1
|
Khalid F, Tahir R, Ellahi M, Amir N, Rizvi SFA, Hasnain A. Emerging trends of edible vaccine therapy for combating human diseases especially
COVID
‐19: Pros, cons, and future challenges. Phytother Res 2022; 36:2746-2766. [PMID: 35499291 PMCID: PMC9347755 DOI: 10.1002/ptr.7475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/18/2022] [Accepted: 04/06/2022] [Indexed: 11/07/2022]
Abstract
The researchers are still doing efforts to develop an effective, reliable, and easily accessible vaccine candidate to protect against COVID‐19. As of the August 2020, nearly 30 conventional vaccines have been emerged in clinical trials, and more than 200 vaccines are in various development stages. Nowadays, plants are also considered as a potential source for the production of monoclonal antibodies, vaccines, drugs, immunomodulatory proteins, as well as used as bioreactors or factories for their bulk production. The scientific evidences enlighten that plants are the rich source of oral vaccines, which can be given either by eating the edible parts of plants and/or by oral administration of highly refined proteins. The use of plant‐based edible vaccines is an emerging trend as it possesses minimum or no side effects compared with synthetic vaccines. This review article gives insights into different types of vaccines, the use of edible vaccines, advantages of edible vaccines over conventional vaccines, and mechanism of action of edible vaccines. This review article also focuses on the applications of edible vaccines in wide‐range of human diseases especially against COVID‐19 with emphasis on future perspectives of the use of edible vaccines.
Collapse
Affiliation(s)
- Fatima Khalid
- Institute of Molecular Biology and BiotechnologyThe University of LahoreLahorePakistan
| | - Reema Tahir
- Institute of Molecular Biology and BiotechnologyThe University of LahoreLahorePakistan
| | - Manahil Ellahi
- Institute of Molecular Biology and BiotechnologyThe University of LahoreLahorePakistan
| | - Nilofer Amir
- Institute of Molecular Biology and BiotechnologyThe University of LahoreLahorePakistan
| | - Syed Faheem Askari Rizvi
- Institute of Molecular Biology and BiotechnologyThe University of LahoreLahorePakistan
- College of Chemistry and Chemical EngineeringLanzhou UniversityLanzhouP.R. China
| | - Ammarah Hasnain
- Institute of Molecular Biology and BiotechnologyThe University of LahoreLahorePakistan
| |
Collapse
|
2
|
Gupta PN. Mucosal Vaccine Delivery and M Cell Targeting. ADVANCES IN DELIVERY SCIENCE AND TECHNOLOGY 2015. [DOI: 10.1007/978-3-319-11355-5_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
3
|
Liu F, Wu X, Liu W, Li L, Wang Z. Current perspectives on conventional and novel vaccines against peste des petits ruminants. Vet Res Commun 2014; 38:307-22. [DOI: 10.1007/s11259-014-9618-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 09/05/2014] [Indexed: 10/24/2022]
|
4
|
Vyas SP, Gupta PN. Implication of nanoparticles/microparticles in mucosal vaccine delivery. Expert Rev Vaccines 2014; 6:401-18. [PMID: 17542755 DOI: 10.1586/14760584.6.3.401] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Although polymeric nanoparticles/microparticles are well established for the mucosal administration of conventional drugs, they have not yet been developed commercially for vaccine delivery. The limitation of the mucosal (particularly oral) route of delivery, including low pH, gastric enzymes, rapid transit and poor absorption of large molecules, has made mucosal vaccine delivery challenging. Nevertheless, several polymeric delivery systems for mucosal vaccine delivery are currently being evaluated. The polymer-based approaches are designed to protect the antigen in the gut, to target the antigen to the gut-associated lymphoid tissue or to increase the residence time of the antigen in the gut through bioadhesion. M-cell targeting is a potential approach for mucosal vaccine delivery, which can be achieved using M-cell-specific lectins, microbial adhesins or immunoglobulins. While many hurdles must be overcome before targeted mucosal vaccine delivery becomes a practical reality, this is a potential area of research that has important implications for future vaccine development. This review comprises various aspects that could be decisive in the development of polymer based mucosal vaccine delivery systems.
