatory mediators may account for a loss or redistribution of keratocytes.
Collapse
Affiliation(s)
- Panagiotis Kallinikos
- Department of Optometry, Eurolens Research, The University of Manchester, United Kingdom
| | | | | |
Collapse
|
36
|
Abe K, Hibino T, Mishima H, Shimomura Y. The cytokine regulation of SPARC production by rabbit corneal epithelial cells and fibroblasts in vitro. Cornea 2004; 23:172-9. [PMID: 15075887 DOI: 10.1097/00003226-200403000-00011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
OBJECTIVE SPARC (osteonectin/BM40) is detected in the corneal stroma during the wound-healing process. To understand the metabolism of SPARC in the cornea, we investigated the effects of cytokines and growth factors on SPARC synthesis by rabbit corneal epithelial cells and fibroblasts. METHODS Rabbit corneal epithelial cells or fibroblasts were cultured for 3 days with serum-containing minimal essential medium (MEM), then subcultured for 3 days on serum-free MEM with epidermal growth factor (EGF), platelet-derived growth factor (PDGF), transforming growth factor-beta (TGF-beta), or interleukin-1beta (IL-1beta). SPARC concentration in the medium was measured by the ELISA method using anti-SPARC monoclonal antibody. RESULTS The concentration of SPARC in the conditioned medium of the epithelial cells depended on either cell numbers or cultivation periods. When EGF was added to the medium, the amount of SPARC in the medium decreased. The addition of IL-1beta, PDGF, or TGF-beta did not affect SPARC synthesis by the epithelial cells. The production of SPARC by rabbit corneal fibroblasts was low compared with that by epithelial cells. However, the synthesis of SPARC by corneal fibroblasts was significantly enhanced by the addition of TGF-beta. The addition of IL-1beta, PDGF, or EGF slightly increased SPARC synthesis by corneal fibroblasts. CONCLUSIONS Cytokines and growth factors modulate SPARC synthesis by rabbit corneal epithelial cells and fibroblasts. These results suggest that cytokines and growth factors modulate cell-matrix interaction in corneal wound healing, possibly by regulating SPARC synthesis.
Collapse
Affiliation(s)
- Kosuke Abe
- Department of Ophthalmology, Kinki University School of Medicine, Osaka-Sayama City, Osaka, 589-8511, Japan.
| | | | | | | |
Collapse
|
37
|
Satici A, Guzey M, Dogan Z, Kilic A. Relationship between Tear TNF-alpha, TGF-beta1, and EGF levels and severity of conjunctival cicatrization in patients with inactive trachoma. Ophthalmic Res 2004; 35:301-5. [PMID: 14688418 DOI: 10.1159/000074067] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2003] [Accepted: 06/16/2003] [Indexed: 11/19/2022]
Abstract
Tear tumor necrosis factor alpha (TNF-alpha), transforming growth factor beta 1 (TGF-beta1), and epidermal growth factor (EGF) levels were determined in patients with inactive trachoma, and a possible relation between these cytokines and conjunctival cicatrization severity was investigated. Forty-four patients with inactive trachoma who were admitted to the Department of Ophthalmology at the Harran University, Sanliurfa, Turkey, were included in this study. The control group consisted of 20 age- and sex-matched healthy subjects. The levels of cytokines in tears were measured by ELISA. Tear samples were collected from the conjunctival cul-de-sac by means of blunted-tip glass capillary tubes. Eyes with inactive trachoma were classified into three subgroups with respect to conjunctiva cicatrization: mild, moderate, and severe. In 44 patients with inactive trachoma, conjunctival cicatrization was found, including mild (n = 15), moderate (n = 16), and severe (n = 13) cases. In patients with inactive trachoma, decreases in tear EGF (p = 0.000) concentrations and increases in tear TGF-beta1 (p = 0.006) and TNF-alpha (p = 0.046) levels with respect to the control group were found to be concordant with conjunctival cicatrization severity. Statistically significant correlations in tear TNF-alpha (p = 0.018), TGF-beta1 (p = 0.007), and EGF (p = 0.043) levels were found between mild and severe cicatrization groups. TNF-alpha and TGF-beta1 have been implicated in the fibrogenic process. Elevated tear levels of inflammatory/fibrogenic cytokines may play an important role in scar formation in trachoma. It is possible that decreased tear levels of EGF, which may be important for the maintenance of corneal epithelial integrity, are related to fibrosis in the lacrimal gland ductules.
