1
|
Gonzalez-Gronow M, Gopal U, Austin RC, Pizzo SV. Glucose-regulated protein (GRP78) is an important cell surface receptor for viral invasion, cancers, and neurological disorders. IUBMB Life 2021; 73:843-854. [PMID: 33960608 DOI: 10.1002/iub.2502] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/14/2021] [Accepted: 05/01/2021] [Indexed: 12/22/2022]
Abstract
The 78 kDa glucose-regulated protein (GRP78) is an endoplasmic reticulum (ER)-resident molecular chaperone. GRP78 is a member of the 70 kDa heat shock family of proteins involved in correcting and clearing misfolded proteins in the ER. In response to cellular stress, GRP78 escapes from the ER and moves to the plasma membrane where it (a) functions as a receptor for many ligands, and (b) behaves as an autoantigen for autoantibodies that contribute to human disease and cancer. Cell surface GRP78 (csGRP78) associates with the major histocompatibility complex class I (MHC-I), and is the port of entry for several viruses, including the predictive binding of the novel SARS-CoV-2. Furthermore, csGRP78 is found in association with partners as diverse as the teratocarcinoma-derived growth factor 1 (Cripto), the melanocortin-4 receptor (MC4R) and the DnaJ-like protein MTJ-1. CsGRP78 also serves as a receptor for a large variety of ligands including activated α2 -macroglobulin (α2 M*), plasminogen kringle 5 (K5), microplasminogen, the voltage-dependent anion channel (VDAC), tissue factor (TF), and the prostate apoptosis response-4 protein (Par-4). In this review, we discuss the mechanisms involved in the translocation of GRP78 from the ER to the cell surface, and the role of secreted GRP78 and its autoantibodies in cancer and neurological disorders.
Collapse
Affiliation(s)
- Mario Gonzalez-Gronow
- Department of Biological Sciences, Laboratory of Environmental Neurotoxicology, Faculty of Medicine, Universidad Católica del Norte, Coquimbo, Chile.,Department of Pathology, Duke University Medical Center, Durham, North Carolina, USA
| | - Udhayakumar Gopal
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, USA
| | - Richard C Austin
- Department of Medicine, Division of Nephrology, McMaster University and The Research Institute of St. Joseph's Hamilton, Hamilton, Ontario, Canada
| | - Salvatore V Pizzo
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
2
|
Chaumonnot K, Masson S, Sikner H, Bouchard A, Baverel V, Bellaye PS, Collin B, Garrido C, Kohli E. The HSP GRP94 interacts with macrophage intracellular complement C3 and impacts M2 profile during ER stress. Cell Death Dis 2021; 12:114. [PMID: 33483465 PMCID: PMC7822929 DOI: 10.1038/s41419-020-03288-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/17/2022]
Abstract
The role of GRP94, an endoplasmic reticulum (ER) stress protein with both pro- and anti-inflammatory functions, has not been investigated in macrophages during ER stress, whereas ER stress has been reported in many diseases involving macrophages. In this work, we studied GRP94 in M1/LPS + IFNγ and M2/IL-4 primary macrophages derived from human monocytes (isolated from buffy coats), in basal and ER stress conditions induced by thapsigargin (Tg), an inducer of ER calcium depletion and tunicamycin (Tm), an inhibitor of N-glycosylation. We found that GRP94 was expressed on the membrane of M2 but not M1 macrophages. In M2, Tg, but not Tm, while decreased GRP94 content in the membrane, it induced its secretion. This correlated with the induction of a pro-inflammatory profile, which was dependent on the UPR IRE1α arm activation and on a functional GRP94. As we previously reported that GRP94 associated with complement C3 at the extracellular level, we analyzed C3 and confirmed GRP94-C3 interaction in our experimental model. Further, Tg increased this interaction and, in these conditions, C3b and cathepsin L were detected in the extracellular medium where GRP94 co-immunoprecipitated with C3 and C3b. Finally, we showed that the C3b inactivated fragment, iC3b, only present on non-stressed M2, depended on functional GRP94, making both GRP94 and iC3b potential markers of M2 cells. In conclusion, our results show that GRP94 is co-secreted with C3 under ER stress conditions which may facilitate its cleavage by cathepsin L, thus contributing to the pro-inflammatory profile observed in stressed M2 macrophages.
