1
|
Samaha D, Diaconu V, Bouchard JF, Desalliers C, Dupont A. Effect of Latanoprostene Bunod on Optic Nerve Head Blood Flow. Optom Vis Sci 2022; 99:172-176. [PMID: 34889858 DOI: 10.1097/opx.0000000000001842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
SIGNIFICANCE Topical latanoprostene bunod increases capillary oxygen saturation and blood volume at the optic nerve head in healthy individuals. PURPOSE This study aimed to evaluate the effect of topical latanoprostene bunod on optic nerve blood volume and oxygen saturation in a population of healthy participants. METHODS In this prospective double-blind crossover study, 23 healthy participants aged from 21 to 62 years were recruited. Optic nerve head capillary blood volume (ONHvol) and oxygen saturation (ONHSaO2) baselines were measured over a period of 2 hours using multichannel spectroscopic reflectometry and were remeasured after a 7-day once-daily instillation regimen of either latanoprost 0.005% or latanoprostene bunod 0.024%. After a 30-day washout period, participants were crossed over to the alternate product, and measurements were repeated. Participants were used as their own baselines to calculate variation in ONHvol and ONHSaO2 across time and pharmacological agents. The Friedman test was used to establish significant differences in optic nerve head parameters from baseline values, and Conover post hoc analysis was carried for multiple between-group comparisons. RESULTS Latanoprostene bunod 0.024% induced a significant increase of 4% in ONHSaO2 compared with latanoprost 0.005% (P < .001). Furthermore, latanoprostene bunod increased ONHvol levels by more than twofold at all time points (P < .001 at T60, T90, and T120). The increase in ONHvol was 66.2% higher than levels achieved with latanoprost at T60 (P = .001), 47% higher at T90 (P < .001), and 45% higher at T120 (P < .01). CONCLUSIONS Latanoprostene bunod 0.024% induces a significant increase in optic nerve head blood volume and oxygen saturation in healthy subjects, when compared with latanoprost 0.005%. Future studies are needed to evaluate whether similar responses are elicited in patients suffering from glaucomatous optic neuropathy.
Collapse
Affiliation(s)
| | - Vasile Diaconu
- Montreal University School of Optometry, Montreal, Quebec, Canada
| | | | | | - Ariane Dupont
- Montreal University School of Optometry, Montreal, Quebec, Canada
| |
Collapse
|
2
|
Nitzan A, Corredor-Sanchez M, Galron R, Nahary L, Safrin M, Bruzel M, Moure A, Bonet R, Pérez Y, Bujons J, Vallejo-Yague E, Sacks H, Burnet M, Alfonso I, Messeguer A, Benhar I, Barzilai A, Solomon AS. Inhibition of Sema-3A Promotes Cell Migration, Axonal Growth, and Retinal Ganglion Cell Survival. Transl Vis Sci Technol 2021; 10:16. [PMID: 34817617 PMCID: PMC8626852 DOI: 10.1167/tvst.10.10.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Purpose Semaphorin 3A (Sema-3A) is a secreted protein that deflects axons from inappropriate regions and induces neuronal cell death. Intravitreal application of polyclonal antibodies against Sema-3A prevents loss of retinal ganglion cells ensuing from axotomy of optic nerves. This suggested a therapeutic approach for neuroprotection via inhibition of the Sema-3A pathway. Methods To develop potent and specific Sema-3A antagonists, we isolated monoclonal anti-Sema-3A antibodies from a human antibody phage display library and optimized low-molecular weight Sema-3A signaling inhibitors. The best inhibitors were identified using in vitro scratch assays and semiquantitative repulsion assays. Results A therapeutic approach for neuroprotection must have a long duration of action. Therefore, antibodies and low-molecular weight inhibitors were formulated in extruded implants to allow controlled and prolonged release. Following release from the implants, Sema-3A inhibitors antagonized Sema-3A effects in scratch and repulsion assays and protected retinal ganglion cells in animal models of optic nerve injury, retinal ischemia, and glaucoma. Conclusions and Translational Relevance Collectively, our findings indicate that the identified Sema-3A inhibitors should be further evaluated as therapeutic candidates for the treatment of Sema-3A-driven central nervous system degenerative processes.
Collapse
Affiliation(s)
- Anat Nitzan
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Miriam Corredor-Sanchez
- Department of Biological Chemistry, Institute of Advanced Chemistry of Catalonia, IQAC-CSIC, Barcelona, Spain
| | - Ronit Galron
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Limor Nahary
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Mary Safrin
- Goldschleger Eye Research Institute, Sheba Medical Center, Tel Aviv University Tel Aviv, Israel
| | - Marina Bruzel
- Goldschleger Eye Research Institute, Sheba Medical Center, Tel Aviv University Tel Aviv, Israel
| | - Alejandra Moure
- Department of Biological Chemistry, Institute of Advanced Chemistry of Catalonia, IQAC-CSIC, Barcelona, Spain
| | - Roman Bonet
- Department of Biological Chemistry, Institute of Advanced Chemistry of Catalonia, IQAC-CSIC, Barcelona, Spain
| | - Yolanda Pérez
- Department of Biological Chemistry, Institute of Advanced Chemistry of Catalonia, IQAC-CSIC, Barcelona, Spain
| | - Jordi Bujons
- Department of Biological Chemistry, Institute of Advanced Chemistry of Catalonia, IQAC-CSIC, Barcelona, Spain
| | | | | | | | - Ignacio Alfonso
- Department of Biological Chemistry, Institute of Advanced Chemistry of Catalonia, IQAC-CSIC, Barcelona, Spain
| | - Angel Messeguer
- Department of Biological Chemistry, Institute of Advanced Chemistry of Catalonia, IQAC-CSIC, Barcelona, Spain
| | - Itai Benhar
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ari Barzilai
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Arieh S Solomon
- Goldschleger Eye Research Institute, Sheba Medical Center, Tel Aviv University Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
3
|
Kurose T, Sugano E, Sugai A, Shiraiwa R, Kato M, Mitsuguchi Y, Takai Y, Tabata K, Honma Y, Tomita H. Neuroprotective effect of a dietary supplement against glutamate-induced excitotoxicity in retina. Int J Ophthalmol 2019; 12:1231-1237. [PMID: 31456911 DOI: 10.18240/ijo.2019.08.01] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 06/04/2019] [Indexed: 01/17/2023] Open
Abstract
AIM To evaluate the neuroprotective effect of a dietary supplement (ClearVision EX®; CV) against glutamate-induced excitotoxicity in retina. METHODS We evaluated the protective effects CV on glutamate-induced cell toxicity of an immortalized mouse hippocampal cell line (HT-22) in vitro and N-methyl-D-aspartate (NMDA) induced retinal injury in vivo. Once-daily oral administration of CV or vehicle (5% Arabic gum) was started the day before the NMDA injection and continued until the end of the study. Electroretinograms (ERGs) were recorded to evaluate the retinal function at 2d after NMDA injection. Furthermore, a histological evaluation, Western blot analysis, and immunohistochemistry were performed for assessing the signal transduction pathway. RESULTS HT-22 cell death was induced by the addition of glutamate and co-incubation with CV protected against it. Oral administration of CV inhibited the decrease in scotopic threshold response amplitudes induced by the intravitreal injection of NMDA and those of the thickness of the inner retinal layer in the histological evaluation. The increased phosphorylated levels of extracellular signal-regulated kinase (ERK) but not cAMP response element binding protein (CREB) or Akt were observed 1h after NMDA injection in both the vehicle- and CV-treated rats; however, pERK activation was no more upregulated at 3h after NMDA injection. pERK upregulation was observed in Müller cells. CONCLUSION CV shows a protective effect against both glutamate-induced HT-22 cell death and NMDA-induced retinal damage. pERK upregulation in the Müller cells plays a key role in the protective effect of CV against glutamate-induced retinal toxicity.
Collapse
Affiliation(s)
- Takahiro Kurose
- Rohto Pharmaceutical Co., Ltd., 6-5-4 Kunimidai, Kizugawa, Kyoto 619-0216, Japan
| | - Eriko Sugano
- Laboratory of Visual Neuroscience, Graduate Course in Biological Sciences, Iwate University Division of Science and Engineering, 4-3-5 Ueda, Morioka, Iwate 020-8551, Japan
| | - Akihisa Sugai
- Laboratory of Visual Neuroscience, Graduate Course in Biological Sciences, Iwate University Division of Science and Engineering, 4-3-5 Ueda, Morioka, Iwate 020-8551, Japan
| | - Raki Shiraiwa
- Laboratory of Visual Neuroscience, Graduate Course in Biological Sciences, Iwate University Division of Science and Engineering, 4-3-5 Ueda, Morioka, Iwate 020-8551, Japan
| | - Mariyo Kato
- Rohto Pharmaceutical Co., Ltd., 6-5-4 Kunimidai, Kizugawa, Kyoto 619-0216, Japan
| | - Yoko Mitsuguchi
- Rohto Pharmaceutical Co., Ltd., 6-5-4 Kunimidai, Kizugawa, Kyoto 619-0216, Japan
| | - Yoshihiro Takai
- Rohto Pharmaceutical Co., Ltd., 6-5-4 Kunimidai, Kizugawa, Kyoto 619-0216, Japan
| | - Kitako Tabata
- Laboratory of Visual Neuroscience, Graduate Course in Biological Sciences, Iwate University Division of Science and Engineering, 4-3-5 Ueda, Morioka, Iwate 020-8551, Japan
| | - Yoichi Honma
- Rohto Pharmaceutical Co., Ltd., 6-5-4 Kunimidai, Kizugawa, Kyoto 619-0216, Japan
| | - Hiroshi Tomita
- Laboratory of Visual Neuroscience, Graduate Course in Biological Sciences, Iwate University Division of Science and Engineering, 4-3-5 Ueda, Morioka, Iwate 020-8551, Japan.,Clinical Research, Innovation and Education Center, Tohoku University Hospital, 1-1 Seiryo, Aoba, Sendai, Miyagi 980-8574, Japan
| |
Collapse
|
4
|
Garhöfer G, Schmetterer L. Nitric oxide: a drug target for glaucoma revisited. Drug Discov Today 2019; 24:1614-1620. [DOI: 10.1016/j.drudis.2019.05.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/11/2019] [Accepted: 05/31/2019] [Indexed: 02/06/2023]
|
5
|
Assessing retinal ganglion cell death and neuroprotective agents using real time imaging. Brain Res 2019; 1714:65-72. [DOI: 10.1016/j.brainres.2019.02.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 02/07/2019] [Accepted: 02/08/2019] [Indexed: 01/01/2023]
|
6
|
Wareham LK, Buys ES, Sappington RM. The nitric oxide-guanylate cyclase pathway and glaucoma. Nitric Oxide 2018; 77:75-87. [PMID: 29723581 DOI: 10.1016/j.niox.2018.04.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/18/2018] [Accepted: 04/23/2018] [Indexed: 01/12/2023]
Abstract
Glaucoma is a prevalent optic neuropathy characterized by the progressive dysfunction and loss of retinal ganglion cells (RGCs) and their optic nerve axons, which leads to irreversible visual field loss. Multiple risk factors for the disease have been identified, but elevated intraocular pressure (IOP) remains the primary risk factor amenable to treatment. Reducing IOP however does not always prevent glaucomatous neurodegeneration, and many patients progress with the disease despite having IOP in the normal range. There is increasing evidence that nitric oxide (NO) is a direct regulator of IOP and that dysfunction of the NO-Guanylate Cyclase (GC) pathway is associated with glaucoma incidence. NO has shown promise as a novel therapeutic with targeted effects that: 1) lower IOP; 2) increase ocular blood flow; and 3) confer neuroprotection. The various effects of NO in the eye appear to be mediated through the activation of the GC- guanosine 3:5'-cyclic monophosphate (cGMP) pathway and its effect on downstream targets, such as protein kinases and Ca2+ channels. Although NO-donor compounds are promising as therapeutics for IOP regulation, they may not be ideal to harness the neuroprotective potential of NO signaling. Here we review evidence that supports direct targeting of GC as a novel pleiotrophic treatment for the disease, without the need for direct NO application. The identification and targeting of other factors that contribute to glaucoma would be beneficial to patients, particularly those that do not respond well to IOP-dependent interventions.
