1
|
Liu Y, Yang X, Xiao F, Jie F, Zhang Q, Liu Y, Xiao H, Lu B. Dietary cholesterol oxidation products: Perspectives linking food processing and storage with health implications. Compr Rev Food Sci Food Saf 2021; 21:738-779. [PMID: 34953101 DOI: 10.1111/1541-4337.12880] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/23/2022]
Abstract
Dietary cholesterol oxidation products (COPs) are heterogeneous compounds formed during the processing and storage of cholesterol-rich foods, such as seafood, meat, eggs, and dairy products. With the increased intake of COPs-rich foods, the concern about health implications of dietary COPs is rising. Dietary COPs may exert deleterious effects on human health to induce several inflammatory diseases including atherosclerosis, neurodegenerative diseases, and inflammatory bowel diseases. Thus, knowledge regarding the effects of processing and storage conditions leading to formation of COPs is needed to reduce the levels of COPs in foods. Efficient methodologies to determine COPs in foods are also essential. More importantly, the biological roles of dietary COPs in human health and effects of phytochemicals on dietary COPs-induced diseases need to be established. This review summarizes the recent information on dietary COPs including their formation in foods during their processing and storage, analytical methods of determination of COPs, metabolic fate, implications for human health, and beneficial interventions by phytochemicals. The formation of COPs is largely dependent on the heating temperature, storage time, and food matrices. Alteration of food processing and storage conditions is one of the potent strategies to restrict hazardous dietary COPs from forming, including maintaining relatively low temperatures, shorter processing or storage time, and the appropriate addition of antioxidants. Once absorbed into the circulation, dietary COPs can contribute to the progression of several inflammatory diseases, where the absorbed dietary COPs may induce inflammation, apoptosis, and autophagy in cells in the target organs or tissues. Improved intake of phytochemicals may be an effective strategy to reduce the hazardous effects of dietary COPs.
Collapse
Affiliation(s)
- Yan Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Xuan Yang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Fan Xiao
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Fan Jie
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Qinjun Zhang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Yuqi Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Hang Xiao
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Baiyi Lu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| |
Collapse
|
2
|
Wang M, Yang B, Shao P, Jie F, Yang X, Lu B. Sterols and Sterol Oxidation Products: Effect of Dietary Intake on Tissue Distribution in ApoE-Deficient Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11867-11877. [PMID: 34586790 DOI: 10.1021/acs.jafc.1c03648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Sterols and sterol oxidation products (SOPs) are well-known dietary factors influencing atherosclerosis; however, their distribution in vivo after dietary sterol/SOP intake is still unclear. Here, we investigated the tissue distribution of sterols and SOPs in ApoE-/- mice after dietary exposure to diets supplemented with phytosterols (PS), phytosterol oxidation products (POPs), or cholesterol oxidation products (COPs). The results showed that PS intake reduced cholesterol in serum and the liver but increased cholesterol in the brain. PS intake increased the levels of PS in vivo and the levels of 7-keto- and triol-POPs in serum and the liver. COP intake elevated the level of all COPs in serum but did not change the 7-keto-cholesterol level in the liver and brain. All POPs in serum and parts of POPs in the liver and brain increased after dietary POP exposure. Our study indicated that dietary PS and SOPs accumulated in vivo with varying degrees and influenced cerebral cholesterol metabolism.
Collapse
Affiliation(s)
- Mengmeng Wang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
- Fuli Institute of Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo, Zhejiang 315100, China
| | - Bowen Yang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
- Fuli Institute of Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo, Zhejiang 315100, China
| | - Ping Shao
- Zhejiang University of Technology, Hangzhou, Zhejiang 310058, China
| | - Fan Jie
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
- Fuli Institute of Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo, Zhejiang 315100, China
| | - Xuan Yang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
- Fuli Institute of Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo, Zhejiang 315100, China
| | - Baiyi Lu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
- Fuli Institute of Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo, Zhejiang 315100, China
| |
Collapse
|
3
|
Wang M, Liu Y, Zhao T, Xiao F, Yang X, Lu B. Dietary Sterols and Sterol Oxidation Products on Atherosclerosis: An Insight Provided by Liver Proteomic and Lipidomic. Mol Nutr Food Res 2021; 65:e2100516. [PMID: 34365732 DOI: 10.1002/mnfr.202100516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/15/2021] [Indexed: 11/09/2022]
Abstract
SCOPE The development of atherosclerosis is closely associated with disorder of lipid metabolism. Dietary sterols and their oxidation products play a role in the pathogenesis of atherosclerosis. However, their effects on liver lipid metabolism during the atherosclerosis remain unknown. METHODS AND RESULTS Here, we apply lipidomic and proteomic analysis on liver of ApoE-/- mice feed with phytosterols, cholesterol oxidation products (COPs), or phytosterol oxidation products (POPs) to profile lipid species and reveal the underlying mechanism. Dietary exposure of phytosterols, COPs, and POPs all reduce the accumulation of liver triglyceride (TG), but COPs and POPs accelerate the fibrosis of liver. Lipidomic analysis reveals that phytosterols mainly decrease the levels of phosphatidylinositol (PI), while COPs and POPs both increase the level of digalactosyldiacylglycerol (DGDG) and reduce TG with long-chain polyunsaturated fatty acids. Besides, COPs up-regulated levels of lipids associate with atherosclerosis risk, such as phosphatidylcholines (PC), phosphatidylethanolamine (PE) and ceramides (Cer). POPs down-regulate the level of acyl carnitine (AcCa). Furthermore, proteomic analysis shows that COPs promote oxidative phosphorylation and POPs inhibit the beta oxidation of fatty acids. CONCLUSIONS This study reveals that phytosterols, COPs, and POPs differently change the composition and metabolism of glycerophospholipids, sphingolipids, and glycerolipids in liver of ApoE-/- mice.
