1
|
Lekkos K, Bhuiyan AA, Albloshi AMK, Brooks PM, Coate TM, Lionikas A. Validation of positional candidates Rps6ka6 and Pou3f4 for a locus associated with skeletal muscle mass variability. G3 (BETHESDA, MD.) 2024; 14:jkae046. [PMID: 38577978 PMCID: PMC11075558 DOI: 10.1093/g3journal/jkae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 02/17/2024] [Indexed: 04/06/2024]
Abstract
Genetic variability significantly contributes to individual differences in skeletal muscle mass; however, the specific genes involved in that process remain elusive. In this study, we examined the role of positional candidates, Rps6ka6 and Pou3f4, of a chromosome X locus, implicated in muscle mass variability in CFW laboratory mice. Histology of hindlimb muscles was studied in CFW male mice carrying the muscle "increasing" allele C (n = 15) or "decreasing" allele T (n = 15) at the peak marker of the locus, rs31308852, and in the Pou3f4y/- and their wild-type male littermates. To study the role of the Rps6ka6 gene, we deleted exon 7 (Rps6ka6-ΔE7) using clustered regularly interspaced palindromic repeats-Cas9 based method in H2Kb myogenic cells creating a severely truncated RSK4 protein. We then tested whether that mutation affected myoblast proliferation, migration, and/or differentiation. The extensor digitorum longus muscle was 7% larger (P < 0.0001) due to 10% more muscle fibers (P = 0.0176) in the carriers of the "increasing" compared with the "decreasing" CFW allele. The number of fibers was reduced by 15% (P = 0.0268) in the slow-twitch soleus but not in the fast-twitch extensor digitorum longus (P = 0.2947) of Pou3f4y/- mice. The proliferation and migration did not differ between the Rps6ka6-ΔE7 and wild-type H2Kb myoblasts. However, indices of differentiation (myosin expression, P < 0.0001; size of myosin-expressing cells, P < 0.0001; and fusion index, P = 0.0013) were significantly reduced in Rps6ka6-ΔE7 cells. This study suggests that the effect of the X chromosome locus on muscle fiber numbers in the fast-twitch extensor digitorum longus is mediated by the Rps6ka6 gene, whereas the Pou3f4 gene affects fiber number in slow-twitch soleus.
Collapse
Affiliation(s)
- Konstantinos Lekkos
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Afra A Bhuiyan
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Abdullah M K Albloshi
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK
- Department of Anatomy and Histology, School of Medicine, University of Albaha, Alaqiq 65779, Saudi Arabia
| | - Paige M Brooks
- Department of Biology, Georgetown University, Washington, DC 20057, USA
| | - Thomas M Coate
- Department of Biology, Georgetown University, Washington, DC 20057, USA
| | - Arimantas Lionikas
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK
| |
Collapse
|
2
|
Morrison JL, Botting KJ, Darby JRT, David AL, Dyson RM, Gatford KL, Gray C, Herrera EA, Hirst JJ, Kim B, Kind KL, Krause BJ, Matthews SG, Palliser HK, Regnault TRH, Richardson BS, Sasaki A, Thompson LP, Berry MJ. Guinea pig models for translation of the developmental origins of health and disease hypothesis into the clinic. J Physiol 2018; 596:5535-5569. [PMID: 29633280 PMCID: PMC6265540 DOI: 10.1113/jp274948] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/19/2018] [Indexed: 12/12/2022] Open
Abstract
Over 30 years ago Professor David Barker first proposed the theory that events in early life could explain an individual's risk of non-communicable disease in later life: the developmental origins of health and disease (DOHaD) hypothesis. During the 1990s the validity of the DOHaD hypothesis was extensively tested in a number of human populations and the mechanisms underpinning it characterised in a range of experimental animal models. Over the past decade, researchers have sought to use this mechanistic understanding of DOHaD to develop therapeutic interventions during pregnancy and early life to improve adult health. A variety of animal models have been used to develop and evaluate interventions, each with strengths and limitations. It is becoming apparent that effective translational research requires that the animal paradigm selected mirrors the tempo of human fetal growth and development as closely as possible so that the effect of a perinatal insult and/or therapeutic intervention can be fully assessed. The guinea pig is one such animal model that over the past two decades has demonstrated itself to be a very useful platform for these important reproductive studies. This review highlights similarities in the in utero development between humans and guinea pigs, the strengths and limitations of the guinea pig as an experimental model of DOHaD and the guinea pig's potential to enhance clinical therapeutic innovation to improve human health.