Collapse
Affiliation(s)
- Lauren K Wareham
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | - Rebecca M Sappington
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
7
|
Koriyama Y, Furukawa A. S-Nitrosylation Regulates Cell Survival and Death in the Central Nervous System. Neurochem Res 2018; 43:50-58. [DOI: 10.1007/s11064-017-2303-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 04/25/2017] [Accepted: 05/10/2017] [Indexed: 02/02/2023]
|
8
|
Transcriptome profiling of the rat retina after optic nerve transection. Sci Rep 2016; 6:28736. [PMID: 27353354 PMCID: PMC4926057 DOI: 10.1038/srep28736] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 06/08/2016] [Indexed: 02/07/2023] Open
Abstract
Glaucoma is a group of eye diseases characterized by alterations in the contour of the optic nerve head (ONH), with corresponding visual field defects and progressive loss of retinal ganglion cells (RGCs). This progressive RGC death is considered to originate in axonal injury caused by compression of the axon bundles in the ONH. However, the molecular pathomechanisms of axonal injury-induced RGC death are not yet well understood. Here, we used RNA sequencing (RNA-seq) to examine transcriptome changes in rat retinas 2 days after optic nerve transection (ONT), and then used computational techniques to predict the resulting alterations in the transcriptional regulatory network. RNA-seq revealed 267 differentially expressed genes after ONT, 218 of which were annotated and 49 unannotated. We also identified differentially expressed transcripts, including potentially novel isoforms. An in silico pathway analysis predicted that CREB1 was the most significant upstream regulator. Thus, this study identified genes and pathways that may be involved in the pathomechanisms of axonal injury. We believe that our data should serve as a valuable resource to understand the molecular processes that define axonal injury-driven RGC death and to discover novel therapeutic targets for glaucoma.
Collapse
|
9
|
Yukita M, Omodaka K, Machida S, Yasuda M, Sato K, Maruyama K, Nishiguchi KM, Nakazawa T. Brimonidine Enhances the Electrophysiological Response of Retinal Ganglion Cells through the Trk-MAPK/ERK and PI3K Pathways in Axotomized Eyes. Curr Eye Res 2016; 42:125-133. [PMID: 27314704 DOI: 10.3109/02713683.2016.1153112] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE To investigate changes in retinal ganglion cell (RGC) activity by measuring the positive scotopic threshold response (pSTR) of the electroretinogram (ERG) in axotomized eyes after brimonidine injection. METHODS In 50 adult Sprague-Dawley rats, the left eye was axotomized and injected with phosphate buffered saline (PBS) or brimonidine and the contralateral right eye was left untreated. Scotopic ERGs were recorded simultaneously from both eyes on days 1, 2, 3, 7, and 10 after the intravitreal injection, and the amplitude of the a- and b-waves and the pSTR were measured. Surviving RGCs in the flat-mounted retinas were counted 10 days after axotomy. In addition to brimonidine, K252a (an inhibitor of tyrosine kinase phosphorylation of the Trk receptors), U0126 (a MAPK/ERK kinase inhibitor), and LY294002 (phosphoinositide 3-kinases [PI3Ks]) were also injected intravitreally into the left eye, and ERGs were recorded using the same protocol. RESULTS The pSTR amplitude increased significantly in the axotomized eyes with brimonidine, to 122.9 ± 5.0%, 161.8 ± 8.3%, and 133.6 ± 8.1% on days 1, 2, and 3 (P < 0.01), respectively, compared to the axotomized eyes treated with PBS (control). The increased pSTR amplitude returned to normal (103.6 ± 6.7%) on day 7, although there were a greater number of surviving RGCs in the treatment groups than in the controls. The intravitreal injection of K252a, U0126, or LY294002 significantly attenuated the increase in pSTR induced by intravitreal brimonidine (P < 0.01). CONCLUSION Intravitreal brimonidine enhanced the survival and electrophysiological activity of the RGCs in rats. The mechanism of this electrophysiological change may involve activation of the Trk-MAPK/ERK and Trk-PI3K signals.
Collapse
Affiliation(s)
- Masayoshi Yukita
- a Department of Ophthalmology , Tohoku University Graduate School of Medicine , Sendai , Japan
| | - Kazuko Omodaka
- a Department of Ophthalmology , Tohoku University Graduate School of Medicine , Sendai , Japan
| | - Shigeki Machida
- b Department of Ophthalmology , Koshigaya Hospital, Dokkyo Medical University , Koshigaya , Japan.,c Department of Ophthalmology , Iwate Medical University School of Medicine , Morioka , Japan
| | - Masayuki Yasuda
- a Department of Ophthalmology , Tohoku University Graduate School of Medicine , Sendai , Japan
| | - Kota Sato
- a Department of Ophthalmology , Tohoku University Graduate School of Medicine , Sendai , Japan
| | - Kazuichi Maruyama
- a Department of Ophthalmology , Tohoku University Graduate School of Medicine , Sendai , Japan
| | - Koji M Nishiguchi
- d Department of Advanced Ophthalmic Medicine , Tohoku University Graduate School of Medicine , Sendai , Japan
| | - Toru Nakazawa
- a Department of Ophthalmology , Tohoku University Graduate School of Medicine , Sendai , Japan.,d Department of Advanced Ophthalmic Medicine , Tohoku University Graduate School of Medicine , Sendai , Japan.,e Department of Retinal Disease Control , Tohoku University Graduate School of Medicine , Sendai , Japan
| |
Collapse
|
10
|
Xia X, Wen R, Chou TH, Li Y, Wang Z, Porciatti V. Protection of pattern electroretinogram and retinal ganglion cells by oncostatin M after optic nerve injury. PLoS One 2014; 9:e108524. [PMID: 25243471 PMCID: PMC4171539 DOI: 10.1371/journal.pone.0108524] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 09/01/2014] [Indexed: 12/25/2022] Open
Abstract
Injury to retinal ganglion cell (RGC) axons leads to selective loss of RGCs and vision. Previous studies have shown that exogenous neurotrophic factors promote RGC survival. We investigated the neuroprotective effects of oncostatin M (OSM), a member of the IL-6 family of cytokines, on pattern electroretinogram (PERG) and RGC survival after optic nerve crush (ON-crush) in the mouse. BALB/C mice received ON-crush in the left eyes for either 4-second or 1-second duration (4-s or 1-s). Fluoro-gold retrograde labeling was used to identify RGCs. RGC function was assessed by PERG measurement. OSM or CNTF protein was injected intravitreally immediately after ON-crush. OSM responsive cells were identified by localization of increased STAT3 phosphorylation. Significant higher RGC survival (46% of untreated control) was seen in OSM-treated eyes when assessed 2 weeks after 4-s ON-crush as compared to that (14% of untreated control) of the PBS-treated eyes (P<0.001). In addition, PERG amplitude was significantly higher in eyes treated with OSM or CNTF 1 week after 1-s ON-crush (36% of baseline) as compared with the amplitude of PBS-treated eyes (19% of the baseline, P = 0.003). An increase in STAT3 phosphorylation was localized in Müller layer after OSM treatment, suggesting that Müller cells mediate the effect of OSM. Our results demonstrate that one single injection of either OSM or CNTF after ON-crush improves RGC survival together with their electrophysiological activity. These data provide proof-of-concept for using neurotrophic factors OSM and CNTF for RGC degenerative diseases, including glaucoma and acute optic nerve trauma.
