1
|
Geng Y, Geng Y, Liu X, Chai Q, Li X, Ren T, Shang Q. PI3K/AKT/mTOR pathway-derived risk score exhibits correlation with immune infiltration in uveal melanoma patients. Front Oncol 2023; 13:1167930. [PMID: 37152048 PMCID: PMC10157141 DOI: 10.3389/fonc.2023.1167930] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
Uveal melanoma (UVM) is a rare but highly aggressive intraocular tumor with a poor prognosis and limited therapeutic options. Recent studies have implicated the PI3K/AKT/mTOR pathway in the pathogenesis and progression of UVM. Here, we aimed to explore the potential mechanism of PI3K/AKT/mTOR pathway-related genes (PRGs) in UVM and develop a novel prognostic-related risk model. Using unsupervised clustering on 14 PRGs profiles, we identified three distinct subtypes with varying immune characteristics. Subtype A demonstrated the worst overall survival and showed higher expression of human leukocyte antigen, immune checkpoints, and immune cell infiltration. Further enrichment analysis revealed that subtype A mainly functioned in inflammatory response, apoptosis, angiogenesis, and the PI3K/AKT/mTOR signaling pathway. Differential analysis between different subtypes identified 56 differentially expressed genes (DEGs), with the major enrichment pathway of these DEGs associated with PI3K/AKT/mTOR. Based on these DEGs, we developed a consensus machine learning-derived signature (RSF model) that exhibited the best power for predicting prognosis among 76 algorithm combinations. The novel signature demonstrated excellent robustness and predictive ability for the overall survival of patients. Moreover, we observed that patients classified by risk scores had distinguishable immune status and mutation. In conclusion, our study identified a consensus machine learning-derived signature as a potential biomarker for prognostic prediction in UVM patients. Our findings suggest that this signature is correlated with tumor immune infiltration and may serve as a valuable tool for personalized therapy in the clinical setting.
Collapse
Affiliation(s)
- Yuxin Geng
- Department of Ophthalmology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yulei Geng
- Department of Ophthalmology, Shijiazhuang People’s Hospital, Shijiazhaung, China
| | - Xiaoli Liu
- Department of Ophthalmology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Qiannan Chai
- Department of Ophthalmology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xuejing Li
- Department of Ophthalmology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Taoran Ren
- Department of Ophthalmology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Qingli Shang
- Department of Ophthalmology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- *Correspondence: Qingli Shang, ;
| |
Collapse
|
2
|
Ananth S, Miyauchi S, Thangaraju M, Jadeja RN, Bartoli M, Ganapathy V, Martin PM. Selenomethionine (Se-Met) Induces the Cystine/Glutamate Exchanger SLC7A11 in Cultured Human Retinal Pigment Epithelial (RPE) Cells: Implications for Antioxidant Therapy in Aging Retina. Antioxidants (Basel) 2020; 10:antiox10010009. [PMID: 33374239 PMCID: PMC7823377 DOI: 10.3390/antiox10010009] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/15/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022] Open
Abstract
Oxidative damage has been identified as a major causative factor in degenerative diseases of the retina; retinal pigment epithelial (RPE) cells are at high risk. Hence, identifying novel strategies for increasing the antioxidant capacity of RPE cells, the purpose of this study, is important. Specifically, we evaluated the influence of selenium in the form of selenomethionine (Se-Met) in cultured RPE cells on system xc- expression and functional activity and on cellular levels of glutathione, a major cellular antioxidant. ARPE-19 and mouse RPE cells were cultured with and without selenomethionine (Se-Met), the principal form of selenium in the diet. Promoter activity assay, uptake assay, RT-PCR, northern and western blots, and immunofluorescence were used to analyze the expression of xc-, Nrf2, and its target genes. Se-Met activated Nrf2 and induced the expression and function of xc- in RPE. Other target genes of Nrf2 were also induced. System xc- consists of two subunits, and Se-Met induced the subunit responsible for transport activity (SLC7A11). Selenocysteine also induced xc- but with less potency. The effect of Se-met on xc- was associated with an increase in maximal velocity and an increase in substrate affinity. Se-Met increased the cellular levels of glutathione in the control, an oxidatively stressed RPE. The Se-Met effect was selective; under identical conditions, taurine transport was not affected and Na+-coupled glutamate transport was inhibited. This study demonstrates that Se-Met enhances the antioxidant capacity of RPE by inducing the transporter xc- with a consequent increase in glutathione.
Collapse
Affiliation(s)
- Sudha Ananth
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA; (S.A.); (S.M.); (M.T.); (R.N.J.)
| | - Seiji Miyauchi
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA; (S.A.); (S.M.); (M.T.); (R.N.J.)
| | - Muthusamy Thangaraju
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA; (S.A.); (S.M.); (M.T.); (R.N.J.)
| | - Ravirajsinh N. Jadeja
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA; (S.A.); (S.M.); (M.T.); (R.N.J.)