Collapse
Affiliation(s)
- Killian Chaumonnot
- UMR INSERM/uB/AGROSUP 1231, Team 3 HSP-Pathies, labellisée Ligue Nationale contre le Cancer and Laboratoire d'Excellence LipSTIC, Dijon, France.,UFR des Sciences de Santé, Université de Bourgogne, Dijon, France
| | - Sophie Masson
- UMR INSERM/uB/AGROSUP 1231, Team 3 HSP-Pathies, labellisée Ligue Nationale contre le Cancer and Laboratoire d'Excellence LipSTIC, Dijon, France.,UFR des Sciences de Santé, Université de Bourgogne, Dijon, France.,Centre anti-cancéreux Georges François Leclerc, Dijon, France
| | - Hugo Sikner
- UMR INSERM/uB/AGROSUP 1231, Team 3 HSP-Pathies, labellisée Ligue Nationale contre le Cancer and Laboratoire d'Excellence LipSTIC, Dijon, France.,UFR des Sciences de Santé, Université de Bourgogne, Dijon, France
| | - Alexanne Bouchard
- UMR INSERM/uB/AGROSUP 1231, Team 3 HSP-Pathies, labellisée Ligue Nationale contre le Cancer and Laboratoire d'Excellence LipSTIC, Dijon, France.,Centre anti-cancéreux Georges François Leclerc, Dijon, France
| | - Valentin Baverel
- UMR INSERM/uB/AGROSUP 1231, Team 3 HSP-Pathies, labellisée Ligue Nationale contre le Cancer and Laboratoire d'Excellence LipSTIC, Dijon, France.,UFR des Sciences de Santé, Université de Bourgogne, Dijon, France
| | - Pierre-Simon Bellaye
- UMR INSERM/uB/AGROSUP 1231, Team 3 HSP-Pathies, labellisée Ligue Nationale contre le Cancer and Laboratoire d'Excellence LipSTIC, Dijon, France.,Centre anti-cancéreux Georges François Leclerc, Dijon, France
| | - Bertrand Collin
- UFR des Sciences de Santé, Université de Bourgogne, Dijon, France.,Centre anti-cancéreux Georges François Leclerc, Dijon, France.,UMR uB/CNRS 6302, Institut de Chimie Moléculaire, Dijon, France
| | - Carmen Garrido
- UMR INSERM/uB/AGROSUP 1231, Team 3 HSP-Pathies, labellisée Ligue Nationale contre le Cancer and Laboratoire d'Excellence LipSTIC, Dijon, France.,UFR des Sciences de Santé, Université de Bourgogne, Dijon, France.,Centre anti-cancéreux Georges François Leclerc, Dijon, France
| | - Evelyne Kohli
- UMR INSERM/uB/AGROSUP 1231, Team 3 HSP-Pathies, labellisée Ligue Nationale contre le Cancer and Laboratoire d'Excellence LipSTIC, Dijon, France. .,UFR des Sciences de Santé, Université de Bourgogne, Dijon, France. .,CHU, Dijon, France.
