1
|
Song W, Qin L, Chen Y, Chen J, Wei L. Single-cell transcriptome analysis identifies Versican(+) myofibroblast as a hallmark for thoracic aortic aneurysm marked by activation of PI3K-AKT signaling pathway. Biochem Biophys Res Commun 2023; 643:175-185. [PMID: 36621113 DOI: 10.1016/j.bbrc.2022.12.086] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/13/2022] [Accepted: 12/30/2022] [Indexed: 01/01/2023]
Abstract
BACKGROUND Thoracic aortic aneurysm (TAA) is a silent but dangerous cardiovascular disease. Understanding molecular mechanisms of TAA on single-cell level might provide new strategies for preventing and treating TAA. METHODS Single-cell RNA sequencing was performed on control and aneurysmal thoracic aorta to find out specific cell clusters and cell types. Western blot and histological staining were used to verify the findings of single-cell transcriptome analysis. Characteristics of Versican (VCAN) overexpressed myofibroblast was evaluated through bioinformatic methods and experimental validation. RESULTS A total of 3 control and 8 TAA specimens were used for single-cell transcriptome analysis including 48,128 thoracic aortic cells. Among these cells, we found out a specific cell cluster containing both hallmarks of smooth muscle cell (SMC) and fibroblast. Thus, we defined these cells as myofibroblast. Further single-cell transcriptome analysis identified VCAN as a cellular marker of myofibroblast. Western blot and histological staining revealed that VCAN(+) myofibroblast was significantly increased in TAA specimens compared with control individuals. Differential analysis, functional, pathway enrichment analysis and cell-cell communication analysis demonstrated that VCAN(+) myofibroblast was closely associated with previous reported TAA associated pathological process including SMC proliferation, SMC migration and extracellular matrix (ECM) disruption. Pathway analysis found out significant activation of PI3K-AKT signaling pathway within VCAN(+) myofibroblast, which was further confirmed by experimental validation. CONCLUSIONS Single-cell RNA sequencing identified VCAN(+) myofibroblast as a typical cellular hallmark of TAA. These cells might participate in the pathogenesis of TAA through activation of PI3K-AKT signaling pathway to link SMC proliferation, SMC migration and ECM disruption.
Collapse
Affiliation(s)
- Wenyu Song
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Lieyang Qin
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yifu Chen
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jinmiao Chen
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Lai Wei
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
2
|
Yu TF, Wang K, Yin L, Li WZ, Li CP, Zhang W, Tian J, He W. A molecular probe carrying anti-tropomyosin 4 for early diagnosis of cerebral ischemia/reperfusion injury. Neural Regen Res 2022; 18:1321-1324. [PMID: 36453418 PMCID: PMC9838144 DOI: 10.4103/1673-5374.357907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
In vivo imaging of cerebral ischemia/reperfusion injury remains an important challenge. We injected porous Ag/Au@SiO2 bimetallic hollow nanoshells carrying anti-tropomyosin 4 as a molecular probe into mice with cerebral ischemia/reperfusion injury and observed microvascular changes in the brain using photoacoustic imaging with ultrasonography. At each measured time point, the total photoacoustic signal was significantly higher on the affected side than on the healthy side. Twelve hours after reperfusion, cerebral perfusion on the affected side increased, cerebrovascular injury worsened, and anti-tropomyosin 4 expression increased. Twenty-four hours after reperfusion and later, perfusion on the affected side declined slowly and stabilized after 1 week; brain injury was also alleviated. Histopathological and immunohistochemical examinations confirmed the brain injury tissue changes. The nanoshell molecular probe carrying anti-tropomyosin 4 has potential for use in early diagnosis of cerebral ischemia/reperfusion injury and evaluating its progression.
Collapse
Affiliation(s)
- Teng-Fei Yu
- Department of Ultrasound, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Kun Wang
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Lu Yin
- Department of Ultrasound, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wen-Zhe Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Chuan-Ping Li
- Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui Province, China
| | - Wei Zhang
- Department of Ultrasound, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, China,Correspondence to: Wen He, ; Jie Tian, .
| | - Wen He
- Department of Ultrasound, Beijing Tiantan Hospital, Capital Medical University, Beijing, China,Correspondence to: Wen He, ; Jie Tian, .
| |
Collapse
|
3
|
Marín‐Quílez A, Vuelta E, Díaz‐Ajenjo L, Fernández‐Infante C, García‐Tuñón I, Benito R, Palma‐Barqueros V, Hernández‐Rivas JM, González‐Porras JR, Rivera J, Bastida JM. A novel nonsense variant in TPM4 caused dominant macrothrombocytopenia, mild bleeding tendency and disrupted cytoskeleton remodeling. J Thromb Haemost 2022; 20:1248-1255. [PMID: 35170221 PMCID: PMC9306899 DOI: 10.1111/jth.15672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/09/2022] [Accepted: 02/14/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Rare inherited thrombocytopenias are caused by alterations in genes involved in megakaryopoiesis, thrombopoiesis and/or platelet release. Diagnosis is challenging due to poor specificity of platelet laboratory assays, large numbers of culprit genes, and difficult assessment of the pathogenicity of novel variants. OBJECTIVES To characterize the clinical and laboratory phenotype, and identifying the underlying molecular alteration, in a pedigree with thrombocytopenia of uncertain etiology. PATIENTS/METHODS Index case was enrolled in our Spanish multicentric project of inherited platelet disorders due to lifelong thrombocytopenia and bleeding. Bleeding score was recorded by ISTH-BAT. Laboratory phenotyping consisted of blood cells count, blood film, platelet aggregation and flow cytometric analysis. Genotyping was made by whole-exome sequencing (WES). Cytoskeleton proteins were analyzed in resting/spreading platelets by immunofluorescence and immunoblotting. RESULTS Five family members displayed lifelong mild thrombocytopenia with a high number of enlarged platelets in blood film, and mild bleeding tendency. Patient's platelets showed normal aggregation and granule secretion response to several agonists. WES revealed a novel nonsense variant (c.322C>T; p.Gln108*) in TPM4 (NM_003290.3), the gene encoding for tropomyosin-4 (TPM4). This variant led to impairment of platelet spreading capacity after stimulation with TRAP-6 and CRP, delocalization of TPM4 in activated platelets, and significantly reduced TPM4 levels in platelet lysates. Moreover, the index case displayed up-regulation of TPM2 and TPM3 mRNA levels. CONCLUSIONS This study identifies a novel TPM4 nonsense variant segregating with macrothrombocytopenia and impaired platelet cytoskeletal remodeling and spreading. These findings support the relevant role of TPM4 in thrombopoiesis and further expand our knowledge of TPM4-related thrombocytopenia.
Collapse
Affiliation(s)
| | - Elena Vuelta
- IBSAL, CICIBMCCUniversidad de Salamanca‐CSICSalamancaSpain
- Transgenic Facility, NucleusUniversity of SalamancaSalamancaSpain
| | | | | | | | - Rocío Benito
- IBSAL, CICIBMCCUniversidad de Salamanca‐CSICSalamancaSpain
| | - Verónica Palma‐Barqueros
- Department of Hematology and OncologyHospital Universitario Morales MeseguerCentro Regional de HemodonaciónUniversidad de MurciaIMIB‐ArrixacaMurciaSpain
| | - Jesús María Hernández‐Rivas
- IBSAL, CICIBMCCUniversidad de Salamanca‐CSICSalamancaSpain
- Department of HematologyComplejo Asistencial Universitario de Salamanca (CAUSA)Instituto de Investigación Biomédica de Salamanca (IBSAL)Universidad de Salamanca (USAL)SalamancaSpain
| | - José Ramón González‐Porras
- Department of HematologyComplejo Asistencial Universitario de Salamanca (CAUSA)Instituto de Investigación Biomédica de Salamanca (IBSAL)Universidad de Salamanca (USAL)SalamancaSpain
| | - José Rivera
- Department of Hematology and OncologyHospital Universitario Morales MeseguerCentro Regional de HemodonaciónUniversidad de MurciaIMIB‐ArrixacaMurciaSpain
- On behalf of “Grupo Español de Alteraciones Plaquetarias Congénitas (GEAPC)”SETHMadridSpain
| | - José María Bastida
- Department of HematologyComplejo Asistencial Universitario de Salamanca (CAUSA)Instituto de Investigación Biomédica de Salamanca (IBSAL)Universidad de Salamanca (USAL)SalamancaSpain
- On behalf of “Grupo Español de Alteraciones Plaquetarias Congénitas (GEAPC)”SETHMadridSpain
| |
Collapse
|
4
|
A differentiated Ca 2+ signalling phenotype has minimal impact on myocardin expression in an automated differentiation assay using A7r5 cells. Cell Calcium 2021; 96:102369. [PMID: 33677175 DOI: 10.1016/j.ceca.2021.102369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 01/12/2023]
Abstract
Vascular smooth muscle cells are unusual in that differentiated, contractile cells possess the capacity to "de-differentiate" into a synthetic phenotype that is characterized by being replicative, secretory, and migratory. One aspect of this phenotypic modulation is a shift from voltage-gated Ca2+ signalling in electrically coupled, differentiated cells to increased dependence on store-operated Ca2+ entry and sarcoplasmic reticulum Ca2+ release in synthetic cells. Conversely, an increased voltage-gated Ca2+ entry is seen when proliferating A7r5 smooth muscle cells quiesce. We asked whether this change in Ca2+ signalling was linked to changes in the expression of the phenotype-regulating transcriptional co-activator myocardin or α-smooth muscle actin, using correlative epifluorescence Ca2+ imaging and immunocytochemistry. Cells were cultured in growth media (DMEM, 10% serum, 25 mM glucose) or differentiation media (DMEM, 1% serum, 5 mM glucose). Coinciding with growth arrest, A7r5 cells became electrically coupled, and spontaneous Ca2+ signalling showed increasing dependence on L-type voltage-gated Ca2+ channels that were blocked with nifedipine (5 μM). These synchronized oscillations were modulated by ryanodine receptors, based on their sensitivity to dantrolene (5 μM). Actively growing cultures had spontaneous Ca2+ transients that were insensitive to nifedipine and dantrolene but were blocked by inhibition of the sarco-endoplasmic reticulum ATPase with cyclopiazonic acid (10 μM). In cells treated with differentiation media, myocardin and αSMA immunoreactivity increased prior to changes in the Ca2+ signalling phenotype, while chronic inhibition of voltage-gated Ca2+ entry modestly increased immunoreactivity of myocardin. Stepwise regression analyses suggested that changes in myocardin expression had a weak relationship with Ca2+ signalling synchronicity, but not frequency or amplitude. In conclusion, we report a 96-well assay and analytical pipeline to study the link between Ca2+ signalling and smooth muscle differentiation. This assay showed that changes in the expression of two molecular differentiation markers (myocardin and αSMA) tended to precede changes in the Ca2+ signalling phenotype.
