1
|
Nieto-Blázquez ME, Gómez-Suárez M, Pfenninger M, Koch K. Impact of feralization on evolutionary trajectories in the genomes of feral cat island populations. PLoS One 2024; 19:e0308724. [PMID: 39137187 PMCID: PMC11321585 DOI: 10.1371/journal.pone.0308724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/29/2024] [Indexed: 08/15/2024] Open
Abstract
Feralization is the process of domesticated animals returning to the wild and it is considered the counterpart of domestication. Molecular genetic changes are well documented in domesticated organisms but understudied in feral populations. In this study, the genetic differentiation between domestic and feral cats was inferred by analysing whole-genome sequencing data of two geographically distant feral cat island populations, Dirk Hartog Island (Australia) and Kaho'olawe (Hawaii) as well as domestic cats and European wildcats. The study investigated population structure, genetic differentiation, genetic diversity, highly differentiated genes, and recombination rates. Genetic structure analyses linked both feral cat populations to North American domestic and European cat populations. Recombination rates in feral cats were lower than in domestic cats but higher than in wildcats. For Australian and Hawaiian feral cats, 105 and 94 highly differentiated genes compared to domestic cats respectively, were identified. Annotated genes had similar functions, with almost 30% of the divergent genes related to nervous system development in both feral groups. Twenty mutually highly differentiated genes were found in both feral populations. Evolution of highly differentiated genes was likely driven by specific demographic histories, the relaxation of the selective pressures associated with domestication, and adaptation to novel environments to a minor extent. Random drift was the prevailing force driving highly divergent regions, with relaxed selection in feral populations also playing a significant role in differentiation from domestic cats. The study demonstrates that feralization is an independent process that brings feral cats on a unique evolutionary trajectory.
Collapse
Affiliation(s)
- María Esther Nieto-Blázquez
- Department of Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
| | - Manuela Gómez-Suárez
- Department of Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
| | - Markus Pfenninger
- Department of Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
| | - Katrin Koch
- Department of Biodiversity, Conservation and Attractions, Former, Biodiversity and Conservation Science, Woodvale, Australia
| |
Collapse
|
2
|
Lan L, Nègre N. Heterosis effect for larval performance of fall armyworm interstrain hybrids. INSECT SCIENCE 2024; 31:1296-1312. [PMID: 37969057 DOI: 10.1111/1744-7917.13295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/30/2023] [Accepted: 10/16/2023] [Indexed: 11/17/2023]
Abstract
Spodoptera frugiperda, also known as fall armyworm (FAW), is an invasive crop pest that can feed on a variety of host plants, posing a serious threat to food security. There are two sympatric strains of FAW that are morphologically identical but described with different food preferences: the "rice strain" (SfR) and the "corn strain" (SfC). A few genetic loci exist to identify these two strains. Mitochondrial and Z-chromosome-linked haplotypes are the most used, but the biggest part of the genome displays little polymorphism between strains that could explain their adaptation to different plants. We have previously observed consistent transcription differences between the strains in both laboratory and natural populations. Therefore, we wonder if there are effects from host-strain-associated loci, maternally or paternally inherited, on FAW performance that could explain the divergence between the two FAW strains. To test this hypothesis, we first produced two F1 hybrid generations (SfR ♀ × SfC ♂, SfC ♀ × SfR ♂). These reciprocal hybrids should be heterozygous for all chromosomes except for the maternally inherited mitochondrial and sexual W chromosomes. To evaluate whether plant preference is determined by these genetic loci, we cultivated the two hybrids and the two parental strains in triplicate on an artificial diet and recorded several phenotypic traits such as weight over time, survival rate, emerging rate, developmental time, and sex ratio. Then, the same performance experiment was carried out on corn plants. Surprisingly, on the artificial diet, the two hybrid genotypes were both more performant than the two parental strains in terms of survival rate, pupal emerging rate, and developmental time, whereas they were intermediate to the inbred parental strains in pupal weight. On the corn plant diet, both hybrid genotypes outperformed the two parental strains in larval weight. Although these asymmetrical results revealed that mitochondrial or sex-linked haplotypes alone cannot explain the performance differences, they suggested a heterosis effect in FAW. A reduction of the female number for the CR genotype and the decreased F1 offspring reproduction in both hybrids suggested the possibility of Haldane's rule, which might be explained by the dominance model.
Collapse
Affiliation(s)
- Laijiao Lan
- DGIMI, University of Montpellier, INRAE, Montpellier, France
| | - Nicolas Nègre
- DGIMI, University of Montpellier, INRAE, Montpellier, France
| |
Collapse
|
3
|
Jaito W, Singchat W, Patta C, Thatukan C, Kumnan N, Chalermwong P, Budi T, Panthum T, Wongloet W, Wattanadilokchatkun P, Thong T, Muangmai N, Han K, Duengkae P, Phatcharakullawarawat R, Srikulnath K. Shared alleles and genetic structures in different Thai domestic cat breeds: the possible influence of common racial origins. Genomics Inform 2024; 22:12. [PMID: 39085978 PMCID: PMC11292921 DOI: 10.1186/s44342-024-00013-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 06/24/2024] [Indexed: 08/02/2024] Open
Abstract
Over hundreds of years, cats have been domesticated and selectively bred, resulting in numerous pedigreed breeds expedited by recent cat shows and breeding associations. Concerns have been raised about the limited breeding options and the genetic implications of inbreeding, indicating challenges in maintaining genetic diversity and accurate identification in purebred cats. In this study, genetic variability and structure were examined in 5 Thai domestic cat breeds using 15 microsatellite markers and mitochondrial DNA (mtDNA) D-loop sequencing. In total, 184 samples representing the Wichien Maat (WCM), Suphalak (SL), Khao-Manee (KM), Korat (KR), and Konja (KJ) breeds were analyzed. High genetic diversity (Ho and He > 0.5) was observed in all breeds, and mtDNA analysis revealed two primary haplogroups (A and B) that were shared among all domestic cat breeds in Thailand and globally. However, minor differences were observed between Thai domestic cat breeds based on clustering analyses, in which a distinct genetic structure was observed in the WCM breed. This suggests that allele fixation for distinctive morphological traits has occurred in Thai domestic cat breeds that emerged in isolated regions with shared racial origins. Analysis of relationships among individuals within the breed revealed high identification efficiency in Thai domestic cat breeds (P(ID)sibs < 10-4). Additionally, diverse and effective individual identification can be ensured by optimizing marker efficiency by using only nine loci. This comprehensive genetic characterization provides valuable insights into conservation strategies and breeding practices for Thai domestic cat breeds.
Collapse
Grants
- 6514400931,6514400892, 6514400906, 6514400914, 6514400949 Higher Education for Industry Consortium (Hi-FI)
- 6514400931,6514400892, 6514400906, 6514400914, 6514400949 Higher Education for Industry Consortium (Hi-FI)
- 6514400931,6514400892, 6514400906, 6514400914, 6514400949 Higher Education for Industry Consortium (Hi-FI)
- 6514400931,6514400892, 6514400906, 6514400914, 6514400949 Higher Education for Industry Consortium (Hi-FI)
- 6514400931,6514400892, 6514400906, 6514400914, 6514400949 Higher Education for Industry Consortium (Hi-FI)
- 6514400931,6514400892, 6514400906, 6514400914, 6514400949 Higher Education for Industry Consortium (Hi-FI)
- 6514400931,6514400892, 6514400906, 6514400914, 6514400949 Higher Education for Industry Consortium (Hi-FI)
- 6514400931,6514400892, 6514400906, 6514400914, 6514400949 Higher Education for Industry Consortium (Hi-FI)
- 6514400931,6514400892, 6514400906, 6514400914, 6514400949 Higher Education for Industry Consortium (Hi-FI)
- FF(S-KU)17.66, FF(SRU)25.64, and FF(KU)45.67 Kasetsart University Research and Development Institute funds
- FF(S-KU)17.66, FF(SRU)25.64, and FF(KU)45.67 Kasetsart University Research and Development Institute funds
- FF(S-KU)17.66, FF(SRU)25.64, and FF(KU)45.67 Kasetsart University Research and Development Institute funds
- FF(S-KU)17.66, FF(SRU)25.64, and FF(KU)45.67 Kasetsart University Research and Development Institute funds
- 3/2564 Thailand Science Research and Innovation (TSRI) grant through the Kasetsart University Reinventing University Program 2021
- 3/2564 Thailand Science Research and Innovation (TSRI) grant through the Kasetsart University Reinventing University Program 2021
- Higher Education for Industry Consortium (Hi–FI)
- International SciKU Branding (ISB), Faculty of Science, Kasetsart University
- High-Quality Research Graduate Development Cooperation Project between Kasetsart University and the National Science and Technology Development Agency (NSTDA)
Collapse
Affiliation(s)
- Wattanawan Jaito
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
- Sciences for Industry, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
- Mind Pets Animal Hospital, 169/10 Khlongsongtonnun, Latkrabang, Bangkok, 10520, Thailand
| | - Worapong Singchat
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand.
- Sciences for Industry, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand.
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand.
- Interdisciplinary Graduate Program in Bioscience, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand.
| | - Chananya Patta
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
- Sciences for Industry, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
- Mind Pets Animal Hospital, 169/10 Khlongsongtonnun, Latkrabang, Bangkok, 10520, Thailand
| | - Chadaphon Thatukan
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
- Sciences for Industry, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
- Mind Pets Animal Hospital, 169/10 Khlongsongtonnun, Latkrabang, Bangkok, 10520, Thailand
| | - Nichakorn Kumnan
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
- Sciences for Industry, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
- Mind Pets Animal Hospital, 169/10 Khlongsongtonnun, Latkrabang, Bangkok, 10520, Thailand
| | - Piangjai Chalermwong
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
- Sciences for Industry, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
- Mind Pets Animal Hospital, 169/10 Khlongsongtonnun, Latkrabang, Bangkok, 10520, Thailand
| | - Trifan Budi
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
- Interdisciplinary Graduate Program in Bioscience, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
| | - Thitipong Panthum
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
| | - Wongsathit Wongloet
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
| | - Pish Wattanadilokchatkun
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
| | - Thanyapat Thong
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
| | - Narongrit Muangmai
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
- Department of Fishery Biology, Faculty of Fisheries, Kasetsart University, Bangkok, 10900, Thailand
| | - Kyudong Han
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
- Department of Microbiology, Dankook University, Cheonan, 31116, Korea
- Bio-Medical Engineering Core Facility Research Center, Dankook University, Cheonan, 31116, Korea
| | - Prateep Duengkae
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
| | | | - Kornsorn Srikulnath
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand.
- Sciences for Industry, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand.
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand.
- Interdisciplinary Graduate Program in Bioscience, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand.
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand.
- Center for Advanced Studies in Tropical Natural Resources, National Research University-Kasetsart University, Kasetsart University, Bangkok, 10900, Thailand.
| |
Collapse
|
4
|
Librado P, Tressières G, Chauvey L, Fages A, Khan N, Schiavinato S, Calvière-Tonasso L, Kusliy MA, Gaunitz C, Liu X, Wagner S, Der Sarkissian C, Seguin-Orlando A, Perdereau A, Aury JM, Southon J, Shapiro B, Bouchez O, Donnadieu C, Collin YRH, Gregersen KM, Jessen MD, Christensen K, Claudi-Hansen L, Pruvost M, Pucher E, Vulic H, Novak M, Rimpf A, Turk P, Reiter S, Brem G, Schwall C, Barrey É, Robert C, Degueurce C, Horwitz LK, Klassen L, Rasmussen U, Kveiborg J, Johannsen NN, Makowiecki D, Makarowicz P, Szeliga M, Ilchyshyn V, Rud V, Romaniszyn J, Mullin VE, Verdugo M, Bradley DG, Cardoso JL, Valente MJ, Telles Antunes M, Ameen C, Thomas R, Ludwig A, Marzullo M, Prato O, Bagnasco Gianni G, Tecchiati U, Granado J, Schlumbaum A, Deschler-Erb S, Mráz MS, Boulbes N, Gardeisen A, Mayer C, Döhle HJ, Vicze M, Kosintsev PA, Kyselý R, Peške L, O'Connor T, Ananyevskaya E, Shevnina I, Logvin A, Kovalev AA, Iderkhangai TO, Sablin MV, Dashkovskiy PK, Graphodatsky AS, Merts I, Merts V, Kasparov AK, Pitulko VV, Onar V, Öztan A, Arbuckle BS, McColl H, Renaud G, Khaskhanov R, Demidenko S, Kadieva A, Atabiev B, Sundqvist M, Lindgren G, López-Cachero FJ, Albizuri S, Trbojević Vukičević T, Rapan Papeša A, Burić M, Rajić Šikanjić P, Weinstock J, Asensio Vilaró D, Codina F, García Dalmau C, Morer de Llorens J, Pou J, de Prado G, Sanmartí J, Kallala N, Torres JR, Maraoui-Telmini B, Belarte Franco MC, Valenzuela-Lamas S, Zazzo A, Lepetz S, Duchesne S, Alexeev A, Bayarsaikhan J, Houle JL, Bayarkhuu N, Turbat T, Crubézy É, Shingiray I, Mashkour M, Berezina NY, Korobov DS, Belinskiy A, Kalmykov A, Demoule JP, Reinhold S, Hansen S, Wallner B, Roslyakova N, Kuznetsov PF, Tishkin AA, Wincker P, Kanne K, Outram A, Orlando L. Widespread horse-based mobility arose around 2200 BCE in Eurasia. Nature 2024; 631:819-825. [PMID: 38843826 PMCID: PMC11269178 DOI: 10.1038/s41586-024-07597-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 05/23/2024] [Indexed: 07/19/2024]
Abstract
Horses revolutionized human history with fast mobility1. However, the timeline between their domestication and their widespread integration as a means of transport remains contentious2-4. Here we assemble a collection of 475 ancient horse genomes to assess the period when these animals were first reshaped by human agency in Eurasia. We find that reproductive control of the modern domestic lineage emerged around 2200 BCE, through close-kin mating and shortened generation times. Reproductive control emerged following a severe domestication bottleneck starting no earlier than approximately 2700 BCE, and coincided with a sudden expansion across Eurasia that ultimately resulted in the replacement of nearly every local horse lineage. This expansion marked the rise of widespread horse-based mobility in human history, which refutes the commonly held narrative of large horse herds accompanying the massive migration of steppe peoples across Europe around 3000 BCE and earlier3,5. Finally, we detect significantly shortened generation times at Botai around 3500 BCE, a settlement from central Asia associated with corrals and a subsistence economy centred on horses6,7. This supports local horse husbandry before the rise of modern domestic bloodlines.
Collapse
Affiliation(s)
- Pablo Librado
- Centre d'Anthropobiologie et de Génomique de Toulouse, CNRS UMR 5288, Université Paul Sabatier, Faculté de Médecine Purpan, Toulouse, France.
- Institut de Biologia Evolutiva (CSIC - Universitat Pompeu Fabra), Barcelona, Spain.