| |
Collapse
|
3
|
Kellokumpu S. Golgi pH, Ion and Redox Homeostasis: How Much Do They Really Matter? Front Cell Dev Biol 2019; 7:93. [PMID: 31263697 PMCID: PMC6584808 DOI: 10.3389/fcell.2019.00093] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 05/16/2019] [Indexed: 02/06/2023] Open
Abstract
Exocytic and endocytic compartments each have their own unique luminal ion and pH environment that is important for their normal functioning. A failure to maintain this environment - the loss of homeostasis - is not uncommon. In the worst case, all the main Golgi functions, including glycosylation, membrane trafficking and protein sorting, can be perturbed. Several factors contribute to Golgi homeostasis. These include not only ions such as H+, Ca2+, Mg2+, Mn2+, but also Golgi redox state and nitric oxide (NO) levels, both of which are dependent on the oxygen levels in the cells. Changes to any one of these factors have consequences on Golgi functions, the nature of which can be dissimilar or similar depending upon the defects themselves. For example, altered Golgi pH homeostasis gives rise to Cutis laxa disease, in which glycosylation and membrane trafficking are both affected, while altered Ca2+ homeostasis due to the mutated SCPA1 gene in Hailey-Hailey disease, perturbs various protein sorting, proteolytic cleavage and membrane trafficking events in the Golgi. This review gives an overview of the molecular machineries involved in the maintenance of Golgi ion, pH and redox homeostasis, followed by a discussion of the organelle dysfunction and disease that frequently result from their breakdown. Congenital disorders of glycosylation (CDGs) are discussed only when they contribute directly to Golgi pH, ion or redox homeostasis. Current evidence emphasizes that, rather than being mere supporting factors, Golgi pH, ion and redox homeostasis are in fact key players that orchestrate and maintain all Golgi functions.
Collapse
Affiliation(s)
- Sakari Kellokumpu
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| |
Collapse
|
4
|
Saraste J, Marie M. Intermediate Compartment: A Sorting Station between the Endoplasmic Reticulum and the Golgi Apparatus. ENCYCLOPEDIA OF CELL BIOLOGY 2016. [PMCID: PMC7150006 DOI: 10.1016/b978-0-12-394447-4.20013-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
5
|
Prydz K. Determinants of Glycosaminoglycan (GAG) Structure. Biomolecules 2015; 5:2003-22. [PMID: 26308067 PMCID: PMC4598785 DOI: 10.3390/biom5032003] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 08/17/2015] [Accepted: 08/18/2015] [Indexed: 01/05/2023] Open
Abstract
Proteoglycans (PGs) are glycosylated proteins of biological importance at cell surfaces, in the extracellular matrix, and in the circulation. PGs are produced and modified by glycosaminoglycan (GAG) chains in the secretory pathway of animal cells. The most common GAG attachment site is a serine residue followed by a glycine (-ser-gly-), from which a linker tetrasaccharide extends and may continue as a heparan sulfate, a heparin, a chondroitin sulfate, or a dermatan sulfate GAG chain. Which type of GAG chain becomes attached to the linker tetrasaccharide is influenced by the structure of the protein core, modifications occurring to the linker tetrasaccharide itself, and the biochemical environment of the Golgi apparatus, where GAG polymerization and modification by sulfation and epimerization take place. The same cell type may produce different GAG chains that vary, depending on the extent of epimerization and sulfation. However, it is not known to what extent these differences are caused by compartmental segregation of protein cores en route through the secretory pathway or by differential recruitment of modifying enzymes during synthesis of different PGs. The topic of this review is how different aspects of protein structure, cellular biochemistry, and compartmentalization may influence GAG synthesis.
Collapse
Affiliation(s)
- Kristian Prydz
- Department of Biosciences, University of Oslo, Box 1066, Blindern OSLO 0316, Norway.