Collapse
Affiliation(s)
- Ahmet Satici
- Department of Ophthalmology, School of Medicine, Harran University, Sanliurfa, Turkey.
| | | | | | | |
Collapse
|
38
|
Abstract
Multiple species of mucins are synthesized and secreted by corneal and conjunctival epithelial cells. These mucins are vital components of the tear film protecting the ocular surface from the external environment by providing a physical and chemical barrier. The release of mucins must be tightly regulated as both mucin overproduction and underproduction cause ocular surface disorders. Mucin production can be regulated by controlling mucin synthesis, mucin release, or proliferation of the cells that produce the mucin. This review will focus on the evidence demonstrating the control of the mechanisms responsible for production of mucins, their secretion, and corneal and conjunctival epithelia cell proliferation. By understanding these mechanisms under normal conditions, treatments can be designed for diseases of the mucous production of the ocular surface.
Collapse
Affiliation(s)
- Darlene A Dartt
- The Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, USA.
| |
Collapse
|
39
|
Lim M, Goldstein MH, Tuli S, Schultz GS. Growth Factor, Cytokine and Protease Interactions During Corneal Wound Healing. Ocul Surf 2003; 1:53-65. [PMID: 17075633 DOI: 10.1016/s1542-0124(12)70128-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Healing of corneal injuries is an exceptionally complex process involving the integrated actions of multiple growth factors, cytokines, and proteases produced by epithelial cells, stromal keratocytes, inflammatory cells, and lacrimal gland cells. Following corneal injury, basal epithelial cells migrate and proliferate in response to chemotactic cytokines and mitogenic growth factors, including epidermal growth factor and keratinocyte growth factor. Simultaneously, keratocytes adjacent to the injured area undergo apoptosis under the Fas/Fas ligand system, while more distant keratocytes transform into activated fibroblasts and migrate into the wound, where they begin synthesizing new extracellular matrix components that form the scar tissue under the dominant influence of the TGFb/ CTGF system. Epithelial cells and activated stromal fibroblasts also secrete growth factors and cytokines that have paracrine and autocrine functions. Corneal repair proceeds for the next several weeks to months, during which time the gene expression profile slowly returns to the pre-injury pattern and the provisional scar matrix slowly remodels by actions of matrix metalloproteinases. While minor epithelial injuries heal by regeneration of normal architecture, large stromal injuries heal by repair with irregular scar tissue that impairs the optical properties of the cornea.Also, if the integrated regulation of the wound healing process is interrupted at any point, the wound fails to heal properly and a corneal ulcer develops. Better understanding of the cellular and molecular changes that occur during repair of corneal wounds will provide the opportunity to design agents that selectively modulate key phases of corneal wound healing, resulting in scars that more closely resemble normal corneal architecture.