| | - Gaetan Tressières
- Centre d'Anthropobiologie et de Génomique de Toulouse, CNRS UMR 5288, Université Paul Sabatier, Faculté de Médecine Purpan, Toulouse, France
| | - Lorelei Chauvey
- Centre d'Anthropobiologie et de Génomique de Toulouse, CNRS UMR 5288, Université Paul Sabatier, Faculté de Médecine Purpan, Toulouse, France
| | - Antoine Fages
- Centre d'Anthropobiologie et de Génomique de Toulouse, CNRS UMR 5288, Université Paul Sabatier, Faculté de Médecine Purpan, Toulouse, France
- Zoological institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Naveed Khan
- Centre d'Anthropobiologie et de Génomique de Toulouse, CNRS UMR 5288, Université Paul Sabatier, Faculté de Médecine Purpan, Toulouse, France
- Department of Biotechnology, Abdul Wali Khan University, Mardan, Pakistan
| | - Stéphanie Schiavinato
- Centre d'Anthropobiologie et de Génomique de Toulouse, CNRS UMR 5288, Université Paul Sabatier, Faculté de Médecine Purpan, Toulouse, France
| | - Laure Calvière-Tonasso
- Centre d'Anthropobiologie et de Génomique de Toulouse, CNRS UMR 5288, Université Paul Sabatier, Faculté de Médecine Purpan, Toulouse, France
| | - Mariya A Kusliy
- Centre d'Anthropobiologie et de Génomique de Toulouse, CNRS UMR 5288, Université Paul Sabatier, Faculté de Médecine Purpan, Toulouse, France
- Department of the Diversity and Evolution of Genomes, Institute of Molecular and Cellular Biology, Novosibirsk, Russia
| | - Charleen Gaunitz
- Centre d'Anthropobiologie et de Génomique de Toulouse, CNRS UMR 5288, Université Paul Sabatier, Faculté de Médecine Purpan, Toulouse, France
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Xuexue Liu
- Centre d'Anthropobiologie et de Génomique de Toulouse, CNRS UMR 5288, Université Paul Sabatier, Faculté de Médecine Purpan, Toulouse, France
| | - Stefanie Wagner
- Centre d'Anthropobiologie et de Génomique de Toulouse, CNRS UMR 5288, Université Paul Sabatier, Faculté de Médecine Purpan, Toulouse, France
- INRAE Division Ecology and Biodiversity (ECODIV), Plant Genomic Resources Center (CNRGV), Castanet Tolosan Cedex, France
| | - Clio Der Sarkissian
- Centre d'Anthropobiologie et de Génomique de Toulouse, CNRS UMR 5288, Université Paul Sabatier, Faculté de Médecine Purpan, Toulouse, France
| | - Andaine Seguin-Orlando
- Centre d'Anthropobiologie et de Génomique de Toulouse, CNRS UMR 5288, Université Paul Sabatier, Faculté de Médecine Purpan, Toulouse, France
| | - Aude Perdereau
- Genoscope, Institut de Biologie François Jacob, CEA, CNRS, Université d'Évry, Université Paris-Saclay, Évry, France
| | - Jean-Marc Aury
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université d'Évry, Université Paris-Saclay, Évry, France
| | - John Southon
- Department of Earth System Science, University of California, Irvine, CA, USA
| | - Beth Shapiro
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | | | | | - Yvette Running Horse Collin
- Centre d'Anthropobiologie et de Génomique de Toulouse, CNRS UMR 5288, Université Paul Sabatier, Faculté de Médecine Purpan, Toulouse, France
- Taku Skan Skan Wasakliyapi: Global Institute for Traditional Sciences, Rapid City, SD, USA
| | | | - Mads Dengsø Jessen
- Department for Prehistory Middle Ages and Renaissance, National Museum of Denmark, Copenhagen K, Denmark
| | | | | | - Mélanie Pruvost
- UMR 5199 De la Préhistoire à l'Actuel: Culture, Environnement et Anthropologie (PACEA), CNRS, Université de Bordeaux, Pessac Cédex, France
| | | | | | - Mario Novak
- Centre for Applied Bioanthropology, Institute for Anthropological Research, Zagreb, Croatia
| | | | - Peter Turk
- Narodni muzej Slovenije, Ljubljana, Slovenia
| | - Simone Reiter
- Institute of Animal Breeding and Genetics, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Gottfried Brem
- Institute of Animal Breeding and Genetics, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Christoph Schwall
- Leibniz-Zentrum für Archäologie (LEIZA), Mainz, Germany
- Department of Prehistory & Western Asian/Northeast African Archaeology, Austrian Archaeological Institute (OeAI), Austrian Academy of Sciences (OeAW), Vienna, Austria
| | - Éric Barrey
- Université Paris-Saclay, AgroParisTech, INRAE GABI UMR1313, Jouy-en-Josas, France
| | - Céline Robert
- Université Paris-Saclay, AgroParisTech, INRAE GABI UMR1313, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | | | - Liora Kolska Horwitz
- National Natural History Collections, Edmond J. Safra Campus, Givat Ram, The Hebrew University, Jerusalem, Israel
| | | | - Uffe Rasmussen
- Department of Archaeology, Moesgaard Museum, Højbjerg, Denmark
| | - Jacob Kveiborg
- Department of Archaeological Science and Conservation, Moesgaard Museum, Højbjerg, Denmark
| | | | - Daniel Makowiecki
- Institute of Archaeology, Faculty of History, Nicolaus Copernicus University, Toruń, Poland
| | | | - Marcin Szeliga
- Institute of Archaeology, Maria Curie-Skłodowska University, Lublin, Poland
| | - Vasyl Ilchyshyn
- Kremenetsko-Pochaivskii Derzhavnyi Istoriko-arkhitekturnyi Zapovidnik, Kremenets, Ukraine
| | - Vitalii Rud
- Institute of Archaeology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Jan Romaniszyn
- Faculty of Archaeology, Adam Mickiewicz University, Poznań, Poland
| | - Victoria E Mullin
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Marta Verdugo
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Daniel G Bradley
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - João L Cardoso
- ICArEHB, Campus de Gambelas, University of Algarve, Faro, Portugal
- Universidade Aberta, Lisbon, Portugal
| | - Maria J Valente
- Faculdade de Ciências Humanas e Sociais, Centro de Estudos de Arqueologia, Artes e Ciências do Património, Universidade do Algarve, Faro, Portugal
| | - Miguel Telles Antunes
- Centre for Research on Science and Geological Engineering, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Carly Ameen
- Department of Archaeology and History, University of Exeter, Exeter, UK
| | - Richard Thomas
- School of Archaeology and Ancient History, University of Leicester, Leicester, UK
| | - Arne Ludwig
- Department of Evolutionary Genetics, Leibniz-Institute for Zoo and Wildlife Research, Berlin, Germany
- Albrecht Daniel Thaer-Institute, Faculty of Life Sciences, Humboldt University Berlin, Berlin, Germany
| | - Matilde Marzullo
- Dipartimento di Beni Culturali e Ambientali, Università degli Studi di Milano, Milan, Italy
| | - Ornella Prato
- Dipartimento di Beni Culturali e Ambientali, Università degli Studi di Milano, Milan, Italy
| | | | - Umberto Tecchiati
- Dipartimento di Beni Culturali e Ambientali, Università degli Studi di Milano, Milan, Italy
| | - José Granado
- Department of Environmental Sciences, Integrative Prehistory and Archaeological Science, Basel University, Basel, Switzerland
| | - Angela Schlumbaum
- Department of Environmental Sciences, Integrative Prehistory and Archaeological Science, Basel University, Basel, Switzerland
| | - Sabine Deschler-Erb
- Department of Environmental Sciences, Integrative Prehistory and Archaeological Science, Basel University, Basel, Switzerland
| | - Monika Schernig Mráz
- Department of Environmental Sciences, Integrative Prehistory and Archaeological Science, Basel University, Basel, Switzerland
| | - Nicolas Boulbes
- Institut de Paléontologie Humaine, Fondation Albert Ier, Paris/UMR 7194 HNHP, MNHN-CNRS-UPVD/EPCC Centre Européen de Recherche Préhistorique, Tautavel, France
| | - Armelle Gardeisen
- Archéologie des Sociétés Méditeranéennes, Archimède IA-ANR-11-LABX-0032-01, CNRS UMR 5140, Université Paul Valéry, Montpellier, France
| | - Christian Mayer
- Department for Digitalization and Knowledge Transfer, Federal Monuments Authority Austria, Vienna, Austria
| | - Hans-Jürgen Döhle
- Landesamt für Denkmalpflege und Archäologie Sachsen-Anhalt - Landesmuseum für Vorgeschichte, Halle (Saale), Germany
| | - Magdolna Vicze
- National Institute of Archaeology, Hungarian National Museum, Budapest, Hungary
| | - Pavel A Kosintsev
- Paleoecology Laboratory, Institute of Plant and Animal Ecology, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
- Department of History of the Institute of Humanities, Ural Federal University, Ekaterinburg, Russia
| | - René Kyselý
- Department of Natural Sciences and Archaeometry, Institute of Archaeology of the Czech Academy of Sciences, Prague, Czechia
| | | | | | - Elina Ananyevskaya
- Department of Archaeology, History Faculty, Vilnius University, Vilnius, Lithuania
| | - Irina Shevnina
- Laboratory for Archaeological Research, Akhmet Baitursynuly Kostanay Regional University, Kostanay, Kazakhstan
| | - Andrey Logvin
- Laboratory for Archaeological Research, Akhmet Baitursynuly Kostanay Regional University, Kostanay, Kazakhstan
| | - Alexey A Kovalev
- Department of Archaeological Heritage Preservation, Institute of Archaeology of the Russian Academy of Sciences, Moscow, Russia
| | - Tumur-Ochir Iderkhangai
- Department of Innovation and Technology, Ulaanbaatar Science and Technology Park, National University of Mongolia, Ulaanbaatar, Mongolia
| | - Mikhail V Sablin
- Zoological Institute, Russian Academy of Sciences, St Petersburg, Russia
| | - Petr K Dashkovskiy
- Department of Russian Regional Studies, National and State-confessional Relations, Altai State University, Barnaul, Russia
| | - Alexander S Graphodatsky
- Department of the Diversity and Evolution of Genomes, Institute of Molecular and Cellular Biology, Novosibirsk, Russia
| | - Ilia Merts
- Toraighyrov University, Joint Research Center for Archeological Studies, Pavlodar, Kazakhstan
- Department of Archaeology, Ethnography and Museology, Altai State University, Barnaul, Russia
| | - Viktor Merts
- Toraighyrov University, Joint Research Center for Archeological Studies, Pavlodar, Kazakhstan
| | - Aleksei K Kasparov
- Institute of the History of Material Culture, Russian Academy of Sciences, St. Petersburg, Russia
| | - Vladimir V Pitulko
- Institute of the History of Material Culture, Russian Academy of Sciences, St. Petersburg, Russia
- Peter the Great Museum of Anthropology and Ethnography (Kunstkamera), Russian Academy of Sciences, St Petersburg, Russia
| | - Vedat Onar
- Osteoarchaeology Practice and Research Center and Department of Anatomy, Faculty of Veterinary Medicine, Istanbul University-Cerrahpaşa, Istanbul, Türkiye
| | - Aliye Öztan
- Archaeology Department, Ankara University, Ankara, Türkiye
| | - Benjamin S Arbuckle
- Department of Anthropology, Alumni Building, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hugh McColl
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Gabriel Renaud
- Centre d'Anthropobiologie et de Génomique de Toulouse, CNRS UMR 5288, Université Paul Sabatier, Faculté de Médecine Purpan, Toulouse, France
- Department of Health Technology, Section for Bioinformatics, Technical University of Denmark (DTU), Copenhagen, Denmark
| | - Ruslan Khaskhanov
- Kh. Ibragimov Complex Institute of the Russian Academy of Sciences (CI RAS), Grozny, Russia
| | - Sergey Demidenko
- Institute of Archaeology, Russian Academy of Sciences, Moscow, Russia
| | - Anna Kadieva
- Department of Archaeological Monuments, State Historical Museum, Moscow, Russian Federation
| | | | | | - Gabriella Lindgren
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Center for Animal Breeding and Genetics, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - F Javier López-Cachero
- Institut d'Arqueologia de la Universitat de Barcelona (IAUB), Seminari d'Estudis i Recerques Prehistoriques (SERP-UB), Universitat de Barcelona (UB), Barcelona, Spain
| | - Silvia Albizuri
- Institut d'Arqueologia de la Universitat de Barcelona (IAUB), Seminari d'Estudis i Recerques Prehistoriques (SERP-UB), Universitat de Barcelona (UB), Barcelona, Spain
| | - Tajana Trbojević Vukičević
- Department of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | | | - Marcel Burić
- Department of Archaeology, Faculty of Humanities and Social Sciences, University of Zagreb, Zagreb, Croatia
| | | | - Jaco Weinstock
- Faculty of Arts and Humanities (Archaeology), University of Southampton, Southampton, UK
| | - David Asensio Vilaró
- Secció de Prehistòria i Arqueologia, IAUB Institut d'Arqueologia de la Universitat de Barcelona, Barcelona, Spain
| | - Ferran Codina
- C/Major, 20, Norfeu, Arqueologia Art i Patrimoni S.C., La Tallada d'Empordà, Spain
| | | | | | - Josep Pou
- Ajuntament de Calafell, Calafell (Tarragona), Spain
| | - Gabriel de Prado
- Museu d'Arqueologia de Catalunya (MAC-Ullastret), Ullastret, Spain
| | - Joan Sanmartí
- IEC-Institut d'Estudis Catalans (Union Académique Internationale), Barcelona, Spain
- Departament d'Història i Arqueologia, Facultat de Geografia i Història, Universitat de Barcelona, Barcelona, Spain
| | - Nabil Kallala
- Ecole Tunisienne d'Histoire et d'Anthropologie, Tunis, Tunisia
- University of Tunis, Institut National du Patrimoine, Tunis, Tunisia
| | | | | | - Maria-Carme Belarte Franco
- IEC-Institut d'Estudis Catalans (Union Académique Internationale), Barcelona, Spain
- ICREA, Catalan Institution for Research and Advanced Studies, Barcelona, Spain
- ICAC (Catalan Institute of Classical Archaeology), Tarragona, Spain
| | - Silvia Valenzuela-Lamas
- Archaeology of Social Dynamics (ASD), Institució Milà i Fontanals, Consejo Superior de Investigaciones Científicas (IMF-CSIC), Barcelona, Spain
- UNIARQ - Unidade de Arqueologia, Universidade de Lisboa, Alameda da Universidade, Lisboa, Portugal
| | - Antoine Zazzo
- Centre National de Recherche Scientifique, Muséum national d'Histoire naturelle, Archéozoologie, Archéobotanique (AASPE), CP 56, Paris, France
| | - Sébastien Lepetz
- Centre National de Recherche Scientifique, Muséum national d'Histoire naturelle, Archéozoologie, Archéobotanique (AASPE), CP 56, Paris, France
| | - Sylvie Duchesne
- Centre d'Anthropobiologie et de Génomique de Toulouse, CNRS UMR 5288, Université Paul Sabatier, Faculté de Médecine Purpan, Toulouse, France
| | - Anatoly Alexeev
- Institute for Humanities Research and Indigenous Studies of the North (IHRISN), Yakutsk, Russia
| | - Jamsranjav Bayarsaikhan
- Max Planck Institute of Geoanthropology, Jena, Germany
- Institute of Archaeology, Mongolian Academy of Science, Ulaanbaatar, Mongolia
| | - Jean-Luc Houle
- Department of Folk Studies and Anthropology, Western Kentucky University, Bowling Green, KY, USA
| | - Noost Bayarkhuu
- Archaeological Research Center and Department of Anthropology and Archaeology, National University of Mongolia, Ulaanbaatar, Mongolia
| | - Tsagaan Turbat
- Archaeological Research Center and Department of Anthropology and Archaeology, National University of Mongolia, Ulaanbaatar, Mongolia
| | - Éric Crubézy
- Centre d'Anthropobiologie et de Génomique de Toulouse, CNRS UMR 5288, Université Paul Sabatier, Faculté de Médecine Purpan, Toulouse, France
| | | | - Marjan Mashkour
- Centre National de Recherche Scientifique, Muséum national d'Histoire naturelle, Archéozoologie, Archéobotanique (AASPE), CP 56, Paris, France
- Central Laboratory, Bioarchaeology Laboratory, Archaeozoology section, University of Tehran, Tehran, Iran
| | - Natalia Ya Berezina
- Research Institute and Museum of Anthropology, Lomonosov Moscow State University, Moscow, Russia
| | - Dmitriy S Korobov
- Institute of Archaeology, Russian Academy of Sciences, Moscow, Russia
| | | | | | - Jean-Paul Demoule
- UMR du CNRS 8215 Trajectoires, Institut d'Art et Archéologie, Paris, France
| | - Sabine Reinhold
- Eurasia Department of the German Archaeological Institute, Berlin, Germany
| | - Svend Hansen
- Eurasia Department of the German Archaeological Institute, Berlin, Germany
| | - Barbara Wallner
- Institute of Animal Breeding and Genetics, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Natalia Roslyakova
- Department of Russian History and Archaeology, Samara State University of Social Sciences and Education, Samara, Russia
| | - Pavel F Kuznetsov
- Department of Russian History and Archaeology, Samara State University of Social Sciences and Education, Samara, Russia
| | - Alexey A Tishkin
- Department of Archaeology, Ethnography and Museology, Altai State University, Barnaul, Russia
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université d'Évry, Université Paris-Saclay, Évry, France
| | - Katherine Kanne
- Department of Archaeology and History, University of Exeter, Exeter, UK
- School of Archaeology, University College Dublin, Dublin, Ireland
| | - Alan Outram
- Department of Archaeology and History, University of Exeter, Exeter, UK
| | - Ludovic Orlando
- Centre d'Anthropobiologie et de Génomique de Toulouse, CNRS UMR 5288, Université Paul Sabatier, Faculté de Médecine Purpan, Toulouse, France.
| |
Collapse
|
5
|
Strapáková E, Strapák P. Evaluation of Inbreeding in the Slovak Simmental Breed and Its Effect on Length of Productive Life. Animals (Basel) 2024; 14:1811. [PMID: 38929430 PMCID: PMC11200374 DOI: 10.3390/ani14121811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/07/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
This study aimed to estimate the average inbreeding coefficient in Slovak Simmental dairy cattle and evaluate the effect of inbreeding on the length of productive life. All pedigrees included 463,282 animals dating back to 1914. The inbreeding coefficients for each animal in the pedigree were computed using the software CFC 1.0. Length of productive life (LPL) was defined as the time (days) from the first calving to culling, death, or censoring. The influence of inbreeding on the length of productive life was calculated and tested using the Weibull proportional hazards model. The average inbreeding coefficient, the average number of discrete generation equivalents, and the average longest ancestral path for inbred animals were 0.01, 6.59, and 13.08, respectively. While the largest decrease in the mean coefficient of inbreeding was observed from the year of birth 1995 (F = 1.50%) to 2001 (F = 0.59%), an increasing trend of inbreeding in the population was found from 2003 onwards. A weak but significant effect of inbreeding on the length of productive life of Simmental cows was confirmed using survival analysis.
Collapse
Affiliation(s)
- Eva Strapáková
- Institute of Nutrition and Genomics, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Trieda Andreja Hlinku 2, 949 76 Nitra, Slovakia
| | - Peter Strapák
- Institute of Animal Husbandry, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Trieda Andreja Hlinku 2, 949 76 Nitra, Slovakia;
| |
Collapse
|
6
|
Longo A, Kurta K, Vanhala T, Jeuthe H, de Koning DJ, Palaiokostas C. Genetic diversity patterns in farmed rainbow trout (Oncorhynchus mykiss) populations using genome-wide SNP and haplotype data. Anim Genet 2024; 55:87-98. [PMID: 37994156 DOI: 10.1111/age.13378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 10/25/2023] [Accepted: 11/01/2023] [Indexed: 11/24/2023]
Abstract
Rainbow trout is one of the most popular aquaculture species worldwide, with a long history of domestication. However, limited information exists about the genetic diversity of farmed rainbow trout populations globally, with most available reports relying on low-throughput genotyping technologies. Notably, no information exists about the genetic diversity status of farmed rainbow trout in Sweden. Double-digest restriction-site-associated DNA sequencing was performed on more than 500 broodfish from two leading producers in Sweden and from the country's national breeding program. Following the detection of single nucleotide polymorphisms (SNPs), genetic diversity was studied by using either individual SNPs (n = 8680; one SNP retained per 300 bp sequence reads) or through SNP haplotypes (n = 20 558; all SNPs retained in 300 bp sequence reads). Similar amounts of genetic diversity were found amongst the three populations when individual SNPs were used. Furthermore, principal component analysis and discriminant analysis of principal components suggested two genetic clusters with the two industry populations grouped together. Genetic differentiation based on the FST fixation index was ~0.01 between the industry populations and ~0.05 when those were compared with the breeding program. Preliminary estimates of effective population size (Ne ) and inbreeding (based on runs of homozygosity; FROH ) were similar amongst the three populations (Ne ≈ 50-80; median FROH ≈ 0.11). Finally, the haplotype-based analysis suggested that animals from the breeding program had higher shared coancestry levels than those from the other two populations. Overall, our study provides novel insights into the genetic diversity and structure of Sweden's three main farmed rainbow trout populations, which could guide their future management.