Collapse
Affiliation(s)
- Suresh P Vyas
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar-470003 (M.P.), India.
| | | |
Collapse
|
5
|
Seo KW, Kim SH, Park J, Son Y, Yoo HS, Lee KY, Jang YS. Nasal immunization with major epitope-containing ApxIIA toxin fragment induces protective immunity against challenge infection with Actinobacillus pleuropneumoniae in a murine model. Vet Immunol Immunopathol 2013. [DOI: 10.1016/j.vetimm.2012.10.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Kolotilin I, Kaldis A, Devriendt B, Joensuu J, Cox E, Menassa R. Production of a subunit vaccine candidate against porcine post-weaning diarrhea in high-biomass transplastomic tobacco. PLoS One 2012; 7:e42405. [PMID: 22879967 PMCID: PMC3411772 DOI: 10.1371/journal.pone.0042405] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 07/05/2012] [Indexed: 11/20/2022] Open
Abstract
Post-weaning diarrhea (PWD) in piglets is a major problem in piggeries worldwide and results in severe economic losses. Infection with Enterotoxigenic Escherichia coli (ETEC) is the key culprit for the PWD disease. F4 fimbriae of ETEC are highly stable proteinaceous polymers, mainly composed of the major structural subunit FaeG, with a capacity to evoke mucosal immune responses, thus demonstrating a potential to act as an oral vaccine against ETEC-induced porcine PWD. In this study we used a transplastomic approach in tobacco to produce a recombinant variant of the FaeG protein, rFaeG(ntd/dsc), engineered for expression as a stable monomer by N-terminal deletion and donor strand-complementation (ntd/dsc). The generated transplastomic tobacco plants accumulated up to 2.0 g rFaeG(ntd/dsc) per 1 kg fresh leaf tissue (more than 1% of dry leaf tissue) and showed normal phenotype indistinguishable from wild type untransformed plants. We determined that chloroplast-produced rFaeG(ntd/dsc) protein retained the key properties of an oral vaccine, i.e. binding to porcine intestinal F4 receptors (F4R), and inhibition of the F4-possessing (F4+) ETEC attachment to F4R. Additionally, the plant biomass matrix was shown to delay degradation of the chloroplast-produced rFaeG(ntd/dsc) in gastrointestinal conditions, demonstrating a potential to function as a shelter-vehicle for vaccine delivery. These results suggest that transplastomic plants expressing the rFaeG(ntd/dsc) protein could be used for production and, possibly, delivery of an oral vaccine against porcine F4+ ETEC infections. Our findings therefore present a feasible approach for developing an oral vaccination strategy against porcine PWD.
Collapse
Affiliation(s)
- Igor Kolotilin
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
| | - Angelo Kaldis
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
| | - Bert Devriendt
- Laboratory of Veterinary Immunology, Faculty of Veterinary Medicine, Gent University, Merelbeke, Belgium
| | - Jussi Joensuu
- VTT Technical Research Centre of Finland, Espoo, Finland
| | - Eric Cox
- Laboratory of Veterinary Immunology, Faculty of Veterinary Medicine, Gent University, Merelbeke, Belgium
| | - Rima Menassa
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
| |
Collapse
|
7
|
Lössl AG, Waheed MT. Chloroplast-derived vaccines against human diseases: achievements, challenges and scopes. PLANT BIOTECHNOLOGY JOURNAL 2011; 9:527-39. [PMID: 21447052 DOI: 10.1111/j.1467-7652.2011.00615.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Infectious diseases represent a continuously growing menace that has severe impact on health of the people worldwide, particularly in the developing countries. Therefore, novel prevention and treatment strategies are urgently needed to reduce the rate of these diseases in humans. For this reason, different options can be considered for the production of affordable vaccines. Plants have been proved as an alternative expression system for various compounds of biological importance. Particularly, plastid genetic engineering can be potentially used as a tool for cost-effective vaccine production. Antigenic proteins from different viruses and bacteria have been expressed in plastids. Initial immunological studies of chloroplast-derived vaccines have yielded promising results in animal models. However, because of certain limitations, these vaccines face many challenges on production and application level. Adaptations to the novel approaches are needed, which comprise codon usage and choice of proven expression cassettes for the optimal yield of expressed proteins, use of inducible systems, marker gene removal, selection of specific antigens with high immunogenicity and development of tissue culture systems for edible crops to prove the concept of low-cost edible vaccines. As various aspects of plant-based vaccines have been discussed in recent reviews, here we will focus on certain aspects of chloroplast transformation related to vaccine production against human diseases.