- Culver Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA;
| | - Manuela Bartoli
- Culver Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA;
- Department of Ophthalmology, Augusta University, Augusta, GA 30912, USA
| | - Vadivel Ganapathy
- Department of Cell Biology and Biochemistry, Texas Tech Health Science Center, Lubbock, TX 79430, USA;
| | - Pamela M. Martin
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA; (S.A.); (S.M.); (M.T.); (R.N.J.)
- Culver Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA;
- Department of Ophthalmology, Augusta University, Augusta, GA 30912, USA
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
- Correspondence: ; Tel.: +706-721-4220; Fax: +706-721-6608
| |
Collapse
|
3
|
Depot formulations to sustain periocular drug delivery to the posterior eye segment. Drug Discov Today 2019; 24:1458-1469. [DOI: 10.1016/j.drudis.2019.03.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 01/25/2019] [Accepted: 03/22/2019] [Indexed: 12/27/2022]
|
4
|
Gegelashvili G, Bjerrum OJ. Glutamate transport system as a key constituent of glutamosome: Molecular pathology and pharmacological modulation in chronic pain. Neuropharmacology 2019; 161:107623. [PMID: 31047920 DOI: 10.1016/j.neuropharm.2019.04.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 04/26/2019] [Accepted: 04/28/2019] [Indexed: 01/07/2023]
Abstract
Neural uptake of glutamate is executed by the structurally related members of the SLC1A family of solute transporters: GLAST/EAAT1, GLT-1/EAAT2, EAAC1/EAAT3, EAAT4, ASCT2. These plasma membrane proteins ensure supply of glutamate, aspartate and some neutral amino acids, including glutamine and cysteine, for synthetic, energetic and signaling purposes, whereas effective removal of glutamate from the synaptic cleft shapes excitatory neurotransmission and prevents glutamate toxicity. Glutamate transporters (GluTs) possess also receptor-like properties and can directly initiate signal transduction. GluTs are physically linked to other glutamate signaling-, transporting- and metabolizing molecules (e.g., glutamine transporters SNAT3 and ASCT2, glutamine synthetase, NMDA receptor, synaptic vesicles), as well as cellular machineries fueling the transmembrane transport of glutamate (e.g., ion gradient-generating Na/K-ATPase, glycolytic enzymes, mitochondrial membrane- and matrix proteins, glucose transporters). We designate this supramolecular functional assembly as 'glutamosome'. GluTs play important roles in the molecular pathology of chronic pain, due to the predominantly glutamatergic nature of nociceptive signaling in the spinal cord. Down-regulation of GluTs often precedes or occurs simultaneously with development of pain hypersensitivity. Pharmacological inhibition or gene knock-down of spinal GluTs can induce/aggravate pain, whereas enhancing expression of GluTs by viral gene transfer can mitigate chronic pain. Thus, functional up-regulation of GluTs is turning into a prospective pharmacotherapeutic approach for the management of chronic pain. A number of novel positive pharmacological regulators of GluTs, incl. pyridazine derivatives and β-lactams, have recently been introduced. However, design and development of new analgesics based on this principle will require more precise knowledge of molecular mechanisms underlying physiological or aberrant functioning of the glutamate transport system in nociceptive circuits. This article is part of the issue entitled 'Special Issue on Neurotransmitter Transporters'.
Collapse
Affiliation(s)
- Georgi Gegelashvili
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark; Institute of Chemical Biology, Ilia State University, Tbilisi, Georgia.
| | - Ole Jannik Bjerrum
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Cao X, Pattnaik BR, Hughes BA. Mouse retinal pigment epithelial cells exhibit a thiocyanate-selective conductance. Am J Physiol Cell Physiol 2018; 315:C457-C473. [PMID: 29874109 DOI: 10.1152/ajpcell.00231.2017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The basolateral membrane anion conductance of the retinal pigment epithelium (RPE) is a key component of the transepithelial Cl- transport pathway. Although multiple Cl- channels have been found to be expressed in the RPE, the components of the resting Cl- conductance have not been identified. In this study, we used the patch-clamp method to characterize the ion selectivity of the anion conductance in isolated mouse RPE cells and in excised patches of RPE basolateral and apical membranes. Relative permeabilities ( PA/ PCl) calculated from reversal potentials measured in intact cells under bi-ionic conditions were as follows: SCN- >> ClO4- > [Formula: see text] > I- > Br- > Cl- >> gluconate. Relative conductances ( GA/ GCl) followed a similar trend of SCN- >> ClO4- > [Formula: see text] > I- > Br- ≈Cl- >> gluconate. Whole cell currents were highly time-dependent in 10 mM external SCN-, reflecting collapse of the electrochemical potential gradient due to SCN- accumulation or depletion intracellularly. When the membrane potential was held at -120 mV to minimize SCN- accumulation in cells exposed to 10 mM SCN-, the instantaneous current reversed at -90 mV, revealing that PSCN/ PCl is approximately 500. Macroscopic current recordings from outside-out patches demonstrated that both the basolateral and apical membranes exhibit SCN- conductances, with the basolateral membrane having a larger SCN- current density and higher relative permeability for SCN-. Our results suggest that the RPE basolateral and apical membranes contain previously unappreciated anion channels or electrogenic transporters that may mediate the transmembrane fluxes of SCN- and Cl-.