Collapse
Affiliation(s)
- Alessio Longo
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Khrystyna Kurta
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Tytti Vanhala
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Henrik Jeuthe
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Aquaculture Center North, Kälarne, Sweden
| | - Dirk-Jan de Koning
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Christos Palaiokostas
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
7
|
Blondeau Da Silva S, Mwacharo JM, Li M, Ahbara A, Muchadeyi FC, Dzomba EF, Lenstra JA, Da Silva A. IBD sharing patterns as intra-breed admixture indicators in small ruminants. Heredity (Edinb) 2024; 132:30-42. [PMID: 37919398 PMCID: PMC10799084 DOI: 10.1038/s41437-023-00658-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023] Open
Abstract
In this study, we investigated how IBD patterns shared between individuals of the same breed could be informative of its admixture level, with the underlying assumption that the most admixed breeds, i.e. the least genetically isolated, should have a much more fragmented genome. We considered 111 goat breeds (i.e. 2501 individuals) and 156 sheep breeds (i.e. 3304 individuals) from Europe, Africa and Asia, for which beadchip SNP genotypes had been performed. We inferred the breed's level of admixture from: (i) the proportion of the genome shared by breed's members (i.e. "genetic integrity level" assessed from ADMIXTURE software analyses), and (ii) the "AV index" (calculated from Reynolds' genetic distances), used as a proxy for the "genetic distinctiveness". In both goat and sheep datasets, the statistical analyses (comparison of means, Spearman correlations, LM and GAM models) revealed that the most genetically isolated breeds, also showed IBD profiles made up of more shared IBD segments, which were also longer. These results pave the way for further research that could lead to the development of admixture indicators, based on the characterization of intra-breed shared IBD segments, particularly effective as they would be independent of the knowledge of the whole genetic landscape in which the breeds evolve. Finally, by highlighting the fragmentation experienced by the genomes subjected to crossbreeding carried out over the last few generations, the study reminds us of the need to preserve local breeds and the integrity of their adaptive architectures that have been shaped over the centuries.
Collapse
Affiliation(s)
| | - Joram M Mwacharo
- Animal and Veterinary Sciences, Scotlands Rural College (SRUC) and Centre for Tropical Livestock Genetics and Health (CTLGH), The Roslin Institute Building, EH25 9RG, Midlothian, UK
- Small Ruminant Genomics, International Centre for Agricultural Research in the Dry Areas (ICARDA), P.O. Box 5689, Addis Ababa, Ethiopia
| | - Menghua Li
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Abulgasim Ahbara
- Animal and Veterinary Sciences, Scotlands Rural College (SRUC) and Centre for Tropical Livestock Genetics and Health (CTLGH), The Roslin Institute Building, EH25 9RG, Midlothian, UK
- Department of Zoology, Faculty of Sciences, Misurata University, Misurata, Libya
| | | | - Edgar Farai Dzomba
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, South Africa
| | - Johannes A Lenstra
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Anne Da Silva
- Faculté des Sciences et Techniques de Limoges, E2LIM, 87000, Limoges, France.
| |
Collapse
|
8
|
Bak NK, Rohde PD, Kristensen TN. Strong Sex-Dependent Effects of Malnutrition on Life- and Healthspan in Drosophila melanogaster. INSECTS 2023; 15:9. [PMID: 38249015 PMCID: PMC10816799 DOI: 10.3390/insects15010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/22/2023] [Accepted: 12/24/2023] [Indexed: 01/23/2024]
Abstract
Insufficient intake of essential nutrients, malnutrition is a major issue for millions of people and has a strong impact on the distribution and abundance of species in nature. In this study, we investigated the effect of malnutrition on several fitness components in the vinegar fly Drosophila melanogaster. Four diets with different nutritional values, including three diluted diets of an optimal nutritional balanced diet, were used as feed sources. The effect of malnutrition on fitness components linked to healthspan, the period of life spent in good health conditions, was evaluated by quantifying the flies' lifespan, locomotor activity, heat stress tolerance, lipid content, and dry weight. The results showed that malnutrition had severe negative impact, such as reduced lifespan, locomotor activity, heat stress tolerance, fat content, and dry weight. The negative phenotypic effects were highly sex-dependent, with males being more negatively impacted by malnutrition compared to females. These findings highlight important detrimental and sex-specific effects of malnutrition not only on lifespan but also on traits related to healthspan.
Collapse
Affiliation(s)
- Nikolaj Klausholt Bak
- Department of Chemistry and Bioscience, Aalborg University, Frederik Bajers Vej 7H, DK 9220 Aalborg, Denmark;
| | - Palle Duun Rohde
- Department of Health Science and Technology, Aalborg University, Selma Lagerløfs Vej 249, DK 9260 Gistrup, Denmark
| | - Torsten Nygaard Kristensen
- Department of Chemistry and Bioscience, Aalborg University, Frederik Bajers Vej 7H, DK 9220 Aalborg, Denmark;
| |
Collapse
|
9
|
Nagy I, Nguyen TA. Characterizing and Eliminating the Inbreeding Load. Vet Sci 2023; 11:8. [PMID: 38250914 PMCID: PMC10819885 DOI: 10.3390/vetsci11010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/28/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024] Open
Abstract
The authors evaluated the relevant literature related to purging, which is the interaction between selection and inbreeding in which the population may eliminate its inbreeding load at least partially. According to the relevant literature, the inbreeding load and the process of purging were evaluated via pedigree methods based on ancestral inbreeding, the inbreeding-purging model, and expressed opportunity of purging, along with genomic methods. Most ancestral inbreeding-related studies were performed in zoos, where only a small proportion of the studied populations show signs of purging. The inbreeding-purging model was developed with Drosophila, and it was used to evaluate different zoo ungulates and Pannon white rabbits. Purging was detected in both studies. The expressed opportunity of purging was applied in Jersey cattle and Pannon white rabbits. In the Jersey cattle, it had an effect of 12.6% for fitness, while in the Pannon white rabbits, the inbreeding load was between 40% and 80% of its original value. The genomic studies also signalled purging, but they also made it clear that, contrary to the detected purging, the evaluated populations still suffered from inbreeding depression. Therefore, especially for domesticated animals, it can be concluded that deliberate inbreeding with the purpose of generating purging is not advocated.
Collapse
Affiliation(s)
- István Nagy
- Institute of Animal Sciences, Hungarian University of Agriculture and Life Sciences (MATE), Guba Sándor u. 40, 7400 Kaposvár, Hungary;
| | | |
Collapse
|
10
|
Justinski C, Wilkens J, Distl O. Effect of Individual Rate of Inbreeding, Recent and Ancestral Inbreeding on Wool Quality, Muscling Conformation and Exterior in German Sheep Breeds. Animals (Basel) 2023; 13:3329. [PMID: 37958084 PMCID: PMC10648841 DOI: 10.3390/ani13213329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
This study provides comprehensive results on the current status of inbreeding depression for traits upon which sheep are selected for the herdbook in Germany. A total of 30 sheep breeds from the OviCap national database met the inclusion criteria for the present analysis regarding the depth and completeness of pedigrees and the number of animals with phenotypic data. We analyzed heritabilities and inbreeding depression for the three breeding objective traits of wool quality, muscling conformation and exterior. Heritabilities were across all breeds of moderate size, with estimates of 0.18 for wool quality and muscling conformation and of 0.14 for exterior. The models employed to estimate linear regression slopes for individual and ancestral inbreeding rates also account for non-genetic effects and the additive genetic effect of the animal. Inbreeding depression was obvious for all three traits when we averaged the estimates across all 30 sheep breeds. Inbreeding depression was significant for wool quality for only a few breeds, whereas for muscling conformation, 14/30 breeds achieved significant estimates. A 1% increase in inbreeding decreased the mean of all three traits across all sheep breeds by 0.33% of their standard deviation. Positive effects due to ancestral inbreeding were only significant in very few breeds in the different traits. Across all 30 sheep breeds, there were indications that purging effects (a reduction in negative effects of inbreeding depression due to selection for heterozygotes) may play a role for the exterior. The results of this study should help for reviewing breeding programs, particularly for sheep breeds with critical effective population sizes and increasing rates of inbreeding, with regard to the selection policy and selection intensity applied.
Collapse
Affiliation(s)
- Cathrin Justinski
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Hannover (Foundation), 30559 Hannover, Germany;
| | - Jens Wilkens
- vit—Vereinigte Informationssysteme Tierhaltung w.V., Heinrich-Schröder-Weg 1, 27283 Verden, Germany;
| | - Ottmar Distl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Hannover (Foundation), 30559 Hannover, Germany;
| |
Collapse
|
11
|
Gligorescu A, Chen L, Jensen K, Moghadam NN, Kristensen TN, Sørensen JG. Rapid Evolutionary Adaptation to Diet Composition in the Black Soldier Fly ( Hermetia illucens). INSECTS 2023; 14:821. [PMID: 37887833 PMCID: PMC10607891 DOI: 10.3390/insects14100821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 10/28/2023]
Abstract
Genetic adaptation of Hermetia illucens (BSF) to suboptimal single sourced waste streams can open new perspectives for insect production. Here, four BSF lines were maintained on a single sourced, low-quality wheat bran diet (WB) or on a high-quality chicken feed diet (CF) for 13 generations. We continuously evaluated presumed evolutionary responses in several performance traits to rearing on the two diets. Subsequently, we tested responses to interchanged diets, i.e., of larvae that had been reared on low-quality feed and tested on high-quality feed and vice versa to evaluate costs associated with adaptation to different diets. BSF were found to experience rapid adaptation to the diet composition. While performances on the WB diet were always inferior to the CF diet, the adaptive responses were stronger to the former diet. This stronger response was likely due to stronger selection pressure experienced by BSF fed on the low-quality single sourced diet. The interchanged diet experiment found no costs associated with diet adaptation, but revealed cross generational gain associated with the parental CF diet treatment. Our results revealed that BSF can rapidly respond adaptively to diet, although the mechanisms are yet to be determined. This has potential to be utilized in commercial insect breeding to produce lines tailored to specific diets.
Collapse
Affiliation(s)
- Anton Gligorescu
- Department of Biology, Section for Genetics, Ecology and Evolution, Aarhus University, Ny Munkegade 116, Building 1540, 8000 Aarhus C, Denmark;
| | - Long Chen
- Department of Animal and Veterinary Sciences, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark; (L.C.); (K.J.)
| | - Kim Jensen
- Department of Animal and Veterinary Sciences, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark; (L.C.); (K.J.)
| | - Neda Nasiri Moghadam
- Life Science Division, Danish Technological Institute, Kongsvangs Allé 29, 8000 Aarhus C, Denmark;
| | - Torsten Nygaard Kristensen
- Department of Chemistry and Bioscience, Section for Bioscience and Engineering, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg E, Denmark;
| | - Jesper Givskov Sørensen
- Department of Biology, Section for Genetics, Ecology and Evolution, Aarhus University, Ny Munkegade 116, Building 1540, 8000 Aarhus C, Denmark;
| |
Collapse
|
12
|
Du M, Bernstein R, Hoppe A. The Potential of Instrumental Insemination for Sustainable Honeybee Breeding. Genes (Basel) 2023; 14:1799. [PMID: 37761939 PMCID: PMC10531475 DOI: 10.3390/genes14091799] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Mating control is crucial in honeybee breeding and commonly guaranteed by bringing virgin queens to isolated mating stations (IMS) for their nuptial flights. However, most breeding programs struggle to provide sufficiently many IMS. Research institutions routinely perform instrumental insemination of honeybees, but its potential to substitute IMS in breeding programs has not been sufficiently studied. We performed stochastic simulations to compare instrumental insemination strategies and mating on IMS in terms of genetic progress and inbreeding development. We focused on the role of paternal generation intervals, which can be shortened to two years with instrumental insemination in comparison to three years when using IMS. After 70 years, instrumental insemination yielded up to 42% higher genetic gain than IMS strategies-particularly with few available mating sites. Inbreeding rates with instrumental insemination and IMS were comparable. When the paternal generation interval in instrumental insemination was stretched to three years, the number of drone producers required for sustainable breeding was reduced substantially. In contrast, when shortening the interval to two years, it yielded the highest generational inbreeding rates (up to 2.28%). Overall, instrumental insemination with drones from a single colony appears as a viable strategy for honeybee breeding and a promising alternative to IMS.
Collapse
Affiliation(s)
- Manuel Du
- Institute for Bee Research Hohen Neuendorf, Friedrich-Engels-Str. 32, 16540 Hohen Neuendorf, Germany; (R.B.); (A.H.)
| | | | | |
Collapse
|
13
|
Cañas-Álvarez JJ, Ossa-Saraz GA, Garcés-Blanquiceth JL, Burgos-Paz WO. Genealogical structure of the Colombian Romosinuano Creole cattle. Trop Anim Health Prod 2023; 55:292. [PMID: 37589774 PMCID: PMC10435628 DOI: 10.1007/s11250-023-03694-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 07/19/2023] [Indexed: 08/18/2023]
Abstract
The Romosinuano cattle breed is one of the most important Creole genetic resources in Colombia, and interesting traits like adaptation or reproductive efficiency have promoted its use in different countries in America. To consolidate the genealogical historical records, the review of very first yield records in this population was used to reconstruct the genealogy of the breed since the first animals incorporated to the in vivo germplasm bank and estimate different demographic parameters. The complete genealogy comprises 17,136 animals with 5.8 years of generation interval for two pathways. The estimated average inbreeding for the population and inbred animals was 2.53% and 6.32% respectively, with a progressive increase of inbred animals across the generations. Almost 48% of the total animals presented some level of consanguinity. Effective population size (Ne) based on the inbreeding rate estimated by regression in all generations was 120 animals whereas Ne estimated by equivalent generations was 69 animals. Effective number of founders (Fe), effective number of ancestors (Fa), and ancestors explaining 50% of variability were 75, 48, and 22, respectively. The relation between Fa/Fe of 64% indicates a genetic bottleneck effect in the population studied.
Collapse
Affiliation(s)
- Jhon Jacobo Cañas-Álvarez
- Corporación Colombiana de Investigación Agropecuaria-Agrosavia, Centro de Investigación Motilonia, Km 5 Vía Becerril, Cesar, Agustín Codazzi, Colombia
| | - Gustavo Alfonso Ossa-Saraz
- Corporación Colombiana de Investigación Agropecuaria-Agrosavia, Centro de Investigación Turipaná, Km 13 Vía Montería-Cereté, Córdoba, Colombia
| | - Jorge Luis Garcés-Blanquiceth
- Corporación Colombiana de Investigación Agropecuaria-Agrosavia, Centro de Investigación Turipaná, Km 13 Vía Montería-Cereté, Córdoba, Colombia
| | - William Orlando Burgos-Paz
- Corporación Colombiana de Investigación Agropecuaria-Agrosavia, Centro de Investigación Tibaitatá, Km 14 Vía Mosquera-Bogotá, Cundinamarca, Colombia.
| |
Collapse
|
14
|
Tarpy DR, Caren JR, Delaney DA. Meta-analysis of genetic diversity and intercolony relatedness among reproductives in commercial honey bee populations. FRONTIERS IN INSECT SCIENCE 2023; 3:1112898. [PMID: 38469471 PMCID: PMC10926410 DOI: 10.3389/finsc.2023.1112898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/16/2023] [Indexed: 03/13/2024]
Abstract
Honey bee colonies are large kin groups, each with a single mother queen and thousands of female workers. Queen bees are highly polyandrous, each mating with an average of approximately 12 drones from other colonies. We used a meta-analysis approach to compare the pedigree relationships of honey bee reproductives (queens and their mates) across five different studies and to quantify the overall genetic diversity of breeding populations. We compared the inferred genotypes of queens and their mates from microsatellite analyses of worker offspring from a feral Africanized honey bee population (which served as a negative control for inbreeding), an experimentally derived population of sister queens (which served as a positive control for inbreeding), and three separate commercially managed populations. We then compared the relatedness of all drones mated to each queen (mate-mate), all queens within each population (queen-queen), each queen with each of her mates (queen-mate), and all drones within each population (drone-drone). We found, as expected, the lowest levels of genetic similarity in the outcrossed population and highest levels of genetic similarity in the inbred population. Levels of genetic similarity among the managed honey bee populations were intermediate but closer to that of the inbred population. Genetic structuring of the entire breeding population resulted in two major subpopulations, likely deriving from breeders on the east and west coast. The effects that these findings have on the overall population genetic diversity of managed honey bees is discussed.