Collapse
Affiliation(s)
- Andreas G Lössl
- Department of Applied Plant Sciences and Plant Biotechnology (DAPP), University of Natural Resources and Applied Life Sciences (BOKU), Vienna, Austria.
| | | |
Collapse
|
8
|
Chia MY, Hsiao SH, Chan HT, Do YY, Huang PL, Chang HW, Tsai YC, Lin CM, Pang VF, Jeng CR. Evaluation of the immunogenicity of a transgenic tobacco plant expressing the recombinant fusion protein of GP5 of porcine reproductive and respiratory syndrome virus and B subunit of Escherichia coli heat-labile enterotoxin in pigs. Vet Immunol Immunopathol 2011; 140:215-25. [PMID: 21277027 DOI: 10.1016/j.vetimm.2011.01.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 11/12/2010] [Accepted: 01/01/2011] [Indexed: 11/22/2022]
Abstract
Escherichia coli heat-labile enterotoxin B subunit (LTB) can be used as an adjuvant for co-administered antigens. Our previous study showed that the expression of neutralizing epitope GP5 of porcine reproductive and respiratory syndrome virus (PRRSV) in transgenic tobacco plant (GP5-T) could induce PRRSV-specific immune responses in pigs. A transgenic tobacco plant co-expressing LTB and PRRSV GP5 as a fusion protein (LTB-GP5-T) was further constructed and its immunogenicity was evaluated. Pigs were given orally three consecutive doses of equal concentration of recombinant GP5 protein expressed in leaves of LTB-GP5-T or GP5-T at a 2-week interval and challenged with PRRSV at 7 weeks post-initial immunization. Pigs receiving LTB-GP5-T or GP5-T developed PRRSV-specific antibody- and cell-mediated immunity and showed significantly lower viremia and tissue viral load and milder lung lesions than wild type tobacco plant (W-T). The LTB-GP5-T-treated group had relatively higher immune responses than the GP5-T-treated group, although the differences were not statistically significant.
Collapse
Affiliation(s)
- Min-Yuan Chia
- Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, Taipei 106, Taiwan, ROC
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Seo KW, Kim DH, Kim AH, Yoo HS, Lee KY, Jang YS. Characterization of Antigenic Determinants in ApxIIA Exotoxin Capable of Inducing Protective Immunity toActinobacillus pleuropneumoniaeChallenge. Immunol Invest 2011; 40:465-80. [DOI: 10.3109/08820139.2011.558151] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
10
|
Soria-Guerra RE, Rosales-Mendoza S, Moreno-Fierros L, López-Revilla R, Alpuche-Solís AG. Oral immunogenicity of tomato-derived sDPT polypeptide containing Corynebacterium diphtheriae, Bordetella pertussis and Clostridium tetani exotoxin epitopes. PLANT CELL REPORTS 2011; 30:417-424. [PMID: 21188384 DOI: 10.1007/s00299-010-0973-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 11/21/2010] [Accepted: 12/05/2010] [Indexed: 05/30/2023]
Abstract
DPT vaccine, designed to immunize against diphtheria, pertussis, and tetanus, has been shown to be effective in humans. Nevertheless, dissatisfaction with the whole-cell preparations is due to the reactogenicity, which has to lead to the development of new safer formulations. Previously, we described the expression in tomato of a plant-optimized synthetic gene encoding the recombinant polypeptide sDPT, containing mainly immunoprotective epitopes of the diphtheria, pertussis and tetanus exotoxins and two adjuvants. In this study, we examined whether the ingestion of tomato-derived sDPT protein induces specific antibodies in mice after three weekly doses scheme. A positive group immunized with DPT toxoids was included. Specific antibody levels were assessed in serum, gut and lung. Sera tested for IgG antibody response to pertussis, tetanus and diphtheria toxin showed responses to the foreign antigens; interestingly, the response to diphtheria epitope was similar to those observed in the positive group. We found higher IgG1 than IgG2a responses in serum. A modest IgG response was observed in the tracheopulmonary fluid. High response of IgA against tetanus toxin was evident in gut, which was statistically comparable to that obtained in the positive group. The levels of response in these groups were higher than those in mice that received wild-type tomato. These findings support the concept of using transgenic tomatoes expressing sDPT polypeptide as model for edible vaccine against diphtheria, pertussis, and tetanus.