Collapse
Affiliation(s)
- Mengmeng Wang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, 310058, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, China.,Ningbo Research Institute, Zhejiang University, Ningbo, 315100, China
| | - Yan Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, 310058, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, China.,Ningbo Research Institute, Zhejiang University, Ningbo, 315100, China
| | - Tian Zhao
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, 310058, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, China.,Ningbo Research Institute, Zhejiang University, Ningbo, 315100, China
| | - Fan Xiao
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, 310058, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, China.,Ningbo Research Institute, Zhejiang University, Ningbo, 315100, China
| | - Xuan Yang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, 310058, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, China.,Ningbo Research Institute, Zhejiang University, Ningbo, 315100, China
| | - Baiyi Lu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, 310058, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, China.,Ningbo Research Institute, Zhejiang University, Ningbo, 315100, China
| |
Collapse
|
4
|
Dietary Cholesterol and the Lack of Evidence in Cardiovascular Disease. Nutrients 2018; 10:nu10060780. [PMID: 29914176 PMCID: PMC6024687 DOI: 10.3390/nu10060780] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/09/2018] [Accepted: 06/13/2018] [Indexed: 12/21/2022] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death in the United States. For years, dietary cholesterol was implicated in increasing blood cholesterol levels leading to the elevated risk of CVD. To date, extensive research did not show evidence to support a role of dietary cholesterol in the development of CVD. As a result, the 2015–2020 Dietary Guidelines for Americans removed the recommendations of restricting dietary cholesterol to 300 mg/day. This review summarizes the current literature regarding dietary cholesterol intake and CVD. It is worth noting that most foods that are rich in cholesterol are also high in saturated fatty acids and thus may increase the risk of CVD due to the saturated fatty acid content. The exceptions are eggs and shrimp. Considering that eggs are affordable and nutrient-dense food items, containing high-quality protein with minimal saturated fatty acids (1.56 gm/egg) and are rich in several micronutrients including vitamins and minerals, it would be worthwhile to include eggs in moderation as a part of a healthy eating pattern. This recommendation is particularly relevant when individual’s intakes of nutrients are suboptimal, or with limited income and food access, and to help ensure dietary intake of sufficient nutrients in growing children and older adults.
Collapse
|
5
|
Current knowledge on the mechanism of atherosclerosis and pro-atherosclerotic properties of oxysterols. Lipids Health Dis 2017; 16:188. [PMID: 28969682 PMCID: PMC5625595 DOI: 10.1186/s12944-017-0579-2] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 09/22/2017] [Indexed: 01/22/2023] Open
Abstract
Due to the fact that one of the main causes of worldwide deaths are directly related to atherosclerosis, scientists are constantly looking for atherosclerotic factors, in an attempt to reduce prevalence of this disease. The most important known pro-atherosclerotic factors include: elevated levels of LDL, low HDL levels, obesity and overweight, diabetes, family history of coronary heart disease and cigarette smoking. Since finding oxidized forms of cholesterol – oxysterols – in lesion in the arteries, it has also been presumed they possess pro-atherosclerotic properties. The formation of oxysterols in the atherosclerosis lesions, as a result of LDL oxidation due to the inflammatory response of cells to mechanical stress, is confirmed. However, it is still unknown, what exactly oxysterols cause in connection with atherosclerosis, after gaining entry to the human body e.g., with food containing high amounts of cholesterol, after being heated. The in vivo studies should provide data to finally prove or disprove the thesis regarding the pro-atherosclerotic prosperities of oxysterols, yet despite dozens of available in vivo research some studies confirm such properties, other disprove them. In this article we present the current knowledge about the mechanism of formation of atherosclerotic lesions and we summarize available data on in vivo studies, which investigated whether oxysterols have properties to cause the formation and accelerate the progress of the disease. Additionally we will try to discuss why such different results were obtained in all in vivo studies.