Collapse
|
5
|
Li Y, Ren P, Dawson A, Vasquez HG, Ageedi W, Zhang C, Luo W, Chen R, Li Y, Kim S, Lu HS, Cassis LA, Coselli JS, Daugherty A, Shen YH, LeMaire SA. Single-Cell Transcriptome Analysis Reveals Dynamic Cell Populations and Differential Gene Expression Patterns in Control and Aneurysmal Human Aortic Tissue. Circulation 2020; 142:1374-1388. [PMID: 33017217 DOI: 10.1161/circulationaha.120.046528] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Ascending thoracic aortic aneurysm (ATAA) is caused by the progressive weakening and dilatation of the aortic wall and can lead to aortic dissection, rupture, and other life-threatening complications. To improve our understanding of ATAA pathogenesis, we aimed to comprehensively characterize the cellular composition of the ascending aortic wall and to identify molecular alterations in each cell population of human ATAA tissues. METHODS We performed single-cell RNA sequencing analysis of ascending aortic tissues from 11 study participants, including 8 patients with ATAA (4 women and 4 men) and 3 control subjects (2 women and 1 man). Cells extracted from aortic tissue were analyzed and categorized with single-cell RNA sequencing data to perform cluster identification. ATAA-related changes were then examined by comparing the proportions of each cell type and the gene expression profiles between ATAA and control tissues. We also examined which genes may be critical for ATAA by performing the integrative analysis of our single-cell RNA sequencing data with publicly available data from genome-wide association studies. RESULTS We identified 11 major cell types in human ascending aortic tissue; the high-resolution reclustering of these cells further divided them into 40 subtypes. Multiple subtypes were observed for smooth muscle cells, macrophages, and T lymphocytes, suggesting that these cells have multiple functional populations in the aortic wall. In general, ATAA tissues had fewer nonimmune cells and more immune cells, especially T lymphocytes, than control tissues did. Differential gene expression data suggested the presence of extensive mitochondrial dysfunction in ATAA tissues. In addition, integrative analysis of our single-cell RNA sequencing data with public genome-wide association study data and promoter capture Hi-C data suggested that the erythroblast transformation-specific related gene(ERG) exerts an important role in maintaining normal aortic wall function. CONCLUSIONS Our study provides a comprehensive evaluation of the cellular composition of the ascending aortic wall and reveals how the gene expression landscape is altered in human ATAA tissue. The information from this study makes important contributions to our understanding of ATAA formation and progression.
Collapse
Affiliation(s)
- Yanming Li
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery (Yanming Li, P.R., A. Dawson, H.G.V., W.A., C.Z., W.L., J.S.C., Y.H.S., S.A.L.), Baylor College of Medicine, Houston, TX.,Department of Cardiovascular Surgery, Texas Heart Institute, Houston (Yanming Li, P.R., A. Dawson, H.G.V., W.A., C.Z., W.L., J.S.C., Y.H.S., S.A.L.)
| | - Pingping Ren
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery (Yanming Li, P.R., A. Dawson, H.G.V., W.A., C.Z., W.L., J.S.C., Y.H.S., S.A.L.), Baylor College of Medicine, Houston, TX.,Department of Cardiovascular Surgery, Texas Heart Institute, Houston (Yanming Li, P.R., A. Dawson, H.G.V., W.A., C.Z., W.L., J.S.C., Y.H.S., S.A.L.)
| | - Ashley Dawson
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery (Yanming Li, P.R., A. Dawson, H.G.V., W.A., C.Z., W.L., J.S.C., Y.H.S., S.A.L.), Baylor College of Medicine, Houston, TX.,Department of Cardiovascular Surgery, Texas Heart Institute, Houston (Yanming Li, P.R., A. Dawson, H.G.V., W.A., C.Z., W.L., J.S.C., Y.H.S., S.A.L.)
| | - Hernan G Vasquez
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery (Yanming Li, P.R., A. Dawson, H.G.V., W.A., C.Z., W.L., J.S.C., Y.H.S., S.A.L.), Baylor College of Medicine, Houston, TX.,Department of Cardiovascular Surgery, Texas Heart Institute, Houston (Yanming Li, P.R., A. Dawson, H.G.V., W.A., C.Z., W.L., J.S.C., Y.H.S., S.A.L.)
| | - Waleed Ageedi
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery (Yanming Li, P.R., A. Dawson, H.G.V., W.A., C.Z., W.L., J.S.C., Y.H.S., S.A.L.), Baylor College of Medicine, Houston, TX.,Department of Cardiovascular Surgery, Texas Heart Institute, Houston (Yanming Li, P.R., A. Dawson, H.G.V., W.A., C.Z., W.L., J.S.C., Y.H.S., S.A.L.)
| | - Chen Zhang
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery (Yanming Li, P.R., A. Dawson, H.G.V., W.A., C.Z., W.L., J.S.C., Y.H.S., S.A.L.), Baylor College of Medicine, Houston, TX.,Department of Cardiovascular Surgery, Texas Heart Institute, Houston (Yanming Li, P.R., A. Dawson, H.G.V., W.A., C.Z., W.L., J.S.C., Y.H.S., S.A.L.)
| | - Wei Luo
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery (Yanming Li, P.R., A. Dawson, H.G.V., W.A., C.Z., W.L., J.S.C., Y.H.S., S.A.L.), Baylor College of Medicine, Houston, TX.,Department of Cardiovascular Surgery, Texas Heart Institute, Houston (Yanming Li, P.R., A. Dawson, H.G.V., W.A., C.Z., W.L., J.S.C., Y.H.S., S.A.L.)
| | - Rui Chen
- Human Genome Sequencing Center (R.C., Yumei Li, S.K.), Baylor College of Medicine, Houston, TX
| | - Yumei Li
- Human Genome Sequencing Center (R.C., Yumei Li, S.K.), Baylor College of Medicine, Houston, TX
| | - Sangbae Kim
- Human Genome Sequencing Center (R.C., Yumei Li, S.K.), Baylor College of Medicine, Houston, TX
| | - Hong S Lu
- Saha Cardiovascular Research Center (H.S.L., A. Daugherty), University of Kentucky, Lexington.,Department of Physiology (H.S.L., A. Daugherty), University of Kentucky, Lexington
| | - Lisa A Cassis
- Department of Pharmacology and Nutritional Sciences (L.A.C.), University of Kentucky, Lexington
| | - Joseph S Coselli
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery (Yanming Li, P.R., A. Dawson, H.G.V., W.A., C.Z., W.L., J.S.C., Y.H.S., S.A.L.), Baylor College of Medicine, Houston, TX.,Cardiovascular Research Institute (J.S.C., Y.H.S., S.A.L.), Baylor College of Medicine, Houston, TX.,Department of Cardiovascular Surgery, Texas Heart Institute, Houston (Yanming Li, P.R., A. Dawson, H.G.V., W.A., C.Z., W.L., J.S.C., Y.H.S., S.A.L.)