Collapse
Affiliation(s)
- Ruth E Soria-Guerra
- División de Biología Molecular, IPICYT, Camino a la Presa San José 2055, 78216 San Luis Potosí, Mexico
| | | | | | | | | |
Collapse
|
11
|
Pasquevich KA, Ibañez AE, Coria LM, García Samartino C, Estein SM, Zwerdling A, Barrionuevo P, Oliveira FS, Seither C, Warzecha H, Oliveira SC, Giambartolomei GH, Cassataro J. An oral vaccine based on U-Omp19 induces protection against B. abortus mucosal challenge by inducing an adaptive IL-17 immune response in mice. PLoS One 2011; 6:e16203. [PMID: 21264260 PMCID: PMC3021544 DOI: 10.1371/journal.pone.0016203] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 12/15/2010] [Indexed: 01/18/2023] Open
Abstract
As Brucella infections occur mainly through mucosal surfaces, the development of mucosal administered vaccines could be radical for the control of brucellosis. In this work we evaluated the potential of Brucella abortus 19 kDa outer membrane protein (U-Omp19) as an edible subunit vaccine against brucellosis. We investigated the protective immune response elicited against oral B. abortus infection after vaccination of mice with leaves from transgenic plants expressing U-Omp19; or with plant-made or E. coli-made purified U-Omp19. All tested U-Omp19 formulations induced protection against Brucella when orally administered without the need of adjuvants. U-Omp19 also induced protection against a systemic challenge when parenterally administered. This built-in adjuvant ability of U-Omp19 was independent of TLR4 and could be explained at least in part by its capability to activate dendritic cells in vivo. While unadjuvanted U-Omp19 intraperitoneally administered induced a specific Th1 response, following U-Omp19 oral delivery a mixed specific Th1-Th17 response was induced. Depletion of CD4(+) T cells in mice orally vaccinated with U-Omp19 resulted in a loss of the elicited protection, indicating that this cell type mediates immune protection. The role of IL-17 against Brucella infection has never been explored. In this study, we determined that if IL-17A was neutralized in vivo during the challenge period, the mucosal U-Omp19 vaccine did not confer mucosal protection. On the contrary, IL-17A neutralization during the infection did not influence at all the subsistence and growth of this bacterium in PBS-immunized mice. All together, our results indicate that an oral unadjuvanted vaccine based on U-Omp19 induces protection against a mucosal challenge with Brucella abortus by inducing an adaptive IL-17 immune response. They also indicate different and important new aspects i) IL-17 does not contribute to reduce the bacterial burden in non vaccinated mice and ii) IL-17 plays a central role in vaccine mediated anti-Brucella mucosal immunity.
Collapse
Affiliation(s)
- Karina A. Pasquevich
- Laboratorio de Inmunogenética, Hospital de Clínicas “José de San Martín,” Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- Facultad de Farmacia y Bioquímica, Instituto de Estudios de la Inmunidad Humoral (IDEHU-CONICET), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Andrés E. Ibañez
- Laboratorio de Inmunogenética, Hospital de Clínicas “José de San Martín,” Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- Facultad de Farmacia y Bioquímica, Instituto de Estudios de la Inmunidad Humoral (IDEHU-CONICET), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Lorena M. Coria
- Laboratorio de Inmunogenética, Hospital de Clínicas “José de San Martín,” Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- Facultad de Farmacia y Bioquímica, Instituto de Estudios de la Inmunidad Humoral (IDEHU-CONICET), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Clara García Samartino
- Laboratorio de Inmunogenética, Hospital de Clínicas “José de San Martín,” Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- Facultad de Farmacia y Bioquímica, Instituto de Estudios de la Inmunidad Humoral (IDEHU-CONICET), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Silvia M. Estein
- Laboratorio de Inmunología, Departamento de Sanidad Animal y Medicina Preventiva, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina
| | - Astrid Zwerdling