Collapse
Affiliation(s)
- Xin Xia
- Bascom Palmer Eye Institute, University of Miami, Miller School of Medicine, Miami, Florida, United States of America
- Department of Ophthalmology, Shanghai First People’s Hospital, Jiaotong University, Shanghai, China
- Shanghai Key Laboratory for Ocular Fundus Diseases, Shanghai, China
| | - Rong Wen
- Bascom Palmer Eye Institute, University of Miami, Miller School of Medicine, Miami, Florida, United States of America
| | - Tsung-Han Chou
- Bascom Palmer Eye Institute, University of Miami, Miller School of Medicine, Miami, Florida, United States of America
| | - Yiwen Li
- Bascom Palmer Eye Institute, University of Miami, Miller School of Medicine, Miami, Florida, United States of America
| | - Zhengying Wang
- Bascom Palmer Eye Institute, University of Miami, Miller School of Medicine, Miami, Florida, United States of America
| | - Vittorio Porciatti
- Bascom Palmer Eye Institute, University of Miami, Miller School of Medicine, Miami, Florida, United States of America
- * E-mail:
| |
Collapse
|
11
|
Li HY, Ruan YW, Ren CR, Cui Q, So KF. Mechanisms of secondary degeneration after partial optic nerve transection. Neural Regen Res 2014; 9:565-74. [PMID: 25206855 PMCID: PMC4146235 DOI: 10.4103/1673-5374.130093] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2014] [Indexed: 01/23/2023] Open
Abstract
Secondary degeneration occurs commonly in the central nervous system after traumatic injuries and following acute and chronic diseases, including glaucoma. A constellation of mechanisms have been shown to be associated with secondary degeneration including apoptosis, necrosis, autophagy, oxidative stress, excitotoxicity, derangements in ionic homeostasis and calcium influx. Glial cells, such as microglia, astrocytes and oligodendrocytes, have also been demonstrated to take part in the process of secondary injury. Partial optic nerve transection is a useful model which was established about 13 years ago. The merit of this model compared with other optic nerve injury models used for glaucoma study, including complete optic nerve transection model and optic nerve crush model, is the possibility to separate primary degeneration from secondary degeneration in location. Therefore, it provides a good tool for the study of secondary degeneration. This review will focus on the research progress of the mechanisms of secondary degeneration using partial optic nerve transection model.
Collapse
Affiliation(s)
- Hong-Ying Li
- Department of Ophthalmology, the University of Hong Kong, Hong Kong Special Administrative Region, China ; State Key Laboratory of Brain and Cognitive Science, the University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Yi-Wen Ruan
- GHM Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province, China ; Guangdong Key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou, Guangdong Province, China
| | - Chao-Ran Ren
- GHM Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province, China ; Guangdong Key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou, Guangdong Province, China
| | - Qi Cui
- GHM Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province, China ; Guangdong Key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou, Guangdong Province, China
| | - Kwok-Fai So
- Department of Ophthalmology, the University of Hong Kong, Hong Kong Special Administrative Region, China ; GHM Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province, China ; Guangdong Key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou, Guangdong Province, China ; State Key Laboratory of Brain and Cognitive Science, the University of Hong Kong, Hong Kong Special Administrative Region, China
| |
Collapse
|
12
|
Shahidullah M, Mandal A, Wei G, Delamere NA. Nitric oxide regulation of Na, K-ATPase activity in ocular ciliary epithelium involves Src family kinase. J Cell Physiol 2014; 229:343-52. [PMID: 24037816 DOI: 10.1002/jcp.24454] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 08/16/2013] [Indexed: 01/22/2023]
Abstract
The nitric oxide (NO) donor sodium nitroprusside (SNP) is known to reduce aqueous humor (AH) secretion in the isolated porcine eye. Previously, SNP was found to inhibit Na,K-ATPase activity in nonpigmented ciliary epithelium (NPE), AH-secreting cells, through a cGMP/protein kinase G (PKG)-mediated pathway. Here we show Src family kinase (SFK) activation in the Na,K-ATPase activity response to SNP. Ouabain-sensitive (86) Rb uptake was reduced by >35% in cultured NPE cells exposed to SNP (100 µM) or exogenously added cGMP (8-Br-cGMP) (100 µM) and the SFK inhibitor PP2 (10 µM) prevented the response. Ouabain-sensitive ATP hydrolysis was reduced by ~40% in samples detected in material obtained from SNP- and 8-Br-cGMP-treated cells following homogenization, pointing to an intrinsic change of Na,K-ATPase activity. Tyrosine-10 phosphorylation of Na,K-ATPase α1 subunit was detected in SNP and L-arginine-treated cells and the response prevented by PP2. SNP elicited an increase in cell cGMP. Cells exposed to 8-Br-cGMP displayed SFK activation (phosphorylation) and inhibition of both ouabain-sensitive (86) Rb uptake and Na,K-ATPase activity that was prevented by PP2. SFK activation, which also occurred in SNP-treated cells, was suppressed by inhibitors of soluble guanylate cyclase (ODQ; 10 µM) and PKG (KT5823; 1 µM). SNP and 8-Br-cGMP also increased phosphorylation of ERK1/2 and p38 MAPK and the response prevented by PP2. However, U0126 did not prevent SNP or 8-Br-cGMP-induced inhibition of Na,K-ATPase activity. Taken together, the results suggest that NO activates guanylate cyclase to cause a rise in cGMP and subsequent PKG-dependent SFK activation. Inhibition of Na,K-ATPase activity depends on SFK activation.
Collapse
|
13
|
Nipradilol promotes axon regeneration through S-nitrosylation of PTEN in retinal ganglion cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 801:751-7. [PMID: 24664767 DOI: 10.1007/978-1-4614-3209-8_94] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Nipradilol (Nip) is registered as an anti-glaucoma agent. More recently, a protective effect of Nip has been demonstrated in retinal ganglion cells (RGCs) mediated by S-nitrosylation of antioxidative-related Keap1 protein due to its nitric oxide (NO)-donating effect. It also has been reported that Nip promoted axon outgrowth in cat RGCs. However, the detailed mechanism remains unclear. NO physiologically regulates numerous cellular responses through S-nitrosylation of protein at cysteine residues. It has been reported that phosphatase and tensin homologue deleted on chromosome 10 (PTEN) deletion strongly showed axon regeneration after optic nerve injury. PTEN inactivation by S-nitrosylation results in the accumulation of phosphatidylinositol (3, 4, 5) triphosphate (PIP3) and the activation of Akt/mammalian target of rapamycin (mTOR) signaling. The ribosomal S6 kinase 1 (S6K) which can monitor as phospho-S6 (pS6) is one of major target of mTOR. In this study, we investigated the possibility that Nip can promote axon outgrowth in RGCs by Akt/mTOR signaling thorough S-nitrosylation of PTEN.
Collapse
|
14
|
Sagawa H, Terasaki H, Nakanishi K, Tokita Y, Watanabe M. Regeneration of optic nerve fibers with unoprostone, a prostaglandin-related antiglaucoma drug, in adult cats. Jpn J Ophthalmol 2013; 58:100-9. [PMID: 24129676 DOI: 10.1007/s10384-013-0282-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 08/26/2013] [Indexed: 01/01/2023]
Abstract
PURPOSE We investigated the effects of unoprostone on neurite extension of cultured retinal pieces and axonal regeneration of retinal ganglion cells in the crushed optic nerve of adult cats. METHODS The retinal pieces were cultured with unoprostone or its primary metabolite, M1, dissolved in DMSO or polysorbate for 14 days, and the number and length of Tau-1-positive neurites and glial processes labeled with anti-glial fibrillary acidic protein antibodies were examined. After the optic nerve was crushed, unoprostone was injected into the vitreous body and the crushed site. On day 12, wheat germ agglutinin-conjugated horseradish peroxidase was injected into the vitreous body to anterogradely label the regenerated axons. On day 14, the optic nerve was excised and longitudinally sectioned. After peroxidase reaction, the number of axons regenerating beyond the crush site was examined. RESULTS The greatest number of neurites protruded from the cultured retinal pieces in 3 μM unoprostone and 3 μM M1. The neurite length was also the longest at 3 μM unoprostone and 3 μM M1, in which no glial processes were detected. After injections of 3 μM unoprostone, the final concentration in the vitreous humor, into the vitreous body and the crush site, the optic nerve fibers regenerated and extended beyond the crush site. In contrast, almost no fibers extended beyond the crush site after injection of phosphate-buffered saline. CONCLUSIONS The results indicate that intravitreal injection of unoprostone promotes regeneration of crushed optic nerve fibers in adult cats.
Collapse
Affiliation(s)
- Hiroe Sagawa
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | |
Collapse
|
15
|
Himori N, Yamamoto K, Maruyama K, Ryu M, Taguchi K, Yamamoto M, Nakazawa T. Critical role of Nrf2 in oxidative stress-induced retinal ganglion cell death. J Neurochem 2013; 127:669-80. [DOI: 10.1111/jnc.12325] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 05/28/2013] [Accepted: 05/29/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Noriko Himori
- Department of Ophthalmology; Tohoku University Graduate School of Medicine; Sendai Miyagi Japan
| | - Kotaro Yamamoto
- Department of Ophthalmology; Tohoku University Graduate School of Medicine; Sendai Miyagi Japan
| | - Kazuichi Maruyama
- Department of Ophthalmology; Tohoku University Graduate School of Medicine; Sendai Miyagi Japan
| | - Morin Ryu
- Department of Ophthalmology; Tohoku University Graduate School of Medicine; Sendai Miyagi Japan
| | - Keiko Taguchi
- Department of Medical Biochemistry; Tohoku University Graduate School of Medicine; Sendai Miyagi Japan
| | - Masayuki Yamamoto
- Department of Medical Biochemistry; Tohoku University Graduate School of Medicine; Sendai Miyagi Japan
| | - Toru Nakazawa
- Department of Ophthalmology; Tohoku University Graduate School of Medicine; Sendai Miyagi Japan
| |
Collapse
|
16
|
Protective action of nipradilol mediated through S-nitrosylation of Keap1 and HO-1 induction in retinal ganglion cells. Neurochem Int 2012; 61:1242-53. [PMID: 22995787 DOI: 10.1016/j.neuint.2012.09.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 08/29/2012] [Accepted: 09/05/2012] [Indexed: 11/22/2022]
Abstract
Nipradilol (Nip), which has α1- and β-adrenoceptor antagonist and nitric oxide (NO)-donating properties, has clinically been used as an anti-glaucomatous agent in Japan. NO mediates cellular signaling pathways that regulate physiological functions. The major signaling mechanisms mediated by NO are cGMP-dependent signaling and protein S-nitrosylation-dependent signalings. Nip has been described as having neuroprotective effects through cGMP-dependent pathway in retinal ganglion cells (RGCs). However, the effect seems to be partial. On the other hand, whether Nip can prevent cell death through S-nitrosylation is not yet clarified. In this study, we therefore focused on the neuroprotective mechanism of Nip through S-nitrosylation. Nip showed a dramatic neuroprotective effect against oxidative stress-induced death of RGC-5 cells. However, denitro-nipradilol, which does not have NO-donating properties, was not protective against oxidative stress. Furthermore, an NO scavenger significantly reversed the protective action of Nip against oxidative stress. In addition, we demonstrated that α1- or β-adrenoceptor antagonists (prazosin or timolol) did not show any neuroprotective effect against oxidative stress in RGC-5 cells. We also demonstrated that Nip induced the expression of the NO-dependent antioxidant enzyme, heme oxygenase-1 (HO-1). S-nitrosylation of Kelch-like ECH-associated protein by Nip was shown to contribute to the translocation of NF-E2-related factor 2 to the nucleus, and triggered transcriptional activation of HO-1. Furthermore, RGC death and levels of 4-hydroxy-2-nonenal (4HNE) were increased after optic nerve injury in vivo. Pretreatment with Nip significantly suppressed RGC death and accumulation of 4HNE after injury through an HO-1 activity-dependent mechanism. These data demonstrate a novel neuroprotective action of Nip against oxidative stress-induced RGC death in vitro and in vivo.