| | - Alan Daugherty
- Saha Cardiovascular Research Center (H.S.L., A. Daugherty), University of Kentucky, Lexington.,Department of Physiology (H.S.L., A. Daugherty), University of Kentucky, Lexington
| | - Ying H Shen
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery (Yanming Li, P.R., A. Dawson, H.G.V., W.A., C.Z., W.L., J.S.C., Y.H.S., S.A.L.), Baylor College of Medicine, Houston, TX.,Cardiovascular Research Institute (J.S.C., Y.H.S., S.A.L.), Baylor College of Medicine, Houston, TX.,Department of Cardiovascular Surgery, Texas Heart Institute, Houston (Yanming Li, P.R., A. Dawson, H.G.V., W.A., C.Z., W.L., J.S.C., Y.H.S., S.A.L.)
| | - Scott A LeMaire
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery (Yanming Li, P.R., A. Dawson, H.G.V., W.A., C.Z., W.L., J.S.C., Y.H.S., S.A.L.), Baylor College of Medicine, Houston, TX.,Cardiovascular Research Institute (J.S.C., Y.H.S., S.A.L.), Baylor College of Medicine, Houston, TX.,Department of Molecular Physiology and Biophysics (S.A.L.), Baylor College of Medicine, Houston, TX.,Department of Cardiovascular Surgery, Texas Heart Institute, Houston (Yanming Li, P.R., A. Dawson, H.G.V., W.A., C.Z., W.L., J.S.C., Y.H.S., S.A.L.)
| |
Collapse
|
6
|
Hooks JS, Clement CC, Nguyen HD, Santambrogio L, Dixon JB. In vitro model reveals a role for mechanical stretch in the remodeling response of lymphatic muscle cells. Microcirculation 2019; 26:e12512. [PMID: 30383330 PMCID: PMC6335159 DOI: 10.1111/micc.12512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 10/12/2018] [Accepted: 10/29/2018] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Using primary LMCs in vitro, we sought to characterize the impact of LMC remodeling on their functional and molecular response to mechanical loading and culture conditions. METHODS Primary "wounded leg" LMCs were derived from the hindlimb of three sheep who underwent lymphatic injury 6 weeks prior, while "control leg" LMCs were derived from the contralateral, unwounded, limb. Function of the LMCs was characterized in response to media of variable levels of serum (10% vs 0.2%) and glucose (4.5 vs 1 g/L). Functional and proteomic data were evaluated in LMCs exposed to cyclic stretch (0.1 Hz, 7.5% elongation) for 1 week. RESULTS LMCs were sensitive to changes in serum levels, significantly reducing overall activity and collagen synthesis under low serum conditions. LMCs from the remodeled vessel had higher baseline levels of metabolic activity but not collagen synthesis. Cyclic loading induced cellular alignment perpendicular to the axis of stretch and alterations in signaling pathways associated with metabolism. Remodeled LMCs had consistently higher levels of metabolic activity and were more resistant to strain-induced apoptosis. CONCLUSIONS LMCs exist on a functional spectrum, becoming more active in response to stretching and maintaining phenotypic remodeling in response to local lymphatic/tissue damage.
Collapse
Affiliation(s)
- Joshua S.T. Hooks
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology 315 Ferst Dr. Atlanta, GA 30332
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Dr. Atlanta, GA 30313
| | - Cristina C. Clement
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461
| | - Hoang-Dung Nguyen
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology 315 Ferst Dr. Atlanta, GA 30332
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Dr NW, Atlanta, GA 30332
| | - Laura Santambrogio
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461
| | - J. Brandon Dixon
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology 315 Ferst Dr. Atlanta, GA 30332
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Dr. Atlanta, GA 30313
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Dr NW, Atlanta, GA 30332
| |
Collapse
|
7
|
Zou L, Zhang J, Han J, Li W, Su F, Xu X, Zhai Z, Xiao F. cGMP interacts with tropomyosin and downregulates actin-tropomyosin-myosin complex interaction. Respir Res 2018; 19:201. [PMID: 30314482 PMCID: PMC6186101 DOI: 10.1186/s12931-018-0903-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 09/27/2018] [Indexed: 11/10/2022] Open
Abstract
Background The nitric oxide-soluble guanylate cyclase-cyclic guanosine monophosphate (NO-sGC-cGMP) signaling pathway, plays a critical role in the pathogenesis of pulmonary arterial hypertension (PAH); however, its exact molecular mechanism remains undefined. Methods Biotin-cGMP pull-down assay was performed to search for proteins regulated by cGMP. The interaction between cGMP and tropomyosin was analyzed with antibody dependent pull-down in vivo. Tropomyosin fragments were constructed to explore the tropomyosin-cGMP binding sites. The expression level and subcellular localization of tropomyosin were detected with Real-time PCR, Western blot and immunofluorescence assay after the 8-Br-cGMP treatment. Finally, isothermal titration calorimetry (ITC) was utilized to detect the binding affinity of actin-tropomyosin-myosin in the existence of cGMP-tropomyosin interaction. Results cGMP interacted with tropomyosin. Isoform 4 of TPM1 gene was identified as the only isoform expressed in the human pulmonary artery smooth muscle cells (HPASMCs). The region of 68-208aa of tropomyosin was necessary for the interaction between tropomyosin and cGMP. The expression level and subcellular localization of tropomyosin showed no change after the stimulation of NO-sGC-cGMP pathway. However, cGMP-tropomyosin interaction decreased the affinity of tropomyosin to actin. Conclusions We elucidate the downstream signal pathway of NO-sGC-cGMP. This work will contribute to the detection of innovative targeted agents and provide novel insights into the development of new therapies for PAH.
Collapse
Affiliation(s)
- Lihui Zou
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, 100730, People's Republic of China
| | - Junhua Zhang
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, 100730, People's Republic of China
| | - Jingli Han
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, 100730, People's Republic of China
| | - Wenqing Li
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, 100730, People's Republic of China
| | - Fei Su
- Department of Pathology, Beijing Hospital, National Center of Gerontology, Beijing, 100730, People's Republic of China
| | - Xiaomao Xu
- Department of Respiratory and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Beijing, 100730, People's Republic of China
| | - Zhenguo Zhai
- Department of Respiratory and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China.
| | - Fei Xiao
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, 100730, People's Republic of China.
| |
Collapse
|
8
|
Savill SA, Leitch HF, Harvey JN, Thomas TH. Inflammatory Adipokines Decrease Expression of Two High Molecular Weight Isoforms of Tropomyosin Similar to the Change in Type 2 Diabetic Patients. PLoS One 2016; 11:e0162908. [PMID: 27649540 PMCID: PMC5029944 DOI: 10.1371/journal.pone.0162908] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 08/30/2016] [Indexed: 01/04/2023] Open
Abstract
Cardiovascular disease and cancer are increased in Type 2 diabetes. TPM1 and TPM4 genes encode proteins associated with cardiovascular and neoplastic disease. High (HMW) and low (LMW) molecular weight isoforms from TPM1 and TPM4 are altered in several cancer cells and the 3'UTR of TPM1 mRNA is tumour suppressive. Leukocytes influence cardiovascular and neoplastic disease by immunosurveillance for cancer and by chronic inflammation in Type 2 diabetes and cardiovascular disease. The aim was to determine changes in expression of isoforms from TPM1 and TPM4 genes in leukocytes from Type 2 diabetic patients and to use the leukocyte cell line THP1 to identify possible mediators of changes in the patients. Gene expression was determined by RT-qPCR. In diabetes, expression of HMW isoforms from TPM1 were markedly decreased (0.55 v 1.00; p = 0.019) but HMW isoforms from TPM4 were not significantly different (0.76 v 1.00; p = 0.205). Within individual variance in expression of HMW isoforms was very high. The change in expression in HMW isoforms from TPM1 and TPM4 was replicated in THP1 cells treated with 1 ng/ml TNFα (0.10 and 0.12 v 1.00 respectively) or 10 ng/ml IL-1α (0.17 and 0.14 v 1.00 respectively). Increased insulin or glucose concentrations had no substantial effects on TPM1 or TPM4 expression. Decreased TPM1 mRNA resulted in decreases in HMW protein levels. Expression of HMW isoforms from TPM1 is decreased in Type 2 diabetes. This is probably due to increased levels of inflammatory cytokines TNFα and IL-1α in Type 2 diabetes. Lower levels of TPM1 mRNA reduce tumour suppression and could contribute to increased cancer risk in Type 2 diabetes. Decreased HMW tropomyosin isoforms are associated with cancer. Decreased HMW isoforms give rise to cells that are more plastic, motile, invasive and prone to dedifferentiation resulting in leukocytes that are more invasive but less functionally effective.