Collapse
Affiliation(s)
- Mira Lim
- Tufts University School of Medicine, Boston, MA, USA
| | | | | | | |
Collapse
|
40
|
Wilson SE, Mohan RR, Hutcheon AEK, Mohan RR, Ambrósio R, Zieske JD, Hong J, Lee J. Effect of ectopic epithelial tissue within the stroma on keratocyte apoptosis, mitosis, and myofibroblast transformation. Exp Eye Res 2003; 76:193-201. [PMID: 12565807 DOI: 10.1016/s0014-4835(02)00277-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The purpose of this study was to examine the effects of the epithelium on processes involved in stromal wound healing. Lamellar epithelial-stromal flaps were produced in rabbit corneas with a microkeratome. Peripheral corneal epithelial tissue, central corneal epithelial tissue, or no epithelial tissue (control) was introduced beneath the flap. Corneas were removed at time points from 4 hr to 1 month after surgery. Tissue sections were analyzed with immunocytochemistry for Keratin 3 (K3) to detect epithelial antigen, terminal deoxyribonucleotidyl transferase-mediated dUTP-digoxigenin nick-end labelling (TUNEL) assay to detect apoptosis, immunocytochemistry for Ki67 to detect cell proliferation, and immunocytochemistry for alpha-smooth muscle actin (SMA) to detect myofibroblasts. K3 was detected at the level of the interface from 4 hr to 1 month after surgery in corneas in which epithelial tissue was introduced, but not control corneas, with the exception of one that developed epithelial in growth. Keratocyte apoptosis was significantly higher at 4 hr after flap formation in both groups in which corneal epithelial tissue was introduced beneath the flap compared with controls. Keratocyte proliferation was significantly greater at 72 hr in corneas in which epithelial tissue was introduced beneath the flap compared to the controls. Corneas in which epithelial tissue was introduced into the interface, but not control corneas, had stromal cells expressing alpha-SMA in the stroma anterior and posterior to the interface at 1 week and 1 month after surgery. This was also noted in the control cornea in which there was epithelial ingrowth. Signals derived from the corneal epithelium promote keratocyte apoptosis. Keratocyte proliferation is higher in corneas that have lamellar surgery when epithelial tissue is introduced into the interface. Epithelium-derived signals also participate in the generation and/or maintenance of myofibroblasts in the corneal stroma.
Collapse
Affiliation(s)
- Steven E Wilson
- Department of Ophthalmology, University of Washington School of Medicine, Box 356485, 1959 Pacific Street, Seattle, WA 98195-6485, USA.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Baldwin HC, Marshall J. Growth factors in corneal wound healing following refractive surgery: A review. ACTA OPHTHALMOLOGICA SCANDINAVICA 2002; 80:238-47. [PMID: 12059860 DOI: 10.1034/j.1600-0420.2002.800303.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The first part of this review article aims to provide important basic definitions of growth factor terminology, and to put forward a model for understanding the role of growth factors in a wound healing context. In the second part of the paper, we review the literature on growth factors in the cornea, including that on changes associated with wound healing following refractive surgery in the epithelial, stromal, and endothelial layers. The role of growth factors in stromal removal, corneal neovascularization, corneal innervation and wound healing is considered. The importance of the epithelial-stromal interaction is discussed, including the role of growth factors in keratocyte apoptosis. In the final section, we review the current literature on endogenous and exogenous modulation of growth factors in corneal wound healing. This includes important in vitro work but aims to emphasize clinically relevant results. Photorefractive keratectomy (PRK) may have short-term complications such as pain and haze, whereas laser in situ keratomilieusis (LASIK) may have longer-term adverse effects on corneal biomechanics. The emerging technique of laser epithelial keratomilieusis (LASEK) provides an interesting alternative wound which may be less susceptible to the inherent complications of PRK and LASIK. At present, the phenomenon of iatrogenic keratectasia following LASIK is not fully understood, but these features of wound healing following PRK may be amenable to growth factor modulation.