Collapse
Affiliation(s)
- Xu Cao
- Department of Ophthalmology and Visual Sciences, University of Michigan , Ann Arbor, Michigan
| | - Bikash R Pattnaik
- Department of Ophthalmology and Visual Sciences, University of Michigan , Ann Arbor, Michigan
| | - Bret A Hughes
- Department of Ophthalmology and Visual Sciences, University of Michigan , Ann Arbor, Michigan.,Department of Molecular and Integrative Physiology, University of Michigan , Ann Arbor, Michigan
| |
Collapse
|
6
|
Chao JR, Knight K, Engel AL, Jankowski C, Wang Y, Manson MA, Gu H, Djukovic D, Raftery D, Hurley JB, Du J. Human retinal pigment epithelial cells prefer proline as a nutrient and transport metabolic intermediates to the retinal side. J Biol Chem 2017; 292:12895-12905. [PMID: 28615447 DOI: 10.1074/jbc.m117.788422] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/30/2017] [Indexed: 11/06/2022] Open
Abstract
Metabolite transport is a major function of the retinal pigment epithelium (RPE) to support the neural retina. RPE dysfunction plays a significant role in retinal degenerative diseases. We have used mass spectrometry with 13C tracers to systematically study nutrient consumption and metabolite transport in cultured human fetal RPE. LC/MS-MS detected 120 metabolites in the medium from either the apical or basal side. Surprisingly, more proline is consumed than any other nutrient, including glucose, taurine, lipids, vitamins, or other amino acids. Besides being oxidized through the Krebs cycle, proline is used to make citrate via reductive carboxylation. Citrate, made either from 13C proline or from 13C glucose, is preferentially exported to the apical side and is taken up by the retina. In conclusion, RPE cells consume multiple nutrients, including glucose and taurine, but prefer proline, and they actively synthesize and export metabolic intermediates to the apical side to nourish the outer retina.
Collapse
Affiliation(s)
- Jennifer R Chao
- Department of Ophthalmology, University of Washington, Seattle, Washington 98109.
| | - Kaitlen Knight
- Department of Ophthalmology, University of Washington, Seattle, Washington 98109
| | - Abbi L Engel
- Department of Ophthalmology, University of Washington, Seattle, Washington 98109
| | - Connor Jankowski
- Department of Biochemistry, University of Washington, Seattle, Washington 98109
| | - Yekai Wang
- Department of Ophthalmology, West Virginia University, Morgantown, West Virginia 26506; Department of Biochemistry, West Virginia University, Morgantown, West Virginia 26506
| | - Megan A Manson
- Department of Ophthalmology, University of Washington, Seattle, Washington 98109
| | - Haiwei Gu
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington 98109
| | - Danijel Djukovic
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington 98109
| | - Daniel Raftery
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington 98109
| | - James B Hurley
- Department of Ophthalmology, University of Washington, Seattle, Washington 98109; Department of Biochemistry, University of Washington, Seattle, Washington 98109
| | - Jianhai Du
- Department of Ophthalmology, West Virginia University, Morgantown, West Virginia 26506; Department of Biochemistry, West Virginia University, Morgantown, West Virginia 26506.
| |
Collapse
|
7
|
Glutamate Transport System as a Novel Therapeutic Target in Chronic Pain: Molecular Mechanisms and Pharmacology. ADVANCES IN NEUROBIOLOGY 2017; 16:225-253. [PMID: 28828613 DOI: 10.1007/978-3-319-55769-4_11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The vast majority of peripheral neurons sensing noxious stimuli and conducting pain signals to the dorsal horn of the spinal cord utilize glutamate as a chemical transmitter of excitation. High-affinity glutamate transporter subtypes GLAST/EAAT1, GLT1/EAAT2, EAAC1/EAAT3, and EAAT4, differentially expressed on sensory neurons, postsynaptic spinal interneurons, and neighboring glia, ensure fine modulation of glutamate neurotransmission in the spinal cord. The glutamate transport system seems to play important roles in molecular mechanisms underlying chronic pain and analgesia. Downregulation of glutamate transporters (GluTs) often precedes or occurs simultaneously with development of hypersensitivity to thermal or tactile stimuli in various models of chronic pain. Moreover, antisense knockdown or pharmacological inhibition of these membrane proteins can induce or aggravate pain. In contrast, upregulation of GluTs by positive pharmacological modulators or by viral gene transfer to the spinal cord can reverse the development of such pathological hypersensitivity. Furthermore, some multi-target drugs displaying analgesic properties (e.g., tricyclic antidepressant amitriptyline, riluzole, anticonvulsant valproate, tetracycline antibiotic minocycline, β-lactam antibiotic ceftriaxone and its structural analog devoid of antibacterial activity, clavulanic acid) can significantly increase the spinal glutamate uptake. Thus, mounting evidence points at GluTs as prospective therapeutic target for chronic pain treatment. However, design and development of new analgesics based on the modulation of glutamate uptake will require more precise knowledge of molecular mechanisms underlying physiological or aberrant functioning of this transport system in the spinal cord.