| |
Collapse
|
6
|
Alonzi DS, Kukushkin NV, Allman SA, Hakki Z, Williams SJ, Pierce L, Dwek RA, Butters TD. Glycoprotein misfolding in the endoplasmic reticulum: identification of released oligosaccharides reveals a second ER-associated degradation pathway for Golgi-retrieved proteins. Cell Mol Life Sci 2013; 70:2799-814. [PMID: 23503623 PMCID: PMC11113499 DOI: 10.1007/s00018-013-1304-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 01/31/2013] [Accepted: 02/18/2013] [Indexed: 10/27/2022]
Abstract
Endoplasmic reticulum-associated degradation (ERAD) is a key cellular process whereby misfolded proteins are removed from the endoplasmic reticulum (ER) for subsequent degradation by the ubiquitin/proteasome system. In the present work, analysis of the released, free oligosaccharides (FOS) derived from all glycoproteins undergoing ERAD, has allowed a global estimation of the mechanisms of this pathway rather than following model proteins through degradative routes. Examining the FOS produced in endomannosidase-compromised cells following α-glucosidase inhibition has revealed a mechanism for clearing Golgi-retrieved glycoproteins that have failed to enter the ER quality control cycle. The Glc3Man7GlcNAc2 FOS species has been shown to be produced in the ER lumen by a mechanism involving a peptide: N-glycanase-like activity, and its production was sensitive to disruption of Golgi-ER trafficking. The detection of this oligosaccharide was unaffected by the overexpression of EDEM1 or cytosolic mannosidase, both of which increased the production of previously characterised cytosolically localised FOS. The lumenal FOS identified are therefore distinct in their production and regulation compared to FOS produced by the conventional route of misfolded glycoproteins directly removed from the ER. The production of such lumenal FOS is indicative of a novel degradative route for cellular glycoproteins that may exist under certain conditions.
Collapse
Affiliation(s)
- Dominic S. Alonzi
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - Nikolay V. Kukushkin
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - Sarah A. Allman
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - Zalihe Hakki
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, VIC 3010 Australia
| | - Spencer J. Williams
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, VIC 3010 Australia
| | - Lorna Pierce
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - Raymond A. Dwek
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - Terry D. Butters
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| |
Collapse
|
7
|
Abstract
Ca(2+) is an important intracellular messenger affecting many diverse processes. In eukaryotic cells, Ca(2+) storage is achieved within specific intracellular organelles, especially the endoplasmic/sarcoplasmic reticulum, in which Ca(2+) is buffered by specific proteins known as Ca(2+) buffers. Ca(2+) buffers are a diverse group of proteins, varying in their affinities and capacities for Ca(2+), but they typically also carry out other functions within the cell. The wide range of organelles containing Ca(2+) and the evidence supporting cross-talk between these organelles suggest the existence of a dynamic network of organellar Ca(2+) signaling, mediated by a variety of organellar Ca(2+) buffers.
Collapse
Affiliation(s)
- Daniel Prins
- Department of Biochemistry, School of Molecular and Systems Medicine, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
8
|
Lu Q, Jankowich M, Newton J, Harrington EO, Rounds S. Alterations in molecular chaperones and eIF2alpha during lung endothelial cell apoptosis. Am J Physiol Lung Cell Mol Physiol 2010; 298:L501-8. [PMID: 20097734 DOI: 10.1152/ajplung.00416.2009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We have previously demonstrated that inhibition of CAAX carboxyl methylation with AGGC caused redistribution and condensation of the ER molecular chaperones, glucose-regulated protein (GRP)-94 and calnexin; an effect that was attenuated by overexpression of dominant active RhoA. We have also shown that AGGC decreased GRP94 protein level; an effect that was dependent on caspase activity. In the present study, we tested the effects of inhibition of posttranslational processing of CAAX proteins on localization and protein levels of molecular chaperones and phosphorylation and protein level of eIF2alpha. We found that both AGGC, which inhibits CAAX carboxyl methylation, and simvastatin, which inhibits CAAX geranylgeranylation, caused relocalization of GRP94, calnexin, and calreticulin, effects that were not seen during endothelial apoptosis induced by TNF-alpha or ultraviolet (UV) irradiation. These results suggest that posttranslational processing of CAAX proteins is important in maintaining localization of molecular chaperones normally found in the ER. We also noted that AGGC, but not simvastatin, TNF-alpha, or UV irradiation, decreased protein levels of most molecular chaperones. Increased eIF2alpha phosphorylation was observed in the early stages of apoptosis, which was independent of the cause of apoptosis. These results suggest that eIF2alpha phosphorylation is a common early response to apoptosis-inducing stimuli. Interestingly, eIF2alpha protein level was decreased in the late stages of apoptosis induced by AGGC, TNF-alpha, and UV irradiation: an effect that was prevented by caspase inhibition. Thus we speculate that caspase(s)-dependent proteolysis of molecular chaperones and eIF2alpha may be novel signaling pathways of apoptosis. We also speculate that increased eIF2alpha phosphorylation is a defensive response against endothelial cell apoptosis.