Collapse
|
42
|
Klepeis VE, Cornell-Bell A, Trinkaus-Randall V. Growth factors but not gap junctions play a role in injury-induced Ca2+ waves in epithelial cells. J Cell Sci 2001; 114:4185-95. [PMID: 11739651 DOI: 10.1242/jcs.114.23.4185] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This paper characterizes the early responses of epithelial cells to injury. Ca2+ is an important early messenger that transiently increases in the cytoplasm of cells in response to external stimuli. Its elevation leads to the regulation of signaling pathways responsible for the downstream events important for wound repair, such as cell migration and proliferation. Live cell imaging in combination with confocal laser scanning microscopy of fluo-3 AM loaded cells was performed. We found that mechanical injury in a confluent region of cells creates an elevation in Ca2+ that is immediately initiated at the wound edge and travels as a wave to neighboring cells, with [Ca2+]i returning to background levels within two minutes. Addition of epidermal growth factor (EGF), but not platelet-derived growth factor-BB, resulted in increased [Ca2+]i, and EGF specifically enhanced the amplitude and duration of the injury-induced Ca2+ wave. Propagation of the Ca2+ wave was dependent on intracellular Ca2+ stores, as was demonstrated using both thapsigargin and Ca2+ chelators (EGTA and BAPTA/AM). Injury-induced Ca2+ waves were not mediated via gap junctions, as the gap-junction inhibitors 1-heptanol and 18α-glycyrrhetinic acid did not alter wave propagation, nor did the cells recover in photobleaching experiments. Additional studies also demonstrated that the wave could propagate across an acellular region. The propagation of the injury-induced Ca2+ wave occurs via diffusion of an extracellular mediator, most probably via a nucleotide such as ATP or UTP, that is released upon cell damage.
Movies available on-line
Collapse
Affiliation(s)
- V E Klepeis
- Department of Pathology, Cognetix, Inc., Ivoryton, CT 06442, USA
| | | | | |
Collapse
|
43
|
Wilson SE, Mohan RR, Mohan RR, Ambrósio R, Hong J, Lee J. The corneal wound healing response: cytokine-mediated interaction of the epithelium, stroma, and inflammatory cells. Prog Retin Eye Res 2001; 20:625-37. [PMID: 11470453 DOI: 10.1016/s1350-9462(01)00008-8] [Citation(s) in RCA: 406] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The corneal wound healing cascade is complex and involves stromal-epithelial and stromal-epithelial-immune interactions mediated by cytokines. Interleukin-1 appears to be a master modulator of many of the events involved in this cascade. Keratocyte apoptosis is the earliest stromal event noted following epithelial injury and remains a likely target for modulation of the overall wound healing response. Other processes such as epithelial mitosis and migration, stromal cell necrosis, keratocyte proliferation, myofibroblast generation, collagen deposition, and inflammatory cell infiltration contribute to the wound healing cascade and are also likely modulated by cytokines derived from corneal cells, the lacrimal gland, and possibly immune cells. Many questions remain regarding the origin and fate of different cell types that contribute to stromal wound healing. Over a period of months to years the cornea returns to a state similar to that found in the unwounded normal cornea.
Collapse
Affiliation(s)
- S E Wilson
- The Department of Ophthalmology, University of Washington School of Medicine, Box-356485 Seattle, WA 98195-6485, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
One of the important functions of the cornea is to maintain normal vision by refracting light onto the lens and retina. This property is dependent in part on the ability of the corneal epithelium to undergo continuous renewal. Epithelial renewal is essential because it enables this tissue to act as a barrier that protects the corneal interior from becoming infected by noxious environmental agents. Furthermore, the smooth optical properties of the corneal epithelial surface are sustained through this renewal process. The rate of renewal is dependent on a highly integrated balance between the processes of corneal epithelial proliferation, differentiation, and cell death. One experimental approach to characterize these three aspects of the renewal process has been to study the kinetics and dynamics of corneal re-epithelialization in a wound-healing model. This effort has employed in vivo and in vitro studies. From such studies it is evident that the appropriate integration and coordination of corneal epithelial proliferation, adhesion, migration, and cell demise is dependent on the actions of a myriad of cytokines. Our goal here is to provide an overview into how these mediators and environmental factors elicit control of cellular proliferation, adhesion, migration, and apoptosis. To this end we review the pertinent literature dealing with the receptor and the cell signaling events that are responsible for mediating cytokine control of corneal epithelial renewal. It is our hope that a better appreciation can be obtained about the complexity of the control processes that are responsible for assuring continuous corneal epithelial renewal in health and disease.