Collapse
|
8
|
Langford MP, Redens TB, Liang C, Kavanaugh AS, Texada DE. EAAT and Xc⁻ Exchanger Inhibition Depletes Glutathione in the Transformed Human Lens Epithelial Cell Line SRA 01/04. Curr Eye Res 2015; 41:357-66. [PMID: 25897760 DOI: 10.3109/02713683.2015.1017651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
PURPOSE Maintaining the high glutathione (GSH; tripeptide of glutamate, cysteine and glycine) levels in the lens cortex promotes lens health. The role of glutamate/aspartate (Glu/Asp) transporters and the cystine (Cys)/Glu exchanger (Xc(-) exchanger) in maintaining GSH in transformed human lens epithelial cells (SRA 01/04) was investigated. METHODS Detection and differentiation of excitatory amino acid transporters (EAAT1-5) and the Xc(-) exchanger was performed by the uptake of radiolabeled l-Glu, d-Asp and l-Cys in the presence and absence of Na(+), substrate-specific inhibition studies and Western-blot analysis. Reductions in GSH levels post-inhibition of Xc(-) exchanger and EAAT activities by substrate inhibitors demonstrated the roles of EAAT and Xc(-) exchanger in maintaining GSH. RESULTS Glu and d-Asp uptake in HLEC was Na(+)-dependent. Strong inhibition by substrate-specific Glu/Asp uptake inhibitors and weak inhibition by kainic acid (KA) was consistent with Na(+)-dependent EAAT1/3/4/5 activity and weak EAAT2 activity, respectively. Na(+)-independency and Glu inhibition of Cys uptake were consistent with Xc(-) exchanger activity, but inhibition of Na(+)-dependent Cys uptake by N-acetylcysteine suggests Cys uptake by EAAT3. EAAT1-5 and xCT (Xc(-) exchanger light chain) immunoreactive peptides were detected by Western-blot analysis of HLEC lysates. EAAT and Xc(-) exchanger inhibition by substrate antagonists depleted GSH concentrations by 15-28% (p's ≤ 0.02), while GSH synthesis inhibition by buthionine sulfoximine depleted GSH by 33% (p = 0.008). CONCLUSION Inhibition of Glu and Cys uptake by EAAT and Xc(-) exchanger antagonists depletes GSH in human lens epithelial cells. These in vitro results support pivotal roles for EAAT and Xc(-) exchanger activities in maintaining GSH and protection against oxidative stress in cortical lens epithelium.
Collapse
Affiliation(s)
- Marlyn P Langford
- a Department of Ophthalmology , Louisiana State University Health Sciences Center , Shreveport , LA , USA
| | - Thomas B Redens
- a Department of Ophthalmology , Louisiana State University Health Sciences Center , Shreveport , LA , USA
| | - Chanping Liang
- a Department of Ophthalmology , Louisiana State University Health Sciences Center , Shreveport , LA , USA
| | - A Scott Kavanaugh
- a Department of Ophthalmology , Louisiana State University Health Sciences Center , Shreveport , LA , USA
| | - Donald E Texada
- a Department of Ophthalmology , Louisiana State University Health Sciences Center , Shreveport , LA , USA
| |
Collapse
|
9
|
Gegelashvili G, Bjerrum OJ. High-affinity glutamate transporters in chronic pain: an emerging therapeutic target. J Neurochem 2014; 131:712-30. [DOI: 10.1111/jnc.12957] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 09/18/2014] [Accepted: 09/25/2014] [Indexed: 01/13/2023]
Affiliation(s)
- Georgi Gegelashvili
- Department of Drug Design and Pharmacology; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
- Institute of Chemical Biology; Ilia State University; Tbilisi Georgia
| | - Ole J. Bjerrum
- Department of Drug Design and Pharmacology; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
10
|
Schneider N, Cordeiro S, Machtens JP, Braams S, Rauen T, Fahlke C. Functional properties of the retinal glutamate transporters GLT-1c and EAAT5. J Biol Chem 2013; 289:1815-24. [PMID: 24307171 DOI: 10.1074/jbc.m113.517177] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the mammalian retina, glutamate uptake is mediated by members of a family of glutamate transporters known as "excitatory amino acid transporters (EAATs)." Here we cloned and functionally characterized two retinal EAATs from mouse, the GLT-1/EAAT2 splice variant GLT-1c, and EAAT5. EAATs are glutamate transporters and anion-selective ion channels, and we used heterologous expression in mammalian cells, patch-clamp recordings and noise analysis to study and compare glutamate transport and anion channel properties of both EAAT isoforms. We found GLT-1c to be an effective glutamate transporter with high affinity for Na(+) and glutamate that resembles original GLT-1/EAAT2 in all tested functional aspects. EAAT5 exhibits glutamate transport rates too low to be accurately measured in our experimental system, with significantly lower affinities for Na(+) and glutamate than GLT-1c. Non-stationary noise analysis demonstrated that GLT-1c and EAAT5 also differ in single-channel current amplitudes of associated anion channels. Unitary current amplitudes of EAAT5 anion channels turned out to be approximately twice as high as single-channel amplitudes of GLT-1c. Moreover, at negative potentials open probabilities of EAAT5 anion channels were much larger than for GLT-1c. Our data illustrate unique functional properties of EAAT5, being a low-affinity and low-capacity glutamate transport system, with an anion channel optimized for anion conduction in the negative voltage range.