Collapse
Affiliation(s)
- Stuart A. Savill
- Betsi Cadwaladr University Health Board, Croesnewydd Road, Wrexham, United Kingdom
- * E-mail:
| | - Helen F. Leitch
- Betsi Cadwaladr University Health Board, Croesnewydd Road, Wrexham, United Kingdom
| | - John N. Harvey
- Betsi Cadwaladr University Health Board, Croesnewydd Road, Wrexham, United Kingdom
- School of Medical Sciences, Wrexham Academic Unit, Bangor University, Bangor, United Kingdom
| | - Trevor H. Thomas
- Betsi Cadwaladr University Health Board, Croesnewydd Road, Wrexham, United Kingdom
| |
Collapse
|
9
|
Vásquez-Trincado C, García-Carvajal I, Pennanen C, Parra V, Hill JA, Rothermel BA, Lavandero S. Mitochondrial dynamics, mitophagy and cardiovascular disease. J Physiol 2016; 594:509-25. [PMID: 26537557 DOI: 10.1113/jp271301] [Citation(s) in RCA: 438] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 08/30/2015] [Indexed: 12/14/2022] Open
Abstract
Cardiac hypertrophy is often initiated as an adaptive response to haemodynamic stress or myocardial injury, and allows the heart to meet an increased demand for oxygen. Although initially beneficial, hypertrophy can ultimately contribute to the progression of cardiac disease, leading to an increase in interstitial fibrosis and a decrease in ventricular function. Metabolic changes have emerged as key mechanisms involved in the development and progression of pathological remodelling. As the myocardium is a highly oxidative tissue, mitochondria play a central role in maintaining optimal performance of the heart. 'Mitochondrial dynamics', the processes of mitochondrial fusion, fission, biogenesis and mitophagy that determine mitochondrial morphology, quality and abundance have recently been implicated in cardiovascular disease. Studies link mitochondrial dynamics to the balance between energy demand and nutrient supply, suggesting that changes in mitochondrial morphology may act as a mechanism for bioenergetic adaptation during cardiac pathological remodelling. Another critical function of mitochondrial dynamics is the removal of damaged and dysfunctional mitochondria through mitophagy, which is dependent on the fission/fusion cycle. In this article, we discuss the latest findings regarding the impact of mitochondrial dynamics and mitophagy on the development and progression of cardiovascular pathologies, including diabetic cardiomyopathy, atherosclerosis, damage from ischaemia-reperfusion, cardiac hypertrophy and decompensated heart failure. We will address the ability of mitochondrial fusion and fission to impact all cell types within the myocardium, including cardiac myocytes, cardiac fibroblasts and vascular smooth muscle cells. Finally, we will discuss how these findings can be applied to improve the treatment and prevention of cardiovascular diseases.
Collapse
Affiliation(s)
- César Vásquez-Trincado
- Advanced Centre for Chronic Disease (ACCDiS), Facultad Ciencias Quimicas y Farmaceuticas & Facultad Medicina, Universidad de Chile, Santiago, Chile.,Centre for Molecular Studies of the Cell, Facultad Ciencias Quimicas y Farmaceuticas & Facultad Medicina, Universidad de Chile, Santiago, Chile
| | - Ivonne García-Carvajal
- Advanced Centre for Chronic Disease (ACCDiS), Facultad Ciencias Quimicas y Farmaceuticas & Facultad Medicina, Universidad de Chile, Santiago, Chile.,Centre for Molecular Studies of the Cell, Facultad Ciencias Quimicas y Farmaceuticas & Facultad Medicina, Universidad de Chile, Santiago, Chile
| | - Christian Pennanen
- Advanced Centre for Chronic Disease (ACCDiS), Facultad Ciencias Quimicas y Farmaceuticas & Facultad Medicina, Universidad de Chile, Santiago, Chile.,Centre for Molecular Studies of the Cell, Facultad Ciencias Quimicas y Farmaceuticas & Facultad Medicina, Universidad de Chile, Santiago, Chile
| | - Valentina Parra
- Advanced Centre for Chronic Disease (ACCDiS), Facultad Ciencias Quimicas y Farmaceuticas & Facultad Medicina, Universidad de Chile, Santiago, Chile.,Centre for Molecular Studies of the Cell, Facultad Ciencias Quimicas y Farmaceuticas & Facultad Medicina, Universidad de Chile, Santiago, Chile.,Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Centre, Dallas, TX, USA
| | - Joseph A Hill
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Centre, Dallas, TX, USA.,Department of Molecular Biology, University of Texas Southwestern Medical Centre, Dallas, TX, USA
| | - Beverly A Rothermel
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Centre, Dallas, TX, USA.,Department of Molecular Biology, University of Texas Southwestern Medical Centre, Dallas, TX, USA
| | - Sergio Lavandero
- Advanced Centre for Chronic Disease (ACCDiS), Facultad Ciencias Quimicas y Farmaceuticas & Facultad Medicina, Universidad de Chile, Santiago, Chile.,Centre for Molecular Studies of the Cell, Facultad Ciencias Quimicas y Farmaceuticas & Facultad Medicina, Universidad de Chile, Santiago, Chile.,Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Centre, Dallas, TX, USA
| |
Collapse
|
10
|
An overview of potential molecular mechanisms involved in VSMC phenotypic modulation. Histochem Cell Biol 2015; 145:119-30. [DOI: 10.1007/s00418-015-1386-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2015] [Indexed: 12/21/2022]
|
11
|
A novel coating of type IV collagen and hyaluronic acid on stent material-titanium for promoting smooth muscle cell contractile phenotype. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 38:235-43. [PMID: 24656374 DOI: 10.1016/j.msec.2014.02.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 01/13/2014] [Accepted: 02/04/2014] [Indexed: 12/22/2022]
Abstract
The method of stent implantation is currently considered an effective means of treating atherosclerosis. However, implanting of cardiovascular stent often leads to intimal breakage and hyperplasia. The phenomenon that vascular smooth muscle cells (SMCs) transform from contractile to synthetic phenotype becomes a serious obstacle to intimal recovery. To improve how SMCs transform from a synthetic to contractile phenotype, a technique of coimmobilization was used to form type IV collagen (CoIV) and hyaluronic acid (HA) coating on the widely used stent material, titanium (Ti). In this work, several bio-functional coatings made of CoIV/HA mixtures in different ratios were fabricated on the Ti surface. The quantitative characterization of CoIV showed that introducing HA could enhance the amount of the immobilized CoIV on the alkali activated Ti (TiOH) surface. The immunofluorescence staining results of myosin heavy chain (MHC) and DAPI showed that the coating of CoIV/HA in ratios of 200 μg/ml (M200) and 500 μg/ml (M500) also could promote SMCs expressing more contractile phenotype compared with TiOH/CoIV control samples, while the AO/PI staining results indicated that SMCs on the M200 and M500 samples showed less apoptosis ratio. Thus, we hope that this study can provide more helpful exploration and application for promoting the SMC contractile phenotype on the cardiovascular stents.
Collapse
|
12
|
Li J, Zhang K, Yang P, Liao Y, Wu L, Chen J, Zhao A, Li G, Huang N. Research of smooth muscle cells response to fluid flow shear stress by hyaluronic acid micro-pattern on a titanium surface. Exp Cell Res 2013; 319:2663-72. [DOI: 10.1016/j.yexcr.2013.05.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 05/19/2013] [Accepted: 05/29/2013] [Indexed: 12/13/2022]
|
13
|
Kabbage M, Trimeche M, Ben Nasr H, Hammann P, Kuhn L, Hamrita B, Chahed K. Tropomyosin-4 correlates with higher SBR grades and tubular differentiation in infiltrating ductal breast carcinomas: an immunohistochemical and proteomics-based study. Tumour Biol 2013; 34:3593-602. [PMID: 23812729 DOI: 10.1007/s13277-013-0939-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 06/12/2013] [Indexed: 01/16/2023] Open
Abstract
The aim of this study is to evaluate tropomyosin-4 (TM4) expression in infiltrating ductal breast carcinomas (IDCAs), as well as its prognostic significance. Using a 2-DE/MALDI-TOF mass spectrometry investigation coupled with an immunohistochemical approach, we have assessed the expression of TM4 in IDCAs, as well as in other types of breast tumors. Proteomic analyses revealed an increased expression of tropomyosin-4 in IDCA tumors. Using immunohistochemistry, overexpression of tropomyosin-4 was confirmed in 51 additional tumor specimens. Statistical analyses revealed, however, no significant correlations between tropomyosin-4 expression and clinicopathological parameters of the disease including tumor stage, patient age, estrogen and progesterone receptor status, and lymph node metastasis occurrence. A significant association was found, however, with a high Scarf-Bloom-Richardson (SBR) grade, a known marker of tumor severity. Additionally, the SBR component showing a correlation with TM4 expression was the tubular differentiation status. This study demonstrates the upregulation of tropomyosin-4 in IDCA tissues, which may highlight its involvement in breast cancer development. Our findings also support a link between tropomyosin-4 expression and aggressiveness of IDCA tumors.