Collapse
Affiliation(s)
- David R. Tarpy
- Department of Applied Ecology, Graduate Program in Biology—Evolution & Ecology, North Carolina State University, Raleigh, NC, United States
| | - Joel R. Caren
- USDA-ARS, Pollinator Health Center, Stoneville, MS, United States
| | - Deborah A. Delaney
- Department of Entomology & Wildlife Biology, University of Delaware, Newark, DE, United States
| |
Collapse
|
15
|
Nyman S, Johansson AM, Palucci V, Schönherz AA, Guldbrandtsen B, Hinrichs D, de Koning DJ. Inbreeding and pedigree analysis of the European red dairy cattle. Genet Sel Evol 2022; 54:70. [PMID: 36274137 PMCID: PMC9590155 DOI: 10.1186/s12711-022-00761-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 10/12/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Red dairy cattle breeds have an important role in the European dairy sector because of their functional characteristics and good health. Extensive pedigree information is available for these breeds and provides a unique opportunity to examine their population structure, such as effective population size, depth of the pedigree, and effective number of founders and ancestors, and inbreeding levels. Animals with the highest genetic contributions were identified. Pedigree data included 9,073,403 animals that were born between 1900 and 2019 from Denmark, Finland, Germany, Latvia, Lithuania, the Netherlands, Norway, Poland, and Sweden, and covered 32 breeds. The numerically largest breeds were Red Dairy Cattle and Meuse-Rhine-Yssel. RESULTS The deepest average complete generation equivalent (9.39) was found for Red Dairy Cattle in 2017. Mean pedigree completeness ranged from 0.6 for Finncattle to 7.51 for Red Dairy Cattle. An effective population size of 166 animals was estimated for the total pedigree and ranged from 35 (Rotes Höhenvieh) to 226 (Red Dairy Cattle). Average generation intervals were between 5 and 7 years. The mean inbreeding coefficient for animals born between 1960 and 2018 was 1.5%, with the highest inbreeding coefficients observed for Traditional Angler (4.2%) and Rotes Höhenvieh (4.1%). The most influential animal was a Dutch Meuse-Rhine-Yssel bull born in 1960. The mean inbreeding level for animals born between 2016 and 2018 was 2% and highest for the Meuse-Rhine-Yssel (4.64%) and Rotes Hohenvieh breeds (3.80%). CONCLUSIONS We provide the first detailed analysis of the genetic diversity and inbreeding levels of the European red dairy cattle breeds. Rotes Höhenvieh and Traditional Angler have high inbreeding levels and are either close to or below the minimal recommended effective population size, thus it is necessary to implement tools to monitor the selection process in order to control inbreeding in these breeds. Red Dairy Cattle, Vorderwälder, Swedish Polled and Hinterwälder hold more genetic diversity. Regarding the Meuse-Rhine-Yssel breed, given its decreased population size, increased inbreeding and low effective population size, we recommend implementation of a breeding program to prevent further loss in its genetic diversity.
Collapse
Affiliation(s)
- Sofia Nyman
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Anna M. Johansson
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Valentina Palucci
- Interbull Centre, Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | - Bernt Guldbrandtsen
- Department of Animal Science, Aarhus University, Tjele, Denmark
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Dirk Hinrichs
- Department of Animal Breeding, University of Kassel, Witzenhausen, Germany
| | - Dirk-Jan de Koning
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
16
|
Todd ET, Tonasso-Calvière L, Chauvey L, Schiavinato S, Fages A, Seguin-Orlando A, Clavel P, Khan N, Pérez Pardal L, Patterson Rosa L, Librado P, Ringbauer H, Verdugo M, Southon J, Aury JM, Perdereau A, Vila E, Marzullo M, Prato O, Tecchiati U, Bagnasco Gianni G, Tagliacozzo A, Tinè V, Alhaique F, Cardoso JL, Valente MJ, Telles Antunes M, Frantz L, Shapiro B, Bradley DG, Boulbes N, Gardeisen A, Horwitz LK, Öztan A, Arbuckle BS, Onar V, Clavel B, Lepetz S, Vahdati AA, Davoudi H, Mohaseb A, Mashkour M, Bouchez O, Donnadieu C, Wincker P, Brooks SA, Beja-Pereira A, Wu DD, Orlando L. The genomic history and global expansion of domestic donkeys. Science 2022; 377:1172-1180. [PMID: 36074859 DOI: 10.1126/science.abo3503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Donkeys transformed human history as essential beasts of burden for long-distance movement, especially across semi-arid and upland environments. They remain insufficiently studied despite globally expanding and providing key support to low- to middle-income communities. To elucidate their domestication history, we constructed a comprehensive genome panel of 207 modern and 31 ancient donkeys, as well as 15 wild equids. We found a strong phylogeographic structure in modern donkeys that supports a single domestication in Africa ~5000 BCE, followed by further expansions in this continent and Eurasia and ultimately returning to Africa. We uncover a previously unknown genetic lineage in the Levant ~200 BCE, which contributed increasing ancestry toward Asia. Donkey management involved inbreeding and the production of giant bloodlines at a time when mules were essential to the Roman economy and military.
Collapse
Affiliation(s)
- Evelyn T Todd
- Centre d'Anthropobiologie et de Génomique de Toulouse (CAGT), CNRS UMR 5288, Université Paul Sabatier, Toulouse 31000, France
| | - Laure Tonasso-Calvière
- Centre d'Anthropobiologie et de Génomique de Toulouse (CAGT), CNRS UMR 5288, Université Paul Sabatier, Toulouse 31000, France
| | - Loreleï Chauvey
- Centre d'Anthropobiologie et de Génomique de Toulouse (CAGT), CNRS UMR 5288, Université Paul Sabatier, Toulouse 31000, France
| | - Stéphanie Schiavinato
- Centre d'Anthropobiologie et de Génomique de Toulouse (CAGT), CNRS UMR 5288, Université Paul Sabatier, Toulouse 31000, France
| | - Antoine Fages
- Centre d'Anthropobiologie et de Génomique de Toulouse (CAGT), CNRS UMR 5288, Université Paul Sabatier, Toulouse 31000, France
| | - Andaine Seguin-Orlando
- Centre d'Anthropobiologie et de Génomique de Toulouse (CAGT), CNRS UMR 5288, Université Paul Sabatier, Toulouse 31000, France
| | - Pierre Clavel
- Centre d'Anthropobiologie et de Génomique de Toulouse (CAGT), CNRS UMR 5288, Université Paul Sabatier, Toulouse 31000, France
| | - Naveed Khan
- Centre d'Anthropobiologie et de Génomique de Toulouse (CAGT), CNRS UMR 5288, Université Paul Sabatier, Toulouse 31000, France.,Department of Biotechnology, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Lucía Pérez Pardal
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão 4485-661, Portugal.,BIOPOLIS Program in Genomics, Biodiversity and Land Planning, Campus de Vairão, Universidade do Porto, Vairão 4485-661, Portugal
| | | | - Pablo Librado
- Centre d'Anthropobiologie et de Génomique de Toulouse (CAGT), CNRS UMR 5288, Université Paul Sabatier, Toulouse 31000, France
| | - Harald Ringbauer
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany
| | - Marta Verdugo
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin D02 PN40, Ireland
| | - John Southon
- Earth System Science Department, University of California, Irvine, CA 92697, USA
| | - Jean-Marc Aury
- Genoscope, Institut de biologie François Jacob, CEA, Université d'Evry, Université Paris-Saclay, Evry 91042, France
| | - Aude Perdereau
- Genoscope, Institut de biologie François Jacob, CEA, Université d'Evry, Université Paris-Saclay, Evry 91042, France
| | - Emmanuelle Vila
- Laboratoire Archéorient, Université Lyon 2, Lyon 69007, France
| | - Matilde Marzullo
- Dipartimento di Beni Culturali e Ambientali, Università degli Studi di Milano, Milan 20122, Italy
| | - Ornella Prato
- Dipartimento di Beni Culturali e Ambientali, Università degli Studi di Milano, Milan 20122, Italy
| | - Umberto Tecchiati
- Dipartimento di Beni Culturali e Ambientali, Università degli Studi di Milano, Milan 20122, Italy
| | - Giovanna Bagnasco Gianni
- Dipartimento di Beni Culturali e Ambientali, Università degli Studi di Milano, Milan 20122, Italy
| | | | - Vincenzo Tinè
- Soprintendenza archeologia belle arti e paesaggio per le province di Verona, Rovigo e Vicenza, Verona 37121, Italy
| | | | - João Luís Cardoso
- ICArEHB, Campus de Gambelas, University of Algarve, Faro 8005-139, Portugal.,Universidade Aberta, Lisbon 1269-001, Portugal
| | - Maria João Valente
- Faculdade de Ciências Humanas e Sociais, Centro de Estudos de Arqueologia, Artes e Ciências do Património, Universidade do Algarve, Faro 8000-117, Portugal
| | - Miguel Telles Antunes
- Centre for Research on Science and Geological Engineering, Universidade NOVA de Lisboa, Lisbon 1099-085, Portugal
| | - Laurent Frantz
- Palaeogenomics Group, Department of Veterinary Sciences, Ludwig Maximilian University, Munich 80539, Germany.,School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4DQ, United Kingdom
| | - Beth Shapiro
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95064, USA.,Howard Hughes Medical Institute, University of California, Santa Cruz, CA 95064, USA
| | - Daniel G Bradley
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin D02 PN40, Ireland
| | - Nicolas Boulbes
- Institut de Paléontologie Humaine, Fondation Albert Ier, Paris / UMR 7194 HNHP, MNHN-CNRS-UPVD / EPCC Centre Européen de Recherche Préhistorique, Tautavel 66720, France
| | - Armelle Gardeisen
- Archéologie des Sociétés Méditéranéennes, Université Paul Valéry - Site Saint-Charles 2, Montpellier 34090, France
| | - Liora Kolska Horwitz
- National Natural History Collections, Edmond J. Safra Campus, Givat Ram, The Hebrew University, Jerusalem 9190401, Israel
| | - Aliye Öztan
- Archaeology Department, Ankara University, Ankara 06100, Turkey
| | - Benjamin S Arbuckle
- Department of Anthropology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Vedat Onar
- Osteoarchaeology Practice and Research Center and Department of Anatomy, Faculty of Veterinary Medicine, Istanbul University-Cerrahpaşa, Istanbul 34320, Turkey
| | - Benoît Clavel
- Archéozoologie, Archéobotanique, Sociétés, Pratiques et Environnements, Muséum National d'Histoire Naturelle, Paris 75005, France
| | - Sébastien Lepetz
- Archéozoologie, Archéobotanique, Sociétés, Pratiques et Environnements, Muséum National d'Histoire Naturelle, Paris 75005, France
| | - Ali Akbar Vahdati
- Provincial Office of the Iranian Center for Cultural Heritage, Handicrafts and Tourism Organisation, North Khorassan, Bojnord 9416745775, Iran
| | - Hossein Davoudi
- Archaezoology section, Bioarchaeology Laboratory of the Central Laboratory, University of Tehran, Tehran CP1417634934, Iran
| | - Azadeh Mohaseb
- Archéozoologie, Archéobotanique, Sociétés, Pratiques et Environnements, Muséum National d'Histoire Naturelle, Paris 75005, France.,Archaezoology section, Bioarchaeology Laboratory of the Central Laboratory, University of Tehran, Tehran CP1417634934, Iran
| | - Marjan Mashkour
- Archéozoologie, Archéobotanique, Sociétés, Pratiques et Environnements, Muséum National d'Histoire Naturelle, Paris 75005, France.,Archaezoology section, Bioarchaeology Laboratory of the Central Laboratory, University of Tehran, Tehran CP1417634934, Iran.,Department of Osteology, National Museum of Iran, Tehran 1136918111, Iran
| | - Olivier Bouchez
- GeT-PlaGe - Génome et Transcriptome - Plateforme Génomique, GET - Plateforme Génome & Transcriptome, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Castaneet-Tolosan Cedex 31326, France
| | - Cécile Donnadieu
- GeT-PlaGe - Génome et Transcriptome - Plateforme Génomique, GET - Plateforme Génome & Transcriptome, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Castaneet-Tolosan Cedex 31326, France
| | - Patrick Wincker
- Genoscope, Institut de biologie François Jacob, CEA, Université d'Evry, Université Paris-Saclay, Evry 91042, France
| | - Samantha A Brooks
- Department of Animal Science, UF Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Albano Beja-Pereira
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão 4485-661, Portugal.,BIOPOLIS Program in Genomics, Biodiversity and Land Planning, Campus de Vairão, Universidade do Porto, Vairão 4485-661, Portugal.,DGAOT, Faculty of Sciences, Universidade do Porto, Porto 4169-007, Portugal.,Sustainable Agrifood Production Research Centre (GreenUPorto), Universidade do Porto, Vairão 4485-646, Portugal
| | - Dong-Dong Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China.,Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Ludovic Orlando
- Centre d'Anthropobiologie et de Génomique de Toulouse (CAGT), CNRS UMR 5288, Université Paul Sabatier, Toulouse 31000, France
| |
Collapse
|
17
|
Colpitts J, McLoughlin PD, Poissant J. Runs of homozygosity in Sable Island feral horses reveal the genomic consequences of inbreeding and divergence from domestic breeds. BMC Genomics 2022; 23:501. [PMID: 35820826 PMCID: PMC9275264 DOI: 10.1186/s12864-022-08729-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 06/29/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Understanding inbreeding and its impact on fitness and evolutionary potential is fundamental to species conservation and agriculture. Long stretches of homozygous genotypes, known as runs of homozygosity (ROH), result from inbreeding and their number and length can provide useful population-level information on inbreeding characteristics and locations of signatures of selection. However, the utility of ROH for conservation is limited for natural populations where baseline data and genomic tools are lacking. Comparing ROH metrics in recently feral vs. domestic populations of well understood species like the horse could provide information on the genetic health of those populations and offer insight into how such metrics compare between managed and unmanaged populations. Here we characterized ROH, inbreeding coefficients, and ROH islands in a feral horse population from Sable Island, Canada, using ~41 000 SNPs and contrasted results with those from 33 domestic breeds to assess the impacts of isolation on ROH abundance, length, distribution, and ROH islands. RESULTS ROH number, length, and ROH-based inbreeding coefficients (FROH) in Sable Island horses were generally greater than in domestic breeds. Short runs, which typically coalesce many generations prior, were more abundant than long runs in all populations, but run length distributions indicated more recent population bottlenecks in Sable Island horses. Nine ROH islands were detected in Sable Island horses, exhibiting very little overlap with those found in domestic breeds. Gene ontology (GO) enrichment analysis for Sable Island ROH islands revealed enrichment for genes associated with 3 clusters of biological pathways largely associated with metabolism and immune function. CONCLUSIONS This study indicates that Sable Island horses tend to be more inbred than their domestic counterparts and that most of this inbreeding is due to historical bottlenecks and founder effects rather than recent mating between close relatives. Unique ROH islands in the Sable Island population suggest adaptation to local selective pressures and/or strong genetic drift and highlight the value of this population as a reservoir of equine genetic variation. This research illustrates how ROH analyses can be applied to gain insights into the population history, genetic health, and divergence of wild or feral populations of conservation concern.
Collapse
Affiliation(s)
- Julie Colpitts
- Department of Biology, University of Saskatchewan, Saskatchewan, Canada.
| | | | - Jocelyn Poissant
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
18
|
Jørgensen DB, Ørsted M, Kristensen TN. Sustained positive consequences of genetic rescue of fitness and behavioural traits in inbred populations of Drosophila melanogaster. J Evol Biol 2022; 35:868-878. [PMID: 35532930 PMCID: PMC9325394 DOI: 10.1111/jeb.14015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 11/30/2022]
Abstract
One solution to alleviate the detrimental genetic effects associated with reductions in population size and fragmentation is to introduce immigrants from other populations. While the effects of this genetic rescue on fitness traits are fairly well known, it is less clear to what extent inbreeding depression and subsequent genetic rescue affect behavioural traits. In this study, replicated crosses between inbred lines of Drosophila melanogaster were performed in order to investigate the effects of inbreeding and genetic rescue on egg-to-adult viability and negative geotaxis behaviour-a locomotor response used to measure, e.g. the effects of physiological ageing. Transgenerational effects of outcrossing were investigated by examining the fitness consequences in both the F1 and F4 generation. The majority of inbred lines showed evidence for inbreeding depression for both egg-to-adult viability and behavioural performance (95% and 66% of lines, respectively), with inbreeding depression being more pronounced for viability compared with the locomotor response. Subsequent outcrossing with immigrants led to an alleviation of the negative effects for both viability and geotaxis response resulting in inbred lines being similar to the outbred controls, with beneficial effects persisting from F1 to F4 . Overall, the results clearly show that genetic rescue can provide transgenerational rescue of small, inbred populations by rapidly improving population fitness components. Thus, we show that even the negative effects of inbreeding on behaviour, similar to that of neurodegeneration associated with physiological ageing, can be reversed by genetic rescue.
Collapse
Affiliation(s)
| | - Michael Ørsted
- Department of Chemistry and Bioscience, Aalborg University, Aalborg E, Denmark.,Department of Biology, Aarhus University, Aarhus C, Denmark
| | | |
Collapse
|
19
|
Luigi-Sierra MG, Fernández A, Martínez A, Guan D, Delgado JV, Álvarez JF, Landi V, Such FX, Jordana J, Saura M, Amills M. Genomic patterns of homozygosity and inbreeding depression in Murciano-Granadina goats. J Anim Sci Biotechnol 2022; 13:35. [PMID: 35264251 PMCID: PMC8908635 DOI: 10.1186/s40104-022-00684-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 01/19/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Inbreeding depression can adversely affect traits related to fitness, reproduction and productive performance. Although current research suggests that inbreeding levels are generally low in most goat breeds, the impact of inbreeding depression on phenotypes of economic interest has only been investigated in a few studies based on genealogical data. RESULTS We genotyped 1040 goats with the Goat SNP50 BeadChip. This information was used to estimate different molecular inbreeding coefficients and characterise runs of homozygosity and homozygosity patterns. We detected 38 genomic regions with increased homozygosity as well as 8 ROH hotspots mapping to chromosomes 1, 2, 4, 6, 14, 16 and 17. Eight hundred seventeen goats with available records for dairy traits were analysed to evaluate the potential consequences of inbreeding depression on milk phenotypes. Four regions on chromosomes 8 and 25 were significantly associated with inbreeding depression for the natural logarithm of the somatic cell count. Notably, these regions contain several genes related with immunity, such as SYK, IL27, CCL19 and CCL21. Moreover, one region on chromosome 2 was significantly associated with inbreeding depression for milk yield. CONCLUSIONS Although genomic inbreeding levels are low in Murciano-Granadina goats, significant evidence of inbreeding depression for the logarithm of the somatic cell count, a phenotype closely associated with udder health and milk yield, have been detected in this population. Minimising inbreeding would be expected to augment economic gain by increasing milk yield and reducing the incidence of mastitis, which is one of the main causes of dairy goat culling.