Collapse
|
6
|
27-Hydroxycholesterol suppresses lipid accumulation by down-regulating lipogenic and adipogenic gene expression in 3T3-L1 cells. Cytotechnology 2016; 69:485-492. [PMID: 26983933 DOI: 10.1007/s10616-016-9962-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 03/04/2016] [Indexed: 10/22/2022] Open
Abstract
Cholesterol oxidation products (oxycholesterols) are produced from cholesterol by automatic and/or enzymatic oxidation of the steroidal backbone and side-chain. Oxycholesterols are present in plasma and serum, suggesting that oxycholesterols are related to the development and progression of various diseases. However, limited information is available about the absolute amounts of oxycholesterols in organs and tissues, and the physiological significance of oxycholesterols in the body. In the present study, we quantified the levels of 13 oxycholesterols in white adipose tissue (WAT) of mice and then evaluated correlations between each oxycholesterol level and WAT weight. The sum of the levels of 13 oxycholesterols in WAT (white adipose tissue) was 15.9 ± 3.4 μg/g of WAT weight and approximately 1 % of cholesterol level. Among oxycholesterols, the levels of 27-hydroxycholesterol (27-OH), an endogenous oxycholesterol produced by enzymatic oxidation, and the relative WAT weights were significantly negatively correlated. Next, we evaluated the effects of 27-OH on lipogenesis and adipogenesis in 3T3-L1 cells. TO901317 (TO), a potent and selective agonist for LXRα, significantly increased intracellular TAG contents, while 27-OH significantly reduced the contents to half when compared with control (DMSO) and completely abolished the effect of TO. In addition, 27-OH significantly reduced the mRNA levels of lipogenic (LXRα and FAS) and adipogenic genes (PPARγ and aP2) during adipocyte maturation of 3T3-L1 cells. In conclusion, our results indicate that 27-OH suppresses lipid accumulation by down-regulating lipogenic and adipogenic gene expression in 3T3-L1 cells.
Collapse
|
7
|
A Comparison of the Potential Unfavorable Effects of Oxycholesterol and Oxyphytosterol in Mice: Different Effects, on Cerebral 24S-Hydroxychoelsterol and Serum Triacylglycerols Levels. Biosci Biotechnol Biochem 2014; 72:3128-33. [DOI: 10.1271/bbb.80256] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
8
|
|
9
|
van Reyk DM, Brown AJ, Hult'en LM, Dean RT, Jessup W. Oxysterols in biological systems: sources, metabolism and pathophysiological relevance. Redox Rep 2013; 11:255-62. [PMID: 17207307 DOI: 10.1179/135100006x155003] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Oxysterols are the 27-carbon products of cholesterol oxidation by both enzymic and non-enzymic mechanisms. Their roles in cholesterol homeostasis, as well as in diseases in which oxidative damage and lipid peroxidation are implicated (e.g. atherosclerosis), have been investigated extensively. However, there are a number of important considerations regarding the physiological/pathophysiological functions and activities of the different oxysterols. First, in both normal and diseased tissues, the levels of oxysterols are very low when compared to the native sterol. Also, when assessing studies that have measured the levels of oxysterols in biological samples, there must be careful consideration as to the method of sample isolation, storage and sampling. This is because of the potential generation or loss of oxysterols during these procedures. Additionally, the relevance of in vitro studies which examine the effects of oxysterols upon cell function should be judged as to cellular oxysterol content (both in terms of the levels of oxysterol and the degree of esterification) resulting from the oxysterol treatment. We present evidence that the means by which oxysterol is delivered in vitro determines whether the oxysterol content reflects what has been found in vivo. Studies identifying the specific cellular targets of oxysterol indicate that several oxysterols may be regulators of cellular lipid metabolism via control of gene transcription.