Collapse
|
17
|
Abstract
Glaucoma is a neurodegenerative disease characterized by loss of retinal ganglion cells and their axons. Recent evidence suggests that intraocular pressure (IOP) is only one of the many risk factors for this disease. Current treatment options for this disease have been limited to the reduction of IOP; however, it is clear now that the disease progression continues in many patients despite effective lowering of IOP. In the search for newer modalities in treating this disease, much data have emerged from experimental research the world over, suggesting various pathological processes involved in this disease and newer possible strategies to treat it. This review article looks into the current understanding of the pathophysiology of glaucoma, the importance of neuroprotection, the various possible pharmacological approaches for neuroprotection and evidence of current available medications.
Collapse
Affiliation(s)
- Sushil K Vasudevan
- Centre for Eye Research Australia, University of Melbourne and Glaucoma Unit, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia.
| | | | | |
Collapse
|
18
|
Araie M, Shirato S, Yamazaki Y, Kitazawa Y, Ohashi Y. Visual field loss in patients with normal-tension glaucoma under topical nipradilol or timolol: subgroup and subfield analyses of the nipradilol-timolol study. Jpn J Ophthalmol 2010; 54:278-85. [PMID: 20700793 DOI: 10.1007/s10384-010-0815-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Accepted: 02/16/2010] [Indexed: 10/19/2022]
Abstract
PURPOSE To estimate the deterioration rates of visual field loss in Japanese normal-tension glaucoma (NTG) patients under either topical nipradilol or timolol, and to explore intergroup differences in the treatment results. METHODS A total of 146 NTG patients with mild to moderate damage were randomized to either nipradilol or timolol and followed for 3 years with a periodic comprehensive ophthalmological visual field examination (30-2 Humphrey perimeter program) every 6 months (the Nipradilol-Timolol Study). The time course of mean deviation (MD), the average total deviation (TD(mean)) in four subfields, and the corrected pattern standard deviation (CPSD) were compared between the two groups using regression analysis with a linear mixed effect model. RESULTS The estimated slope for MD (dB/year) was -0.03 in the nipradilol and -0.05 in the timolol group (P > 0.4). In both groups, TD(mean) in the superior-central subfield and CPSD showed significant changes (-0.3 and 0.2-0.3, P <or= 0.001). In the patients with early visual field loss or those younger than 40 years, deterioration of some visual field parameters tended to be slower in the nipradilol group than in the timolol group. CONCLUSION During 3 years of monotherapy with either nipradilol or timolol in NTG patients, only TD(mean) in the superior-central subfield and the CPSD changed significantly without any intergroup differences.
Collapse
Affiliation(s)
- Makoto Araie
- Department of Ophthalmology, University of Tokyo Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
19
|
Neuroprotective Effect of Nipradilol [3,4-dihydro-8-(2-hydroxy-3-isopropylamino)-propoxy-3-nitroxy-2H-1-benzopyran] in a Rat Model of Optic Nerve Degeneration. J Glaucoma 2009; 18:26-31. [DOI: 10.1097/ijg.0b013e3181752c6f] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
20
|
Tatsumi Y, Kanamori A, Nagai-Kusuhara A, Nakanishi Y, Agarwal N, Negi A, Nakamura M. Nipradilol protects rat retinal ganglion cells from apoptosis induced by serum deprivation in vitro and by diabetes in vivo. Curr Eye Res 2008; 33:683-92. [PMID: 18696344 DOI: 10.1080/02713680802323157] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
PURPOSE To investigate if nipradilol has an anti-apoptotic effect in serum-deprived RGC-5 cells and in the streptozotocin-induced diabetic rat retina. METHODS Apoptosis was quantified by activated caspase-3 immunohistochemistry or terminal dUTP nick end-labeling assay. RESULTS Nipradilol dose-dependently suppressed apoptosis in a protein kinase A- and G-dependent manner and counteracted glutamate-induced calcium entry in the RGC-5 cells and reduced apoptotic cells in the retinal ganglion cell layer of 4- and 12-week diabetic retinas compared to controls when instilled for 5 days. Removal of the nitric oxide moiety from nipradilol blocked these effects. CONCLUSIONS Nipradilol protects RGCs from apoptosis induced by serum-deprivation in vitro and by diabetes in vivo. The NO-related signaling pathway mediates the anti-apoptotic ability of nipradilol.
Collapse
Affiliation(s)
- Yasuko Tatsumi
- Department of Surgery, Division of Ophthalmology, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | | | | | | | | | | |
Collapse
|
21
|
Araie M, Shirato S, Yamazaki Y, Kitazawa Y, Ohashi Y. Clinical efficacy of topical nipradilol and timolol on visual field performance in normal-tension glaucoma: a multicenter, randomized, double-masked comparative study. Jpn J Ophthalmol 2008; 52:255-264. [PMID: 18773262 DOI: 10.1007/s10384-008-0540-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2007] [Accepted: 03/31/2008] [Indexed: 11/28/2022]
Affiliation(s)
- Makoto Araie
- Department of Ophthalmology, University of Tokyo Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan.
| | | | - Yoshio Yamazaki
- Department of Ophthalmology, Nihon University School of Medicine, Itabashi-ku, Tokyo, Japan
| | | | - Yasuo Ohashi
- Department of Biostatistics, School of Public Health, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
22
|
Ikeda Y, Mori K, Ishibashi T, Naruse S, Nakajima N, Kinoshita S. Effects of Switching from Topical β-Blockers to Latanoprost on Intraocular Pressure in Patients with Normal-Tension Glaucoma. J Ocul Pharmacol Ther 2008; 24:230-4. [DOI: 10.1089/jop.2007.0016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Yoko Ikeda
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kazuhiko Mori
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takeshi Ishibashi
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shigeta Naruse
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | - Shigeru Kinoshita
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
23
|
Nakazawa T, Shimura M, Nishida K. Understanding the mechanism of retinal detachment-induced photoreceptor apoptosis: neuroprotective treatments for photoreceptor apoptosis. Inflamm Regen 2008. [DOI: 10.2492/inflammregen.28.522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
24
|
Yata T, Nakamura M, Sagawa H, Tokita Y, Terasaki H, Watanabe M. Survival and axonal regeneration of off-center retinal ganglion cells of adult cats are promoted with an anti-glaucoma drug, nipradilol, but not BDNF and CNTF. Neuroscience 2007; 148:53-64. [PMID: 17629411 DOI: 10.1016/j.neuroscience.2007.05.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2007] [Revised: 05/14/2007] [Accepted: 05/18/2007] [Indexed: 12/01/2022]
Abstract
OFF-center retinal ganglion cells (RGCs) occupy a smaller proportion than ON RGCs when RGCs regenerate axons into a transplanted peripheral nerve. We examined whether the regeneration ability of OFF RGCs in adult cats was promoted when the numbers of regenerating RGCs were increased with brain-derived neurotrophic factor (BDNF)+ciliary neurotrophic factor (CNTF)+forskolin (BCF) or 3,4-dihydro-8-(2-hydroxy-3-isopropylamino)-propoxy-3-nitroxy-2H-1-benzopyran (nipradilol), an anti-glaucoma drug. ON or OFF RGCs were morphologically determined on the basis of their dendritic ramification in the inner plexiform layer using computational analysis. In the normal intact retina the ratio of ON and OFF RGCs (ON/OFF ratio) was 1.25 (55%/44%); whereas, it was 2.61 in regenerating RGCs with saline injection (control) 6 weeks after peripheral nerve transplantation. Estimated numbers of regenerating ON and OFF RGCs were 2149 and 895, respectively. An injection of BCF increased only numbers of ON RGCs into 5766 (2.7-fold to control) but not that of OFF RGCs, n=858. Nipradilol increased both estimated numbers of ON (11,518, 5.4-fold to control) and OFF RGCs (7330, 8.2-fold to control). In the retinas with optic nerve (OpN) transection and intravitreal saline-, BCF- or nipradilol-injection, numbers of ON and OFF RGCs surviving axotomy showed similar trend to that in regenerating RGCs. Thus, nipradilol promoted the survival and regeneration abilities of both of ON and OFF RGCs whereas BCF only did the abilities of ON RGCs. The distribution of tropo-myosin-related kinase B, BDNF receptor, was sparser in the outer two thirds of inner plexiform layer. The lower surviving ability of OFF-RGCs may be attributed in part to the distribution.
Collapse
Affiliation(s)
- T Yata
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Turuma-cho 65, Showaku, Nagoya, Aichi 466-8550, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Beril Gok H, Solaroglu I, Okutan O, Cimen B, Kaptanoglu E, Palaoglu S. Metoprolol treatment decreases tissue myeloperoxidase activity after spinal cord injury in rats. J Clin Neurosci 2007; 14:138-42. [PMID: 17161287 DOI: 10.1016/j.jocn.2005.10.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2005] [Accepted: 10/05/2005] [Indexed: 11/28/2022]
Abstract
Neutrophil infiltration has been reported to play an important role in spinal cord injury (SCI). In addition to their cardioprotective effects, beta-blockers have been found to have neuroprotective effects on the central nervous system, but their effect on SCI has not yet been studied. In the current study, we investigated the effect of metoprolol on myeloperoxidase (MPO) activity, a marker of neutrophil activation, in the spinal cord after experimental SCI in rats. Rats were divided into six groups: controls received only laminectomy and spinal cord samples were taken immediately; the sham operated group received laminectomy, and spinal cord samples were taken 4h after laminectomy; the trauma only group underwent a 50g/cm contusion injury but received no medication; and three other groups underwent trauma as for the trauma group, and received 30mg/kg methylprednisolone, 1mg/kg metoprolol, or 1mL saline, respectively. All the medications were given intraperitoneally as single doses, immediately after trauma. Spinal cord samples were taken 4h after trauma and studied for MPO activity. The results showed that tissue MPO activity increased after injury. Both metoprolol and methylprednisolone treatments decreased MPO activity, indicating a reduction in neutrophil infiltration in damaged tissue. The effect of metoprolol on MPO activity was found to be similar to methylprednisolone. In view of these data, we conclude that metoprolol may be effective in protecting rat spinal cord from secondary injury.