Collapse
Affiliation(s)
- Nicole Schneider
- From the Institute of Complex Systems, Zelluläre Biophysik, Forschungszentrum Jülich, Leo-Brandt-Straβe, 52428 Jülich, Germany
| | | | | | | | | | | |
Collapse
|
11
|
Vadlapudi AD, Vadlapatla RK, Pal D, Mitra AK. Functional and molecular aspects of biotin uptake via SMVT in human corneal epithelial (HCEC) and retinal pigment epithelial (D407) cells. AAPS JOURNAL 2012; 14:832-42. [PMID: 22927035 DOI: 10.1208/s12248-012-9399-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 08/01/2012] [Indexed: 11/30/2022]
Abstract
Sodium-dependent multivitamin transporter (SMVT) is a vital transmembrane protein responsible for translocating biotin and other essential cofactors such as pantothenate and lipoate. Unlike primary cultures of corneal and retinal pigment epithelial (RPE) cells, immortalized cells can be subcultured many times, yet maintain their physiological properties. Hence, the purpose of this study was to delineate the functional and molecular aspects of biotin uptake via SMVT on immortalized human corneal epithelial (HCEC) and RPE (D407) cells. Functional aspects of [(3)H] biotin uptake were studied in the presence of different concentrations of unlabeled biotin, pH, temperature, metabolic inhibitors, ions, substrates, structural analogs and biotinylated prodrug (Biotin-Acyclovir (B-ACV)). Molecular identity of SMVT was examined with reverse transcription-polymerase chain reaction. Biotin uptake was found to be saturable in HCEC and D407 cells with K (m) of 296.2 ± 25.9 and 863.8 ± 66.9 μM and V (max) of 77.2 ± 2.2 and 308.3 ± 10.7 pmol/mg protein/min, respectively. Uptake was found to be pH, temperature, energy, and sodium-dependent. Inhibition of biotin uptake was observed in the presence of structural analogs and specific substrates. Further, uptake was lowered in the presence of B-ACV indicating the translocation of biotinylated prodrug by SMVT. A distinct band at 774 bp confirmed the molecular existence of SMVT in both the cells. This study shows for the first time the functional and molecular presence of SMVT in HCEC and D407 cells. Therefore, these cell lines may be utilized as in vitro models to study the cellular translocation of biotin-conjugated prodrugs.
Collapse
Affiliation(s)
- Aswani Dutt Vadlapudi
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, Missouri 64108-2718, USA
| | | | | | | |
Collapse
|
12
|
Mergler S, Cheng Y, Skosyrski S, Garreis F, Pietrzak P, Kociok N, Dwarakanath A, Reinach PS, Kakkassery V. Altered calcium regulation by thermosensitive transient receptor potential channels in etoposide-resistant WERI-Rb1 retinoblastoma cells. Exp Eye Res 2012; 94:157-73. [DOI: 10.1016/j.exer.2011.12.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Revised: 11/04/2011] [Accepted: 12/03/2011] [Indexed: 10/14/2022]
|
13
|
Langford MP, Redmond P, Chanis R, Misra RP, Redens TB. Glutamate, excitatory amino acid transporters, Xc- antiporter, glutamine synthetase, and gamma-glutamyltranspeptidase in human corneal epithelium. Curr Eye Res 2010; 35:202-11. [PMID: 20373878 DOI: 10.3109/02713680903461489] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE The viability and functions of the corneal epithelium are dependent in large measure on the active uptake of nutrients, growth factors, and amino acids from stroma and tear. The present study presents the cellular distribution(s) of glutamate, the Na(+)-dependent glutamate/aspartate transporters (excitatory amino acid transporters; EAAT1-5), Na(+)-independent glutamate/cystine exchanger (Xc(-) antiporter) subunits (xCT light chain and 4F2hc heavy chain), glutamine synthetase (GS), and gamma-glutamyltranspeptidase (GGT) in human corneal epithelium. METHODS Glutamate, EAAT1-5, xCT/4F2hc, GS, and GGT immunoreactive proteins were detected by immunofluorescence microscopy. Human corneal GGT activity was quantified using a standard colorimetric assay. RESULTS Glutamate, EAAT3>2>1, xCT/4F2hc, and GGT proteins were detected in the columnar and wing cells. Glutamate was reduced or absent in the EAAT negative, Xc(-) antiporter, and GS positive outer wing cell and flat superficial epithelial cell layers. All EAATs (EAAT3>4/5>1/2), xCT/4F2hc, GS, and GGT were detected in flat superficial epithelial cell layer. CONCLUSIONS The localization of glutamate, multiple EAATs, Xc(-) antiporter proteins, and GGT to columnar and superficial epithelial cell layers suggests uptake of glutamate and cystine from the stroma and tear and supports their importance in regulation of glutamate/cystine and glutathione (GSH; a tripeptide of glutamate, cystine, and glycine) in the human cornea epithelium. In addition, the low glutamate levels in outer wing and flat superficial epithelial cells positive for Xc(-) antiporter and GS are consistent with exchange of glutamate by Xc(-) antiporter for extracellular cystine utilized in GSH synthesis and support coupling of ammonia detoxification with glutamate degradation by GS.