- Laboratorio de Inmunogenética, Hospital de Clínicas “José de San Martín,” Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- Facultad de Farmacia y Bioquímica, Instituto de Estudios de la Inmunidad Humoral (IDEHU-CONICET), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Paula Barrionuevo
- Laboratorio de Inmunogenética, Hospital de Clínicas “José de San Martín,” Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- Facultad de Farmacia y Bioquímica, Instituto de Estudios de la Inmunidad Humoral (IDEHU-CONICET), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Fernanda S. Oliveira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte-Minas Gerais, Brazil
| | - Christine Seither
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Heribert Warzecha
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Sergio C. Oliveira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte-Minas Gerais, Brazil
| | - Guillermo H. Giambartolomei
- Laboratorio de Inmunogenética, Hospital de Clínicas “José de San Martín,” Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- Facultad de Farmacia y Bioquímica, Instituto de Estudios de la Inmunidad Humoral (IDEHU-CONICET), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Juliana Cassataro
- Laboratorio de Inmunogenética, Hospital de Clínicas “José de San Martín,” Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- Facultad de Farmacia y Bioquímica, Instituto de Estudios de la Inmunidad Humoral (IDEHU-CONICET), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
12
|
Chia MY, Hsiao SH, Chan HT, Do YY, Huang PL, Chang HW, Tsai YC, Lin CM, Pang VF, Jeng CR. Immunogenicity of recombinant GP5 protein of porcine reproductive and respiratory syndrome virus expressed in tobacco plant. Vet Immunol Immunopathol 2010; 135:234-42. [PMID: 20053461 DOI: 10.1016/j.vetimm.2009.12.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 12/04/2009] [Accepted: 12/13/2009] [Indexed: 12/13/2022]
Abstract
The aim of the study was to evaluate the immunogenicity of the ORF5-encoded major envelop glycoprotein 5 (GP5) of porcine reproductive and respiratory syndrome virus (PRRSV) expressed in tobacco plant as a potential pig oral vaccine in protection against PRRSV infection. Six-week-old PRRSV-free pigs were fed four times orally with 50g of chopped fresh GP5 transgenic tobacco leaves (GP5-T) (GP5 reaching 0.011% of total soluble protein) or wild-type tobacco leaves (W-T) each on days 0, 14, 28, and 42. Samples of serum, saliva, and peripheral blood mononuclear cells (PBMCs) were collected on days -1, 6, 13, 20, 27, 34, 41, and 48 after the initial oral vaccination. A similar vaccination-dependent gradual increase in the responses of serum and saliva anti-PRRSV total IgG and IgA, respectively, and in the levels of PRRSV-specific blastogenic response of PBMCs was seen in GP5-T-treated pigs; all statistically significant elevations occurred after the 2nd vaccination and were revealed after 20 days post-initial oral vaccination (DPIOV). Pigs fed on GP5-T also developed serum neutralizing antibodies to PRRSV at a titer of 1:4-1:8 after the 4th vaccination by 48 DPIOV. No detectable anti-PRRSV antibody responses and PRRSV-specific blastogenic response were seen in W-T-treated pigs. The present study has demonstrated that pigs fed on GP5-T could develop specific mucosal as well as systemic humoral and cellular immune responses against PRRSV. The results also support that transgenic plant as GP5-T can be an effective system for oral delivery of recombinant subunit vaccines in pigs.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Antibodies, Neutralizing/biosynthesis
- Antibodies, Neutralizing/blood
- Antibodies, Viral/biosynthesis
- Antibodies, Viral/blood
- Base Sequence
- Bioreactors
- DNA, Viral/genetics
- Immunity, Cellular
- Immunity, Humoral
- Immunity, Mucosal
- Immunoglobulin A, Secretory/biosynthesis
- Immunoglobulin G/biosynthesis
- Immunoglobulin G/blood
- Lymphocyte Activation
- Male
- Plants, Genetically Modified
- Porcine Reproductive and Respiratory Syndrome/immunology
- Porcine Reproductive and Respiratory Syndrome/prevention & control
- Porcine respiratory and reproductive syndrome virus/genetics
- Porcine respiratory and reproductive syndrome virus/immunology
- Saliva/immunology
- Sus scrofa
- Swine
- Nicotiana/genetics
- Vaccines, Edible/administration & dosage
- Vaccines, Edible/genetics