Collapse
Affiliation(s)
- Maria Kabbage
- Laboratoire d'Immuno-Oncologie Moléculaire, Faculté de Médecine de Monastir, Al Munastir, Tunisia
| | | | | | | | | | | | | |
Collapse
|
14
|
Flaxseed reverses atherosclerotic lesion formation and lowers lipoprotein(a) in ovarian hormone deficiency. Menopause 2013; 20:1176-83. [PMID: 23571520 DOI: 10.1097/gme.0b013e31828cef8d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVE The incidence of cardiovascular disease dramatically increases during menopause, and postmenopausal women seek natural alternatives to hormone therapy. Flaxseed can slow the progression of atherosclerotic lesion formation; however, it is not known whether it can reverse formation that has already occurred. METHODS Seventy-two female Golden Syrian hamsters were randomly divided into six groups (n = 12), sham-operated (sham) or ovariectomized (ovx), and kept on the same diet for 120 days to allow for atherosclerotic lesion development. After this 120-day period, whole flaxseed was introduced to the diets of hamsters in three of the groups: group 1 (sham + casein); group 2 (ovx + casein); group 3 (ovx + 7.5% flaxseed); group 4 (ovx + 15% flaxseed); group 5 (ovx + 22.5% flaxseed); and group 6 (ovx + 17β-estradiol). This diet was maintained for an additional 120 days. Lesion regression was examined histologically, and serum was analyzed for total cholesterol, triglyceride, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, Apo A, Apo B, and lipoprotein(a). RESULTS Results showed that 15% and 22.5% flaxseed, compared with ovx animals, significantly reduced lipoprotein(a) (4.4 mg/dL [ovx] vs 2.15 mg/dL [15% flaxseed] and 0.3 mg/dL [22.5% flaxseed]; P < 0.05) and Apo B (2.8 mg/dL [ovx] vs 2.4 mg/dL [15% flaxseed] and 2.5 mg/dL [22.5% flaxseed]). Flax reduced by 67% the number of animals with aortic arch lesions. CONCLUSIONS All three doses of flax reduce the severity of lesion formation compared with ovx controls. These results support the efficacy of flaxseed in reducing cardiovascular disease risk.
Collapse
|
15
|
MacDonald JA, Moffat LD, Al-Ghabkari A, Sutherland C, Walsh MP. Prostate-apoptosis response-4 phosphorylation in vascular smooth muscle. Arch Biochem Biophys 2012; 535:84-90. [PMID: 23219599 DOI: 10.1016/j.abb.2012.11.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 11/15/2012] [Accepted: 11/21/2012] [Indexed: 12/12/2022]
Abstract
The protein prostate-apoptosis response (Par)-4 has been implicated in the regulation of smooth muscle contraction, based largely on studies with the A7r5 cell line. A mechanism has been proposed whereby Par-4 binding to MYPT1 (the myosin-targeting subunit of myosin light chain phosphatase, MLCP) blocks access of zipper-interacting protein kinase (ZIPK) to Thr697 and Thr855 of MYPT1, whose phosphorylation is associated with MLCP inhibition. Phosphorylation of Par-4 at Thr155 disrupts its interaction with MYPT1, exposing the sites of phosphorylation in MYPT1 and leading to MLCP inhibition and contraction. We tested this "padlock" hypothesis in a well-characterized vascular smooth muscle system, the rat caudal artery. Par-4 was retained in Triton-skinned tissue, suggesting a tight association with the contractile machinery, and indeed Par-4 co-immunoprecipitated with MYPT1. Treatment of Triton-skinned tissue with the phosphatase inhibitor microcystin (MC) evoked phosphorylation of Par-4 at Thr155, but did not induce its dissociation from the contractile machinery. Furthermore, analysis of the time courses of MC-induced phosphorylation of MYPT1 and Par-4 revealed that MYPT1 phosphorylation at Thr697 or Thr855 preceded Par-4 phosphorylation. Par-4 phosphorylation was inhibited by the non-selective kinase inhibitor staurosporine, but not by inhibitors of ZIPK, Rho-associated kinase or protein kinase C. In addition, Par-4 phosphorylation did not occur upon addition of constitutively-active ZIPK to skinned tissue. We conclude that phosphorylation of Par-4 does not regulate contraction of this vascular smooth muscle tissue by inducing dissociation of Par-4 from MYPT1 to allow phosphorylation of MYPT1 and inhibition of MLCP.
Collapse
Affiliation(s)
- Justin A MacDonald
- Smooth Muscle Research Group and Department of Biochemistry & Molecular Biology, University of Calgary, 3280 Hospital Drive NW, Calgary, AB, Canada T2N 4Z6.
| | | | | | | | | |
Collapse
|
16
|
Yin H, Jiang Y, Li H, Li J, Gui Y, Zheng XL. Proteasomal degradation of myocardin is required for its transcriptional activity in vascular smooth muscle cells. J Cell Physiol 2011; 226:1897-906. [PMID: 21506120 DOI: 10.1002/jcp.22519] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Myocardin is a transcriptional co-activator of serum response factor (SRF) and can be degraded through ubiquitin-proteasome system. Our preliminary studies unexpectedly revealed that accumulation of myocardin in response to proteasome inhibition by MG132 or lactacystin resulted in decrease of transcriptional activity of myocardin as indicated by reduced expression of SMC contractile marker genes (SM α-actin, SM22, and calponin) and muscle-enriched microRNAs (miR-143/145 and miR-1/133a), and reduced contractility of human vascular smooth muscle cells (SMCs) embedded in collagen gel lattices, suggesting that myocardin degradation is required for its transcriptional activity. Further studies using chromatin immunoprecipitation assay revealed that proteasome inhibition, although increased the occupancy of myocardin and SRF on the promoter of SM α-actin gene, abolished myocardin-dependent recruitment of RNA polymerase II. We further examined the degradation of myocardin in epithelioid and spindle-shaped SMCs and revealed that myocardin in more differentiated spindle-shaped SMCs was more quickly degraded and had shorter half-life than in epithelioid SMCs. In neointimal lesions, we found that stabilization of myocardin protein was companied by downregulation of transcripts of ubiquitin and proteasome subunits, further illustrating the mechanism underlying reduction of myocardin transcriptional activity. In summary, our results have suggested that proteasomal degradation of myocardin is required for its transcriptional activity.
Collapse
Affiliation(s)
- Hao Yin
- Smooth Muscle Research Group, Department of Biochemistry & Molecular Biology, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
17
|
Rangrez AY, Massy ZA, Metzinger-Le Meuth V, Metzinger L. miR-143 and miR-145: molecular keys to switch the phenotype of vascular smooth muscle cells. CIRCULATION. CARDIOVASCULAR GENETICS 2011; 4:197-205. [PMID: 21505201 DOI: 10.1161/circgenetics.110.958702] [Citation(s) in RCA: 162] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Beamish JA, He P, Kottke-Marchant K, Marchant RE. Molecular regulation of contractile smooth muscle cell phenotype: implications for vascular tissue engineering. TISSUE ENGINEERING PART B-REVIEWS 2011; 16:467-91. [PMID: 20334504 DOI: 10.1089/ten.teb.2009.0630] [Citation(s) in RCA: 287] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The molecular regulation of smooth muscle cell (SMC) behavior is reviewed, with particular emphasis on stimuli that promote the contractile phenotype. SMCs can shift reversibly along a continuum from a quiescent, contractile phenotype to a synthetic phenotype, which is characterized by proliferation and extracellular matrix (ECM) synthesis. This phenotypic plasticity can be harnessed for tissue engineering. Cultured synthetic SMCs have been used to engineer smooth muscle tissues with organized ECM and cell populations. However, returning SMCs to a contractile phenotype remains a key challenge. This review will integrate recent work on how soluble signaling factors, ECM, mechanical stimulation, and other cells contribute to the regulation of contractile SMC phenotype. The signal transduction pathways and mechanisms of gene expression induced by these stimuli are beginning to be elucidated and provide useful information for the quantitative analysis of SMC phenotype in engineered tissues. Progress in the development of tissue-engineered scaffold systems that implement biochemical, mechanical, or novel polymer fabrication approaches to promote contractile phenotype will also be reviewed. The application of an improved molecular understanding of SMC biology will facilitate the design of more potent cell-instructive scaffold systems to regulate SMC behavior.