Collapse
Affiliation(s)
- María Gracia Luigi-Sierra
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Almudena Fernández
- Departamento de Mejora Genética Animal, INIA, Carretera de la Coruña km 7,5, 28040, Madrid, Spain
| | - Amparo Martínez
- Departamento de Genética, Universidad de Córdoba, 14071, Córdoba, Spain
| | - Dailu Guan
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | | | | | - Vincenzo Landi
- Department of Veterinary Medicine, University of Bari ''Aldo Moro", 62 per Casamassima km. 3, 70010, Valenzano, SP, Italy
| | - Francesc Xavier Such
- Group of Research in Ruminants (G2R), Department of Animal and Food Science, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
| | - Jordi Jordana
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - María Saura
- Departamento de Mejora Genética Animal, INIA, Carretera de la Coruña km 7,5, 28040, Madrid, Spain.
| | - Marcel Amills
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
| |
Collapse
|
20
|
Vega‐Trejo R, Boer RA, Fitzpatrick JL, Kotrschal A. Sex‐specific inbreeding depression: A meta‐analysis. Ecol Lett 2022; 25:1009-1026. [PMID: 35064612 PMCID: PMC9304238 DOI: 10.1111/ele.13961] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 11/22/2021] [Accepted: 12/08/2021] [Indexed: 12/29/2022]
Affiliation(s)
- Regina Vega‐Trejo
- Department of Zoology: Ethology Stockholm University Stockholm Sweden
- Department of Zoology Edward Grey Institute University of Oxford Oxford UK
| | - Raïssa A. Boer
- Department of Zoology: Ethology Stockholm University Stockholm Sweden
| | | | - Alexander Kotrschal
- Department of Zoology: Ethology Stockholm University Stockholm Sweden
- Behavioural Ecology Group Wageningen University & Research Wageningen The Netherlands
| |
Collapse
|
21
|
Brockett B, Banks S, Neaves LE, Gordon IJ, Pierson JC, Manning AD. Establishment, persistence and the importance of longitudinal monitoring in multi‐source reintroductions. Anim Conserv 2022. [DOI: 10.1111/acv.12764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- B. Brockett
- Fenner School of Environment and Society The Australian National University Canberra ACT Australia
| | - S. Banks
- College of Engineering, IT and the Environment Charles Darwin University Darwin NT Australia
| | - L. E. Neaves
- Fenner School of Environment and Society The Australian National University Canberra ACT Australia
| | - I. J. Gordon
- Fenner School of Environment and Society The Australian National University Canberra ACT Australia
- James Hutton Institute Dundee UK
- Central Queensland University Townsville QLD Australia
- Land & Water CSIRO Townsville QLD Australia
- Protected Places Mission NERP2, Reef and Rainforest Research Center Cairns QLD Australia
| | - J. C. Pierson
- ACT Parks and Conservation Service Canberra Australia
| | - A. D. Manning
- Fenner School of Environment and Society The Australian National University Canberra ACT Australia
| |
Collapse
|
22
|
Schiavo G, Bovo S, Ribani A, Moscatelli G, Bonacini M, Prandi M, Mancin E, Mantovani R, Dall'Olio S, Fontanesi L. Comparative analysis of inbreeding parameters and runs of homozygosity islands in 2 Italian autochthonous cattle breeds mainly raised in the Parmigiano-Reggiano cheese production region. J Dairy Sci 2021; 105:2408-2425. [PMID: 34955250 DOI: 10.3168/jds.2021-20915] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/25/2021] [Indexed: 01/19/2023]
Abstract
Reggiana and Modenese are autochthonous cattle breeds, reared in the North of Italy, that can be mainly distinguished for their standard coat color (Reggiana is red, whereas Modenese is white with some pale gray shades). Almost all milk produced by these breeds is transformed into 2 mono-breed branded Parmigiano-Reggiano cheeses, from which farmers receive the economic incomes needed for the sustainable conservation of these animal genetic resources. After the setting up of their herd books in 1960s, these breeds experienced a strong reduction in the population size that was subsequently reverted starting in the 1990s (Reggiana) or more recently (Modenese) reaching at present a total of about 2,800 and 500 registered cows, respectively. Due to the small population size of these breeds, inbreeding is a very important cause of concern for their conservation programs. Inbreeding is traditionally estimated using pedigree data, which are summarized in an inbreeding coefficient calculated at the individual level (FPED). However, incompleteness of pedigree information and registration errors can affect the effectiveness of conservation strategies. High-throughput SNP genotyping platforms allow investigation of inbreeding using genome information that can overcome the limits of pedigree data. Several approaches have been proposed to estimate genomic inbreeding, with the use of runs of homozygosity (ROH) considered to be the more appropriate. In this study, several pedigree and genomic inbreeding parameters, calculated using the whole herd book populations or considering genotyping information (GeneSeek GGP Bovine 150K) from 1,684 Reggiana cattle and 323 Modenese cattle, were compared. Average inbreeding values per year were used to calculate effective population size. Reggiana breed had generally lower genomic inbreeding values than Modenese breed. The low correlation between pedigree-based and genomic-based parameters (ranging from 0.187 to 0.195 and 0.319 to 0.323 in the Reggiana and Modenese breeds, respectively) reflected the common problems of local populations in which pedigree records are not complete. The high proportion of short ROH over the total number of ROH indicates no major recent inbreeding events in both breeds. ROH islands spread over the genome of the 2 breeds (15 in Reggiana and 14 in Modenese) identified several signatures of selection. Some of these included genes affecting milk production traits, stature, body conformation traits (with a main ROH island in both breeds on BTA6 containing the ABCG2, NCAPG, and LCORL genes) and coat color (on BTA13 in Modenese containing the ASIP gene). In conclusion, this work provides an extensive comparative analysis of pedigree and genomic inbreeding parameters and relevant genomic information that will be useful in the conservation strategies of these 2 iconic local cattle breeds.
Collapse
Affiliation(s)
- Giuseppina Schiavo
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127 Bologna, Italy
| | - Samuele Bovo
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127 Bologna, Italy
| | - Anisa Ribani
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127 Bologna, Italy
| | - Giulia Moscatelli
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127 Bologna, Italy
| | - Massimo Bonacini
- Associazione Nazionale Allevatori Bovini di Razza Reggiana (ANABORARE), Via Masaccio 11, 42124 Reggio Emilia, Italy
| | - Marco Prandi
- Associazione Nazionale Allevatori Bovini di Razza Reggiana (ANABORARE), Via Masaccio 11, 42124 Reggio Emilia, Italy
| | - Enrico Mancin
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| | - Roberto Mantovani
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| | - Stefania Dall'Olio
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127 Bologna, Italy
| | - Luca Fontanesi
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127 Bologna, Italy.
| |
Collapse
|
23
|
Wolfe MD, Chan AW, Kulakow P, Rabbi I, Jannink JL. Genomic mating in outbred species: predicting cross usefulness with additive and total genetic covariance matrices. Genetics 2021; 219:iyab122. [PMID: 34740244 PMCID: PMC8570794 DOI: 10.1093/genetics/iyab122] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/13/2021] [Indexed: 11/14/2022] Open
Abstract
Diverse crops are both outbred and clonally propagated. Breeders typically use truncation selection of parents and invest significant time, land, and money evaluating the progeny of crosses to find exceptional genotypes. We developed and tested genomic mate selection criteria suitable for organisms of arbitrary homozygosity level where the full-sibling progeny are of direct interest as future parents and/or cultivars. We extended cross variance and covariance variance prediction to include dominance effects and predicted the multivariate selection index genetic variance of crosses based on haplotypes of proposed parents, marker effects, and recombination frequencies. We combined the predicted mean and variance into usefulness criteria for parent and variety development. We present an empirical study of cassava (Manihot esculenta), a staple tropical root crop. We assessed the potential to predict the multivariate genetic distribution (means, variances, and trait covariances) of 462 cassava families in terms of additive and total value using cross-validation. Most variance (89%) and covariance (70%) prediction accuracy estimates were greater than zero. The usefulness of crosses was accurately predicted with good correspondence between the predicted and the actual mean performance of family members breeders selected for advancement as new parents and candidate varieties. We also used a directional dominance model to quantify significant inbreeding depression for most traits. We predicted 47,083 possible crosses of 306 parents and contrasted them to those previously tested to show how mate selection can reveal the new potential within the germplasm. We enable breeders to consider the potential of crosses to produce future parents (progeny with top breeding values) and varieties (progeny with top own performance).
Collapse
Affiliation(s)
- Marnin D Wolfe
- Section on Plant Breeding and Genetics, School of Integrative Plant Sciences,
Cornell University, Ithaca, NY 14850, USA
| | - Ariel W Chan
- Section on Plant Breeding and Genetics, School of Integrative Plant Sciences,
Cornell University, Ithaca, NY 14850, USA
| | - Peter Kulakow
- International Institute of Tropical Agriculture (IITA), Ibadan,
Nigeria
| | - Ismail Rabbi
- International Institute of Tropical Agriculture (IITA), Ibadan,
Nigeria
| | - Jean-Luc Jannink
- Section on Plant Breeding and Genetics, School of Integrative Plant Sciences,
Cornell University, Ithaca, NY 14850, USA
- USDA-ARS, Ithaca, NY 14850, USA
| |
Collapse
|
24
|
Paul K, D'Ambrosio J, Phocas F. Temporal and region‐specific variations in genome‐wide inbreeding effects on female size and reproduction traits of rainbow trout. Evol Appl 2021; 15:645-662. [PMID: 35505890 PMCID: PMC9046919 DOI: 10.1111/eva.13308] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 07/11/2021] [Accepted: 09/14/2021] [Indexed: 02/01/2023] Open
Abstract
Recent studies have shown that current levels of inbreeding, estimated by runs of homozygosity (ROH), are moderate to high in farmed rainbow trout lines. Based on ROH metrics, the aims of our study were to (i) quantify inbreeding effects on female size (postspawning body weight, fork length) and reproduction traits (spawning date, coelomic fluid weight, spawn weight, egg number, average egg weight) in rainbow trout, and (ii) identify both the genomic regions and inbreeding events affecting performance. We analysed the performance of 1346 females under linear animal models including random additive and dominance genetics effects, with fixed covariates accounting for inbreeding effects at different temporal and genomic scales. A significant effect of genome‐wide inbreeding (F) was only observed for spawning date and egg weight, with performance variations of +12.3% and −3.8%, respectively, for 0.1 unit increase in F level. At different local genomic scales, we observed highly variable inbreeding effects on the seven traits under study, ranging from increasing to decreasing trait values. As widely reported in the literature, the main scenario observed during this study was a negative impact of recent inbreeding. However, other scenarios such as positive effects of recent inbreeding or negative impacts of old inbreeding were also observed. Although partial dominance appeared to be the main hypothesis explaining inbreeding depression for all the traits studied, the overdominance hypothesis might also play a significant role in inbreeding depression affecting fecundity (egg number and mass) traits in rainbow trout. These findings suggest that region‐specific inbreeding can strongly impact performance without necessarily observing genome‐wide inbreeding effects. They shed light on the genetic architecture of inbreeding depression and its evolution along the genome over time. The use of region‐specific metrics may enable breeders to more accurately manage the trade‐off between genetic merit and the undesirable side effects associated with inbreeding.
Collapse
Affiliation(s)
- Katy Paul
- Université Paris‐Saclay INRAE AgroParisTech GABIJouy‐en‐Josas France
| | - Jonathan D'Ambrosio
- Université Paris‐Saclay INRAE AgroParisTech GABIJouy‐en‐Josas France
- SYSAAFStation INRAE‐LPGPCampus de Beaulieu Rennes France
| | - Florence Phocas
- Université Paris‐Saclay INRAE AgroParisTech GABIJouy‐en‐Josas France
| |
Collapse
|
25
|
Martinez-Castillero M, Varona L, Pegolo S, Rossoni A, Cecchinato A. Bayesian inference of the inbreeding load variance for fertility traits in Brown Swiss cattle. J Dairy Sci 2021; 104:10040-10048. [PMID: 34147228 DOI: 10.3168/jds.2020-20087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 05/04/2021] [Indexed: 11/19/2022]
Abstract
Our study investigated the inbreeding load for fertility traits in the Italian Brown Swiss dairy cattle breed. Fertility traits included continuous traits (i.e., interval from calving to first service, days open, and calving interval) and categorical traits (i.e., calving rate at first insemination and nonreturn date at d 56). We included only records of the first 3 parities of cows that calved between 2010 and 2018. We traced up the pedigree of the cows with records as far as possible, ending up with a total of 73,246 animals. The final data set consisted of 59,864 records from 34,921 cows. We analyzed all models using a Bayesian approach that included a covariate with total inbreeding in addition to systematic, permanent environment, additive genetic, and inbreeding load effects. We then evaluated the trends in heritabilities and ratios of the inbreeding load using a continuum of partial inbreeding coefficients from 0.001 to 0.100 as reference. Posterior estimates of heritabilities tended to decrease across the continuum, whereas ratios of the inbreeding load tended to increase, more noticeably in categorical traits (calving rate at first insemination and nonreturn date at d 56). From the results obtained, we confirmed the presence of heterogeneity in inbreeding depression. We then predicted the inbreeding load effects, which had a low reliability of prediction, explained by having only 513 ancestors generating inbreeding. However, reliability of prediction was high enough for some of the individuals, obtaining a favorable prediction of inbreeding load for a relevant percentage, which improved the phenotypic performance of their inbred descendants. These results make it feasible to implement breeding and management strategies that select ancestors with a favorable inbreeding load prediction. In addition, it opens the possibility to define a global index for the expected consequences of the inbreeding generated by each individual.
Collapse
Affiliation(s)
- Maria Martinez-Castillero
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell' Università 16, 35020, Legnaro PD, Italy
| | - Luis Varona
- Unidad de Genética Cuantitativa y Mejora Animal, Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza, Calle de Miguel Servet, 177, 50013, Zaragoza, Zaragoza, Spain
| | - Sara Pegolo
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell' Università 16, 35020, Legnaro PD, Italy.
| | - Attilio Rossoni
- Associazione Nazionale Allevatori di Razza Bruna, Loc. Ferlina, 204, 37012, Bussolengo VR, Italy
| | - Alessio Cecchinato
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell' Università 16, 35020, Legnaro PD, Italy
| |
Collapse
|
26
|
Kumar A, Gupta ID, Mohan G, M R V, D RK, S J, Kataria RS, Niranjan SK. Alternate PCR assays for screening of JH1 mutation associated with embryonic death in Jersey cattle. Mol Cell Probes 2020; 55:101688. [PMID: 33279530 DOI: 10.1016/j.mcp.2020.101688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/01/2020] [Accepted: 12/01/2020] [Indexed: 10/22/2022]
Abstract
Jersey haplotype (JH) 1, a stop-gain lethal mutation in the CWC15 gene, causes embryonic losses in Jersey cattle. Two PCR based assays using Amplification Refractory Mutation System (T-ARMS-PCR) and restriction fragment length polymorphism (PCR-RFLP) were developed for screening of the JH1 in cattle. During the screening, seven among 30 Indian Jersey bulls were identified as carriers of the mutant JH1 allele, the first time in the country. These PCR assays are economical, rapid and accurate; and can be used separately or in combination for screening and cross-validation of the JH1 carriers in Jersey cattle.
Collapse
Affiliation(s)
- Anshuman Kumar
- ICAR-National Bureau of Animal Genetic Resources, Karnal, 132001, Haryana, India; ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India
| | | | - Govind Mohan
- ICAR-National Bureau of Animal Genetic Resources, Karnal, 132001, Haryana, India; ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Vineeth M R
- ICAR-National Bureau of Animal Genetic Resources, Karnal, 132001, Haryana, India; ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Ravi Kumar D
- ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Jayakumar S
- ICAR-National Bureau of Animal Genetic Resources, Karnal, 132001, Haryana, India
| | - Ranjit Singh Kataria
- ICAR-National Bureau of Animal Genetic Resources, Karnal, 132001, Haryana, India
| | - Saket Kumar Niranjan
- ICAR-National Bureau of Animal Genetic Resources, Karnal, 132001, Haryana, India.
| |
Collapse
|
27
|
Effects of Long-Term Selection in the Border Collie Dog Breed: Inbreeding Purge of Canine Hip and Elbow Dysplasia. Animals (Basel) 2020; 10:ani10101743. [PMID: 32992858 PMCID: PMC7601391 DOI: 10.3390/ani10101743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 11/23/2022] Open
Abstract
Simple Summary For dog breeders, health is one of the main criteria when choosing a breeding animal; thus, selection for good anatomy is the key to reduce orthopedic disorders. In many dog breeds, radiographic screening for canine hip and elbow dysplasia is a compulsory test for breeding; however, these multifactorial traits are determined by genetic and environmental factors. Therefore, it is extremely difficult to eliminate these disorders from the population. In natural selection, such traits can be “purged” out of the population with inbreeding. The study aimed to examine the inbreeding-purge of canine hip and elbow dysplasia in the border collie breed. The main conclusion was that over-representation of homozygous individuals may have a positive effect on hip and elbow conformation. Abstract Pedigree data of 13,339 border collie dog was collected along with canine hip dysplasia (CHD) and canine elbow dysplasia (CED) records (1352 CHD and 524 CED), and an inbreeding–purging (IP) model was created. Ancestral inbreeding coefficients were calculated by using a gene dropping simulation method with GRain 2.2 software. Cumulative logit models (CLM) for CHD and CED were fitted using a logit-link Poisson distribution and the classical (F_W), and ancestral inbreeding (F_BAL, F_KAL, and F_KAL_NEW) coefficients as linear regression coefficients. The effective population size was calculated from F_W and decreased in the examined period along with an increase of F_W; however, slight differences were found as a consequence of breeding dog imports. CHD values were lowered by the expansion of F_BAL, as the alleles had been inbred in the past. For CHD, signs of purging were obtained. There was a positive trend regarding the breeding activity (both sire and dam of the future litters should be screened and certified free from CHD and CED), as years of selection increased the frequency of alleles with favorable hip and elbow conformation. Division of the ancestral inbreeding coefficient showed that alleles that had been identical by descent (IBD) for the first time (F_KAL_NEW) had a negative effect on both traits, while F_KAL has shown favorable results for alleles IBD in past generations. Some authors had proven this phenomenon in captive populations or experimental conditions; however, no evidence of inbreeding purge has ever been described in dog populations. Despite the various breeding practices, it seems that alleles of these polygenic disorders could be successfully purged out of the population with long-term selection.