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/immunology
- Viral Vaccines/administration & dosage
- Viral Vaccines/genetics
Collapse
Affiliation(s)
- Min-Yuan Chia
- Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, Taipei 106, Taiwan, ROC
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Sharma AK, Sharma MK. Plants as bioreactors: Recent developments and emerging opportunities. Biotechnol Adv 2009; 27:811-832. [PMID: 19576278 PMCID: PMC7125752 DOI: 10.1016/j.biotechadv.2009.06.004] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 06/15/2009] [Accepted: 06/16/2009] [Indexed: 12/18/2022]
Abstract
In recent years, the use of plants as bioreactors has emerged as an exciting area of research and significant advances have created new opportunities. The driving forces behind the rapid growth of plant bioreactors include low production cost, product safety and easy scale up. As the yield and concentration of a product is crucial for commercial viability, several strategies have been developed to boost up protein expression in transgenic plants. Augmenting tissue-specific transcription, elevating transcript stability, tissue-specific targeting, translation optimization and sub-cellular accumulation are some of the strategies employed. Various kinds of products that are currently being produced in plants include vaccine antigens, medical diagnostics proteins, industrial and pharmaceutical proteins, nutritional supplements like minerals, vitamins, carbohydrates and biopolymers. A large number of plant-derived recombinant proteins have reached advanced clinical trials. A few of these products have already been introduced in the market.
Collapse
Affiliation(s)
- Arun K Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India.
| | - Manoj K Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| |
Collapse
|
14
|
Ayalew S, Step DL, Montelongo M, Confer AW. Intranasal vaccination of calves with Mannheimia haemolytica chimeric protein containing the major surface epitope of outer membrane lipoprotein PlpE, the neutralizing epitope of leukotoxin, and cholera toxin subunit B. Vet Immunol Immunopathol 2009; 132:295-302. [PMID: 19581005 DOI: 10.1016/j.vetimm.2009.06.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 05/26/2009] [Accepted: 06/10/2009] [Indexed: 11/29/2022]
Abstract
This study was done to determine if intranasal vaccination of weaned beef calves with a chimeric protein containing the immunodominant surface epitope of Mannheimia haemolytica PlpE (R2) and the neutralizing epitope of leukotoxin (NLKT) covalently linked to truncated cholera toxin (CT) subunit B (CTB) could stimulate secretory and systemic antibodies against M. haemolytica while enhancing resistance of cattle against M. haemolytica intrabronchial challenge. Sixteen weaned beef calves were intranasally vaccinated with CTB-R2-NLKT chimeric (SAC102) or with R2-NLKT-R2-NLKT chimeric (SAC89) protein with or without native CT on days 0 and 14 and were challenged intrabronchially on day 28. In vitro, SAC102 bound the CT receptor molecule, GM(1)-ganglioside. Mean IgA antibodies to M. haemolytica whole cells (WC) and to LKT were high on day 0. A small, yet significant increase (p<0.05) was found in mean nasal antibodies to M. haemolytica WC for the SAC89+CT and SAC102 vaccinates after the second vaccination. SAC102 stimulated significant (p<0.05) mean serum antibody responses to all three antigens by day 28. Following challenge, mean antibodies to WC and LKT significantly increased (p<0.05) for the SAC102, SAC89 and SAC89+CT groups with the mean antibody responses to rPlpE stimulated by SAC102 vaccination being significantly higher (p<0.05) than for the other vaccinated and control groups. On day 1 after challenge, mean clinical score for the control group was significantly higher (p<0.05) than for the SAC102 and SAC89+CT vaccinates, and by day 2 after challenge, clinical score for the control group was significantly higher (p<0.05) than for all three chimeric vaccinated groups. Therefore, intranasal vaccination with CTB-R2-NLKT (SAC102) and R2-NLKT-R2-NLKT (SAC89) chimeric proteins enhanced resistance against intrabronchial challenge with the bacterium as well as stimulating antibody responses to M. haemolytica antigens.