Collapse
Affiliation(s)
- Qing Lu
- Department of Medicine, Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Alpert Medical School of Brown University, Providence, Rhode Island 02908, USA
| | | | | | | | | |
Collapse
|
9
|
Gonzalez-Gronow M, Selim MA, Papalas J, Pizzo SV. GRP78: a multifunctional receptor on the cell surface. Antioxid Redox Signal 2009; 11:2299-306. [PMID: 19331544 DOI: 10.1089/ars.2009.2568] [Citation(s) in RCA: 198] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The 78 kDa glucose-regulated protein (GRP78) is an endoplasmic reticulum chaperone, whose function is generally thought to be restricted to controlling the structural maturation of nascent glycoproteins. However, GRP78 also is expressed on the cell surface where it functions as a receptor for a wide variety of ligands, behaving as an autoantigen for several classes of autoantibodies. GRP78 is a signaling receptor for activated alpha2-macroglobulin, plasminogen kringle 5, and microplasminogen, and it plays a critical role in viral entry of coxsackie B, and dengue fever viruses. GRP78 is also implicated in the regulation of tissue factor procoagulant activity and functions as a receptor for angiogenic peptides via a mechanism independent of the VEGF receptor. Cell surface GRP78 is found associated with such diverse proteins as the voltage-dependent anion channel (VDAC), the major histocompatibility complex class I (MHC-I), the teratocarcinoma-derived growth factor I (Cripto), and the DnaJ-like protein MTJ-1. These associations suggest a unique GRP78 cell surface topography, which appears to be compartmentalized to respond differently to agonists that bind to its N- or C-terminal domains. Here, we discuss the significance of these associations, and the possible mechanisms involved in the transportation of GRP78 from the cytosol to the cell surface.
Collapse
Affiliation(s)
- Mario Gonzalez-Gronow
- Department of Pathology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | | | |
Collapse
|
10
|
Frasson M, Vitadello M, Brunati AM, La Rocca N, Tibaldi E, Pinna LA, Gorza L, Donella-Deana A. Grp94 is Tyr-phosphorylated by Fyn in the lumen of the endoplasmic reticulum and translocates to Golgi in differentiating myoblasts. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1793:239-52. [PMID: 19000718 DOI: 10.1016/j.bbamcr.2008.10.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Revised: 09/22/2008] [Accepted: 10/02/2008] [Indexed: 12/11/2022]
Abstract
The endoplasmic-reticulum chaperone Grp94 is required for the cell surface export of molecules involved in the native immune response, in mesoderm induction and muscle development, but the signals responsible for Grp94 recruitment are still obscure. Here we show for the first time that Grp94 undergoes Tyr-phosphorylation in differentiating myogenic C2C12 cells. By means of phospho-proteomic and immunoprecipitation analyses, and the use of Src-specific inhibitors we demonstrate that the Src-tyrosine-kinase Fyn becomes active early after induction of C2C12 cell differentiation, in parallel with the recruitment and the Tyr-phosphorylation of Grp94, which peaks at 6-hour differentiation. Grp94 is Tyr-phosphorylated inside the endoplasmic reticulum by a lumenal Fyn, as indicated by fluorescence and electronmicroscopy immunolocalization, co-immunoprecipitation after chemical cross-linking and by treatment of intact endoplasmic-reticulum vesicles with proteinase K. Furthermore, fractionation of cellular membrane compartments and double-immunofluorescence studies showed that Tyr-phosphorylation of Grp94 is necessary for the protein translocation from the endoplasmic reticulum to the Golgi apparatus. These results indicate that Fyn-catalyzed Tyr-phosphorylation of Grp94 is an event required to promote the chaperone export from the endoplasmic reticulum occurring in the early phase of myoblast differentiation.