Collapse
|
28
|
Maternal Transmission Ratio Distortion in Two Iberian Pig Varieties. Genes (Basel) 2020; 11:genes11091050. [PMID: 32899475 PMCID: PMC7563664 DOI: 10.3390/genes11091050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 12/30/2022] Open
Abstract
Transmission ratio distortion (TRD) is defined as the allele transmission deviation from the heterozygous parent to the offspring from the expected Mendelian genotypic frequencies. Although TRD can be a confounding factor in genetic mapping studies, this phenomenon remains mostly unknown in pigs, particularly in traditional breeds (i.e., the Iberian pig). We aimed to describe the maternal TRD prevalence and its genomic distribution in two Iberian varieties. Genotypes from a total of 247 families (dam and offspring) of Entrepelado (n = 129) and Retinto (n = 118) Iberian varieties were analyzed. The offspring were sired by both ungenotyped purebred Retinto and Entrepelado Iberian boars, regardless of the dam variety used. After quality control, 16,246 single-nucleotide polymorphisms (SNPs) in the Entrepelado variety and 9744 SNPs in the Retinto variety were analyzed. Maternal TRD was evaluated by a likelihood ratio test under SNP-by-SNP, adapting a previous model solved by Bayesian inference. Results provided 68 maternal TRD loci (TRDLs) in the Entrepelado variety and 24 in the Retinto variety (q < 0.05), with mostly negative TRD values, increasing the transmission of the minor allele. In addition, both varieties shared ten common TRDLs. No strong evidence of biological effects was found in genes with TRDLs. However, some biological processes could be affected by TRDLs, such as embryogenesis at different levels and lipid metabolism. These findings could provide useful insight into the genetic mechanisms to improve the swine industry, particularly in traditional breeds.
Collapse
|
29
|
Mancin E, Ablondi M, Mantovani R, Pigozzi G, Sabbioni A, Sartori C. Genetic Variability in the Italian Heavy Draught Horse from Pedigree Data and Genomic Information. Animals (Basel) 2020; 10:E1310. [PMID: 32751586 PMCID: PMC7460293 DOI: 10.3390/ani10081310] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/17/2020] [Accepted: 07/28/2020] [Indexed: 12/26/2022] Open
Abstract
This study aimed to investigate the genetic diversity in the Italian Heavy Horse Breed from pedigree and genomic data. Pedigree information for 64,917 individuals were used to assess inbreeding level, effective population size (Ne), and effective numbers of founders and ancestors (fa/fe). Genotypic information from SNP markers were available for 267 individuals of both sexes, and it allowed estimating genomic inbreeding in two methods (observed versus expected homozygosity and from ROH) to study the breed genomic structure and possible selection signatures. Pedigree and genomic inbreeding were greatly correlated (0.65 on average). The inbreeding trend increased over time, apart from periods in which the base population enlarged, when Ne increased also. Recent bottlenecks did not occur in the genome, as fa/fe have shown. The observed homozygosity results were on average lower than expected, which was probably due to the use of French Breton stallions to support the breed genetic variability. High homozygous regions suggested that inbreeding increased in different periods. Two subpopulations were distinguished, which was probably due to the different inclusion of French animals by breeders. Few selection signatures were found at the population level, with possible associations to disease resistance. The almost low inbreeding rate suggested that despite the small breed size, conservation actions are not yet required.
Collapse
Affiliation(s)
- Enrico Mancin
- Department of Agronomy, Food, Natural resources, Animals and Environment—DAFNAE, University of Padova, Viale dell’Università 16, 35020 Legnaro (PD), Italy; (E.M.); (C.S.)
| | - Michela Ablondi
- Dipartimento di Scienze Medico-Veterinarie, University of Parma Via del Taglio 10, 43126 Parma, Italy; (M.A.); (A.S.)
| | - Roberto Mantovani
- Department of Agronomy, Food, Natural resources, Animals and Environment—DAFNAE, University of Padova, Viale dell’Università 16, 35020 Legnaro (PD), Italy; (E.M.); (C.S.)
| | - Giuseppe Pigozzi
- Italian Heavy Draught Horse Breeders Association (ANACAITPR), 37068 Vigasio (VR), Italy;
| | - Alberto Sabbioni
- Dipartimento di Scienze Medico-Veterinarie, University of Parma Via del Taglio 10, 43126 Parma, Italy; (M.A.); (A.S.)
| | - Cristina Sartori
- Department of Agronomy, Food, Natural resources, Animals and Environment—DAFNAE, University of Padova, Viale dell’Università 16, 35020 Legnaro (PD), Italy; (E.M.); (C.S.)
| |
Collapse
|
30
|
Curik I, Kövér G, Farkas J, Szendrő Z, Romvári R, Sölkner J, Nagy I. Inbreeding depression for kit survival at birth in a rabbit population under long-term selection. Genet Sel Evol 2020; 52:39. [PMID: 32640975 PMCID: PMC7346452 DOI: 10.1186/s12711-020-00557-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 06/26/2020] [Indexed: 01/01/2023] Open
Abstract
Background Accumulation of detrimental mutations in small populations leads to inbreeding depression of fitness traits and a higher frequency of genetic defects, thus increasing risk of extinction. Our objective was to quantify the magnitude of inbreeding depression for survival at birth, in a closed rabbit population under long-term selection. Methods We used an information theory-based approach and multi-model inference to estimate inbreeding depression and its purging with respect to the trait ‘kit survival at birth’ over a 25-year period in a closed population of Pannon White rabbits, by analysing 22,718 kindling records. Generalised linear mixed models based on the logit link function were applied, which take polygenic random effects into account. Results Our results indicated that inbreeding depression occurred during the period 1992–1997, based on significant estimates of the z-standardised classical inbreeding coefficient z.FL (CI95% − 0.12 to − 0.03) and of the new inbreeding coefficient of the litter z.FNEWL (CI95% − 0.13 to − 0.04) as well as a 59.2% reduction in contributing founders. Inbreeding depression disappeared during the periods 1997–2007 and 2007–2017. For the period 1992–1997, the best model resulted in a significantly negative standardised estimate of the new inbreeding coefficient of the litter and a significantly positive standardised estimate of Kalinowski’s ancestral inbreeding coefficient of the litter (CI95% 0.01 to 0.17), which indicated purging of detrimental load. Kindling season and parity had effects on survival at birth that differed across the three periods of 1992–1997, 1997–2007 and 2007–2017. Conclusions Our results support the existence of inbreeding depression and its purging with respect to kit survival at birth in this Pannon White rabbit population. However, we were unable to exclude possible confounding from the effects of parity and potentially other environmental factors during the study period, thus our results need to be extended and confirmed in other populations.
Collapse
Affiliation(s)
- Ino Curik
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia.
| | - György Kövér
- Institute of Methodology, Faculty of Economic Science, Kaposvár University, Kaposvár, Hungary
| | - János Farkas
- Institute of Methodology, Faculty of Economic Science, Kaposvár University, Kaposvár, Hungary
| | - Zsolt Szendrő
- Institute of Animal Science, Faculty of Agricultural and Environmental Sciences, Kaposvár University, Kaposvár, Hungary
| | - Róbert Romvári
- Institute of Animal Science, Faculty of Agricultural and Environmental Sciences, Kaposvár University, Kaposvár, Hungary
| | - Johann Sölkner
- Division of Livestock Sciences, University of Natural Resources and Applied Life Sciences, Vienna, Austria
| | - Istvan Nagy
- Institute of Animal Science, Faculty of Agricultural and Environmental Sciences, Kaposvár University, Kaposvár, Hungary.
| |
Collapse
|
31
|
Plate M, Bernstein R, Hoppe A, Bienefeld K. Long-Term Evaluation of Breeding Scheme Alternatives for Endangered Honeybee Subspecies. INSECTS 2020; 11:insects11070404. [PMID: 32629773 PMCID: PMC7412524 DOI: 10.3390/insects11070404] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/12/2020] [Accepted: 06/25/2020] [Indexed: 11/16/2022]
Abstract
Modern breeding structures are emerging for European honeybee populations. However, while genetic evaluations of honeybees are becoming increasingly well understood, little is known about how selection decisions shape the populations' genetic structures. We performed simulations evaluating 100 different selection schemes, defined by selection rates for dams and sires, in populations of 200, 500, or 1000 colonies per year and considering four different quantitative traits, reflecting different genetic parameters and numbers of influential loci. Focusing on sustainability, we evaluated genetic progress over 100 years and related it to inbreeding developments. While all populations allowed for sustainable breeding with generational inbreeding rates below 1% per generation, optimal selection rates differed and sustainable selection was harder to achieve in smaller populations and for stronger negative correlations of maternal and direct effects in the selection trait. In small populations, a third or a fourth of all candidate queens should be selected as dams, whereas this number declined to a sixth for larger population sizes. Furthermore, our simulations indicated that, particularly in small populations, as many sires as possible should be provided. We conclude that carefully applied breeding provides good prospects for currently endangered honeybee subspecies, since sustainable genetic progress improves their attractiveness to beekeepers.
Collapse
Affiliation(s)
- Manuel Plate
- Institute for Bee Research, Friedrich-Engels Str. 32, 16540 Hohen Neuendorf, Germany; (R.B.); (A.H.); (K.B.)
- Albrecht Daniel Thaer-Institute for Agricultural and Horticultural Sciences, Humboldt University of Berlin, 10099 Berlin, Germany
- Correspondence:
| | - Richard Bernstein
- Institute for Bee Research, Friedrich-Engels Str. 32, 16540 Hohen Neuendorf, Germany; (R.B.); (A.H.); (K.B.)
- Albrecht Daniel Thaer-Institute for Agricultural and Horticultural Sciences, Humboldt University of Berlin, 10099 Berlin, Germany
| | - Andreas Hoppe
- Institute for Bee Research, Friedrich-Engels Str. 32, 16540 Hohen Neuendorf, Germany; (R.B.); (A.H.); (K.B.)
| | - Kaspar Bienefeld
- Institute for Bee Research, Friedrich-Engels Str. 32, 16540 Hohen Neuendorf, Germany; (R.B.); (A.H.); (K.B.)
- Albrecht Daniel Thaer-Institute for Agricultural and Horticultural Sciences, Humboldt University of Berlin, 10099 Berlin, Germany
| |
Collapse
|
32
|
Genetic diversity evolution of a sheep breed reintroduced after extinction: Tracing back Christopher Columbus' first imported sheep. Res Vet Sci 2020; 132:207-216. [PMID: 32604044 DOI: 10.1016/j.rvsc.2020.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 11/22/2022]
Abstract
New World's hair sheep breeds may genetically stem from West African introgression into established ecotypes of Spanish descent presumably extinct in the XIX Century. However, present Canary non-wooled breeds have presumably regressively resulted from the absorption of primitive individuals through Venezuelan descendants. We studied genetic diversity, structure, and evolution of the Canary hair sheep since its reintroduction in the 1950s. Demographic and genetic variability were evaluated using ENDOG (v4.8). Effective population size based on individual inbreeding rate was around one third higher than when based on individual coancestry rate. Nei's distances and equivalent subpopulations number indicated a highly-structured population. Although genetic diversity loss since the founder generations could be considered small, narrower pedigree bottlenecks could result from intraflock breeding policies and excessive contribution of few ancestors. Long generation intervals could be considered when reducing inbreeding. Wright's fixation statistics indicated slight interflock inbreeding. Pedigree completeness suggested genetic parameters were reliable, hence controlling inbreeding negative effects, could indeed, be crucial preserving these animal resources, consolidating the population in the archipelago after reintroduction.
Collapse
|
33
|
Dos Santos CR, de Melo Rodovalho C, Jablonka W, Martins AJ, Lima JBP, Dos Santos Dias L, da Silva Neto MAC, Atella GC. Insecticide resistance, fitness and susceptibility to Zika infection of an interbred Aedes aegypti population from Rio de Janeiro, Brazil. Parasit Vectors 2020; 13:293. [PMID: 32513248 PMCID: PMC7281914 DOI: 10.1186/s13071-020-04166-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 06/02/2020] [Indexed: 02/06/2023] Open
Abstract
Background Aedes aegypti is a vector of high relevance, since it transmits several arboviruses, including dengue, chikungunya and Zika. Studies on vector biology are usually conducted with laboratory strains presenting a divergent genetic composition from field populations. This may impair vector control policies that were based on laboratory observations employing only long maintained laboratory strains. In the present study we characterized a laboratory strain interbreed with Ae. aegypti collected from five different localities in Rio de Janeiro (Aedes Rio), for insecticide resistance (IR), IR mechanisms, fitness and Zika virus infection. Methods We compared the recently established Aedes Rio with the laboratory reference strain Rockefeller. Insecticide resistance (deltamethrin, malathion and temephos), activity of metabolic resistance enzymes and kdr mutation frequency were determined. Some life table parameters (longevity, blood-feeding, number and egg viability) and Zika virus susceptibility was also determined. Results Aedes Rio showed resistance to deltamethrin (resistance ratio, RR50 = 32.6) and temephos (RR50 = 7.0) and elevated activity of glutathione S-transferase (GST) and esterases (α-EST and pNPA-EST), but not acetylcholinesterase (AChE). In total, 92.1% of males genotyped for kdr presented a “resistant” genotype. Weekly blood-fed females from both strains, presented reduced mortality compared to sucrose-fed mosquitoes; however, Aedes Rio blood-fed females did not live as long (mean lifespan: Rockefeller = 70 ± 3.07; Aedes Rio = 53.5 ± 2.16 days). There were no differences between strains in relation to blood-feeding and number of eggs, but Aedes Rio eggs presented reduced viability (mean hatch: Rockefeller = 77.79 ± 1.4%; Aedes Rio = 58.57 ± 1.77%). Zika virus infection (plaque-forming unit, PFU) was similar in both strains (mean PFU ± SE: Aedes Rio: 4.53 × 104 ± 1.14 × 104 PFU; Rockefeller: 2.02 × 104 ± 0.71 × 104 PFU). Conclusion Selected conditions in the field, such as IR mechanisms, may result in pleiotropic effects that interfere in general physiology of the insect. Therefore, it is important to well characterize field populations to be tested in parallel with laboratory reference strains. This practice would improve the significance of laboratory tests for vector control methods.![]()
Collapse
Affiliation(s)
- Carlucio Rocha Dos Santos
- Laboratório de Sinalização Celular Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil. .,Laboratório de Fisiologia e Controle de Artrópodes Vetores, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil. .,Laboratório de Entomologia, Instituto de Biologia do Exército, Rio de Janeiro, RJ, Brazil.
| | - Cynara de Melo Rodovalho
- Laboratório de Fisiologia e Controle de Artrópodes Vetores, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil.,Laboratório de Entomologia, Instituto de Biologia do Exército, Rio de Janeiro, RJ, Brazil
| | - Willy Jablonka
- Laboratório de Sinalização Celular Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Ademir Jesus Martins
- Laboratório de Fisiologia e Controle de Artrópodes Vetores, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil.,Laboratório de Entomologia, Instituto de Biologia do Exército, Rio de Janeiro, RJ, Brazil
| | - José Bento Pereira Lima
- Laboratório de Fisiologia e Controle de Artrópodes Vetores, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil.,Laboratório de Entomologia, Instituto de Biologia do Exército, Rio de Janeiro, RJ, Brazil
| | - Luciana Dos Santos Dias
- Laboratório de Fisiologia e Controle de Artrópodes Vetores, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil.,Laboratório de Entomologia, Instituto de Biologia do Exército, Rio de Janeiro, RJ, Brazil
| | - Mário Alberto Cardoso da Silva Neto
- Laboratório de Sinalização Celular Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Georgia Correa Atella
- Laboratório de Bioquímica de Lipídios e Lipoproteínas, Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
34
|
Hattori RS, Yoshinaga TT, Butzge AJ, Hattori-Ihara S, Tsukamoto RY, Takahashi NS, Tabata YA. Generation of a white-albino phenotype from cobalt blue and yellow-albino rainbow trout (Oncorhynchus mykiss): Inheritance pattern and chromatophores analysis. PLoS One 2020; 15:e0214034. [PMID: 31986190 PMCID: PMC6984684 DOI: 10.1371/journal.pone.0214034] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 12/07/2019] [Indexed: 02/07/2023] Open
Abstract
Albinism is the most common color variation described in fish and is characterized by a white or yellow phenotype according to the species. In rainbow trout Oncorhynchus mykiss, aside from yellow-albino phenotypes, cobalt blue variants with autosomal, recessive inheritance have also been reported. In this study, we investigated the inheritance pattern and chromatophores distribution/abundance of cobalt blue trouts obtained from a local fish farm. Based on crosses with wild-type and dominant yellow-albino lines, we could infer that cobalt blue are dominant over wild-type and co-dominant in relation to yellow-albino phenotype, resulting in a fourth phenotype: the white-albino. Analysis of chromatophores revealed that cobalt blue trouts present melanophores, as the wild-type, and a reduced number of xanthophores. As regards to the white-albino phenotype, they were not only devoid of melanophores but also presented a reduced number of xanthophores. Cobalt blue and white-albino trouts also presented reduced body weight and a smaller pituitary gland compared to wild-type and yellow-albino phenotypes. The transcription levels of tshb and trh were up regulated in cobalt blue compared to wild type, suggesting the involvement of thyroid hormone in the expression of blue color. These phenotypes represent useful models for research on body pigmentation in salmonids and on the mechanisms behind endocrine control of color patterning.