Collapse
Affiliation(s)
- Janna L. Morrison
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health ResearchUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Kimberley J. Botting
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Jack R. T. Darby
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health ResearchUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Anna L. David
- Research Department of Maternal Fetal Medicine, Institute for Women's HealthUniversity College LondonLondonUK
| | - Rebecca M. Dyson
- Department of Paediatrics & Child Health and Centre for Translational PhysiologyUniversity of OtagoWellingtonNew Zealand
| | - Kathryn L. Gatford
- Robinson Research Institute and Adelaide Medical SchoolUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Clint Gray
- Department of Paediatrics & Child Health and Centre for Translational PhysiologyUniversity of OtagoWellingtonNew Zealand
| | - Emilio A. Herrera
- Pathophysiology Program, Biomedical Sciences Institute (ICBM), Faculty of MedicineUniversity of ChileSantiagoChile
| | - Jonathan J. Hirst
- Mothers and Babies Research Centre, Hunter Medical Research Institute, School of Biomedical Sciences and PharmacyUniversity of NewcastleCallaghanNew South WalesAustralia
| | - Bona Kim
- Department of PhysiologyUniversity of TorontoTorontoOntarioCanada
| | - Karen L. Kind
- School of Animal and Veterinary SciencesUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Bernardo J. Krause
- Division of Paediatrics, Faculty of MedicinePontificia Universidad Católica de ChileSantiagoChile
| | | | - Hannah K. Palliser
- Mothers and Babies Research Centre, Hunter Medical Research Institute, School of Biomedical Sciences and PharmacyUniversity of NewcastleCallaghanNew South WalesAustralia
| | - Timothy R. H. Regnault
- Departments of Obstetrics and Gynaecology, Physiology and PharmacologyWestern University, and Children's Health Research Institute and Lawson Health Research InstituteLondonOntarioCanada
| | - Bryan S. Richardson
- Departments of Obstetrics and Gynaecology, Physiology and PharmacologyWestern University, and Children's Health Research Institute and Lawson Health Research InstituteLondonOntarioCanada
| | - Aya Sasaki
- Department of PhysiologyUniversity of TorontoTorontoOntarioCanada
| | - Loren P. Thompson
- Department of Obstetrics, Gynecology, and Reproductive SciencesUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - Mary J. Berry
- Department of Paediatrics & Child Health and Centre for Translational PhysiologyUniversity of OtagoWellingtonNew Zealand
| |
Collapse
|
3
|
Abstract
AbstractThe emphasis in nutritional studies on foetal growth has now moved from the last trimester of pregnancy, when most of the increase in foetal size takes place, to earlier stages of pregnancy that coincide with foetal organogenesis and tissue hyperplasia. At these stages absolute nutrient requirements for foetal growth are small but foetal metabolic activity and specific growth rate are high. It is thus a time when nutrient supply interacts with maternal factors such as size, body condition and degree of maturity to influence placental growth and set the subsequent pattern of nutrient partitioning between the gravid uterus and maternal body.Throughout pregnancy the maternal diet controls foetal growth both directly, by supplying essential nutrients and indirectly, by altering the expression of the maternal and foetal endocrine mechanisms that regulate the uptake and utilization of these nutrients by the conceptus. Nutritional effects on the endocrine environment of the embryo during the early stages of cell division can alter the subsequent foetal growth trajectory and size at birth; so too can current in vitro systems for oocyte maturation and embryo culture up to the blastocyst stage. There is increasing evidence that subtle alterations in nutrient supply during critical periods of embryonic and foetal life can impart a legacy of growth and developmental changes that affect neonatal survival and adult performance. Identifying the specific nutrients that programme these effects and understanding their mode of action should provide new management strategies for ensuring that nutritional regimens from oocyte to newborn are such that they maximize neonatal viability and enable animals to express their true genetic potential for production.