Collapse
Affiliation(s)
- Martina Frasson
- Department of Biochemistry, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Sun FC, Wei S, Li CW, Chang YS, Chao CC, Lai YK. Localization of GRP78 to mitochondria under the unfolded protein response. Biochem J 2006; 396:31-9. [PMID: 16433633 PMCID: PMC1450007 DOI: 10.1042/bj20051916] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The ubiquitously expressed molecular chaperone GRP78 (78 kDa glucose-regulated protein) generally localizes to the ER (endoplasmic reticulum). GRP78 is specifically induced in cells under the UPR (unfolded protein response), which can be elicited by treatments with calcium ionophore A23187 and sarcoplasmic/endoplasmic reticulum Ca2+-ATPase inhibitor TG (thapsigargin). By using confocal microscopy, we have demonstrated that GRP78 was concentrated in the perinuclear region and co-localized with the ER marker proteins, calnexin and PDI (protein disulphide-isomerase), in cells under normal growth conditions. However, treatments with A23187 and TG led to diminish its ER targeting, resulting in redirection into a cytoplasmic vesicular pattern, and overlapping with the mitochondrial marker MitoTracker. Cellular fractionation and protease digestion of isolated mitochondria from ER-stressed cells suggested that a significant portion of GRP78 is localized to the mitochondria and is protease-resistant. Localizations of GRP78 in ER and mitochondria were confirmed by using immunoelectron microscopy. In ER-stressed cells, GRP78 mainly localized within the mitochondria and decorated the mitochondrial membrane compartment. Submitochondrial fractionation studies indicated further that the mitochondria-resided GRP78 is mainly located in the intermembrane space, inner membrane and matrix, but is not associated with the outer membrane. Furthermore, radioactive labelling followed by subcellular fractionation showed that a significant portion of the newly synthesized GRP78 is localized to the mitochondria in cells under UPR. Taken together, our results indicate that, at least under certain circumstances, the ER-resided chaperone GRP78 can be retargeted to mitochondria and thereby may be involved in correlating UPR signalling between these two organelles.
Collapse
Affiliation(s)
- Fang-Chun Sun
- *Department of Life Science, Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan 30013, R.O.C
| | - Shou Wei
- *Department of Life Science, Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan 30013, R.O.C
| | - Chia-Wei Li
- †Department of Life Science, Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan 30013, R.O.C
| | - Yuo-Sheng Chang
- *Department of Life Science, Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan 30013, R.O.C
| | - Chih-Chung Chao
- *Department of Life Science, Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan 30013, R.O.C
| | - Yiu-Kay Lai
- *Department of Life Science, Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan 30013, R.O.C
- To whom correspondence should be addressed (email )
| |
Collapse
|
12
|
Ying M, Flatmark T. Binding of the viral immunogenic octapeptide VSV8 to native glucose-regulated protein Grp94 (gp96) and its inhibition by the physiological ligands ATP and Ca2+. FEBS J 2006; 273:513-22. [PMID: 16420475 DOI: 10.1111/j.1742-4658.2005.05084.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The molecular chaperone Grp94 (gp96) of the endoplasmic reticulum (ER) lumen plays an essential role in the structural maturation and/or secretion of proteins destined for transport to the cell surface. Its proposed role in binding and transferring peptides for immune recognition is, however, controversial. Using SPR spectroscopy, we studied the interaction of native glycosylated Grp94 at neutral pH and 25 and 37 degrees C with the viral immunogenic octapeptide RGYVYQGL (VSV8), derived from vesicular stomatitis virus nucleoprotein (52-59). The peptide binds reversibly with low affinity ([A]0.5 approximately 640 microM) and a hyperbolic binding isotherm, and the binding is partially inhibited by ATP and Ca2+ at concentrations that are present in the ER lumen, and the effects are explained by conformational changes in the native chaperone induced by these ligands. Our data present experimental support for the recent proposal that, under native conditions, VSV8 binds to Grp94 by an adsorptive, rather than a bioselective, mechanism, and thus further challenge the proposed in vivo peptide acceptor-donor function of the chaperone in the context of antigen-presenting cell activation.