Collapse
Affiliation(s)
- Marlyn P Langford
- Department of Ophthalmology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130, USA.
| | | | | | | | | |
Collapse
|
14
|
Lim SK, Park MJ, Jung HK, Park AY, Kim DI, Kim JC, Bae CS, Kim KY, Yoon KC, Han HJ, Park SH. Bradykinin stimulates glutamate uptake via both B1R and B2R activation in a human retinal pigment epithelial cells. Life Sci 2008; 83:761-70. [PMID: 18948121 DOI: 10.1016/j.lfs.2008.09.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Revised: 08/01/2008] [Accepted: 09/04/2008] [Indexed: 10/21/2022]
Abstract
AIMS We were to examine the effect of bradykinin (BK) in the regulation of glutamate transporter and its related signaling molecules in a human retinal pigment epithelial (ARPE) cells, which are important cells to support retina. MAIN METHODS d-[2,3-(3)H]-aspartate uptake, western immunoblotting, reverse transcription polymerase chain reaction, [(3)H]-arachidonic acid release, and siRNA transfection techniques were used. KEY FINDINGS BK stimulated glutamate uptake as well as the mRNA expression of excitatory amino acid transporter 4 (EAAT4) and excitatory amino acid carrier 1 (EAAC1), which was blocked by treatment with bradykinin 1 receptor (B1R) and bradykinin 2 receptor (B2R) siRNA, suggesting the role of B1R and B2R in this process. The BK-induced stimulation of glutamate uptake was also blocked by [des-Arg(10)]-HOE 140, a B1R antagonist, and HOE 140, a B2R antagonist, as well as by the tyrosine kinase inhibitors genistein and herbimycin A. In addition, the BK-induced stimulation of glutamate uptake was blocked by treatment with the phospholipase A(2) inhibitors mepacrine and AACOCF(3), the cyclooxygenase (COX) inhibitor indomethacin, and the COX-2 inhibitor Dup 697. Furthermore, the BK-induced increase in COX-2 expression was blocked by the PI-3 kinase inhibitors wortmannin and LY294002, Akt inhibitor, and the protein kinase C (PKC) inhibitors staurosporine and bisindolylmaleimide I, suggesting the role of PI-3 kinase and PKC in this process. BK stimulated Akt activation and the translocation of PKC activation via the activation of B1R and B2R. SIGNIFICANCE BK stimulates glutamate uptake through a PKC-Akt-COX-2 signaling cascade in ARPE cells.
Collapse
Affiliation(s)
- Seul-Ki Lim
- Bio-therapy Human Resources Center, Department of Veterinary Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju 500-757, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Hartzell HC, Qu Z, Yu K, Xiao Q, Chien LT. Molecular physiology of bestrophins: multifunctional membrane proteins linked to best disease and other retinopathies. Physiol Rev 2008; 88:639-72. [PMID: 18391176 DOI: 10.1152/physrev.00022.2007] [Citation(s) in RCA: 258] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This article reviews the current state of knowledge about the bestrophins, a newly identified family of proteins that can function both as Cl(-) channels and as regulators of voltage-gated Ca(2+) channels. The founding member, human bestrophin-1 (hBest1), was identified as the gene responsible for a dominantly inherited, juvenile-onset form of macular degeneration called Best vitelliform macular dystrophy. Mutations in hBest1 have also been associated with a small fraction of adult-onset macular dystrophies. It is proposed that dysfunction of bestrophin results in abnormal fluid and ion transport by the retinal pigment epithelium, resulting in a weakened interface between the retinal pigment epithelium and photoreceptors. There is compelling evidence that bestrophins are Cl(-) channels, but bestrophins remain enigmatic because it is not clear that the Cl(-) channel function can explain Best disease. In addition to functioning as a Cl(-) channel, hBest1 also is able to regulate voltage-gated Ca(2+) channels. Some bestrophins are activated by increases in intracellular Ca(2+) concentration, but whether bestrophins are the molecular counterpart of Ca(2+)-activated Cl(-) channels remains in doubt. Bestrophins are also regulated by cell volume and may be a member of the volume-regulated anion channel family.