Collapse
Affiliation(s)
- Ricardo Shohei Hattori
- Salmonid Experimental Station at Campos do Jordão, Unidade de Pesquisa e Desenvolvimento-Campos do Jordão, Agência Paulista de Tecnologia dos Agronegócios, Secretaria de Agricultura, São Paulo, Brazil
- * E-mail:
| | - Tulio Teruo Yoshinaga
- Department of Surgery, School of Veterinary Medicine and Animal Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Arno Juliano Butzge
- Graduate Program in Biological Sciences (Genetics), Institute of Biosciences of Botucatu - São Paulo State University, Botucatu, São Paulo, Brazil
| | - Shoko Hattori-Ihara
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | | | - Neuza Sumico Takahashi
- Sao Paulo Fisheries Institute, Agência Paulista de Tecnologia dos Agronegócios, Secretaria de Agricultura, Sao Paulo, Brazil
| | - Yara Aiko Tabata
- Salmonid Experimental Station at Campos do Jordão, Unidade de Pesquisa e Desenvolvimento-Campos do Jordão, Agência Paulista de Tecnologia dos Agronegócios, Secretaria de Agricultura, São Paulo, Brazil
| |
Collapse
|
35
|
Joshi R, Meuwissen THE, Woolliams JA, Gjøen HM. Genomic dissection of maternal, additive and non-additive genetic effects for growth and carcass traits in Nile tilapia. Genet Sel Evol 2020; 52:1. [PMID: 31941436 PMCID: PMC6964056 DOI: 10.1186/s12711-019-0522-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 12/20/2019] [Indexed: 11/16/2022] Open
Abstract
Background The availability of both pedigree and genomic sources of information for animal breeding and genetics has created new challenges in understanding how they can be best used and interpreted. This study estimated genetic variance components based on genomic information and compared these to the variance components estimated from pedigree alone in a population generated to estimate non-additive genetic variance. Furthermore, the study examined the impact of the assumptions of Hardy–Weinberg equilibrium (HWE) on estimates of genetic variance components. For the first time, the magnitude of inbreeding depression for important commercial traits in Nile tilapia was estimated by using genomic data. Results The study estimated the non-additive genetic variance in a Nile tilapia population of full-sib families and, when present, it was almost entirely represented by additive-by-additive epistatic variance, although in pedigree studies this non-additive variance is commonly assumed to arise from dominance. For body depth (BD) and body weight at harvest (BWH), the proportion of additive-by-additive epistatic to phenotypic variance was estimated to be 0.15 and 0.17 using genomic data (P < 0.05). In addition, with genomic data, the maternal variance (P < 0.05) for BD, BWH, body length (BL) and fillet weight (FW) explained approximately 10% of the phenotypic variances, which was comparable to pedigree-based estimates. The study also showed the detrimental effects of inbreeding on commercial traits of tilapia, which was estimated to reduce trait values by 1.1, 0.9, 0.4 and 0.3% per 1% increase in the individual homozygosity for FW, BWH, BD and BL, respectively. The presence of inbreeding depression but lack of dominance variance was consistent with an infinitesimal dominance model for the traits. Conclusions The benefit of including non-additive genetic effects for genetic evaluations in tilapia breeding schemes is not evident from these findings, but the observed inbreeding depression points to a role for reciprocal recurrent selection. Commercially, this conclusion will depend on the scheme’s operational costs and resources. The creation of maternal lines in Tilapia breeding schemes may be a possibility if the variation associated with maternal effects is heritable.
Collapse
Affiliation(s)
- Rajesh Joshi
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, P.O. Box 5003, 1432, Ås, Norway.
| | - Theo H E Meuwissen
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, P.O. Box 5003, 1432, Ås, Norway
| | - John A Woolliams
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, P.O. Box 5003, 1432, Ås, Norway.,The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Hans M Gjøen
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, P.O. Box 5003, 1432, Ås, Norway
| |
Collapse
|
36
|
Doekes HP, Veerkamp RF, Bijma P, de Jong G, Hiemstra SJ, Windig JJ. Inbreeding depression due to recent and ancient inbreeding in Dutch Holstein-Friesian dairy cattle. Genet Sel Evol 2019; 51:54. [PMID: 31558150 PMCID: PMC6764141 DOI: 10.1186/s12711-019-0497-z] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 09/19/2019] [Indexed: 02/01/2023] Open
Abstract
Background Inbreeding decreases animal performance (inbreeding depression), but not all inbreeding is expected to be equally harmful. Recent inbreeding is expected to be more harmful than ancient inbreeding, because selection decreases the frequency of deleterious alleles over time. Selection efficiency is increased by inbreeding, a process called purging. Our objective was to investigate effects of recent and ancient inbreeding on yield, fertility and udder health traits in Dutch Holstein–Friesian cows. Methods In total, 38,792 first-parity cows were included. Pedigree inbreeding (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$F_{PED}$$\end{document}FPED) was computed and 75 k genotype data were used to compute genomic inbreeding, among others based on regions of homozygosity (ROH) in the genome (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$F_{ROH}$$\end{document}FROH). Results Inbreeding depression was observed, e.g. a 1% increase in \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$F_{ROH}$$\end{document}FROH was associated with a 36.3 kg (SE = 2.4) decrease in 305-day milk yield, a 0.48 day (SE = 0.15) increase in calving interval and a 0.86 unit (SE = 0.28) increase in somatic cell score for day 150 through to 400. These effects equalled − 0.45, 0.12 and 0.05% of the trait means, respectively. When \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$F_{PED}$$\end{document}FPED was split into generation-based components, inbreeding on recent generations was more harmful than inbreeding on more distant generations for yield traits. When \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$F_{PED}$$\end{document}FPED was split into new and ancestral components, based on whether alleles were identical-by-descent for the first time or not, new inbreeding was more harmful than ancestral inbreeding, especially for yield traits. For example, a 1% increase in new inbreeding was associated with a 2.42 kg (SE = 0.41) decrease in 305-day fat yield, compared to a 0.03 kg (SE = 0.71) increase for ancestral inbreeding. There were no clear differences between effects of long ROH (recent inbreeding) and short ROH (ancient inbreeding). Conclusions Inbreeding depression was observed for yield, fertility and udder health traits. For yield traits and based on pedigree, inbreeding on recent generations was more harmful than inbreeding on distant generations and there was evidence of purging. Across all traits, long and short ROH contributed to inbreeding depression. In future work, inbreeding depression and purging should be assessed in more detail at the genomic level, using higher density information and genomic time series.
Collapse
Affiliation(s)
- Harmen P Doekes
- Wageningen University & Research, Animal Breeding and Genomics, P.O. Box 338, 6700 AH, Wageningen, The Netherlands. .,Wageningen University & Research, Centre for Genetic Resources the Netherlands, P.O. Box 16, 6700 AA, Wageningen, The Netherlands.
| | - Roel F Veerkamp
- Wageningen University & Research, Animal Breeding and Genomics, P.O. Box 338, 6700 AH, Wageningen, The Netherlands
| | - Piter Bijma
- Wageningen University & Research, Animal Breeding and Genomics, P.O. Box 338, 6700 AH, Wageningen, The Netherlands
| | - Gerben de Jong
- Cooperation CRV, Wassenaarweg 20, 6843 NW, Arnhem, The Netherlands
| | - Sipke J Hiemstra
- Wageningen University & Research, Centre for Genetic Resources the Netherlands, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
| | - Jack J Windig
- Wageningen University & Research, Animal Breeding and Genomics, P.O. Box 338, 6700 AH, Wageningen, The Netherlands.,Wageningen University & Research, Centre for Genetic Resources the Netherlands, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
| |
Collapse
|
37
|
Baes CF, Makanjuola BO, Miglior F, Marras G, Howard JT, Fleming A, Maltecca C. Symposium review: The genomic architecture of inbreeding: How homozygosity affects health and performance. J Dairy Sci 2019; 102:2807-2817. [DOI: 10.3168/jds.2018-15520] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/21/2018] [Indexed: 11/19/2022]
|
38
|
Rodríguez-Ramilo ST, Elsen JM, Legarra A. Inbreeding and effective population size in French dairy sheep: Comparison between genomic and pedigree estimates. J Dairy Sci 2019; 102:4227-4237. [PMID: 30827541 DOI: 10.3168/jds.2018-15405] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 12/23/2018] [Indexed: 01/11/2023]
Abstract
Before availability of dense SNP data, genetic diversity was characterized and managed with pedigree-based information. Besides this classical approach, 2 methodologies have been proposed in recent years to characterize and manage diversity from dense SNP data: the SNP-by-SNP approach and the alternative based on runs of homozygosity (ROH). The establishment of criteria to identify ROH is a current constraint in the literature dealing with ROH. The objective of this study was, using a medium-density SNP chip, to quantify by 3 methods (pedigree, SNP-by-SNP, and ROH) the genetic diversity on 5 selected French dairy sheep subpopulations and breeds and to assess the effect of the definition of ROH on these estimates. The data set available included individuals from the breeds Basco-Béarnaise, Manech Tête Noire, Manech Tête Rousse, and 2 subpopulations of Lacaune: Lacaune Confederation and Lacaune Ovitest. Animals were genotyped with the Illumina OvineSNP50 BeadChip (Illumina Inc., San Diego, CA). After filtering, the genomic data included 38,287 autosomal SNP and 8,700 individuals, which comprised 72,803 animals in the pedigree. The results indicated that no significant differences were observed in effective population size estimates obtained from pedigree or genomic (SNP-by-SNP or ROH) information. In general, estimates of effective population size were above 200 in Lacaune Confederation and Lacaune Ovitest subpopulations and below 200 in Basco-Béarnaise, Manech Tête Noire, and Manech Tête Rousse breeds. The minimum length that constituted a ROH, the minimum number of SNP that constituted a ROH, as well as the minimum density and the maximum distance allowed between 2 homozygous SNP are ROH-defining factors with important implications in the estimation of the rate of inbreeding. The ROH-based rates of inbreeding in concordance with those obtained from pedigree information require a specific set of values. This particular set of values is different from that identified to obtain ROH-based rates of inbreeding similar to those obtained on a SNP-by-SNP basis. Factors to define ROH do not change the results much unless extreme values are considered, although further research on ROH-based inbreeding is still required.
Collapse
Affiliation(s)
| | - J M Elsen
- INRA, UMR 1388 GenPhySE, 31326 Castanet Tolosan, France
| | - A Legarra
- INRA, UMR 1388 GenPhySE, 31326 Castanet Tolosan, France
| |
Collapse
|
39
|
Nietlisbach P, Muff S, Reid JM, Whitlock MC, Keller LF. Nonequivalent lethal equivalents: Models and inbreeding metrics for unbiased estimation of inbreeding load. Evol Appl 2019; 12:266-279. [PMID: 30697338 PMCID: PMC6346663 DOI: 10.1111/eva.12713] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 09/06/2018] [Accepted: 09/09/2018] [Indexed: 02/06/2023] Open
Abstract
Inbreeding depression, the deterioration in mean trait value in progeny of related parents, is a fundamental quantity in genetics, evolutionary biology, animal and plant breeding, and conservation biology. The magnitude of inbreeding depression can be quantified by the inbreeding load, typically measured in numbers of lethal equivalents, a population genetic quantity that allows for comparisons between environments, populations or species. However, there is as yet no quantitative assessment of which combinations of statistical models and metrics of inbreeding can yield such estimates. Here, we review statistical models that have been used to estimate inbreeding load and use population genetic simulations to investigate how unbiased estimates can be obtained using genomic and pedigree-based metrics of inbreeding. We use simulated binary viability data (i.e., dead versus alive) as our example, but the concepts apply to any trait that exhibits inbreeding depression. We show that the increasingly popular generalized linear models with logit link do not provide comparable and unbiased population genetic measures of inbreeding load, independent of the metric of inbreeding used. Runs of homozygosity result in unbiased estimates of inbreeding load, whereas inbreeding measured from pedigrees results in slight overestimates. Due to widespread use of models that do not yield unbiased measures of the inbreeding load, some estimates in the literature cannot be compared meaningfully. We surveyed the literature for reliable estimates of the mean inbreeding load from wild vertebrate populations and found an average of 3.5 haploid lethal equivalents for survival to sexual maturity. To obtain comparable estimates, we encourage researchers to use generalized linear models with logarithmic links or maximum-likelihood estimation of the exponential equation, and inbreeding coefficients calculated from runs of homozygosity, provided an assembled reference genome of sufficient quality and enough genetic marker data are available.
Collapse
Affiliation(s)
- Pirmin Nietlisbach
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
- Department of ZoologyUniversity of British ColumbiaVancouverBCCanada
| | - Stefanie Muff
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
| | - Jane M. Reid
- School of Biological SciencesUniversity of AberdeenAberdeenUK
| | | | - Lukas F. Keller
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
- Zoological MuseumUniversity of ZurichZurichSwitzerland
| |
Collapse
|
40
|
Schou MF, Bechsgaard J, Muñoz J, Kristensen TN. Genome-wide regulatory deterioration impedes adaptive responses to stress in inbred populations of Drosophila melanogaster. Evolution 2018; 72:1614-1628. [PMID: 29738620 DOI: 10.1111/evo.13497] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 04/21/2018] [Accepted: 05/01/2018] [Indexed: 02/28/2024]
Abstract
Inbreeding depression is often intensified under environmental stress (i.e., inbreeding-stress interaction). Although the fitness consequences of this phenomenon are well-described, underlying mechanisms such as an increased expression of deleterious alleles under stress, or a lower capacity for adaptive responses to stress with inbreeding, have rarely been investigated. We investigated a fitness component (egg-to-adult viability) and gene-expression patterns using RNA-seq analyses in noninbred control lines and in inbred lines of Drosophila melanogaster exposed to benign temperature or heat stress. We find little support for an increase in the cumulative expression of deleterious alleles under stress. Instead, inbred individuals had a reduced ability to induce an adaptive gene regulatory stress response compared to controls. The decrease in egg-to-adult viability due to stress was most pronounced in the lines with the largest deviation in the adaptive stress response (R2 = 0.48). Thus, we find strong evidence for a lower capacity of inbred individuals to respond by gene regulation to stress and that this is the main driver of inbreeding-stress interactions. In comparison, the altered gene expression due to inbreeding at benign temperature showed no correlation with fitness and was pronounced in genomic regions experiencing the highest increase in homozygosity.
Collapse
Affiliation(s)
- Mads F Schou
- Department of Bioscience, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Jesper Bechsgaard
- Department of Bioscience, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Joaquin Muñoz
- Department of Chemistry and Bioscience, Aalborg University, DK-9220 Aalborg East, Denmark
| | - Torsten N Kristensen
- Department of Bioscience, Aarhus University, DK-8000 Aarhus C, Denmark
- Department of Chemistry and Bioscience, Aalborg University, DK-9220 Aalborg East, Denmark
| |
Collapse
|
41
|
Ford LE, Henderson KJ, Smiseth PT. Differential effects of offspring and maternal inbreeding on egg laying and offspring performance in the burying beetle Nicrophorus vespilloides. J Evol Biol 2018; 31:1047-1057. [PMID: 29676514 DOI: 10.1111/jeb.13285] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 03/30/2018] [Accepted: 04/12/2018] [Indexed: 11/29/2022]
Abstract
We investigate the effect of offspring and maternal inbreeding on maternal and offspring traits associated with early offspring fitness in the burying beetle Nicrophorus vespilloides. We conducted two experiments. In the first experiment, we manipulated maternal inbreeding only (keeping offspring outbred) by generating mothers that were outbred, moderately inbred or highly inbred. Meanwhile, in the second experiment, we manipulated offspring inbreeding only (keeping females outbred) by generating offspring that were outbred, moderately inbred or highly inbred. In both experiments, we monitored subsequent effects on breeding success (number of larvae), maternal traits (clutch size, delay until laying, laying skew, laying spread and egg size) and offspring traits (hatching success, larval survival, duration of larval development and average larval mass). Maternal inbreeding reduced breeding success, and this effect was mediated through lower hatching success and greater larval mortality. Furthermore, inbred mothers produced clutches where egg laying was less skewed towards the early part of laying than outbred females. This reduction in the skew in egg laying is beneficial for larval survival, suggesting that inbred females adjusted their laying patterns facultatively, thereby partially compensating for the detrimental effects of maternal inbreeding on offspring. Finally, we found evidence of a nonlinear effect of offspring inbreeding coefficient on number of larvae dispersing. Offspring inbreeding affected larval survival and larval development time but also unexpectedly affected maternal traits (clutch size and delay until laying), suggesting that females adjust clutch size and the delay until laying in response to being related to their mate.
Collapse
Affiliation(s)
- Lucy E Ford
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Kirsten J Henderson
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Per T Smiseth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
42
|
Todd ET, Ho SYW, Thomson PC, Ang RA, Velie BD, Hamilton NA. Founder-specific inbreeding depression affects racing performance in Thoroughbred horses. Sci Rep 2018; 8:6167. [PMID: 29670190 PMCID: PMC5906619 DOI: 10.1038/s41598-018-24663-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 04/05/2018] [Indexed: 11/18/2022] Open
Abstract
The Thoroughbred horse has played an important role in both sporting and economic aspects of society since the establishment of the breed in the 1700s. The extensive pedigree and phenotypic information available for the Thoroughbred horse population provides a unique opportunity to examine the effects of 300 years of selective breeding on genetic load. By analysing the relationship between inbreeding and racing performance of 135,572 individuals, we found that selective breeding has not efficiently alleviated the Australian Thoroughbred population of its genetic load. However, we found evidence for purging in the population that might have improved racing performance over time. Over 80% of inbreeding in the contemporary population is accounted for by a small number of ancestors from the foundation of the breed. Inbreeding to these ancestors has variable effects on fitness, demonstrating that an understanding of the distribution of genetic load is important in improving the phenotypic value of a population in the future. Our findings hold value not only for Thoroughbred and other domestic breeds, but also for small and endangered populations where such comprehensive information is not available.