Collapse
Affiliation(s)
- L Lu
- Department of Physiology and Biophysics, Wright State University School of Medicine, Dayton, OH 45435, USA.
| | | | | |
Collapse
|
45
|
Tuominen IS, Tervo TM, Teppo AM, Valle TU, Grönhagen-Riska C, Vesaluoma MH. Human tear fluid PDGF-BB, TNF-alpha and TGF-beta1 vs corneal haze and regeneration of corneal epithelium and subbasal nerve plexus after PRK. Exp Eye Res 2001; 72:631-41. [PMID: 11384151 DOI: 10.1006/exer.2001.0999] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim was to determine the association of tear fluid cytokine levels and post-PRK corneal haze evaluated by in vivo confocal microscopy. In addition, the possible association between subbasal neural regeneration and haze formation, or epithelial regeneration were investigated. Twenty eyes of 20 patients (16 women and four men, age 30.7 +/- 7.5 years, range 21-48 years) underwent a myopic PRK. The spherical equivalent (SE) of the intended correction was -4.7 +/- 1.5 D (range -2.75 to -9.00 D). ELISA-methods were used to assess tear fluid concentrations of TGF-beta1, PDGF-BB and TNF-alpha pre-operatively, and post-operatively on day 2 and at 3 months. Tear fluid flow in the collection capillary was recorded, and rates of cytokine release (= tear fluid flow-corrected concentrations) were calculated. In vivo confocal microscopy was performed at 3 months to evaluate the corneal morphology and to determine numerical haze estimate. There was wide interindividual variation between pre-operative and post-operative concentrations and rates of release of TGF-beta1, PDGF-BB and TNF-alpha. Subepithelial haze was observed in all corneas and the mean haze estimate was 506 +/- 401 U (100-1410 U). However, no association was found between tear fluid cytokine levels and post-PRK haze. Regenerating subbasal nerve plexus was found in 18 out of 20 corneas; in two corneas it was absent or could not be visualized due to subepithelial haze. The density of the subbasal nerve fiber bundles had a positive correlation with the epithelial thickness (Pearson correlation, r = 0.56, P = 0.011), but not with the haze estimate or the thickness of the haze area. At 3 months post-PRK, haze could be observed in all patients. The results suggest that tear fluid cytokine analysis, as measured, may not be suitable for screening the potential candidates for haze formation. We did not find any correlation between haze and regeneration of subbasal nerve plexus, but we demonstrated that the regeneration of subbasal nerve plexus might have significant influence on regulation of epithelial healing.
Collapse
Affiliation(s)
- I S Tuominen
- The Department of Ophthalmology, University of Helsinki, Helsinki, Finland.
| | | | | | | | | | | |
Collapse
|
46
|
Lembach M, Linenberg C, Sathe S, Beaton A, Ucakhan O, Asbell P, Sack R. Effect of external ocular surgery and mode of post-operative care on plasminogen, plasmin, angiostatins and alpha(2)-macroglobulin in tears. Curr Eye Res 2001; 22:286-94. [PMID: 11462168 DOI: 10.1076/ceyr.22.4.286.5502] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE To determine whether corneal surgery and the mode of post-surgical treatment influence the distribution of plasminogen, plasmin, angiostatins and alpha(2)-macrogobulin in tear fluid. METHODS Subjects underwent either photorefractive keratectomy (PRK), insertion of intra-stromal corneal rings (ICR), or cataract ablation followed by insertion of an intra-ocular lens (IOL). Post-surgical treatment consisted of prophylactic use of antibiotic and anti-inflammatory agents followed either by patching for 24 hours, or covering the wounded cornea with a bandage soft contact lens. Open eye tear fluid (OTF) was obtained prior to surgery and 10 minutes after patch removal or 24 hours after surgery and thereafter with the bandage lens still in place. After centrifugation, supernatants and controls were western blot analyzed using a protocol designed to allow the simultaneous semi- quantitative detection of alpha2-macroglobulin, plasminogen, plasmin, angiostatins and interleukin-8 (IL-8). RESULTS No obvious differences were apparent in OTF recovered from contralateral control eyes compared to the surgical eyes in individuals who underwent PRK surgery and whose eyes were covered with a bandage contact lens. In contrast, OTF samples recovered 10 minutes after patch removal from all individuals contained elevated levels of alpha2-macroglobulin and a diverse mixture of elevated levels of plasminogen/plasmin, angiostatins and possibly a plasmin-a1-antiplasmin complex. All of these changes were seen, albeit to a lesser extent, in the patched control OTF samples. IL-8 could not be detected in any sample. The composition of the tear film returned to near normal on subsequent sampling 24 hours after patch removal. CONCLUSIONS Patching results in a marked increase in the concentration of various proteins which could modulate inflammation and wound healing.