Collapse
|
4
|
Sharples AP, Stewart CE, Seaborne RA. Does skeletal muscle have an 'epi'-memory? The role of epigenetics in nutritional programming, metabolic disease, aging and exercise. Aging Cell 2016; 15:603-16. [PMID: 27102569 PMCID: PMC4933662 DOI: 10.1111/acel.12486] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2016] [Indexed: 12/17/2022] Open
Abstract
Skeletal muscle mass, quality and adaptability are fundamental in promoting muscle performance, maintaining metabolic function and supporting longevity and healthspan. Skeletal muscle is programmable and can ‘remember’ early‐life metabolic stimuli affecting its function in adult life. In this review, the authors pose the question as to whether skeletal muscle has an ‘epi’‐memory? Following an initial encounter with an environmental stimulus, we discuss the underlying molecular and epigenetic mechanisms enabling skeletal muscle to adapt, should it re‐encounter the stimulus in later life. We also define skeletal muscle memory and outline the scientific literature contributing to this field. Furthermore, we review the evidence for early‐life nutrient stress and low birth weight in animals and human cohort studies, respectively, and discuss the underlying molecular mechanisms culminating in skeletal muscle dysfunction, metabolic disease and loss of skeletal muscle mass across the lifespan. We also summarize and discuss studies that isolate muscle stem cells from different environmental niches in vivo (physically active, diabetic, cachectic, aged) and how they reportedly remember this environment once isolated in vitro. Finally, we will outline the molecular and epigenetic mechanisms underlying skeletal muscle memory and review the epigenetic regulation of exercise‐induced skeletal muscle adaptation, highlighting exercise interventions as suitable models to investigate skeletal muscle memory in humans. We believe that understanding the ‘epi’‐memory of skeletal muscle will enable the next generation of targeted therapies to promote muscle growth and reduce muscle loss to enable healthy aging.
Collapse
Affiliation(s)
- Adam P. Sharples
- Stem Cells, Ageing and Molecular Physiology (SCAMP) Research Unit Exercise Metabolism and Adaptation Research Group (EMARG) Research Institute for Sport and Exercise Sciences (RISES) Liverpool John Moores University Liverpool UK
| | - Claire E. Stewart
- Stem Cells, Ageing and Molecular Physiology (SCAMP) Research Unit Exercise Metabolism and Adaptation Research Group (EMARG) Research Institute for Sport and Exercise Sciences (RISES) Liverpool John Moores University Liverpool UK
| | - Robert A. Seaborne
- Stem Cells, Ageing and Molecular Physiology (SCAMP) Research Unit Exercise Metabolism and Adaptation Research Group (EMARG) Research Institute for Sport and Exercise Sciences (RISES) Liverpool John Moores University Liverpool UK
| |
Collapse
|
5
|
Boddicker RL, Seibert JT, Johnson JS, Pearce SC, Selsby JT, Gabler NK, Lucy MC, Safranski TJ, Rhoads RP, Baumgard LH, Ross JW. Gestational heat stress alters postnatal offspring body composition indices and metabolic parameters in pigs. PLoS One 2014; 9:e110859. [PMID: 25383953 PMCID: PMC4226472 DOI: 10.1371/journal.pone.0110859] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 09/24/2014] [Indexed: 11/29/2022] Open
Abstract
The study objectives were to test the hypothesis that heat stress (HS) during gestational development alters postnatal growth, body composition, and biological response to HS conditions in pigs. To investigate this, 14 first parity crossbred gilts were exposed to one of four environmental treatments (TNTN, TNHS, HSTN, or HSHS) during gestation. TNTN and HSHS dams were exposed to thermal neutral (TN, cyclical 18-22°C) or HS conditions (cyclical 28-34°C) during the entire gestation, respectively. Dams assigned to HSTN and TNHS treatments were heat-stressed for the first or second half of gestation, respectively. Postnatal offspring were exposed to one of two thermal environments for an acute (24 h) or chronic (five weeks) duration in either constant TN (21°C) or HS (35°C) environment. Exposure to chronic HS during their growth phase resulted in decreased longissimus dorsi cross-sectional area (LDA) in offspring from HSHS and HSTN treated dams whereas LDA was larger in offspring from dams in TNTN and TNHS conditions. Irrespective of HS during prepubertal postnatal growth, pigs from dams that experienced HS during the first half of gestation (HSHS and HSTN) had increased (13.9%) subcutaneous fat thickness compared to pigs from dams exposed to TN conditions during the first half of gestation. This metabolic repartitioning towards increased fat deposition in pigs from dams heat-stressed during the first half of gestation was accompanied by elevated blood insulin concentrations (33%; P = 0.01). Together, these results demonstrate HS during the first half of gestation altered metabolic and body composition parameters during future development and in biological responses to a subsequent HS challenge.