Collapse
Affiliation(s)
- H Beril Gok
- Department of Neurological Surgery, Ankara Ataturk Research and Education Hospital, Ankara, Turkey
| | | | | | | | | | | |
Collapse
|
26
|
Nakazawa T, Hisatomi T, Nakazawa C, Noda K, Maruyama K, She H, Matsubara A, Miyahara S, Nakao S, Yin Y, Benowitz L, Hafezi-Moghadam A, Miller JW. Monocyte chemoattractant protein 1 mediates retinal detachment-induced photoreceptor apoptosis. Proc Natl Acad Sci U S A 2007; 104:2425-30. [PMID: 17284607 PMCID: PMC1892947 DOI: 10.1073/pnas.0608167104] [Citation(s) in RCA: 228] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Photoreceptor apoptosis is a major cause of visual loss in retinal detachment (RD) and several other visual disorders, but the underlying mechanisms remain elusive. Recently, increased expression of monocyte chemoattractant protein 1 (MCP-1) was reported in vitreous humor samples of patients with RD and diabetic retinopathy as well as in the brain tissues of patients with neurodegenerative diseases, including Alzheimer's disease and multiple sclerosis. Here we report that MCP-1 plays a critical role in mediating photoreceptor apoptosis in an experimental model of RD. RD led to increased MCP-1 expression in the Müller glia and increased CD11b+ macrophage/microglia in the detached retina. An MCP-1 blocking antibody greatly reduced macrophage/microglia infiltration and RD-induced photoreceptor apoptosis. Confirming these results, MCP-1 gene-deficient mice showed significantly reduced macrophage/microglia infiltration after RD and very little photoreceptor apoptosis. In primary retinal mixed cultures, MCP-1 was cytotoxic for recoverin+ photoreceptors, and this toxicity was eliminated through immunodepleting macrophage/microglia from the culture. In vivo, deletion of the gene encoding CD11b/CD18 nearly eliminated macrophage/microglia infiltration to the retina after RD and the loss of photoreceptors. Thus, MCP-1 expression and subsequent macrophage/microglia infiltration and activation are critical for RD-induced photoreceptor apoptosis. This pathway may be an important therapeutic target for preventing photoreceptor apoptosis in RD and other CNS diseases that share a common etiology.
Collapse
Affiliation(s)
- Toru Nakazawa
- *Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, and
- Department of Ophthalmology, Tohoku University School of Medicine, Sendai, Miyagi 980-8574, Japan
| | - Toshio Hisatomi
- *Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, and
| | - Chifuyu Nakazawa
- *Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, and
| | - Kosuke Noda
- *Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, and
| | - Kazuichi Maruyama
- *Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, and
| | - Haicheng She
- *Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, and
| | - Akihisa Matsubara
- *Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, and
| | - Shinsuke Miyahara
- *Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, and
| | - Shintaro Nakao
- *Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, and
| | - Yuqin Yin
- Department of Neurosurgery and Neurobiology Program, Children's Hospital, Harvard Medical School, Boston, MA 02114; and
| | - Larry Benowitz
- Department of Neurosurgery and Neurobiology Program, Children's Hospital, Harvard Medical School, Boston, MA 02114; and
| | - Ali Hafezi-Moghadam
- *Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, and
| | - Joan W. Miller
- *Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, and
- To whom correspondence should be addressed at:
Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, 243 Charles Street, Boston, MA 02114. E-mail:
| |
Collapse
|
27
|
Nakazawa T, Nakazawa C, Matsubara A, Noda K, Hisatomi T, She H, Michaud N, Hafezi-Moghadam A, Miller JW, Benowitz LI. Tumor necrosis factor-alpha mediates oligodendrocyte death and delayed retinal ganglion cell loss in a mouse model of glaucoma. J Neurosci 2006; 26:12633-41. [PMID: 17151265 PMCID: PMC6674838 DOI: 10.1523/jneurosci.2801-06.2006] [Citation(s) in RCA: 334] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Glaucoma is a widespread ocular disease characterized by a progressive loss of retinal ganglion cells (RGCs). Previous studies suggest that the cytokine tumor necrosis factor-alpha (TNF-alpha) may contribute to the disease process, although its role in vivo and its mechanism of action are unclear. To investigate pathophysiological mechanisms in glaucoma, we induced ocular hypertension (OH) in mice by angle closure via laser irradiation. This treatment resulted in a rapid upregulation of TNF-alpha, followed sequentially by microglial activation, loss of optic nerve oligodendrocytes, and delayed loss of RGCs. Intravitreal TNF-alpha injections in normal mice mimicked these effects. Conversely, an anti-TNF-alpha-neutralizing antibody or deleting the genes encoding TNF-alpha or its receptor, TNFR2, blocked the deleterious effects of OH. Deleting the CD11b/CD18 gene prevented microglial activation and also blocked the pathophysiological effects of OH. Thus TNF-alpha provides an essential, although indirect, link between OH and RGC loss in vivo. Blocking TNF-alpha signaling or inflammation, therefore, may be helpful in treating glaucoma.
Collapse
Affiliation(s)
- Toru Nakazawa
- Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts 02114
- Department of Neurosurgery and Neurobiology Program, Children's Hospital Boston, Boston, Massachusetts 02115, and
- Departments of Ophthalmology and
- Surgery and Program in Neuroscience, Harvard Medical School, Boston, Massachusetts 02115
| | - Chifuyu Nakazawa
- Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts 02114
- Departments of Ophthalmology and
| | - Akihisa Matsubara
- Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts 02114
- Departments of Ophthalmology and
| | - Kousuke Noda
- Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts 02114
- Departments of Ophthalmology and
| | - Toshio Hisatomi
- Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts 02114
- Departments of Ophthalmology and
| | - Haicheng She
- Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts 02114
- Departments of Ophthalmology and
| | - Norman Michaud
- Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts 02114
- Departments of Ophthalmology and
| | - Ali Hafezi-Moghadam
- Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts 02114
- Departments of Ophthalmology and
| | - Joan W. Miller
- Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts 02114
- Departments of Ophthalmology and
| | - Larry I. Benowitz
- Department of Neurosurgery and Neurobiology Program, Children's Hospital Boston, Boston, Massachusetts 02115, and
- Surgery and Program in Neuroscience, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
28
|
Nagai-Kusuhara A, Nakamura M, Mukuno H, Kanamori A, Negi A, Seigel GM. cAMP-responsive element binding protein mediates a cGMP/protein kinase G-dependent anti-apoptotic signal induced by nitric oxide in retinal neuro-glial progenitor cells. Exp Eye Res 2006; 84:152-62. [PMID: 17081519 DOI: 10.1016/j.exer.2006.09.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2006] [Revised: 08/26/2006] [Accepted: 09/19/2006] [Indexed: 11/24/2022]
Abstract
Nitric oxide (NO) is cytoprotective to certain types of neuronal cells. The neuroprotective ability of NO in the retina was reportedly mediated by the cyclic GMP (cGMP) to protein kinase G (PKG) pathway. Cyclic AMP-responsive element binding protein (CREB) plays an essential role in the NO/cGMP/PKG-mediated survival of rat cerebellar granule cells. We tested whether CREB transduces the NO/cGMP/PKG anti-apoptotic cascade in R28 neuro-glial progenitor cells. Apoptosis was induced in R28 cells by serum deprivation for 24 h. Varying concentrations of two NO donors, sodium nitroprusside (SNP) and nipradilol, were added to medium with or without an NO scavenger, a soluble guanylyl cyclase inhibitor, or a PKG inhibitor. The cells were immunostained against activated caspase-3 and counterstained with Hoechst 33258. Apoptosis was quantified by counting activated caspase-3 positive or pyknotic cells. SNP and nipradilol rescued R28 cells from apoptosis in a dose-dependent manner, at an optimal concentration of 1.0 microM and 10 microM, respectively. Higher concentrations were cytotoxic. The NO scavenger and the inhibitors decreased the anti-apoptotic effect of the NO donors. Intracellular cGMP levels were increased after exposure to SNP and nipradilol. Western blotting showed that both NO donors increased CREB phosphorylation, which was blocked when pre-exposed to the inhibitors. Transfection with a dominant negative CREB construct defective of phosphorylation at Ser-133 interfered with the anti-apoptotic activity of SNP. These results indicate that CREB at least in part mediates the cGMP/PKG-dependent anti-apoptotic signal induced by NO in R28 cells.
Collapse
Affiliation(s)
- Azusa Nagai-Kusuhara
- Department of Organs Therapeutics, Division of Ophthalmology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | | | | | | | | | | |
Collapse
|
29
|
Ono R, Kakehashi A, Ito Y, Sugi N, Makino S, Kobayashi E, Hakamada Y, Takagi Y, Kitazume Y, Kawakami M. Effect of Topical Nipradilol on Retinal Microvascular Leukocyte Adhesion in Diabetic Rats. Ophthalmic Res 2006; 38:270-3. [PMID: 16974127 DOI: 10.1159/000095769] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2005] [Accepted: 02/01/2006] [Indexed: 11/19/2022]
Abstract
BACKGROUND Retinal leukostasis plays an important role in the pathogenesis of diabetic retinopathy. OBJECTIVES We studied the effects of nipradilol, a topical antiglaucoma alphabeta-blocker and nitric oxide donor, on the retinal vascular leukocyte adhesion of rats with diabetes. METHODS Diabetes was induced in seven Brown-Norway rats by one intravenous injection (65 mg/kg) of streptozotocin and confirmed by blood glucose levels >350 mg/dl 48 h after the injection. Nipradilol solution was instilled in the right eye and nipradilol-free base solution in the left eye for 3 weeks, after which the retinal microcirculation was evaluated by acridine orange leukocyte digital fluorography using laser scanning ophthalmoscopy. Leukocytes trapped in the retina were counted around the optic disc in a 5-disc-diameter area and compared between the right and the left eye. RESULTS The mean retinal leukostasis count in the nipradilol-treated eyes (19 +/- 15 cells) was significantly lower than in the untreated eyes (49 +/- 19 cells; p < 0.0008). The diameter of the retinal artery in the eyes treated with nipradilol significantly increased (111 +/- 13.5%) compared with untreated eyes (p < 0.03). CONCLUSIONS Topical nipradilol significantly reduced retinal leukostasis in the retinal microcirculation in diabetic rats and may be a prophylactic agent for early diabetic retinopathy through its nitric oxide donor effects on the microcirculation.