Collapse
Affiliation(s)
- M Lembach
- SUNY College of Optometry, 33 West 42nd Street, New York, NY 10036, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
OBJECTIVE Patients frequently experience dry eye symptoms after laser in situ keratomileusis (LASIK). The mechanisms that lead to these changes are not well understood. The purpose of this study was to investigate the effect of LASIK on tear function. DESIGN Prospective, comparative, nonrandomized interventional trial. PARTICIPANTS Fifty-eight consecutive patients (96 eyes) who underwent myopic LASIK treatment. METHODS The prospective study involved 58 consecutive patients (96 eyes) who underwent sequential or bilateral LASIK for the correction of myopia. Dry eye symptoms, standardized Schirmer test values, basal tear secretion test, and tear break-up time were measured before surgery and 1 day, 1 week, and 1 month after surgery. MAIN OUTCOME MEASURES Schirmer test value, basal tear secretion value, and tear break-up time. RESULTS Before surgery, 15.6% of patients (15/96) had dry eye symptoms. After surgery, 94.8% of patients (91/96), 85.4% of patients (82/96), and 59.4% of patients (57/96) experienced dry eye symptoms at 1 day, 1 week, and 1 month, respectively. Schirmer test value (13.32 +/- 10. 67 mm) increased at 1 day (14.48 +/- 10.57 mm; P = 0.25) and subsequently decreased at 1 week (11.18 +/- 9.81 mm; P = 0.05) and at 1 month (10.83 +/- 10.02 mm; P = 0.03). Basal tear secretion test value (8.49 +/- 8.48 mm) decreased at 1 day (6.80 +/- 6.48 mm; P = 0.05), at 1 week (5.97 +/- 6.88 mm; P = 0.005), and at 1 month (5.89 +/- 6.24 mm; P = 0.007). Tear break-up time (5.32 +/- 2.35 seconds) decreased 1 day (4.14 +/- 1.90 seconds; P < 0.001) and 1 week (4.49 +/- 1.70 seconds; P = 0.004) after surgery and recovered by 1 month after surgery (5.09 +/- 3.03 seconds; P = 0.52). Poor preoperative tear functions with a Schirmer test value less than 10 mm was a significant risk factor (72% vs. 46%; relative risk, 1.58 [1.10-2.26]) for experiencing dry eye symptoms at 1 month after surgery. CONCLUSIONS Dry eye symptoms are common after myopic LASIK surgery. Laser in situ keratomileusis significantly altered the tear break-up time, Schirmer test values, and basal tear secretion. Patients with preexisting tear flow abnormality as demonstrated by Schirmer test values less than 10 mm are especially at risk of experiencing dry eye symptoms.