Collapse
Affiliation(s)
- Rebecca L. Boddicker
- Department of Animal Science, Iowa State University, Ames, Iowa, United States of America
| | - Jacob T. Seibert
- Department of Animal Science, Iowa State University, Ames, Iowa, United States of America
| | - Jay S. Johnson
- Department of Animal Science, Iowa State University, Ames, Iowa, United States of America
| | - Sarah C. Pearce
- Department of Animal Science, Iowa State University, Ames, Iowa, United States of America
| | - Joshua T. Selsby
- Department of Animal Science, Iowa State University, Ames, Iowa, United States of America
| | - Nicholas K. Gabler
- Department of Animal Science, Iowa State University, Ames, Iowa, United States of America
| | - Matthew C. Lucy
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Timothy J. Safranski
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Robert P. Rhoads
- Department of Animal and Poultry Sciences, Virginia Tech University, Blacksburg, Virginia, United States of America
| | - Lance H. Baumgard
- Department of Animal Science, Iowa State University, Ames, Iowa, United States of America
| | - Jason W. Ross
- Department of Animal Science, Iowa State University, Ames, Iowa, United States of America
| |
Collapse
|
6
|
Belkacemi L, Nelson DM, Desai M, Ross MG. Maternal Undernutrition Influences Placental-Fetal Development1. Biol Reprod 2010; 83:325-31. [DOI: 10.1095/biolreprod.110.084517] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
7
|
Funston RN, Larson DM, Vonnahme KA. Effects of maternal nutrition on conceptus growth and offspring performance: Implications for beef cattle production1. J Anim Sci 2010; 88:E205-15. [DOI: 10.2527/jas.2009-2351] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
8
|
Zhou QY, Fang MD, Huang TH, Li CC, Yu M, Zhao SH. Detection of differentially expressed genes between Erhualian and Large White placentas on day 75 and 90 of gestation. BMC Genomics 2009; 10:337. [PMID: 19630995 PMCID: PMC2724418 DOI: 10.1186/1471-2164-10-337] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Accepted: 07/26/2009] [Indexed: 11/15/2022] Open
Abstract
Background Placental efficiency is strongly associated with litter size, fetal weight and prenatal mortality. Together with its rapid growth during late gestation, the Large White pig breed shows a significant increase in placental size and weight, but this does not occur in the highly prolific Chinese pig breeds. To understand the molecular basis of placental development during late gestation in Chinese indigenous and Western breeds with different placental efficiency, female placental samples were collected from six pregnant Erhualian gilts at gestation day 75 (E75) and day 90 (E90) and from six pregnant Large White gilts at gestation day 75 (L75) and day 90 (L90). Two female placentas from one sow were used to extract RNA and then pooled in equal volumes. Twelve pooled samples were hybridized to the porcine Affymetrix GeneChip. Results A total of 226 and 577 transcripts were detected that were differentially expressed between E75 and L75 and between E90 and L90 (p < 0.01, q < 0.2), respectively. Gene Ontology (GO) analysis revealed that these genes belong to the class of genes that participate in angiogenesis and development. Real-time RT-PCR confirmed the differential expression of eight selected genes. Significant differential expression of five genes in the VEGF pathway was also detected between the breeds. A search of chromosomal location revealed that 44 differentially expressed genes located to QTL regions related to reproduction. Differential expression of six candidate imprinted genes was also confirmed. Three of the six genes (PLAGL1, DIRAS3, and SLC38A4) showed monoallelic expression in the porcine placenta. Conclusion Our study detected many genes that showed differential expression between placentas of two divergent breed of pigs, and confirmed the imprinting of three genes. These findings help to elucidate the genetic control of placental efficiency and improve the understanding of placental development.