Collapse
Affiliation(s)
- Ryuichiro Ono
- Department of Ophthalmology, Omiya Medical Center, Jichi Medical University, Saitama, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Shahidullah M, Delamere NA. NO donors inhibit Na,K-ATPase activity by a protein kinase G-dependent mechanism in the nonpigmented ciliary epithelium of the porcine eye. Br J Pharmacol 2006; 148:871-80. [PMID: 16770322 PMCID: PMC1617073 DOI: 10.1038/sj.bjp.0706795] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
1. We developed a novel method to isolate nonpigmented epithelial (NPE) cells from porcine eyes in order to examine Na,K-ATPase responses to nitric oxide (NO) donors specifically in the epithelium. 2. Cells were treated with NO donors and other test compounds for 20 min prior to Na,K-ATPase activity measurement. 3. NO donors, sodium nitroprusside (SNP, 1 microM-1 mM), sodium azide (100 nM-1 microM) and S-nitroso-N-acetylpenicillamine (1 microM-1 mM) caused significant concentration-dependent inhibition of Na,K-ATPase activity. Detection of nitrite in the medium of L-arginine and SNP-treated NPE confirmed NO generation. 4. Concentration-dependent inhibition of Na,K-ATPase was also obtained by L-arginine (1-3 mM), a physiological precursor of NO and 8p-CPT-cGMP (1-100 microM), a cell permeable analog of cGMP. The L-arginine effect was abolished when the NO synthesizing enzyme, NO-synthase, was inhibited by L-NAME (100 microM). 5. The inhibitory effect of SNP or sodium azide on Na,K-ATPase activity was suppressed by soluble guanylate cyclase (sGC) inhibitors, ODQ (10 microM) or methylene blue (10 microM). 6. The inhibitory effect of 8p-CPT-cGMP on Na,K-ATPase was abolished by protein kinase G (PKG) inhibitors, H-8 (1 microM) and H-9 (20 microM), but not by the protein kinase A (PKA) inhibitor H-89 (100 nM). H-8 and H-9 partially suppressed the inhibitory effect of SNP on Na,K-ATPase. 7. Taken together the results indicate that Na,K-ATPase inhibition response to NO donors involves activation of sGC, generation of cGMP and activation of PKG. These findings suggest that Na,K-ATPase inhibition in NPE may contribute to the ability of NO donors to reduce aqueous humor secretion.
Collapse
Affiliation(s)
- Mohammad Shahidullah
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, Kentucky 40202, USA.
| | | |
Collapse
|
31
|
Nakazawa T, Takahashi H, Shimura M. Estrogen has a neuroprotective effect on axotomized RGCs through ERK signal transduction pathway. Brain Res 2006; 1093:141-9. [PMID: 16696958 DOI: 10.1016/j.brainres.2006.03.084] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2005] [Revised: 03/19/2006] [Accepted: 03/22/2006] [Indexed: 12/28/2022]
Abstract
The neuroprotective effects of estrogen on neuronal cells in central nervous system have been described previously, however, the mechanisms of neuroprotective effect of estrogen against retinal ganglion cell (RGC) death has not been well identified. To examine the role of endogenous sex steroids produced in ovary, retina samples were prepared from female rats with or without ovariectomy and the density of RGC was calculated. Ovariectomy alone had no effect on the density of fluorogold (FG)-labeled RGC without injury, while the density of surviving RGC after optic nerve axotomy with ovariectomy was significantly decreased compared to that without ovariectomy. To examine the role of exogenous sex steroids, 17beta-estradiol was injected into the vitreous cavity in ovariectomized rats and showed neuroprotective effect on axotomy-induced RGC death while exogenous progesterone showed no effect. Immunoblot and immunohistochemical analysis demonstrated that ERK-c-Fos signal transduction pathway was activated by exogenous 17beta-estradiol in ganglion cell layer. U0126, an ERK inhibitor, inhibited the neuroprotective effect of estrogen on axotomized RGC death. These data suggest that estrogen has neuroprotective effect through activation of ERK-c-Fos signaling pathway on axotomy-induced RGC death. The neuroprotective effect of estrogen may have therapeutic benefits in retinal diseases associated with RGC death such as glaucoma.
Collapse
Affiliation(s)
- Toru Nakazawa
- Department of Ophthalmology and Visual Science, Tohoku University Graduate School of Medicine, Sendai, 980-8574 Miyagi, Japan.
| | | | | |
Collapse
|
32
|
Miki A, Otori Y, Morimoto T, Okada M, Tano Y. Protective effect of donepezil on retinal ganglion cells in vitro and in vivo. Curr Eye Res 2006; 31:69-77. [PMID: 16421021 DOI: 10.1080/02713680500477438] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The neuroprotective effect of donepezil, an acetylcholinesterase inhibitor on retinal ganglion cells (RGCs), was examined. The survival of purified RGCs after exposure to glutamate with or without donepezil (10(- 7) M to 10(- 5) M) was measured after 3 days in culture. In vivo, the neuroprotective effect of donepezil was examined by quantifying the number of viable RGCs 7 days after axotomy in adult rats. In vitro, donepezil dose-dependently reduced RGC death caused by glutamate toxicity. Oral administration of donepezil (10 mg kg(-1) day(-1)) significantly reduced RGC death after axotomy. In conclusion, donepezil exerts a protective effect on RGCs both in vitro and in vivo.
Collapse
Affiliation(s)
- Atsuya Miki
- Department of Ophthalmology and Visual Science, Osaka University Medical School, Suita, Osaka, Japan
| | | | | | | | | |
Collapse
|
33
|
Taguchi R, Shirakawa H, Yamaguchi T, Kume T, Katsuki H, Akaike A. Nitric oxide-mediated effect of nipradilol, an alpha- and beta-adrenergic blocker, on glutamate neurotoxicity in rat cortical cultures. Eur J Pharmacol 2006; 535:86-94. [PMID: 16516884 DOI: 10.1016/j.ejphar.2006.01.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2005] [Revised: 01/02/2006] [Accepted: 01/20/2006] [Indexed: 02/06/2023]
Abstract
Nipradilol (3,4-dihydro-8-(2-hydroxy-3-isopropylamino)propoxy-3-nitroxy-2H-1-benzopyran) is used clinically as an anti-glaucoma ophthalmic solution in Japan, and was recently reported to suppress N-methyl-d-aspartate-induced retinal damage in rats. Here we investigated cytotoxic and cytoprotective actions of nipradilol on primary cultures of rat cortical neurons. Treatment of cortical cultures with a high concentration (500 microM) of nipradilol significantly reduced cell viability, increased lactate dehydrogenase (LDH) release and nitrite concentration in culture medium, whereas desnitro-nipradilol (3,4-dihydro-8-(2-hydroxy-3-isopropylamino)propoxy-3-hydroxy-2H-1-benzopyran) had no significant effects. Nipradilol-induced neuronal damage was inhibited by S-hexylglutathione, a glutathione S-transferase inhibitor, and FeTPPS (5,10,15,20-tetrakis(4-sulfonatophenyl)prophyrinato iron (III) chloride), a peroxynitrite decomposition catalyst. On the other hand, relatively low concentrations (10-100 microM) of nipradilol but not desnitro-nipradilol prevented neuronal cell death induced by 24 h application of 100 microM glutamate. Importantly, neuroprotective concentration (100 microM) of nipradilol suppressed glutamate-induced elevation of intracellular Ca2+ concentrations, but had no effect on intracellular cyclic GMP levels. Hence, nipradilol can protect cultured cortical neurons against glutamate neurotoxicity via cyclic GMP-independent mechanisms, and nitric oxide (NO) released from the nitoroxy moiety of nipradilol may mediate neuroprotective effect through the modulation of NMDA receptor function.
Collapse
Affiliation(s)
- Ryota Taguchi
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | |
Collapse
|
34
|
Kudo H, Nakazawa T, Shimura M, Takahashi H, Fuse N, Kashiwagi K, Tamai M. Neuroprotective effect of latanoprost on rat retinal ganglion cells. Graefes Arch Clin Exp Ophthalmol 2006; 244:1003-9. [PMID: 16411104 DOI: 10.1007/s00417-005-0215-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2005] [Revised: 10/20/2005] [Accepted: 11/11/2005] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND To investigate the neuroprotective effect of intravitreal administration of latanoprost on retinal ganglion cell (RGC) damage induced by N-methyl-D-aspartic acid (NMDA) or optic nerve axotomy. METHODS Using Sprague-Dawley rats, retinal ganglion cell damage was induced by either intravitreal administration of NMDA or optic nerve axotomy. Latanoprost at doses of 0.03, 0.3, 3, 30 and 300 pmol was administered intravitreally before NMDA injection or optic nerve axotomy. Retinal damage was evaluated by counting the number of surviving RGCs retrogradely labeled with fluorogold under the microscope. RESULTS Seven days after the NMDA injury, the number of surviving RGCs was significantly increased at doses of more than 30 pmol atanoprost (846+/-178 cells/mm(2 ) P=0.0166) compared with vehicle control (556+/-122 cells/mm(2)). Ten days after the optic nerve axotomy, the number of surviving RGC was significantly increased even at a dose of 0.3 pmol (815+/-239 cells/mm(2), P=0.0359) compared with control (462+/-75 cells/mm(2)). CONCLUSIONS Intravitreal administration of latanoprost has a neuroprotective effect on rat RGC damage induced by either NMDA or optic nerve axotomy, while its pharmacological features are different.