Collapse
Affiliation(s)
- Jeffrey A Beamish
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106-7207, USA
| | | | | | | |
Collapse
|
19
|
Cecchettini A, Rocchiccioli S, Boccardi C, Citti L. Vascular smooth-muscle-cell activation: proteomics point of view. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 288:43-99. [PMID: 21482410 DOI: 10.1016/b978-0-12-386041-5.00002-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Vascular smooth-muscle cells (VSMCs) are the main component of the artery medial layer. Thanks to their great plasticity, when stimulated by external inputs, VSMCs react by changing morphology and functions and activating new signaling pathways while switching others off. In this way, they are able to increase the cell proliferation, migration, and synthetic capacity significantly in response to vascular injury assuming a more dedifferentiated state. In different states of differentiation, VSMCs are characterized by various repertories of activated pathways and differentially expressed proteins. In this context, great interest is addressed to proteomics technology, in particular to differential proteomics. In recent years, many authors have investigated proteomics in order to identify the molecular factors putatively involved in VSMC phenotypic modulation, focusing on metabolic networks linking the differentially expressed proteins. Some of the identified proteins may be markers of pathology and become useful tools of diagnosis. These proteins could also represent appropriately validated targets and be useful either for prevention, if related to early events of atherosclerosis, or for treatment, if specific of the acute, mid, and late phases of the pathology. RNA-dependent gene silencing, obtained against the putative targets with high selective and specific molecular tools, might be able to reverse a pathological drift and be suitable candidates for innovative therapeutic approaches.
Collapse
|
20
|
Abdul-Salam VB, Wharton J, Cupitt J, Berryman M, Edwards RJ, Wilkins MR. Proteomic analysis of lung tissues from patients with pulmonary arterial hypertension. Circulation 2010; 122:2058-67. [PMID: 21041689 DOI: 10.1161/circulationaha.110.972745] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Pulmonary arterial hypertension is a disorder of vascular remodeling causing increased resistance to pulmonary blood flow. The expression of proteins in lungs from pulmonary arterial hypertension patients was investigated in an unbiased approach to further understand the pathobiology of this disease. METHODS AND RESULTS Label-free liquid chromatography tandem mass spectrometry was used to compare protein profiles in surgical samples of lungs from 8 patients with pulmonary arterial hypertension and 8 control subjects. More than 300 proteins were detected. On the basis of robust criteria, the levels of 25 proteins varied between the 2 groups. The majority of upregulated proteins were associated with cell growth, proliferation, and cell metabolism. Novel findings included an increased expression of chloride intracellular channel 4, receptor for advanced glycation end products, and periostin. Increased expression of chloride intracellular channel 4, a multifunctional protein involved in angiogenesis, and several signaling pathways implicated in pulmonary arterial hypertension--transforming growth factor-β, vascular endothelial growth factor, and bone morphogenetic protein--was confirmed by Western blotting and localized predominantly to endothelial cells in occlusive and plexiform vascular lesions. CONCLUSIONS Label-free proteomics identified differences in the expression of several proteins in the pulmonary arterial hypertension lung, many of which are relevant to the disease process. Increased expression of chloride intracellular channel 4 may be pertinent to the disorganized angiogenesis of plexiform lesions.
Collapse
Affiliation(s)
- Vahitha B Abdul-Salam
- Centre for Pharmacology and Therapeutics, Department of Medicine, Imperial College London, London, UK
| | | | | | | | | | | |
Collapse
|
21
|
Porcelli B, Ciari I, Felici C, Pagani R, Banfi C, Brioschi M, Giubbolini M, de Donato G, Setacci C, Terzuoli L. Proteomic analysis of atherosclerotic plaque. Biomed Pharmacother 2010; 64:369-72. [DOI: 10.1016/j.biopha.2009.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Accepted: 10/07/2009] [Indexed: 10/20/2022] Open
|
22
|
Moussallem MD, Olenych SG, Scott SL, Keller TCS, Schlenoff JB. Smooth muscle cell phenotype modulation and contraction on native and cross-linked polyelectrolyte multilayers. Biomacromolecules 2009; 10:3062-8. [PMID: 19817347 PMCID: PMC2775193 DOI: 10.1021/bm9007309] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 09/15/2009] [Indexed: 01/26/2023]
Abstract
Smooth muscle cells convert between a motile, proliferative "synthetic" phenotype and a sessile, "contractile" phenotype. The ability to manipulate the phenotype of aortic smooth muscle cells with thin biocompatible polyelectrolyte multilayers (PEMUs) with common surface chemical characteristics but varying stiffness was investigated. The stiffness of (PAH/PAA) PEMUs was varied by heating to form covalent amide bond cross-links between the layers. Atomic force microscopy (AFM) showed that cross-linked PEMUs were thinner than those that were not cross-linked. AFM nanoindentation demonstrated that the Young's modulus ranged from 6 MPa for hydrated native PEMUs to more than 8 GPa for maximally cross-linked PEMUs. Rat aortic A7r5 smooth muscle cells cultured on native PEMUs exhibited morphology and motility of synthetic cells and expression of the synthetic phenotype markers vimentin, tropomyosin 4, and nonmuscle myosin heavy chain IIB (nmMHCIIB). In comparison, cells cultured on maximally cross-linked PEMUs exhibited the phenotype markers calponin, smooth muscle myosin heavy chain (smMHC), myocardin, transgelin, and smooth muscle alpha-actin (smActin) that are characteristic of the smooth muscle "contractile" phenotype. Consistent with those cells being "contractile", A7r5 cells grown on cross-linked PEMUs produced contractile force when stimulated with a Ca(2+) ionophore.
Collapse
|
23
|
Boettger T, Beetz N, Kostin S, Schneider J, Krüger M, Hein L, Braun T. Acquisition of the contractile phenotype by murine arterial smooth muscle cells depends on the Mir143/145 gene cluster. J Clin Invest 2009; 119:2634-47. [PMID: 19690389 PMCID: PMC2735940 DOI: 10.1172/jci38864] [Citation(s) in RCA: 543] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Accepted: 07/08/2009] [Indexed: 01/08/2023] Open
Abstract
VSMCs respond to changes in the local environment by adjusting their phenotype from contractile to synthetic, a phenomenon known as phenotypic modulation or switching. Failure of VSMCs to acquire and maintain the contractile phenotype plays a key role in a number of major human diseases, including arteriosclerosis. Although several regulatory circuits that control differentiation of SMCs have been identified, the decisive mechanisms that govern phenotypic modulation remain unknown. Here, we demonstrate that the mouse miR-143/145 cluster, expression of which is confined to SMCs during development, is required for VSMC acquisition of the contractile phenotype. VSMCs from miR-143/145-deficient mice were locked in the synthetic state, which incapacitated their contractile abilities and favored neointimal lesion development. Unbiased high-throughput, quantitative, mass spectrometry-based proteomics using reference mice labeled with stable isotopes allowed identification of miR-143/145 targets; these included angiotensin-converting enzyme (ACE), which might affect both the synthetic phenotype and contractile functions of VSMCs. Pharmacological inhibition of either ACE or the AT1 receptor partially reversed vascular dysfunction and normalized gene expression in miR-143/145-deficient mice. We conclude that manipulation of miR-143/145 expression may offer a new approach for influencing vascular repair and attenuating arteriosclerotic pathogenesis.
Collapse
Affiliation(s)
- Thomas Boettger
- Max-Planck-Institut für Herz- und Lungenforschung, Bad Nauheim, Germany.
Albert-Ludwigs-Universität Freiburg, Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Freiburg, Germany
| | - Nadine Beetz
- Max-Planck-Institut für Herz- und Lungenforschung, Bad Nauheim, Germany.
Albert-Ludwigs-Universität Freiburg, Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Freiburg, Germany
| | - Sawa Kostin
- Max-Planck-Institut für Herz- und Lungenforschung, Bad Nauheim, Germany.
Albert-Ludwigs-Universität Freiburg, Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Freiburg, Germany
| | - Johanna Schneider
- Max-Planck-Institut für Herz- und Lungenforschung, Bad Nauheim, Germany.
Albert-Ludwigs-Universität Freiburg, Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Freiburg, Germany
| | - Marcus Krüger
- Max-Planck-Institut für Herz- und Lungenforschung, Bad Nauheim, Germany.
Albert-Ludwigs-Universität Freiburg, Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Freiburg, Germany
| | - Lutz Hein
- Max-Planck-Institut für Herz- und Lungenforschung, Bad Nauheim, Germany.
Albert-Ludwigs-Universität Freiburg, Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Freiburg, Germany
| | - Thomas Braun
- Max-Planck-Institut für Herz- und Lungenforschung, Bad Nauheim, Germany.