Collapse
Affiliation(s)
- Quan-Yong Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, PR China.
| | | | | | | | | | | |
Collapse
|
9
|
Shelley P, Martin-Gronert MS, Rowlerson A, Poston L, Heales SJR, Hargreaves IP, McConnell JM, Ozanne SE, Fernandez-Twinn DS. Altered skeletal muscle insulin signaling and mitochondrial complex II-III linked activity in adult offspring of obese mice. Am J Physiol Regul Integr Comp Physiol 2009; 297:R675-81. [PMID: 19535678 DOI: 10.1152/ajpregu.00146.2009] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We recently reported insulin resistance in adult offspring of obese C57BL/6J mice. We have now evaluated whether parameters of skeletal muscle structure and function may play a role in insulin resistance in this model of developmental programming. Obesity was induced in female mice by feeding a highly palatable sugar and fat-rich diet for 6 wk prior to pregnancy, and during pregnancy and lactation. Offspring of obese dams were weaned onto standard laboratory chow. At 3 mo of age, skeletal muscle insulin signaling protein expression, mitochondrial electron transport chain activity (ETC), muscle fiber type, fiber density, and fiber cross-sectional area were compared with that of offspring of control dams weaned onto the chow diet. Female offspring of obese dams demonstrated decreased skeletal muscle expression of p110beta, the catalytic subunit of PI3K (P < 0.01), as well as reduced Akt phosphorylation at Serine residue 473 compared with control offspring. Male offspring of obese dams demonstrated increased skeletal muscle Akt2 and PKCzeta expression (P < 0.01; P < 0.001, respectively). A decrease in mitochondrial-linked complex II-III was observed in male offspring of obese dams (P < 0.01), which was unrelated to CoQ deficiency. This was not observed in females. There were no differences in muscle fiber density between offspring of obese dams and control offspring in either sex. Sex-related alterations in key insulin-signaling proteins and in mitochondrial ETC may contribute to a state of insulin resistance in offspring of obese mice.
Collapse
Affiliation(s)
- Piran Shelley
- Division of Reproduction and Endocrinology, King's College London, St. Thomas's Hospital, London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Mallinson JE, Sculley DV, Craigon J, Plant R, Langley-Evans SC, Brameld JM. Fetal exposure to a maternal low-protein diet during mid-gestation results in muscle-specific effects on fibre type composition in young rats. Br J Nutr 2007; 98:292-9. [PMID: 17391556 PMCID: PMC3861786 DOI: 10.1017/s0007114507701678] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This study assessed the impact of reduced dietary protein during specific periods of fetal life upon muscle fibre development in young rats. Pregnant rats were fed a control or low-protein (LP) diet at early (days 0-7 gestation, LPEarly), mid (days 8-14, LPMid), late (days 15-22, LPLate) or throughout gestation (days 0-22, LPAll). The muscle fibre number and composition in soleus and gastrocnemius muscles of the offspring were studied at 4 weeks of age. In the soleus muscle, both the total number and density of fast fibres were reduced in LPMid females (P = 0.004 for both, Diet x Sex x Fibre type interactions), while both the total number and density of glycolytic (non-oxidative) fibres were reduced in LPEarly, LPMid and LPLate (but not LPAll) offspring compared with controls (P < 0.001 for both, Diet x Fibre type interaction). In the gastrocnemius muscle, only the density of oxidative fibres was reduced in LPMid compared with control offspring (P = 0.019, Diet x Fibre type interaction), with the density of slow fibres being increased in LPAll males compared with control (P = 0.024, Diet x Sex x Fibre type interaction). There were little or no effects of maternal diet on fibre type diameters in the two muscles. In conclusion, a maternal low-protein diet mainly during mid-pregnancy reduced muscle fibre number and density in 4-week-old rats, but there were muscle-specific differences in the fibre types affected.