Collapse
Affiliation(s)
- S Ayalew
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, 250 McElroy Hall, Stillwater, OK 74078-2007, USA
| | | | | | | |
Collapse
|
15
|
Confer AW, Ayalew S, Step DL, Trojan B, Montelongo M. Intranasal vaccination of young Holstein calves with Mannheimia haemolytica chimeric protein PlpE-LKT (SAC89) and cholera toxin. Vet Immunol Immunopathol 2009; 132:232-6. [PMID: 19477022 DOI: 10.1016/j.vetimm.2009.04.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 03/02/2009] [Accepted: 04/22/2009] [Indexed: 11/18/2022]
Affiliation(s)
- A W Confer
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, 250 McElroy Hall, Stillwater, OK 74078-2007, United States.
| | | | | | | | | |
Collapse
|
16
|
Matvieieva NA, Vasylenko MY, Shakhovsky AM, Kuchuk NV. Agrobacterium-mediated transformation of lettuce (Lactuca sativa L.) with genes coding bacterial antigens from Mycobacterium tuberculosis. CYTOL GENET+ 2009. [DOI: 10.3103/s0095452709020042] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Abstract
The prevention of infectious diseases of animals by vaccination has been routinely practiced for decades and has proved to be one of the most cost-effective methods of disease control. However, since the pioneering work of Pasteur in the 1880s, the composition of veterinary vaccines has changed very little from a conceptual perspective and this has, in turn, limited their application in areas such as the control of chronic infectious diseases. New technologies in the areas of vaccine formulation and delivery as well as our increased knowledge of disease pathogenesis and the host responses associated with protection from disease offer promising alternatives for vaccine formulation as well as targets for the prevention of bacterial disease. These new vaccines have the potential to lessen our reliance on antibiotics for disease control, but will only reach their full potential when used in combination with other intervention strategies.
Collapse
|
18
|
Abstract
Recognition of the mucosal portal of entry for many infectious diseases and of the relevance of mucosal immune response to protection has encouraged the development of vaccines administered by mucosal routes, principally oral and intranasal, for stimulation of intestinal and nasopharyngeal lymphoid tissues respectively. The oral route is problematic in cattle and other ruminants where antigen degradation in the rumen is likely, prior to transit to the intestine. On the other hand, rumination can be exploited for exposure of nasopharyngeal tissues during cudding if vaccine antigen is expressed by a fibrous feed like alfalfa. An increase in anti-leukotoxin (Lkt) IgA was demonstrated in nasal secretions of calves following feeding of alfalfa expressing a truncated Lkt50 from Mannheimia haemolytica, and there is evidence suggesting that such vaccination may protect against experimentally induced pneumonia. Intranasal vaccination is an alternative approach for use in pre-ruminating calves. Intranasal administration of ISCOMs carrying soluble antigens of M. haemolytica, including native Lkt, induced Lkt specific IgA in nasal secretions after vaccination at 4 and 6 weeks of age. Subcutaneous (s.c.) administration of the same vaccine induced Lkt specific IgG in both serum and nasal secretions, whereas s.c. administration of a commercial M. haemolytica vaccine did not. Regardless of the vaccination strategy employed it is difficult to assess the immunogenicity of mucosally administered vaccines because production of secreted antibodies tends to be transient, and they do not persist on the mucosal surface in the absence of ongoing antigenic stimulation. An additional challenge is demonstration of vaccine efficacy in response to experimental infection. Protection of the mucosally vaccinated animal will most probably result from recall response, which may not amplify sufficiently to counter the effects of experimental pulmonary delivery of a large bolus of virulent bacteria, even though the response would suffice over the more prolonged and gradual infection that occurs in natural induction of pneumonia.
Collapse
Affiliation(s)
- P E Shewen
- Department of Pathobiology, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| | | | | | | |
Collapse
|
19
|
Joensuu JJ, Niklander-Teeri V, Brandle JE. Transgenic plants for animal health: plant-made vaccine antigens for animal infectious disease control. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2008; 7:553-577. [PMID: 32214922 PMCID: PMC7089046 DOI: 10.1007/s11101-008-9088-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Accepted: 02/05/2008] [Indexed: 05/19/2023]
Abstract
A variety of plant species have been genetically modified to accumulate vaccine antigens for human and animal health and the first vaccine candidates are approaching the market. The regulatory burden for animal vaccines is less than that for human use and this has attracted the attention of researchers and companies, and investment in plant-made vaccines for animal infectious disease control is increasing. The dosage cost of vaccines for animal infectious diseases must be kept to a minimum, especially for non-lethal diseases that diminish animal welfare and growth, so efficient and economic production, storage and delivery are critical for commercialization. It has become clear that transgenic plants are an economic and efficient alternative to fermentation for large-scale production of vaccine antigens. The oral delivery of plant-made vaccines is particularly attractive since the expensive purification step can be avoided further reducing the cost per dose. This review covers the current status of plant-produced vaccines for the prevention of disease in animals and focuses on barriers to the development of such products and methods to overcome them.