Albert-Ludwigs-Universität Freiburg, Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Freiburg, Germany
| |
Collapse
|
24
|
Gunning P, O'Neill G, Hardeman E. Tropomyosin-based regulation of the actin cytoskeleton in time and space. Physiol Rev 2008; 88:1-35. [PMID: 18195081 DOI: 10.1152/physrev.00001.2007] [Citation(s) in RCA: 368] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Tropomyosins are rodlike coiled coil dimers that form continuous polymers along the major groove of most actin filaments. In striated muscle, tropomyosin regulates the actin-myosin interaction and, hence, contraction of muscle. Tropomyosin also contributes to most, if not all, functions of the actin cytoskeleton, and its role is essential for the viability of a wide range of organisms. The ability of tropomyosin to contribute to the many functions of the actin cytoskeleton is related to the temporal and spatial regulation of expression of tropomyosin isoforms. Qualitative and quantitative changes in tropomyosin isoform expression accompany morphogenesis in a range of cell types. The isoforms are segregated to different intracellular pools of actin filaments and confer different properties to these filaments. Mutations in tropomyosins are directly involved in cardiac and skeletal muscle diseases. Alterations in tropomyosin expression directly contribute to the growth and spread of cancer. The functional specificity of tropomyosins is related to the collaborative interactions of the isoforms with different actin binding proteins such as cofilin, gelsolin, Arp 2/3, myosin, caldesmon, and tropomodulin. It is proposed that local changes in signaling activity may be sufficient to drive the assembly of isoform-specific complexes at different intracellular sites.
Collapse
Affiliation(s)
- Peter Gunning
- Oncology Research Unit, The Children's Hospital at Westmead, and Muscle Development Unit, Children's Medical Research Institute, Westmead; New South Wales, Australia.
| | | | | |
Collapse
|
25
|
Wallin R, Schurgers L, Wajih N. Effects of the blood coagulation vitamin K as an inhibitor of arterial calcification. Thromb Res 2008; 122:411-7. [PMID: 18234293 PMCID: PMC2529147 DOI: 10.1016/j.thromres.2007.12.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Revised: 11/01/2007] [Accepted: 12/06/2007] [Indexed: 10/22/2022]
Abstract
INTRODUCTION The transformation of smooth muscle cells (VSMCs) in the vessel wall to osteoblast like cells is known to precede arterial calcification which may cause bleeding complications. The vitamin K-dependent protein MGP has been identified as an inhibitor of this process by binding BMP-2, a growth factor known to trigger the transformation. In this study, we determined if the vitamin K-dependent Gla region in MGP by itself can inhibit the growth factor activity of BMP-2 and if menaquinone-4 (MK4) regulates gene expression in VSMCs. MATERIALS AND METHODS A synthetic gamma-carboxyglutamic acid (Gla) containing peptide covering the Gla region in human MGP was used to test its ability to inhibit BMP-2 induced transformation of mouse pro-myoblast C2C12 cells into osteoblasts. MK4 was tested by microarray analysis as a gene regulatory molecule in VSMCs. RESULTS AND CONCLUSIONS The results show that the Gla - but not the Glu-peptide inhibited the transformation which provide evidence that the Gla region in MGP is directly involved in the BMP-2/MGP interaction and emphasizes the importance of the vitamin K-dependent modification of MGP. From the data obtained from the microarray analysis, we focused on two quantitatively altered cDNAs representing proteins known to be associated with vessel wall calcification. DT-diaphorase of the vitamin K-cycle, showed increased gene expression with a 4.8-fold higher specific activity in MK4 treated cells. Osteoprotegrin gene expression was down regulated and osteoprotegrin protein secretion from the MK4 treated cells was lowered to 1.8-fold. These findings suggest that MK4 acts as an anti-calcification component in the vessel wall.
Collapse
Affiliation(s)
- Reidar Wallin
- Department of Internal Medicine, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157, USA.
| | | | | |
Collapse
|
26
|
Tropomyosin Gene Expression in Vivo and in Vitro. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008. [DOI: 10.1007/978-0-387-85766-4_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
27
|
Abstract
In order to observe the effects of nicotine on protein expression in rat vascular smooth muscle cells (SMCs), nicotine treated SMCs were studied by proteomic technologies combining two-dimensional electrophoresis (2-DE) and peptide mass fingerprinting (PMF). Real-time RT-PCR was used to validate the differentially expressed proteins. We found that 11 protein spots were significantly up-regulated and one down-regulated by nicotine treatment. The results of PMF showed that these up- and down-regulated proteins could be divided into three groups according to their functions: cytoskeleton proteins, regulatory proteins and enzymes. Simultaneously, we also verified their consistent alteration at the transcriptional level through real-time RT-PCR. The affected proteins turned out to be mainly associated with cell migration, proliferation and energy metabolism, and are responsible for nicotine-related cardiovascular damage.
Collapse
|
28
|
Tropomyosin 4 regulates adhesion structures and resorptive capacity in osteoclasts. Exp Cell Res 2007; 314:564-73. [PMID: 18036591 DOI: 10.1016/j.yexcr.2007.10.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Revised: 10/18/2007] [Accepted: 10/19/2007] [Indexed: 01/14/2023]
Abstract
Tropomyosins (Tms) are alpha-helical dimers that bind and stabilize actin microfilaments while regulating their accessibility to other actin-associated proteins. Four genes encode expression of over forty Tms, most of which are expressed in nonmuscle cells. In recent years, it has become clear that individual Tm isoforms may regulate specific actin pools within cells. In this study, we examined how osteoclast function may be regulated by the tropomyosin isoform Tm-4, which we previously showed to be highly localized to podosomes and sealing zones of osteoclasts. RNAi-mediated knockdown of Tm-4, both in RAW264.7- and mouse marrow-derived osteoclasts, resulted in thinning of the actin ring of the sealing zone. Knockdown of Tm-4 also resulted in diminished bone resorptive capacity and altered resorption pit shape. In contrast, osteoclasts overexpressing Tm-4 demonstrated thickened podosomes on glass as well as thickened, aberrant actin structures on bone, and diminished motility and resorptive capacity. These results indicate that Tm-4 plays a role in regulating adhesion structures of osteoclasts, most likely by stabilizing the actin microfilaments present in podosomes and the sealing zone.
Collapse
|
29
|
Ocaya P, Gidlöf AC, Olofsson PS, Törmä H, Sirsjö A. CYP26 Inhibitor R115866 Increases Retinoid Signaling in Intimal Smooth Muscle Cells. Arterioscler Thromb Vasc Biol 2007; 27:1542-8. [PMID: 17510468 DOI: 10.1161/atvbaha.106.138602] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Intimal smooth muscle cells (SMCs) are dedifferentiated SMCs that have a powerful ability to proliferate and migrate. This cell-type is responsible for the development of intimal hyperplasia after vascular angioplasty. Retinoids, especially all-trans retinoid acid, are known to regulate many processes activated at sites of vascular injury, including modulation of SMC phenotype and inhibition of SMC proliferation. Intracellular levels of active retinoids are under firm control. A key enzyme is the all-trans retinoic acid-degrading enzyme cytochrome p450 isoform 26 (CYP26). Thus, an alternative approach to exogenous retinoid administration could be to increase the intracellular level of all-trans retinoic acid by blocking CYP26-mediated degradation of retinoids. METHODS AND RESULTS Vascular intimal and medial SMCs expressed CYP26A1 and B1 mRNA. Although medial cells remained unaffected, treatment with the CYP26-inhibitor R115866 significantly increased cellular levels of all-trans retinoic acid in intimal SMCs. The increased levels of all-trans retinoic acid induced retinoid-regulated genes and decreased mitogenesis. CONCLUSIONS Blocking of the CYP26-mediated catabolism mimics the effects of exogenously administrated active retinoids on intimal SMCs. Therefore, CYP26-inhibitors offer a potential new therapeutic approach to vascular proliferative disorders.
Collapse
Affiliation(s)
- Pauline Ocaya
- Division of Biomedicine, Department of Clinical Medicine, University of Orebro, 701 82 Orebro, Sweden
| | | | | | | | | |
Collapse
|
30
|
Dupasquier CMC, Weber AM, Ander BP, Rampersad PP, Steigerwald S, Wigle JT, Mitchell RW, Kroeger EA, Gilchrist JSC, Moghadasian MM, Lukas A, Pierce GN. Effects of dietary flaxseed on vascular contractile function and atherosclerosis during prolonged hypercholesterolemia in rabbits. Am J Physiol Heart Circ Physiol 2006; 291:H2987-96. [PMID: 16844912 DOI: 10.1152/ajpheart.01179.2005] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Dietary flaxseed has significant anti-atherogenic effects. However, the limits of this action and its effects on vascular contractile function are not known. We evaluated the effects of flaxseed supplementation on atherosclerosis and vascular function under prolonged hypercholesterolemic conditions in New Zealand White rabbits assigned to one of four groups for 6, 8, or 16 wk of feeding: regular diet (RG), 10% flaxseed-supplemented diet (FX), 0.5% cholesterol-supplemented diet (CH), and 0.5% cholesterol- and 10% flaxseed-supplemented diet (CF). Cholesterol feeding resulted in elevated plasma cholesterol levels and the development of atherosclerosis. The CF group had significantly less atherosclerotic lesions in the aorta and carotid arteries after 6 and 8 wk than the CH animals. However, the anti-atherogenic effect of flaxseed supplementation was completely attenuated by 16 wk. Maximal tension induced in aortic rings either by KCl or norepinephrine was not impaired by dietary cholesterol until 16 wk. This functional impairment was not prevented by including flaxseed in the high-cholesterol diet. Aortic rings from the cholesterol-fed rabbits exhibited an impaired relaxation response to acetylcholine at all time points examined. Including flaxseed in the high-cholesterol diet completely normalized the relaxation response at 6 and 8 wk and partially restored it at 16 wk. No significant changes in the relaxation response induced by sodium nitroprusside were observed in any of the groups. In summary, dietary flaxseed is a valuable strategy to limit cholesterol-induced atherogenesis as well as abnormalities in endothelial-dependent vasorelaxation. However, these beneficial effects were attenuated during prolonged hypercholesterolemic conditions.