Collapse
Affiliation(s)
| | | | | | | | | | - John M. Brameld
- Corresponding author: Dr John M. Brameld, fax +44 (0)115 951 6122, email
| |
Collapse
|
11
|
Kind KL, Moore VM, Davies MJ. Diet around conception and during pregnancy--effects on fetal and neonatal outcomes. Reprod Biomed Online 2006; 12:532-41. [PMID: 16790095 DOI: 10.1016/s1472-6483(10)61178-9] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Substrate supply to the fetus is a major regulator of prenatal growth. Maternal nutrition influences the availability of nutrients for transfer to the fetus. Animal experiments demonstrate that restriction of maternal protein or energy intake can retard fetal growth. Effects of maternal nutrition vary with the type and timing of the restriction and the species studied. Maternal undernutrition before conception and/or in early pregnancy can alter fetal physiology in late gestation, and influence postnatal function, often without measurable effects on birth size. In contrast, to date, observational and intervention studies in humans provide limited support for a major role of maternal nutrition in determining birth size, except where women are quite malnourished. However, recent studies report associations between newborn size and the balance of macronutrients in women's diets in Western settings. Associations between maternal dietary composition and adult blood pressure of the offspring are also reported in human populations. Most studies in women have focused on dietary content or supplementation during mid-late pregnancy. Further investigation of how maternal dietary composition, before conception and throughout pregnancy, affects fetal physiology and health of the baby will increase the understanding of how maternal diet and nutritional status influence fetal, neonatal and longer-term outcomes.
Collapse
Affiliation(s)
- Karen L Kind
- Discipline of Obstetrics and Gynaecology, Level 4, Maternity, The Queen Elizabeth Hospital, Woodville, South Australia 5011.
| | | | | |
Collapse
|
12
|
TYGESEN MP, HARRISON AP. Nutritional restriction in utero programs postnatal muscle development in lambs. Anim Sci J 2005. [DOI: 10.1111/j.1740-0929.2005.00265.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Nissen PM, Danielsen VO, Jorgensen PF, Oksbjerg N. Increased maternal nutrition of sows has no beneficial effects on muscle fiber number or postnatal growth and has no impact on the meat quality of the offspring. J Anim Sci 2004; 81:3018-27. [PMID: 14677857 DOI: 10.2527/2003.81123018x] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The objective of this study was to examine how increased feed intake of the sow during early to mid-gestation affects sow performance and the muscle fiber number, performance, and technological meat quality of the offspring. Thirty-nine pregnant sows (Landrace x Large White sows mated to Landrace or Large White boars) in their fourth parity were assigned to one of three treatments: 1) the sows were either fed restrictively (control = 15 MJ of NE/d from d 1 to 90, then 24 MJ of NE/d from d 91 to 112, and again 15 MJ of NE/d from d 113 to 115 of gestation); 2) fed ad libitum from d 25 to 50 (A25-50); or 3) ad libitum from d 25 to 70 (A25-70) and as control in the remaining periods. The offspring were weaned at 4 wk of age and had free access to feed from 2 wk of age until slaughter. They were slaughtered litterwise at an average body weight of 104 +/- 14 kg. Estimates for total, primary (P-), and secondary (S-) muscle fiber number; muscle fiber area; and DNA and RNA content were analyzed in semitendinosus muscle (ST) samples from the heaviest, middle, and lightest weight (LW) pigs of each sex within litter selected at slaughter. Technological meat quality traits (pH at 24 h postmortem, drip loss, Minolta color, and pigment) were analyzed in longissimus dorsi muscle. Fiber number, fiber area, and concentrations and content of DNA and RNA of the offspring were not significantly affected by increased maternal nutrition. The ST muscle weight was lower in offspring from A25-50 than control sows (P = 0.019). Average daily gain, carcass weight, and the muscle deposition rate also were numerically lower for A25-50 than control and A25-70 pigs. An interaction between treatment and pig weight was found for muscle deposition rate (P = 0.006), in that LW pigs from treatment A25-50 had a lower deposition rate than LW pigs from control. We found no effect of treatment on the meat quality traits in the offspring. Also, barrows had a higher (P < 0.05) number of P-fibers, higher daily gain, and carcass weight than female pigs. No differences were found on any meat quality traits between sexes. Thus, ad libitum feeding of pregnant sows from d 25 to 50 or d 25 to 70 of gestation did not have any beneficial effect on muscle fiber number and area in the offspring. It seems that maternal ad libitum feeding from d 25 to 50 in gestation had a negative effect on postnatal muscle growth, with especially the LW pigs being affected.