Collapse
Affiliation(s)
- H Criss Hartzell
- Department of Cell Biology, Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | | | | | | | |
Collapse
|
16
|
Besch D, Zrenner E, Sadowski B. Reversibility of Tamoxifen® Retinopathy—A Ten-Year Follow-Up. Neuroophthalmology 2008. [DOI: 10.1080/01658100802114380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
17
|
Kim SH, Lutz RJ, Wang NS, Robinson MR. Transport barriers in transscleral drug delivery for retinal diseases. Ophthalmic Res 2007; 39:244-54. [PMID: 17851264 DOI: 10.1159/000108117] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Accepted: 06/06/2007] [Indexed: 12/16/2022]
Abstract
Transscleral delivery has emerged as an attractive method for treating retinal disorders because it offers localized delivery of drugs as a less invasive method compared to intravitreal administration. Numerous novel transscleral drug delivery systems ranging from microparticles to implants have been reported. However, transscleral delivery is currently not as clinically effective as intravitreal delivery in the treatment of retinal diseases. Transscleral drug delivery systems require drugs to permeate through several layers of ocular tissue (sclera, Bruch's membrane-choroid, retinal pigment epithelium) to reach the neuroretina. As a result, a steep drug concentration gradient from the sclera to the retina is established, and very low concentrations of drug are detected in the retina. This steep gradient is created by the barriers to transport that hinder drug molecules from successfully reaching the retina. A review of the literature reveals 3 types of barriers hindering transscleral drug delivery: static, dynamic and metabolic. While static barriers have been examined in detail, the literature on dynamic and metabolic barriers is lacking. These barriers must be investigated further to gain a more complete understanding of the transport barriers involved in transscleral drug delivery.
Collapse
Affiliation(s)
- Stephanie H Kim
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20892-5766, USA.
| | | | | | | |
Collapse
|
18
|
Tang GY, Ip AK, Siu AW. Pinoline and N-acetylserotonin reduce glutamate-induced lipid peroxidation in retinal homogenates. Neurosci Lett 2006; 412:191-4. [PMID: 17125922 DOI: 10.1016/j.neulet.2006.11.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Revised: 11/03/2006] [Accepted: 11/03/2006] [Indexed: 11/23/2022]
Abstract
Glutamate is a neurotransmitter associated with oxidative retinal disorders. Pinoline (PIN) and N-acetylserotonin (NAS) are newly identified neural protectors. We investigated the glutamate-induced lipid peroxidation (LPO) and the protective effects of PIN and NAS in the retina. Porcine retinal homogenates were treated with different concentrations of glutamate. The malondialdehyde (MDA) level per unit weight of protein was quantified spectro-photometrically as an index of LPO. The glutamate concentration that induced a significant increase in retinal MDA was determined. The glutamate-treated retinal homogenate was then co-incubated with 5 different concentrations (0, 35.7, 71.5, 143 and 286 microM) of PIN, NAS or their combinations (concentration corresponding to 25, 50 and 75% of protection). Glutamate induced a significant dose-dependent increase in retinal MDA (p<0.0001). Co-incubation with PIN or NAS significantly suppressed the glutamate-induced MDA (p<0.01) in a dose-dependent manner (p<0.0001). The concentrations to inhibit 50% of LPO were 132.8 and 98.6 microM for PIN and NAS, respectively. In summary, elevated glutamate induced retinal LPO. Both PIN and NAS suppressed the glutamate-induced LPO and a synergic protection was evident after incubation in PIN/NAS mixtures.
Collapse
Affiliation(s)
- Gordon Y Tang
- School of Optometry, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | | | | |
Collapse
|
19
|
Mannermaa E, Vellonen KS, Urtti A. Drug transport in corneal epithelium and blood-retina barrier: emerging role of transporters in ocular pharmacokinetics. Adv Drug Deliv Rev 2006; 58:1136-63. [PMID: 17081648 DOI: 10.1016/j.addr.2006.07.024] [Citation(s) in RCA: 225] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Accepted: 07/31/2006] [Indexed: 12/12/2022]
Abstract
Corneal epithelium and blood-retina barrier (i.e. retinal capillaries and retinal pigment epithelium (RPE)) are the key membranes that regulate the access of xenobiotics into the ocular tissues. Corneal epithelium limits drug absorption from the lacrimal fluid into the anterior chamber after eyedrop administration, whereas blood-retina barrier restricts the entry of drugs from systemic circulation to the posterior eye segment. Like in general pharmacokinetics, the role of transporters has been considered to be quite limited as compared to the passive diffusion of drugs across the membranes. As the functional role of transporters is being revealed it has become evident that the transporters are widely important in pharmacokinetics. This review updates the current knowledge about the transporters in the corneal epithelium and blood-retina barrier and demonstrates that the information is far from complete. We also show that quite many ocular drugs are known to interact with transporters, but the studies about the expression and function of those transporters in the eye are still sparse. Therefore, the transporters probably have greater role in ocular pharmacokinetics than we currently realise.