Collapse
Affiliation(s)
- C M C Dupasquier
- Canadian Centre for Agri-Food Research in Health and Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Chen DM, Cai X, Kwik-Uribe CL, Zeng R, Zhu XZ. Inhibitory Effects of Procyanidin B2 Dimer on Lipid-laden Macrophage Formation. J Cardiovasc Pharmacol 2006; 48:54-70. [PMID: 16954822 DOI: 10.1097/01.fjc.0000242052.60502.21] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A proteomic analysis of procyanidin B(2) isolated from cocoa against oxidized low-density lipoprotein-induced lipid-laden macrophage formation was performed. Of approximately 400 detected proteins, 12 were differentially expressed as a result of B(2) treatment. They were subsequently identified by liquid chromatography-electrospray ionization-tandem mass spectrometry and the SWISS-PROT database. Further reverse transcriptase-polymerase chain reaction and Western blot analysis revealed that B(2) strongly inhibited arachidonic acid inflammatory reactions, apoptosis, and their coupled mitogen-activated protein kinase and NF-kappaB pathways. To highlight proteins or genes with similar expressed patterns and similarly biological function induced by B(2) in lipid-laden macrophages, a cluster and Kyoto Encyclopedia of Genes and Genomes pathway analysis were performed. The data were mapped to multiple pathways. Further validation of the bioinformatic results revealed that activation of Wnt signaling may contribute to the cardioprotection of B(2). The differentially expressed genes and proteins mentioned above induced by B(2) are through regulating nuclear transcription factors, activating peroxisome proliferator-activated receptor-gamma and inhibiting AP-1 mRNA expressions. These in vitro data help to interpret the beneficial effects of B(2) in reducing the risk of atherosclerosis after consumption of flavonoid-rich foods. Many differentially expressed genes induced by B(2) help to uncover novel targets and may help to target disease interactions in atherosclerosis in the future.
Collapse
Affiliation(s)
- Dong-Mei Chen
- Department of Pharmacology, Shanghai Institute of Materia Medica, Shanghai, China
| | | | | | | | | |
Collapse
|
32
|
Hofnagel O, Luechtenborg B, Eschert H, Weissen-Plenz G, Severs NJ, Robenek H. Pravastatin Inhibits Expression of Lectin-Like Oxidized Low-Density Lipoprotein Receptor-1 (LOX-1) in Watanabe Heritable Hyperlipidemic Rabbits. Arterioscler Thromb Vasc Biol 2006; 26:604-10. [PMID: 16373606 DOI: 10.1161/01.atv.0000201073.45862.8b] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND LOX-1, a receptor for oxidized low-density lipoprotein (OxLDL), seems to play a critical role in foam cell formation of macrophages (Mphis) and smooth muscle cells (SMC). Inhibition of LOX-1 expression reduces foam cell formation and might influence lipid core formation in atherosclerotic lesions. Because statins are able to downregulate LOX-1 expression in vitro, we examined if pravastatin can be used to reduce LOX-1 expression and lipid core formation in lesions of Watanabe heritable hyperlipidemic (WHHL) rabbits. METHODS AND RESULTS Pravastatin downregulated LOX-1 expression in cultured human Mphis and in cultured human aortic SMCs. Homozygous WHHL rabbits were treated with 50 mg kg(-1) d(-1) pravastatin for 32 weeks. Immunohistochemical studies revealed that LOX-1 was expressed in intimal Mphis and SMCs of atherosclerotic lesions. The pravastatin-treated rabbits showed, compared with untreated rabbits, a significantly reduced LOX-1 protein and mRNA expression in the aortic arch. Lipid labeling of this aorta region also demonstrated a strong reduction of the ratio of lipid core area/total lesion area in pravastatin-treated rabbits. CONCLUSIONS The in vivo inhibition of LOX-1 expression by pravastatin demonstrated here represents a new pleiotropic effect of pravastatin. This in vivo inhibition of LOX-1 might be one mechanism for the lipid core reducing effect of pravastatin in atherogenesis.
Collapse
Affiliation(s)
- Oliver Hofnagel
- Leibniz-Institute for Arteriosclerosis Research, University Hospital of Muenster, Germany.
| | | | | | | | | | | |
Collapse
|
33
|
Sung HJ, Eskin SG, Sakurai Y, Yee A, Kataoka N, McIntire LV. Oxidative stress produced with cell migration increases synthetic phenotype of vascular smooth muscle cells. Ann Biomed Eng 2006; 33:1546-54. [PMID: 16341922 DOI: 10.1007/s10439-005-7545-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2005] [Accepted: 07/20/2005] [Indexed: 12/18/2022]
Abstract
Phenotypic modulation of vascular smooth muscle cells (VSMC) and reactive oxygen species (ROS) is important in vascular pathogenesis. Understanding how these factors relate to cell migration can improve design of therapeutic interventions to control vascular disease. We compared the proliferation, protein content and migration of cultured aortic VSMC from wild type (WT) versus transgenic mice (Tgp22phox), in which overexpression of p22phox was targeted to VSMC. Also, we compared H2O2 generation and expression of specific phenotypic markers of non-migrating with migrating WT versus Tgp22phox VSMC in an in vitro wound scratch model. Enhanced H2O2 production in Tgp22phox versus WT VSMC (p < 0.005) significantly correlated with increased protein content, proliferation, and migration. VSMC migrating across the wound edge produced more H2O2 than non-migrating VSMC (p < 0.05). The expression of synthetic phenotypic markers, tropomyosin 4 and myosin heavy chain embryonic (SMemb), was enhanced significantly, while the expression of contractile marker, smooth muscle alpha-actin, was reduced significantly in migrating versus non-migrating cells, and also in Tgp22phox versus WT (p < 0.005) VSMC. These results are consistent with increased production of ROS accelerating the switch from the contractile to the synthetic phenotype, characterized by increases in proliferation, migration, and expression of TM4 and SMemb and decreased alpha-actin.
Collapse
Affiliation(s)
- Hak-Joon Sung
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | | | | | | | | | | |
Collapse
|
34
|
Miyata T, Iizasa H, Sai Y, Fujii J, Terasaki T, Nakashima E. Platelet-derived growth factor-BB (PDGF-BB) induces differentiation of bone marrow endothelial progenitor cell-derived cell line TR-BME2 into mural cells, and changes the phenotype. J Cell Physiol 2005; 204:948-55. [PMID: 15828021 DOI: 10.1002/jcp.20362] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Blood vessels are composed of endothelial cells (EC) and mural cells, and the interaction between EC and mural cells is essential for the development and maintenance of the vasculature. EC differentiate from bone marrow-derived endothelial progenitor cells (EPC). Recently, we established a conditionally immortalized bone marrow EPC-derived cell line, TR-BME2, and a brain capillary EC (BCEC) line, TR-BBB, from temperature-sensitive-SV40 T-antigen gene transgenic rats. To understand the function of EPC, it is important to analyze the difference between EPC and mature EC such as BCEC. In this study, we identified EPC-specific genes by means of subtractive hybridization between TR-BME2 and TR-BBB. There was no significant difference between TR-BME2 and TR-BBB in the mRNA level of annexin II, which is expressed in EC. In contrast, the mRNA level of smooth muscle cell (SMC) markers such as smooth muscle protein 22 (SM22), calvasculin, and platelet-derived growth factor (PDGF) receptor-beta, was higher in TR-BME2 than in TR-BBB. Moreover, the mRNA level of contractile SMC markers, such as smooth muscle alpha-actin and SM22, was increased in the absence of EC growth factors, such as vascular endothelial growth factor. The mRNA level of synthetic SMC markers, such as matrix Gla protein, was increased by the addition of PDGF-BB. The SMC derived from TR-BME2 showed an altered phenotype, from contractile-type to synthetic-type, when they were cultured in the absence of PDGF-BB. These results show that TR-BME2 cells have higher levels of SMC markers compared with mature EC, and can differentiate into contractile- or synthetic-type SMC.
Collapse
Affiliation(s)
- Takashi Miyata
- Department of Pharmaceutics, Kyoritsu University of Pharmacy, Minato-ku, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|