Collapse
Affiliation(s)
- J. J. Joensuu
- Department of Applied Biology, University of Helsinki, P.O. Box 27, 00014 Helsinki, Finland
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON Canada N5V 4T3
| | - V. Niklander-Teeri
- Department of Applied Biology, University of Helsinki, P.O. Box 27, 00014 Helsinki, Finland
| | - J. E. Brandle
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON Canada N5V 4T3
| |
Collapse
|
20
|
Affiliation(s)
- David W Pascual
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, MT 59717-3610, USA.
| |
Collapse
|
21
|
Cross ML, Buddle BM, Aldwell FE. The potential of oral vaccines for disease control in wildlife species. Vet J 2006; 174:472-80. [PMID: 17113798 DOI: 10.1016/j.tvjl.2006.10.005] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Revised: 09/29/2006] [Accepted: 10/05/2006] [Indexed: 02/01/2023]
Abstract
Numerous infectious diseases caused by bacteria or viruses persist in developed and developing countries due to ongoing transmission among wildlife reservoir species. Such diseases become the target of control and management programmes in cases where they represent a threat to public health (for example rabies, sylvatic plague, Lyme disease), or livestock production (for example bovine tuberculosis, brucellosis, pseudorabies), or where they threaten the survival of endangered animal populations. In the majority of cases, lethal control operations are neither economically feasible nor publicly supported as a practical means for disease management. Prophylactic vaccination has emerged over the last 15 years as an alternative control strategy for wildlife diseases, mainly driven by the success of widescale oral rabies vaccination programmes for meso-carnivores in North America and Northern Europe. Different methods have been trialled for the effective delivery of wildlife vaccines in the field, however oral vaccination remains the most widely used approach. Successful implementation of an oral wildlife vaccine is dependent on a combination of three components: an efficacious immunogen, a suitable delivery vehicle, and a species-specific bait. This review outlines the major wildlife disease problems for which oral vaccination is currently under consideration as a disease management tool, and also focuses on the technological challenges that face wildlife vaccine development. The major conclusion is that attenuated or recombinant live microbes represent the most widely-used vaccines that can be delivered by the oral route; this in turn places major emphasis on effective delivery systems (to maintain vaccine viability), and on selective baiting systems, as the keys to wildlife vaccine success. Oral vaccination is a valuable adjunct or alternative strategy to culling for the control of diseases which persist in wildlife reservoirs.
Collapse
Affiliation(s)
- M L Cross
- Centre for Innovation, University of Otago, P.O. Box 56, Dunedin, New Zealand.
| | | | | |
Collapse
|
22
|
Yin J, Li G, Ren X, Herrler G. Select what you need: a comparative evaluation of the advantages and limitations of frequently used expression systems for foreign genes. J Biotechnol 2006; 127:335-47. [PMID: 16959350 DOI: 10.1016/j.jbiotec.2006.07.012] [Citation(s) in RCA: 233] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Revised: 07/13/2006] [Accepted: 07/20/2006] [Indexed: 10/24/2022]
Abstract
The expression of heterologous proteins in microorganisms using genetic recombination is still the high point in the development and exploitation of modern biotechnology. People can produce bioactive proteins from relatively cheap culture medium instead of expensive extraction. Host cell systems for the expression of heterologous genes are generally prokaryotic or eukaryotic systems, both of which have inherent advantages and drawbacks. An optimal expression system can be selected only if the productivity, bioactivity, purpose, and physicochemical characteristics of the interest protein are taken into consideration, together with the cost, convenience and safety of the system itself. Here, we concisely review the most frequently used prokaryotic, yeast, insect and mammalian expression systems, as well as expression in eukaryote individuals. The merits and demerits of these systems are discussed.
Collapse
Affiliation(s)
- Jiechao Yin
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, 150030 Harbin, China
| | | | | | | |
Collapse
|