Collapse
Affiliation(s)
- Hideyo Kudo
- Department of Ophthalmology, Tohoku University School of Medicine, 1-1, Seiryo-machi, Aoba-ku, 980-8574, Sendai, Miyagi, Japan
| | | | | | | | | | | | | |
Collapse
|
35
|
Watanabe M, Tokita Y, Yata T. Axonal regeneration of cat retinal ganglion cells is promoted by nipradilol, an anti-glaucoma drug. Neuroscience 2006; 140:517-28. [PMID: 16549267 DOI: 10.1016/j.neuroscience.2006.02.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2005] [Revised: 02/03/2006] [Accepted: 02/08/2006] [Indexed: 11/24/2022]
Abstract
Neurons in the CNS can regenerate their axons in an environment of the peripheral nervous system, but this ability is limited. Here we show that an anti-glaucoma drug, nipradilol, at low concentration led to a four-fold increase in the number of cat retinal ganglion cells regenerating their axons into a transplanted peripheral nerve 4 and 6 weeks after axotomy. Nipradilol also increased the number of three main regenerating retinal ganglion cell types (alpha, beta, not alpha/beta), and enhanced the rate of axonal regeneration of these retinal ganglion cells. Nipradilol is a donor of nitric oxide and an antagonist of alpha-1, beta-1 and -2 adrenoreceptors, and we therefore examined whether one of these pharmacological effects might be more important in promoting axon regeneration. A nitric oxide donor increased the number of regenerating retinal ganglion cells, but not the rate of axonal regeneration. Denitro-nipradilol (nitric oxide-deprived nipradilol) or a nitric oxide scavenger injected before nipradilol increased the number of regenerating retinal ganglion cells but did not promote regeneration rate. Blockade of individual alpha- and beta-adrenoreceptors did not increase the number of regenerating retinal ganglion cells or the rate of regeneration. From these results, it is suggested that nitric oxide plays a crucial role in mediating the effects of nipradilol on axon regeneration and neuroprotection, and the metabolite of nipradilol supports the effects.
Collapse
Affiliation(s)
- M Watanabe
- Department of Perinatology, Institute for Developmental Research, Kasugai, Aichi 480-0392, Japan.
| | | | | |
Collapse
|
36
|
Nakazawa T, Morii H, Tamai M, Mori N. Selective upregulation of RB3/stathmin4 by ciliary neurotrophic factor following optic nerve axotomy. Brain Res 2005; 1061:97-106. [PMID: 16256088 DOI: 10.1016/j.brainres.2005.08.055] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2005] [Revised: 08/22/2005] [Accepted: 08/28/2005] [Indexed: 11/16/2022]
Abstract
In this study, we examined the cellular responses of stathmin-related proteins in the rat retina following optic nerve (ON) axotomy. To examine the distribution of stathmin-related gene products, we performed semi-quantitative reverse transcription polymerase chain reaction (RT-PCR), in situ hybridization (ISH) and immunohistochemical analyses. Retrograde labeling using a fluorescein tracer, fluorogold (FG), was used for the identification of retinal ganglion cells (RGCs). RT-PCR and ISH analyses indicated that the expression of RB3 was specifically increased in the ganglion cell layer (GCL) comparing to other members of stathmin-related gene family examined 3 days following the ON axotomy. When brain-derived neurotrophic factor was administrated intravitreously, the induction of RB3 mRNA sustained up to 7 days after axotomy, although the peak induction level was unchanged. In contrast, ciliary neurotrophic factor (CNTF) administration increased the peak level of RB3 mRNA induction significantly at 3 days after axotomy. Immunohistochemistry in combination with the retrograde labeling of axotomized cells by FG revealed that RB3 was increased following axotomy in FG-labeled RGCs. These data suggest that RB3 is the unique response protein in the stathmin-related proteins following ON axotomy and the induced RB3 may play a critical role in the CNTF-induced response on the axotomized RGCs, e.g. axonal regeneration and/or neuroprotection.
Collapse
Affiliation(s)
- Toru Nakazawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | | | | | | |
Collapse
|
37
|
Shahidullah M, Yap M, To CH. Cyclic GMP, sodium nitroprusside and sodium azide reduce aqueous humour formation in the isolated arterially perfused pig eye. Br J Pharmacol 2005; 145:84-92. [PMID: 15711584 PMCID: PMC1576120 DOI: 10.1038/sj.bjp.0706156] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The effect of nitric oxide (NO) on aqueous humour formation (AHF) and intraocular pressure (IOP) was studied using NO donors, sodium azide (AZ) and sodium nitroprusside (SNP). Using the porcine arterially perfused eye preparation, drug effects on AHF and IOP were measured by fluorescein dilution and manometry, respectively. Perfusion pressure of the ocular vasculature was also monitored using digital pressure transducer and pen recorder. L-Arginine (1.0 mM), a precursor of NO, but not D-arginine (1.0 mM), the inactive analogue, produced a significant reduction in AHF (28.5%) and IOP (21.1%). L-NAME (L-nitro-L-arginine) (10-100 microM), an NO synthase inhibitor, had no effect on AHF and IOP. However, L-NAME (100 microM) completely reversed L-arginine's effect. AZ and SNP reduced the AHF and IOP dose-dependently. AZ at 100 nM, 1 and 10 microM reduced AHF by 26.0, 39.7 and 51.7% and IOP by 10.8, 17.3 and 24.0%, respectively. SNP at 1, 10 and 100 microM reduced the AHF by 6.0, 24.2 and 35.4% and IOP by 3.5, 9.5 and 15.5%, respectively. 8-pCPT-cGMP (8-para-chlorophenyl-thioguanosine-3',5'-cyclic guanosine monophosphate, 10 microM), a cGMP analogue, also reduced the AHF (34.9%) and IOP (15.9%). The effects of AZ and SNP on the AHF and IOP were blocked by a soluble guanylate cyclase inhibitor ODQ (10 microM), whereas ODQ alone or combined with 8-pCPT-cGMP had no effect on the AHF and IOP. None of the drugs had any significant effect on ocular vasculature. The reduction of the AHF and IOP in the arterially perfused pig eye by nitrovasodilators is likely to involve the NO-cGMP pathway.
Collapse
Affiliation(s)
- Mohammad Shahidullah
- The Laboratory of Experimental Optometry, Department of Optometry and Radiography, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Author for correspondence:
| | - Maurice Yap
- The Laboratory of Experimental Optometry, Department of Optometry and Radiography, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Chi-ho To
- The Laboratory of Experimental Optometry, Department of Optometry and Radiography, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| |
Collapse
|
38
|
Nakazawa T, Endo S, Shimura M, Kondo M, Ueno S, Tamai M. Retinal G-substrate, potential downstream component of NO/cGMP/PKG pathway, is located in subtype of retinal ganglion cells and amacrine cells with protein phosphatases. ACTA ACUST UNITED AC 2005; 135:58-68. [PMID: 15857669 DOI: 10.1016/j.molbrainres.2004.12.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Revised: 11/25/2004] [Accepted: 12/03/2004] [Indexed: 11/24/2022]
Abstract
The aim of this study was to determine the distribution and function of G-substrate, a specific substrate of the nitric oxide (NO)-cyclic guanosine monophosphate (cGMP)-cGMP-dependent protein kinase (PKG) signaling pathway, in normal rat retina and in G-substrate knockout mice. The retinas of adult wild-type rats and mice and G-substrate knockout mice were studied immunohistologically to characterize the upstream and downstream components of the NO-cGMP-PKG pathway. Immunoblot analysis showed that the molecular weight of retinal G-substrate was similar to that of cerebellar G-substrate. In adult rats and mice, retinal G-substrate was located in a subpopulation of amacrine cells and in C38-positive retinal ganglion cells (RGCs) but not in alpha RGCs. In addition, retinal G-substrate was co-expressed with other upstream and downstream signaling components of the NO-cGMP-PKG-G-substrate-phosphatase pathway in the adult retina. Electroretinographic (ERG) analysis demonstrated that there was no significant difference between the ERGs of wild-type and G-substrate knockout mice. These results suggest that retinal G-substrate plays a role as a downstream component of the NO-cGMP-PKG pathway. The co-localization of retinal G-substrate with protein Ser/Thr phosphatases suggests that it acts as an endogenous protein phosphatase inhibitor as in the cerebellum.
Collapse
Affiliation(s)
- Toru Nakazawa
- Department of Ophthalmology and Visual Science, Tohoku Graduate School of Medicine, 980-8574, Seiryo 1-1, Aoba, Sendai, Japan.
| | | | | | | | | | | |
Collapse
|
39
|
Garcá M, Ruiz-Ederra J, Hernández-Barbáchano H, Vecino E. Topography of pig retinal ganglion cells. J Comp Neurol 2005; 486:361-72. [PMID: 15846788 DOI: 10.1002/cne.20516] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In the present work we analyzed the distribution of retinal ganglion cells (RGCs) in the pig retina. RGCs were retrogradely labeled in vivo by injecting Fluoro-Gold into the optic nerve. RGC density and the distribution of RGCs in terms of soma size were analyzed. Different regions of the porcine retina were identified following analysis of the distribution of RGCs in terms of cell density and soma size: in the central retina, we found a high-density horizontal RGC band lying dorsal to the optic disc. Moreover, in this region, a high proportion of RCGs with small soma size was observed. From the central to the more peripheral retina, we observed a decrease in RGC density, together with a greater presence of RGCs with larger somas. The results of this study should prove to be useful as a foundation for future studies with the porcine retina as a model in ophthalmic research. The study also highlights the necessity to label the RGC population specifically with retrograde tracers in order to quantify precisely alterations in the cell population associated with experimental treatments.
Collapse
Affiliation(s)
- Mónica Garcá
- Department of Cell Biology, Faculty of Medicine, University of the Basque Country, Leioa, Vizcaya, Spain
| | | | | | | |
Collapse
|
40
|
Zhou X, Li F, Kong L, Tomita H, Li C, Cao W. Involvement of inflammation, degradation, and apoptosis in a mouse model of glaucoma. J Biol Chem 2005; 280:31240-8. [PMID: 15985430 DOI: 10.1074/jbc.m502641200] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glaucoma is a common cause of blindness affecting at least 66 million people worldwide. Pigmentary glaucoma is one of the most common forms of secondary glaucoma, and its pathogenesis remains unclear. Interleukin-18 (IL-18) is an important regulator of innate and acquired immune responses and plays an important role in inflammatory/autoimmunity diseases. Using the DBA/2J mouse as an animal model of human pigmentary glaucoma, we demonstrated for the first time that the expression of the IL-18 protein and gene in the iris/ciliary body and level of IL-18 protein in the aqueous humor of DBA/2J mice are dramatically increased with age. This increase precedes the onset of clinical evidence of pigmentary glaucoma, implying a pathogenic role of inflammation/immunity in this disease. We also observed that activated NF-kappaB and phosphorylated MAPK are increased in the iris/ciliary body of DBA/2J mice, suggesting that both signaling pathways may be involved in IL-18 mediated pathogenesis of pigmentary glaucoma in the eyes of DBA/2J mice. In addition, matrix metalloproteinase-2 (MMP-2) expression in the iris/ciliary body and the activity of MMP-2 in the aqueous humor are increased whereas tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) expression in the iris/ciliary body is decreased, indicating that the degradation process is involved in this mouse model of pigmentary glaucoma. Furthermore, the expressions of apoptosis-related genes, caspase-8, Fas, FADD, FAP, and FAF, and the activity of caspase-3 are increased in the iris/ciliary body of DBA/2J mice. Elucidation of biochemical and molecular mechanisms of IL-18 participation in the pathogenesis of pigmentary glaucoma should provide approaches for developing improved and targeted treatments to ameliorate this blinding disease. The possibility that altered IL-18 expression in the eye of DBA/2J mice initiates and/or amplifies the pathogenesis of pigmentary glaucoma requires further investigation.