Collapse
Affiliation(s)
- Ming Ying
- Section of Biochemistry and Molecular Biology, Department of Biomedicine, University of Bergen, Norway
| | | |
Collapse
|
13
|
Sannerud R, Marie M, Nizak C, Dale HA, Pernet-Gallay K, Perez F, Goud B, Saraste J. Rab1 defines a novel pathway connecting the pre-Golgi intermediate compartment with the cell periphery. Mol Biol Cell 2006; 17:1514-26. [PMID: 16421253 PMCID: PMC1415313 DOI: 10.1091/mbc.e05-08-0792] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The function of the pre-Golgi intermediate compartment (IC) and its relationship with the endoplasmic reticulum (ER) and Golgi remain only partially understood. Here, we report striking segregation of IC domains in polarized PC12 cells that develop neurite-like processes. Differentiation involves expansion of the IC and movement of Rab1-containing tubules to the growth cones of the neurites, whereas p58- and COPI-positive IC elements, like rough ER and Golgi, remain in the cell body. Exclusion of Rab1 effectors p115 and GM130 from the neurites further indicated that the centrifugal, Rab1-mediated pathway has functions that are not directly related to ER-to-Golgi trafficking. Disassembly of COPI coats did not affect this pathway but resulted in missorting of p58 to the neurites. Live cell imaging showed that green fluorescent protein (GFP)-Rab1A-containing IC elements move bidirectionally both within the neurites and cell bodies, interconnecting different ER exit sites and the cis-Golgi region. Moreover, in nonpolarized cells GFP-Rab1A-positive tubules moved centrifugally towards the cell cortex. Hydroxymethylglutaryl-CoA reductase, the key enzyme of cholesterol biosynthesis, colocalized with slowly sedimenting, Rab1-enriched membranes when the IC subdomains were separated by velocity sedimentation. These results reveal a novel pathway directly connecting the IC with the cell periphery and suggest that this Rab1-mediated pathway is linked to the dynamics of smooth ER.
Collapse
Affiliation(s)
- Ragna Sannerud
- Section of Anatomy and Cell Biology, Department of Biomedicine, University of Bergen, N-5009 Bergen, Norway
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Jeon GS, Park SW, Kim DW, Seo JH, Cho J, Lim SY, Kim SD, Cho SS. Glial expression of the 90-kDa heat shock protein (HSP90) and the 94-kDa glucose-regulated protein (GRP94) following an excitotoxic lesion in the mouse hippocampus. Glia 2005; 48:250-8. [PMID: 15390117 DOI: 10.1002/glia.20075] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Heat shock proteins (HSPs) are immediately expressed in neuronal and glial cells under various stressful conditions and play a protective role through molecular chaperones. Although several studies have been focused on the expression of HSPs, little is known about HSP90s expression in glial cells under neuropathological conditions. In this study, we evaluated the expression pattern of the glial cell-related HSP90 and GRP94 proteins, following the induction of an excitotoxic lesion in the mouse brain. Adult mice received an intracerebroventricular injection of kainic acid; the brain tissue was then analyzed immunohistochemically for HSPs and double labeling using glial markers. HSPs expression was quantified by Western blot analysis. Excitotoxic damage was found to cause pyramidal cell degeneration in the CA3 region of the hippocampus. In the injured hippocampus, reactive microglia/macrophages expressed HSP90 from 12 h until 7 days postlesion (PL), showing maximal levels at day 1. In parallel, hippocampal reactive astrocytes showed the expression of GRP94 from 12 h until 7 days PL. In general, HSPs expression was transient, peaked at 1-3 days PL and reached basal levels by day 7. For the first time, our data demonstrate the injury-induced expression of HSP90 and GRP94 in glial cells, which may contribute to the mechanism of glial cell protection and adaptation in response to damage, thereby playing an important role in the evolution of the glial response and the excitotoxic lesion outcome. HSP90 may provide antioxidant protective mechanisms against microglia/macrophages, whereas GRP94 may stabilize the astroglial cytoskeleton and participate in astroglial antioxidant mechanisms.