Collapse
Affiliation(s)
- E Y Yu
- Department of Ophthalmology and Visual Sciences, Chinese University of Hong Kong, Kowloon, Hong Kong
| | | | | | | |
Collapse
|
48
|
Abstract
For more than 15 years, the excimer laser has been used as a surgical instrument on the cornea. Photorefractive keratectomy (PRK) followed radial keratotomy as researchers sought a more precise technique. In PRK, precision turned out to depend on surgical technique as well as the wound-healing process, with the 2 factors interdependent. The PRK technique has evolved toward a large diameter, flat ablation curvatures, and an even surface. The role of such factors as cytokines and interleukins has become more clear in the past 10 years. However, understanding the wound-healing process becomes more complicated with increasing know edge. Learning the contributing factors and performing trials with new drugs and antibodies to modulate wound healing have shown positive results on the experimental level. Patient selection based on the concentration of epidermal growth factor in tears may be another way to increase PRK s precision. The PRK technique has taught much about wound healing. For the technique to be competitive, increased precision, particularly in eyes with high myopia, is needed. Two other factors are imperative: controlling postoperative pain and decreasing visual rehabilitation time.
Collapse
Affiliation(s)
- P Fagerholm
- St. Eriks Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
49
|
Abstract
Platelet-derived growth factor (PDGF) is a major mitogen for connective tissue cells and certain other cell types. It is a dimeric molecule consisting of disulfide-bonded, structurally similar A- and B-polypeptide chains, which combine to homo- and heterodimers. The PDGF isoforms exert their cellular effects by binding to and activating two structurally related protein tyrosine kinase receptors, denoted the alpha-receptor and the beta-receptor. Activation of PDGF receptors leads to stimulation of cell growth, but also to changes in cell shape and motility; PDGF induces reorganization of the actin filament system and stimulates chemotaxis, i.e., a directed cell movement toward a gradient of PDGF. In vivo, PDGF has important roles during the embryonic development as well as during wound healing. Moreover, overactivity of PDGF has been implicated in several pathological conditions. The sis oncogene of simian sarcoma virus (SSV) is related to the B-chain of PDGF, and SSV transformation involves autocrine stimulation by a PDGF-like molecule. Similarly, overproduction of PDGF may be involved in autocrine and paracrine growth stimulation of human tumors. Overactivity of PDGF has, in addition, been implicated in nonmalignant conditions characterized by an increased cell proliferation, such as atherosclerosis and fibrotic conditions. This review discusses structural and functional properties of PDGF and PDGF receptors, the mechanism whereby PDGF exerts its cellular effects, and the role of PDGF in normal and diseased tissues.
Collapse
Affiliation(s)
- C H Heldin
- Ludwig Institute for Cancer Research, Biomedical Center, and Department of Pathology, University Hospital, Uppsala, Sweden.
| | | |
Collapse
|
50
|
Kurpakus Wheater M, Kernacki KA, Hazlett LD. Corneal cell proteins and ocular surface pathology. Biotech Histochem 1999; 74:146-59. [PMID: 10416788 DOI: 10.3109/10520299909047967] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The cornea is a transparent and avascular tissue that functions as the major refractive structure for the eye. A wide variety of growth factors, chemokines, cytokines and their receptors are synthesized by corneal epithelial and stromal cells, and are found in tears. These molecules function in corneal wound healing and in inflammatory responses. Proteoglycans and glycoproteins are essential for normal corneal function, both at the air-epithelial interface and within the extracellular matrix. The ocular MUC mucins may play roles in forming the mucus layer of the tear film, in regulating tear film spread, and in inhibiting the adhesion of pathogens to the ocular surface. Lumican, keratocan and mimecan are the major keratan sulfate proteoglycans of the corneal stroma. They are essential, along with other proteoglycans and interfibrillar proteins, including collagens type VI and XII, for the maintenance of corneal transparency. Corneal epithelial cells interact with a specialized extracellular matrix structure, the basement membrane, composed of a specific subset of collagen type IV and laminin isoforms in addition to ubiquitous extracellular matrix molecules. Matrix metalloprotein-ases have been identified in normal corneal tissue and cells and may play a role in the development of ulcerative corneal diseases. Changes in extracellular matrix molecule localization and synthesis have been noted in other types of corneal diseases as well, including bullous keratopathy and keratoconus.
Collapse
Affiliation(s)
- M Kurpakus Wheater
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
| | | | | |
Collapse
|