Collapse
MESH Headings
- Aging/physiology
- Animals
- Antigens, CD/metabolism
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Apoptosis/physiology
- Ciliary Body/anatomy & histology
- Ciliary Body/immunology
- Ciliary Body/pathology
- Disease Models, Animal
- Gene Expression Regulation
- Glaucoma, Open-Angle/immunology
- Glaucoma, Open-Angle/pathology
- Glaucoma, Open-Angle/physiopathology
- Humans
- Interleukin-18/immunology
- Intraocular Pressure
- Iris/cytology
- Iris/immunology
- Iris/pathology
- Lectins, C-Type
- Matrix Metalloproteinase 2/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Inbred DBA
- Mitogen-Activated Protein Kinases/metabolism
- NF-kappa B/metabolism
- Retinal Ganglion Cells/cytology
- Retinal Ganglion Cells/metabolism
- Retinal Ganglion Cells/pathology
- Signal Transduction/physiology
- T-Lymphocytes/immunology
- Tissue Inhibitor of Metalloproteinase-1/genetics
- Tissue Inhibitor of Metalloproteinase-1/metabolism
Collapse
Affiliation(s)
- Xiaohong Zhou
- Department of Ophthalmology, Dean A. McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | | | | | | | | | | |
Collapse
|
41
|
Ando A, Yamazaki Y, Kaneko S, Miyake M, Nambu R, Taomoto M, Unezaki S, Okuda-Ashitaka E, Okumura T, Ito S, Matsumura M. Cytoprotection by nipradilol, an anti-glaucomatous agent, via down-regulation of apoptosis related gene expression and activation of NF-κB. Exp Eye Res 2005; 80:501-7. [PMID: 15781277 DOI: 10.1016/j.exer.2004.10.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2004] [Accepted: 10/28/2004] [Indexed: 11/29/2022]
Abstract
It has been reported that nipradilol, a nonselective beta- and selective alpha1-receptor antagonist, has cytoprotective effects. We attempted to clarify the effects of nipradilol on the expression of apoptosis associated genes and the activity of nuclear factor-kappaB, a transcription factor, in PC12 cells during serum deprivation induced apoptosis. PC12 cells were cultured in serum free RPMI1640 medium with or without 0.01, 0.1, 1, or 10 microM of nipradilol, or in serum-added medium as a control. The gene expressions of Bax, Bcl-2, Fas, FasL, Caspase-1, 2, 3, and 9, p53, and Smac/DIABLO were examined using a quantitative real time polymerase chain reaction method, while nuclear factor-kappaB activity was examined using an electrophoresis mobility shift assay with a nuclear factor-kappaB consensus sequenced DNA probe. The effects of denitronipradilol were also examined to clarify the effect of nitric oxide donative action. Nipradilol down-regulated Bax gene expression 12 hr after serum deprivation, and that of the capase-9 and Smac/DIABLO genes at 24 hr, compared to the serum-free sample, while it also increased cell viability and decreased DNA ladder formation at 48 hr. However, the expressions of other examined genes were not affected by the agent. In addition, nuclear factor-kappaB activity was increased 2 hr after the addition of 0.1 or 1 microM of nipradilol. In contrast, denitronipradilol did not show any effects toward PC12 cells. Our results suggest that nipradilol may have an effect on apoptosis associated gene expression and nuclear factor-kappaB activity during the prevention of apoptosis via nitric oxide donative action.
Collapse
Affiliation(s)
- Akira Ando
- Department of Ophthalmology, Kansai Medical University, 10-15 Fumizono, Moriguchi, Osaka 570-8507, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
beta-Adrenoceptor blocking agents (beta-blockers) have been established as therapeutics for treatment of patients with hypertension, ischemic heart diseases, chronic heart failure, arrhythmias, and glaucoma. However, their clinical use is limited because some patients are adversely affected by their side effects. The discovery of cardioselective (beta(1)-selective) blockers has overcome some of the problems. Current retrospective studies have revealed that vasodilating beta-blockers (so-called beta-blockers of the third generation) have advantages over the conventional type of beta-blockers in terms of minimizing the adverse effects and improving the disease-derived dysfunction, thus enhancing the quality of life variables. Some of the possible advantages include improvement of insulin resistance, decrease in low-density lipoprotein cholesterol in association with increase in high-density lipoprotein cholesterol, attenuation of bronchial asthma attack and respiratory dysfunction, alleviation of coronary vasospasm provocation, peripheral circulatory disturbances, and erectile dysfunction, and better patient compliance. Release of nitric oxide, antioxidant action, beta(2)-adrenoceptor activation, Ca(2+) entry blockade, and other mechanisms underlying the vasodilating action may be responsible for the beneficial therapeutic effects of these agents.
Collapse
Affiliation(s)
- Noboru Toda
- Toyama Institute for Cardiovascular Pharmacology Research, 7-13, 1-Chome, Azuchi-machi, Chuo-ku, Osaka, 541-0052, Japan.
| |
Collapse
|
43
|
Akiyama H, Nakazawa T, Shimura M, Tomita H, Tamai M. Presence of mitogen-activated protein kinase in retinal Müller cells and its neuroprotective effect ischemia-reperfusion injury. Neuroreport 2002; 13:2103-7. [PMID: 12438934 DOI: 10.1097/00001756-200211150-00022] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The purpose of this study was to determine whether the mitogen-activated protein kinase (MAPK) signaling pathway in the retina plays a neuroprotective role against ischemia- reperfusion injury. Western blot analysis showed that the MAPK activity was markedly increased within an hour after ischemia-reperfusion and subsequently decreased. Immunohistochemical studies revealed that MAPK was expressed mainly in the retinal Müller cells (RMCs). Pre-ischemic intravitreal administration of a MAPK inhibitor, U0126, increased the number of ganglion cell deaths induced by ischemia-reperfusion injury. We conclude that the MAPK activated in the RMCs protects ganglion cells against the ischemia-reperfusion injury through glia-neuronal interaction.
Collapse
Affiliation(s)
- Hiroshi Akiyama
- Department of Ophthalmology, Tohoku University School of Medicine, 1-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan
| | | | | | | | | |
Collapse
|
44
|
Abstract
Axotomized retinal ganglion cells (RGCs) in adult cats offer a good experimental model to understand mechanisms of RGC deteriorations in ophthalmic diseases such as glaucoma and optic neuritis. Alpha ganglion cells in the cat retina have higher ability to survive axotomy and regenerate their axons than beta and non-alpha or beta (NAB) ganglion cells. By contrast, beta cells suffer from rapid cell death by apoptosis between 3 and 7 days after axotomy. We introduced several methods to rescue the axotomized cat RGCs from apoptosis and regenerate their axons; transplantation of the peripheral nerve (PN), intraocular injections of neurotrophic factors, or an antiapoptotic drug. Apoptosis of beta cells can be prevented with intravitreal injections of BDNF+CNTF+forskolin or a caspase inhibitor. The injection of BDNF+CNTF+forskolin also increases the numbers of regenerated beta and NAB cells, but only slightly enhances axonal regeneration of alpha cells. Electrical stimulation to the cut end of optic nerve is effective for the survival of axotomized RGCs in cats as well as in rats. To recover function of impaired vision in cats, further studies should be directed to achieve the following goals: (1). substantial number of regenerating RGCs, (2). reconstruction of the retino-geniculo-cortical pathway, and (3). reconstruction of retinotopy in the target visual centers.
Collapse
Affiliation(s)
- Masami Watanabe
- Department of Physiology, Institute for Developmental Research, Kasugai, Aichi 480-0392, Japan.
| | | |
Collapse
|
45
|
Tomita H, Nakazawa T, Sugano E, Abe T, Tamai M. Nipradilol inhibits apoptosis by preventing the activation of caspase-3 via S-nitrosylation and the cGMP-dependent pathway. Eur J Pharmacol 2002; 452:263-8. [PMID: 12359266 DOI: 10.1016/s0014-2999(02)02329-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
To study whether nipradilol, which is used as an ophthalmic solution for the treatment of glaucoma, has a cytoprotective effect, we investigated its effect on the apoptosis induced by serum withdrawal in PC12 cells. Nipradilol has alpha1- and beta-adrenoceptor-blocking and nitric oxide (NO)-donating properties. We also investigated the effects of timolol, prazosin and S-nitroso-N-acetylpenicillamine (SNAP) on PC12 cell death. Serum withdrawal from PC12 cells resulted in apoptosis, and the survival rate was decreased in a time-dependent manner. The addition of nipradilol to the medium showed a cytoprotective effect on PC12 cell death in a dose-dependent manner, but timolol and prazosin did not. We measured caspase-3 activity to clarify the mechanism of the inhibition of apoptosis in the presence or absence of dithiothreitol (DTT). The caspase-3 activity could be reactivated by DTT. In addition, to investigate the relationship of the cGMP-dependent pathway to the nipradilol-induced cytoprotective effect, we tested the effect of the protein kinase G inhibitor KT5823. KT5823 partially reversed the nipradilol-mediated cytoprotective effect. These results indicate that the cytoprotective effect of nipradilol in PC12 cell death was due to the caspase-3 inhibition mediated by NO-related S-nitrosylation and activation of protein kinase G.
Collapse
Affiliation(s)
- Hiroshi Tomita
- Department of Ophthalmology, Tohoku University School of Medicine, 1-1 Seiryo-machi, Sendai 980-8574 Japan.
| | | | | | | | | |
Collapse
|