Collapse
Affiliation(s)
- Eliisa Mannermaa
- Department of Pharmaceutics, University of Kuopio, FIN-70211 Kuopio, Finland
| | | | | |
Collapse
|
20
|
Reigada D, Lu W, Mitchell CH. Glutamate acts at NMDA receptors on fresh bovine and on cultured human retinal pigment epithelial cells to trigger release of ATP. J Physiol 2006; 575:707-20. [PMID: 16809361 PMCID: PMC1995677 DOI: 10.1113/jphysiol.2006.114439] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The photoreceptors lie between the inner retina and the retinal pigment epithelium (RPE). The release of glutamate by the phototoreceptors can signal changes in light levels to inner retinal neurons, but the role of glutamate in communicating with the RPE is unknown. Since RPE cells are known to release ATP, we asked whether glutamate could trigger ATP release from RPE cells and whether this altered cell signalling. Stimulation of the apical face of fresh bovine RPE eyecups with 100 mum NMDA increased ATP levels more than threefold, indicating that both receptors for NMDA and release of ATP occurred across the apical membrane of fresh RPE cells. NMDA increased ATP levels bathing cultured human ARPE-19 cells more than twofold, with NMDA receptor inhibitors MK-801 and d-AP5 preventing this release. Blocking the glycine site of the NMDA receptor with 5,7-dichlorokynurenic acid prevented ATP release from ARPE-19 cells. Release was also blocked by channel blocker NPPB and Ca(2+) chelator BAPTA, but not by cystic fibrosis transmembrane conductance regulator (CFTR) blocker glibenclamide or vesicular release inhibitor brefeldin A. Glutamate produced a dose-dependent release of ATP from ARPE-19 cells that was substantially inhibited by MK-801. NMDA triggered a rise in cell Ca(2+) that was blocked by MK-801, by the ATPase apyrase, by the P2Y(1) receptor antagonist MRS2179 and by depletion of intracellular Ca(2+) stores with thapsigargin. These results suggest that glutamate stimulates NMDA receptors on the apical membrane of RPE cells to release ATP. This secondary release can amplify the glutaminergic signal by increasing Ca(2+) inside RPE cells, and might activate Ca(2+)-dependent conductances. The interplay between glutaminergic and purinergic systems may thus be important for light-dependent interactions between photoreceptors and the RPE.
Collapse
Affiliation(s)
- David Reigada
- Department of Physiology, University of Pennsylvania, 3700 Hamilton Walk, Philadelphia, PA 19104-6085, USA
| | | | | |
Collapse
|
21
|
Attar M, Shen J, Ling KHJ, Tang-Liu D. Ophthalmic drug delivery considerations at the cellular level: drug-metabolising enzymes and transporters. Expert Opin Drug Deliv 2005; 2:891-908. [PMID: 16296785 DOI: 10.1517/17425247.2.5.891] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Ophthalmic drugs typically achieve < 10% ocular bioavailability. A drug applied to the surface of the eye may cross ocular-blood barriers where it may encounter metabolising enzymes and cellular transporters before it distributes to the site of action. Characterisation of ocular enzyme systems and cellular transporters and their respective substrate selectivity have provided new insight into the roles these proteins may play in ocular drug delivery and distribution. Altered metabolism and transport have been proposed to contribute to a number of ocular disease processes including inflammation, glaucoma, cataract, dry eye and neurodegeneration. As ocular enzyme and transport systems are better characterised, their properties become an integral consideration in drug design and development.
Collapse
Affiliation(s)
- Mayssa Attar
- Allergan, Inc., Department of Pharmacokinetics and Drug Metabolism, Irvine, CA 92612, USA
| | | | | | | |
Collapse
|
22
|
Fyk-Kolodziej B, Qin P, Dzhagaryan A, Pourcho RG. Differential cellular and subcellular distribution of glutamate transporters in the cat retina. Vis Neurosci 2004; 21:551-65. [PMID: 15579221 DOI: 10.1017/s0952523804214067] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2004] [Indexed: 11/06/2022]
Abstract
Retrieval of glutamate from extracellular sites in the retina involves at least five excitatory amino acid transporters. Immunocytochemical analysis of the cat retina indicates that each of these transporters exhibits a selective distribution which may reflect its specific function. The uptake of glutamate into Müller cells or astrocytes appears to depend upon GLAST and EAAT4, respectively. Staining for EAAT4 was also seen in the pigment epithelium. The remaining transporters are neuronal with GLT-1α localized to a number of cone bipolar, amacrine, and ganglion cells and GLT-1v in cone photoreceptors and several populations of bipolar cells. The EAAC1 transporter was found in horizontal, amacrine, and ganglion cells. Staining for EAAT5 was seen in the axon terminals of both rod and cone photoreceptors as well as in numerous amacrine and ganglion cells. Although some of the glutamate transporter molecules are positioned for presynaptic or postsynaptic uptake at glutamatergic synapses, others with localizations more distant from such contacts may serve in modulatory roles or provide protection against excitoxic or oxidative damage.
Collapse
Affiliation(s)
- Bozena Fyk-Kolodziej
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | |
Collapse
|