Collapse
Affiliation(s)
- P M Nissen
- Department of Food Science, Danish Institute of Agricultural Sciences, Tjele, Denmark.
| | | | | | | |
Collapse
|
14
|
Bee G. Effect of early gestation feeding, birth weight, and gender of progeny on muscle fiber characteristics of pigs at slaughter1. J Anim Sci 2004; 82:826-36. [PMID: 15032440 DOI: 10.2527/2004.823826x] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Maternal nutrition and progeny birth weight affect muscle fiber development in the pig, thereby influencing early postnatal growth rate. The objective of the study was to determine the extent to which growth, morphometric characteristics, and area and distribution of slow-oxidative (SO), fast oxidative-glycolytic (FOG), and fast glycolytic (FG) fibers of three muscles (LM = longissimus muscle; RF = rectus femoris; ST = semitendinosus) of slaughter pigs were affected by DE intake level during the first 50 d of gestation. Multiparous Swiss Large White sows were assigned randomly to one of three energy intake treatments: 1) fed 2.8 kg/d of a standard diet (STD; n = 6) containing 10.7 MJ DE/kg; 2) fed 2.8 kg/d of a low-energy diet (LE; n = 5) containing 6.6 MJ DE/kg; or 3) fed 4.0 kg/d of a standard diet (HE; n = 5) containing 10.7 MJ DE/kg (as-fed basis). Sows were subjected to energy intake treatments for the first 50 d of gestation; however, from d 51 to parturition, sows received 2.8 kg/d of the standard diet, and the amount of feed offered each sow during lactation was adjusted according to the litter size. Sows farrowed normally and pig birth weights were recorded. Based on birth weight, the two lightest (1.27 kg; Lt) and two heaviest (1.76 kg; Hvy) barrows and gilts from the 16 litters (n = 64) were selected at weaning and were offered a fixed amount of feed (170 g x BW(0.569)/d) from 25 to 105 kg BW. Regardless of the birth weight, progeny from HE sows grew slower (P < 0.05) during lactation and the growing-finishing period, had a lower (P < 0.05) gain-to-feed ratios, and had higher (P < 0.05) percentages of adipose tissue than pigs born from LE sows. The ST was shorter (P = 0.03) in Lt than in Hvy pigs, and the ST of gilts was heavier (P = 0.01) and had a larger (P = 0.01) girth than the ST of barrows. Overall mean fiber area tended to be larger (P < or = 0.11) in the LM and light portion of the ST of Lt than in Hvy pigs, and was larger (P = 0.03) in the ST of gilts than barrows. The ST of progeny from LE sows had fewer (P < 0.10) FG fibers, which was compensated by either more (P < 0.05) FOG in the light portion of the ST, or more (P < 0.10) SO fibers in the dark portion, and these differences were more pronounced in Lt pigs than in Hvy pigs. Overall, maternal feeding regimen affected muscle fiber type distribution, whereas birth weight and gender affected muscle fiber area.
Collapse
Affiliation(s)
- G Bee
- Swiss Federal Research Station for Animal Production, Posieux 1726, Switzerland.
| |
Collapse
|