Collapse
Affiliation(s)
- Gye Sun Jeon
- Department of Anatomy, College of Medicine, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Bando Y, Katayama T, Kasai K, Taniguchi M, Tamatani M, Tohyama M. GRP94 (94 kDa glucose-regulated protein) suppresses ischemic neuronal cell death against ischemia/reperfusion injury. Eur J Neurosci 2003; 18:829-40. [PMID: 12925009 DOI: 10.1046/j.1460-9568.2003.02818.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The 94 kDa glucose-regulated protein (GRP94), the endoplasmic reticulum (ER) resident molecular chaperone, has a role in cell death due to endoplasmic reticulum stress (ER stress). Here, we report that expression of GRP94 was increased in human neuroblastoma cells (SH-SY5Y (SY5Y) cells) exposed to hypoxia/reoxygenation (H/R). H/R mediated death of SY5Y cells was associated with the activation of major cysteine proteases, caspase-3 and calpain, along with an elevated intracellular calcium concentration. Pretreatment with adenovirus-mediated antisense GRP94 (AdGRP94AS) led to reduced viability of SY5Y cells after being subjected to H/R compared with wild-type cells or cells with adenovirus-mediated overexpression of GRP94 (AdGRP94S). These results indicate that suppression of GRP94 is associated with accelerated apoptosis and that expression of GRP94 (as a stress protein) suppresses oxidative stress-mediated neuronal death and stabilizes calcium homeostasis in the ER. We also used gerbils with transient forebrain ischemia to study the role of GRP94 in vivo. Neurons with adenovirus-mediated overexpression of GRP94 were resistant to ischemic damage. These results confirmed that GRP94 could suppress ischemic injury to neurons, suggesting that gene transfer of GRP94 into the brain may have therapeutic potential in the treatment of cerebrovascular disease.
Collapse
Affiliation(s)
- Yoshio Bando
- Department of Anatomy and Neuroscience, Osaka University Graduate School of Medicine, Osaka, Japan.
| | | | | | | | | | | |
Collapse
|
16
|
Sannerud R, Saraste J, Goud B. Retrograde traffic in the biosynthetic-secretory route: pathways and machinery. Curr Opin Cell Biol 2003; 15:438-45. [PMID: 12892784 DOI: 10.1016/s0955-0674(03)00077-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In the secretory pathway, the forward (anterograde) membrane flow is compensated by retrograde transport of proteins and lipids. Membrane recycling is required for the maintenance of organelle homeostasis and the re-use of components of the transport machineries for the generation of new transport intermediates. However, the molecular mechanisms and other cellular functions of retrograde traffic are still poorly understood. In recent years, a multitude of protein factors that function in the secretory pathway have been discovered, most of them originally suggested to play a role in forward trafficking. However, in many cases subsequent studies have revealed that these proteins participate (also) in retrograde traffic. It is likely that this shift will continue, reflecting the fact that the two pathways are intimately connected.
Collapse
Affiliation(s)
- Ragna Sannerud
- Department of Anatomy and Cell Biology, University of Bergen, Jonas Lies vei 91, N-5009, Bergen, Norway
| | | | | |
Collapse
|