Collapse
Affiliation(s)
- Evelyn T Todd
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia.
| | - Simon Y W Ho
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Peter C Thomson
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Rachel A Ang
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Brandon D Velie
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, 75007, Uppsala, Sweden
| | - Natasha A Hamilton
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
43
|
Hristova DG, Tanchev S, Velikov K, Gonchev P, Georgieva S. Single nucleotide polymorphism of the growth hormone (GH) encoding gene in inbred and outbred domestic rabbits. WORLD RABBIT SCIENCE 2018. [DOI: 10.4995/wrs.2018.7211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Taking into consideration that the growth hormone (GH) gene in rabbits is a candidate for meat production, understanding the genetic diversity and variation in this locus is of particular relevance. The present study comprised 86 rabbits (Oryctolagus cuniculus) divided into 3 groups: New Zealand White (NZW) outbred rabbits; first-generation inbred rabbits (F<sub>1</sub>) and second-generation inbred rabbits (F<sub>2</sub>). They were analysed by polymerase chain reaction-based restriction fragment length polymorphism method. A 231 bp fragment of the polymorphic site of the GH gene was digested with Bsh1236 restriction enzyme. Single nucleotide polymorphisms for the studied GH locus corresponding to 3 genotypes were detected in the studied rabbit populations: CC, CT and TT. In the synthetic inbred F<sub>1</sub> and F<sub>2</sub> populations, the frequency of the heterozygous genotype CT was 0.696 and 0.609, respectively, while for the homozygous CC genotype the frequency was lower (0.043 and 0.000), and respective values for the homozygous TT genotype were 0.261 and 0.391. This presumed a preponderance of the T allele (0.609 and 0.696) over the C allele (0.391 and 0.304) in these groups. In outbred rabbits, the allele frequencies were 0.613 (allele C) and 0.387 (allele Т); consequently, the frequency of the homozygous CC genotype was higher than that of the homozygous TT genotype (0.300 vs. 0.075). Observed heterozygosity for the GH gene was higher than expected, and the result was therefore a negative inbreeding coefficient (Fis=–0.317 for outbred NZW rabbits; –0.460 for inbred F<sub>1</sub> and –0.438 for inbred F<sub>2</sub>), indicating a sufficient number of heterozygous forms in all studied groups of rabbits. The application of narrow inbreeding by breeding full sibs in the synthetic population did not cause a rapid increase in homozygosity.
Collapse
|
44
|
Mastrangelo S, Biscarini F, Auzino B, Ragatzu M, Spaterna A, Ciampolini R. Genome-wide diversity and runs of homozygosity in the "Braque Français, type Pyrénées" dog breed. BMC Res Notes 2018; 11:13. [PMID: 29316964 PMCID: PMC5761150 DOI: 10.1186/s13104-017-3112-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 12/21/2017] [Indexed: 12/20/2022] Open
Abstract
Objective Braque Français, type Pyrénées is a French hunting-dog breed whose origin is traced back to old pointing gun-dogs used to assist hunters in finding and retrieving game. This breed is popular in France, but seldom seen elsewhere. Despite the ancient background, the literature on its genetic characterization is surprisingly scarce. A recent study looked into the demography and inbreeding using pedigree records, but there is yet no report on the use of molecular markers in this breed. The aim of this work was to genotype a population of Braque Français, type Pyrénées dogs with the high-density SNP array to study the genomic diversity of the breed. Results The average observed (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$H_O$$\end{document}HO) and expected (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$H_E$$\end{document}HE) heterozygosity were 0.371 (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\pm \,0.142$$\end{document}±0.142) and 0.359 (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\pm \,0.124$$\end{document}±0.124). Effective population size (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$N_e$$\end{document}Ne) was 27.5635 runs of homozygosity (ROH) were identified with average length of 2.16 MB. A ROH shared by \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$75\%$$\end{document}75% of the dogs was detected at the beginning of chromosome 22. Inbreeding coefficients from marker genotypes were in the range \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$F_{IS}=[-\,0.127,0.172]$$\end{document}FIS=[-0.127,0.172]. Inbreeding estimated from ROH (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$F_{ROH}$$\end{document}FROH) had mean \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$0.112\,(\pm \,0.023$$\end{document}0.112(±0.023), with range [0.0526, 0.225]. These results show that the Braque Français, type Pyrénées breed is a relatively inbred population, but with still sufficient genetic variability for conservation and genetic improvement. Electronic supplementary material The online version of this article (10.1186/s13104-017-3112-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | - Barbara Auzino
- Dipartimento di Scienze Veterinarie, Università di Pisa, V.le delle Piagge 2, 56124, Pisa, Italy
| | - Marco Ragatzu
- Club Italiano Braque Français Type Pyrénées, Capalbio, GR, Italy
| | - Andrea Spaterna
- Scuola di Scienze Mediche Veterinarie, University of Camerino, Matelica, MC, Italy.,Centro Interuniversitario di Ricerca e di Consulenza sulla Genetica e la Clinica del cane, Matelica, MC, Italy
| | - Roberta Ciampolini
- Centro Interuniversitario di Ricerca e di Consulenza sulla Genetica e la Clinica del cane, Matelica, MC, Italy.,Dipartimento di Scienze Veterinarie, Università di Pisa, V.le delle Piagge 2, 56124, Pisa, Italy
| |
Collapse
|
45
|
Sakthivel M, Balasubramanyam D, Kumarasamy P, Gopi H, Raja A, Anilkumar R, Devaki A. Estimates of (co)variance components and genetic parameters for body weights and growth efficiency traits in the New Zealand white rabbit. WORLD RABBIT SCIENCE 2017. [DOI: 10.4995/wrs.2017.7057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The genetic parameters of growth traits in the New Zealand White rabbits kept at Sheep Breeding and Research Station, Sandynallah, The Nilgiris, India were estimated by partitioning the variance and covariance components. The (co)variance components of body weights at weaning (W42), post-weaning (W70) and marketing (W135) age and growth efficiency traits viz., average daily gain (ADG), relative growth rate (RGR) and Kleiber ratio (KR) estimated on a daily basis at different age intervals (42 to 70 d; 70 to 135 d and 42 to 135 d) from weaning to marketing were estimated by restricted maximum likelihood, fitting 6 animal models with various combinations of direct and maternal effects. Data were collected over a period of 15 yr (1998 to 2012). A log-likelihood ratio test was used to select the most appropriate univariate model for each trait, which was subsequently used in bivariate analysis. Heritability estimates for W42, W70 and W135 were 0.42±0.07, 0.40±0.08 and 0.27±0.07, respectively. Heritability estimates of growth efficiency traits were moderate to high (0.18 to 0.42). Of the total phenotypic variation, maternal genetic effect contributed 14 to 32% for early body weight traits (W42 and W70) and ADG1. The contribution of maternal permanent environmental effect varied from 6 to 18% for W42 and for all the growth efficiency traits except for KR2. Maternal permanent environmental effect on most of the growth efficiency traits was a carryover effect of maternal care during weaning. Direct maternal genetic correlations, for the traits in which maternal genetic effect was significant, were moderate to high in magnitude and negative in direction. Maternal effect declined as the age of the animal increased. The estimates of total heritability and maternal across year repeatability for growth traits were moderate and an optimum rate of genetic progress seems possible in the herd by mass selection. The genetic and phenotypic correlations among body weights and between growth efficiency traits were also estimated. Moderate to high heritability and higher genetic correlation in body weight traits promise good scope for genetic improvement provided measures are taken to keep the inbreeding at the lowest level.
Collapse
|
46
|
Arthofer W, Heussler C, Krapf P, Schlick-Steiner BC, Steiner FM. Identifying the minimum number of microsatellite loci needed to assess population genetic structure: A case study in fly culturing. Fly (Austin) 2017; 12:13-22. [PMID: 29166845 PMCID: PMC5927656 DOI: 10.1080/19336934.2017.1396400] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Small, isolated populations are constantly threatened by loss of genetic diversity due to drift. Such situations are found, for instance, in laboratory culturing. In guarding against diversity loss, monitoring of potential changes in population structure is paramount; this monitoring is most often achieved using microsatellite markers, which can be costly in terms of time and money when many loci are scored in large numbers of individuals. Here, we present a case study reducing the number of microsatellites to the minimum necessary to correctly detect the population structure of two Drosophila nigrosparsa populations. The number of loci was gradually reduced from 11 to 1, using the Allelic Richness (AR) and Private Allelic Richness (PAR) as criteria for locus removal. The effect of each reduction step was evaluated by the number of genetic clusters detectable from the data and by the allocation of individuals to the clusters; in the latter, excluding ambiguous individuals was tested to reduce the rate of incorrect assignments. We demonstrate that more than 95% of the individuals can still be correctly assigned when using eight loci and that the major population structure is still visible when using two highly polymorphic loci. The differences between sorting the loci by AR and PAR were negligible. The method presented here will most efficiently reduce genotyping costs when small sets of loci (“core sets”) for long-time use in large-scale population screenings are compiled.
Collapse
Affiliation(s)
- Wolfgang Arthofer
- a Molecular Ecology Group , Institute of Ecology, University of Innsbruck , Technikerstrasse 25, Innsbruck , Austria
| | - Carina Heussler
- a Molecular Ecology Group , Institute of Ecology, University of Innsbruck , Technikerstrasse 25, Innsbruck , Austria
| | - Patrick Krapf
- a Molecular Ecology Group , Institute of Ecology, University of Innsbruck , Technikerstrasse 25, Innsbruck , Austria
| | - Birgit C Schlick-Steiner
- a Molecular Ecology Group , Institute of Ecology, University of Innsbruck , Technikerstrasse 25, Innsbruck , Austria
| | - Florian M Steiner
- a Molecular Ecology Group , Institute of Ecology, University of Innsbruck , Technikerstrasse 25, Innsbruck , Austria
| |
Collapse
|
47
|
de Rezende Neves HH, Carvalheiro R, de Queiroz SA. Trait-specific long-term consequences of genomic selection in beef cattle. Genetica 2017; 146:85-99. [PMID: 29119314 DOI: 10.1007/s10709-017-9999-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 10/31/2017] [Indexed: 11/30/2022]
Abstract
Simulation studies allow addressing consequences of selection schemes, helping to identify effective strategies to enable genetic gain and maintain genetic diversity. The aim of this study was to evaluate the long-term impact of genomic selection (GS) in genetic progress and genetic diversity of beef cattle. Forward-in-time simulation generated a population with pattern of linkage disequilibrium close to that previously reported for real beef cattle populations. Different scenarios of GS and traditional pedigree-based BLUP (PBLUP) selection were simulated for 15 generations, mimicking selection for female reproduction and meat quality. For GS scenarios, an alternative selection criterion was simulated (wGBLUP), intended to enhance long-term gains by attributing more weight to favorable alleles with low frequency. GS allowed genetic progress up to 40% greater than PBLUP, for female reproduction and meat quality. The alternative criterion wGBLUP did not increase long-term response, although allowed reducing inbreeding rates and loss of favorable alleles. The results suggest that GS outperforms PBLUP when the selected trait is under less polygenic background and that attributing more weight to low-frequency favorable alleles can reduce inbreeding rates and loss of favorable alleles in GS.
Collapse
Affiliation(s)
- Haroldo Henrique de Rezende Neves
- Departamento de Zootecnia, School of Agricultural and Veterinarian Sciences (FCAV), São Paulo State University (UNESP), Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, SP, 14884-900, Brazil.,GenSys Consultores Associados S/S Ltda., Rua Guilherme Alves, 170. Cj 304, Porto Alegre, RS, 90680-000, Brazil
| | - Roberto Carvalheiro
- Departamento de Zootecnia, School of Agricultural and Veterinarian Sciences (FCAV), São Paulo State University (UNESP), Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, SP, 14884-900, Brazil
| | - Sandra Aidar de Queiroz
- Departamento de Zootecnia, School of Agricultural and Veterinarian Sciences (FCAV), São Paulo State University (UNESP), Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, SP, 14884-900, Brazil.
| |
Collapse
|
48
|
Howard JT, Pryce JE, Baes C, Maltecca C. Invited review: Inbreeding in the genomics era: Inbreeding, inbreeding depression, and management of genomic variability. J Dairy Sci 2017; 100:6009-6024. [DOI: 10.3168/jds.2017-12787] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 04/25/2017] [Indexed: 11/19/2022]
|
49
|
Geyer KK, Niazi UH, Duval D, Cosseau C, Tomlinson C, Chalmers IW, Swain MT, Cutress DJ, Bickham-Wright U, Munshi SE, Grunau C, Yoshino TP, Hoffmann KF. The Biomphalaria glabrata DNA methylation machinery displays spatial tissue expression, is differentially active in distinct snail populations and is modulated by interactions with Schistosoma mansoni. PLoS Negl Trop Dis 2017; 11:e0005246. [PMID: 28510608 PMCID: PMC5433704 DOI: 10.1371/journal.pntd.0005246] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 12/10/2016] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND The debilitating human disease schistosomiasis is caused by infection with schistosome parasites that maintain a complex lifecycle alternating between definitive (human) and intermediate (snail) hosts. While much is known about how the definitive host responds to schistosome infection, there is comparably less information available describing the snail's response to infection. METHODOLOGY/PRINCIPLE FINDINGS Here, using information recently revealed by sequencing of the Biomphalaria glabrata intermediate host genome, we provide evidence that the predicted core snail DNA methylation machinery components are associated with both intra-species reproduction processes and inter-species interactions. Firstly, methyl-CpG binding domain protein (Bgmbd2/3) and DNA methyltransferase 1 (Bgdnmt1) genes are transcriptionally enriched in gonadal compared to somatic tissues with 5-azacytidine (5-AzaC) treatment significantly inhibiting oviposition. Secondly, elevated levels of 5-methyl cytosine (5mC), DNA methyltransferase activity and 5mC binding in pigmented hybrid- compared to inbred (NMRI)- B. glabrata populations indicate a role for the snail's DNA methylation machinery in maintaining hybrid vigour or heterosis. Thirdly, locus-specific detection of 5mC by bisulfite (BS)-PCR revealed 5mC within an exonic region of a housekeeping protein-coding gene (Bg14-3-3), supporting previous in silico predictions and whole genome BS-Seq analysis of this species' genome. Finally, we provide preliminary evidence for parasite-mediated host epigenetic reprogramming in the schistosome/snail system, as demonstrated by the increase in Bgdnmt1 and Bgmbd2/3 transcript abundance following Bge (B. glabrata embryonic cell line) exposure to parasite larval transformation products (LTP). CONCLUSIONS/SIGNIFICANCE The presence of a functional DNA methylation machinery in B. glabrata as well as the modulation of these gene products in response to schistosome products, suggests a vital role for DNA methylation during snail development/oviposition and parasite interactions. Further deciphering the role of this epigenetic process during Biomphalaria/Schistosoma co-evolutionary biology may reveal key factors associated with disease transmission and, moreover, enable the discovery of novel lifecycle intervention strategies.
Collapse
Affiliation(s)
- Kathrin K. Geyer
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Penglais Campus, Aberystwyth, United Kingodm
| | - Umar H. Niazi
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Penglais Campus, Aberystwyth, United Kingodm
| | - David Duval
- Université Perpignan Via Domitia, CNRS, IFREMER, Perpignan, France
| | - Céline Cosseau
- Université Perpignan Via Domitia, CNRS, IFREMER, Perpignan, France
| | - Chad Tomlinson
- Genome Sequencing Center, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Iain W. Chalmers
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Penglais Campus, Aberystwyth, United Kingodm
| | - Martin T. Swain
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Penglais Campus, Aberystwyth, United Kingodm
| | - David J. Cutress
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Penglais Campus, Aberystwyth, United Kingodm
| | - Utibe Bickham-Wright
- Department of Pathobiological Sciences, School of Veterinary Medicine University of Wisconsin, Madison, United States of America
| | - Sabrina E. Munshi
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Penglais Campus, Aberystwyth, United Kingodm
| | - Christoph Grunau
- Université Perpignan Via Domitia, CNRS, IFREMER, Perpignan, France
| | - Timothy P. Yoshino
- Department of Pathobiological Sciences, School of Veterinary Medicine University of Wisconsin, Madison, United States of America
| | - Karl F. Hoffmann
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Penglais Campus, Aberystwyth, United Kingodm
| |
Collapse
|
50
|
Ferenčaković M, Sölkner J, Kapš M, Curik I. Genome-wide mapping and estimation of inbreeding depression of semen quality traits in a cattle population. J Dairy Sci 2017; 100:4721-4730. [PMID: 28434751 DOI: 10.3168/jds.2016-12164] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 02/27/2017] [Indexed: 11/19/2022]
Abstract
Inbreeding depression is known to affect quantitative traits such as male fertility and sperm quality, but the genetic basis for these associations is poorly understood. Most studies have been limited to examining how pedigree- or marker-derived genome-wide autozygosity is associated with quantitative phenotypes. In this study, we analyzed possible associations of genetic features of inbreeding depression with percentage of live spermatozoa and total number of spermatozoa in 19,720 ejaculates obtained from 554 Austrian Fleckvieh bulls during routine artificial insemination programs. Genome-wide inbreeding depression was estimated and genomic regions contributing to inbreeding depression were mapped. Inbreeding depression did affect total number of spermatozoa, and such depression was predicted by pedigree-based inbreeding levels and genome-wide inbreeding levels based on runs of homozygosity (ROH). Genome-wide inbreeding depression did not seem to affect percentage of live spermatozoa. A model incorporating genetic effects of the bull, environmental factors, and additive genetic and ROH status effects of individual single-nucleotide polymorphisms revealed genomic regions significantly associated with ROH status for total number of spermatozoa (4 regions) or percentage of live spermatozoa (5 regions). All but one region contains genes related to spermatogenesis and sperm morphology. These genomic regions contain genes affecting sperm morphogenesis and efficacy. The results highlight that next-generation sequencing may help explain some of the genetic factors contributing to inbreeding depression of sperm quality traits in Fleckvieh bulls.
Collapse
Affiliation(s)
- Maja Ferenčaković
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Svetosimunska 25, 10000 Zagreb, Croatia
| | - Johann Sölkner
- University of Natural Resources and Life Sciences Vienna, Department of Sustainable Agricultural Systems, Division of Livestock Sciences, Gregor Mendel Str. 33, A-1180 Vienna, Austria.
| | - Miroslav Kapš
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Svetosimunska 25, 10000 Zagreb, Croatia
| | - Ino Curik
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Svetosimunska 25, 10000 Zagreb, Croatia
| |
Collapse
|