Collapse
Affiliation(s)
- David M van Reyk
- Department of Medical and Molecular Biosciences, University of Technology, Sydney, Australia.
| | | | | | | | | |
Collapse
|
10
|
Baumgartner S, Mensink RP, Hartog GD, Bast A, Bekers O, Husche C, Lütjohann D, Plat J. Oxyphytosterol formation in humans: Identification of high vs. low oxidizers. Biochem Pharmacol 2013; 86:19-25. [DOI: 10.1016/j.bcp.2013.02.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 02/28/2013] [Accepted: 02/28/2013] [Indexed: 12/11/2022]
|
11
|
Oxidised plant sterols as well as oxycholesterol increase the proportion of severe atherosclerotic lesions in female LDL receptor+/ − mice. Br J Nutr 2013; 111:64-70. [DOI: 10.1017/s0007114513002018] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Oxysterols (oxidised cholesterol) may play a role in the pathogenesis of CVD. Similar to cholesterol, plant sterols are susceptible to oxidation. However, less is known about the potential atherogenicity of oxidised plant sterols (oxyphytosterols). In the present study, the atherogenicity of a mixture of oxyphytosterols was examined by feeding female LDL receptor-deficient (LDLR+/ −) mice for 35 weeks a control diet (atherogenic high-fat diet; n 9), an oxysterol diet (control diet+0·025 % (w/w) oxysterols; n 12) or an oxyphytosterol diet (control diet+0·025 % (w/w) oxyphytosterols; n 12). In the LDLR+/ − mice, serum levels of cholesterol, lipoprotein profiles, cholesterol exposure and inflammatory markers at the end of the experiment were comparable between the three diet groups. Nevertheless, the proportion of severe atherosclerotic lesions was significantly higher after oxysterol (41 %; P= 0·004) and oxyphytosterol (34 %; P= 0·011) diet consumption than after control diet consumption (26 %). Oxyphytosterol levels in the lesions were the highest in the oxyphytosterol group. Here, we show that not only dietary oxysterols but also dietary oxyphytosterols increase the proportion of severe atherosclerotic lesions. This suggests that plant sterols when oxidised may increase atherosclerotic lesion severity instead of lowering the size and severity of lesions when fed in their non-oxidised form. Therefore, this finding might give an indication as to where to find the answer in the current hot debate about the potential atherogenicity of plant sterols. However, to what extent these results can be extrapolated to the human situation warrants further investigation.
Collapse
|
12
|
|
13
|
Vicente SJV, Sampaio GR, Ferrari CKB, Torres EAFS. Oxidation of Cholesterol in Foods and Its Importance for Human Health. FOOD REVIEWS INTERNATIONAL 2012. [DOI: 10.1080/87559129.2011.594972] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Otaegui-Arrazola A, Menéndez-Carreño M, Ansorena D, Astiasarán I. Oxysterols: A world to explore. Food Chem Toxicol 2010; 48:3289-303. [PMID: 20870006 DOI: 10.1016/j.fct.2010.09.023] [Citation(s) in RCA: 178] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 09/15/2010] [Accepted: 09/16/2010] [Indexed: 11/25/2022]
Abstract
Oxysterols (oxidized derivatives of cholesterol and phytosterols) can be generated in the human organism through different oxidation processes, some requiring enzymes. Furthermore, oxysterols are also present in food due to lipid oxidation reactions caused by heating treatments, contact with oxygen, exposure to sunlight, etc., and they could be absorbed from the diet, at different rates depending on their side chain length. In the organism, oxysterols can follow different routes: secreted into the intestinal lumen, esterified and distributed by lipoproteins to different tissues or degraded, mainly in the liver. Cholesterol oxidation products (COPs) have shown cytotoxicity, apoptotic and pro-inflammatory effects and they have also been linked with chronic diseases including atherosclerotic and neurodegenerative processess. In the case of phytosterol oxidation products (POPs), more research is needed on toxic effects. Nevertheless, current knowledge suggests they may also cause cytotoxic and pro-apoptotic effects, although at higher concentrations than COPs. Recently, new beneficial biological activities of oxysterols are being investigated. Whereas COPs are associated with cholesterol homeostasis mediated by different mechanisms, the implication of POPs is not clear yet. Available literature on sources of oxysterols in the organism, metabolism, toxicity and potential beneficial effects of these compounds are reviewed in this paper.
Collapse
Affiliation(s)
- A Otaegui-Arrazola
- Department of Food Science and Nutrition, Physiology and Toxicology, Faculty of Pharmacy, University of Navarra, Pamplona, Spain
| | | | | | | |
Collapse
|
15
|
Okabe T, Toda T, Nukitrangsan N, Inafuku M, Iwasaki H, Yanagita T, Oku H. Comparative study of the effect of basal diet formulation, dietary fat and cholesterol levels on the development of aortic atherosclerotic lesions in B6.KOR-Apoeshl mice. J Oleo Sci 2010; 59:161-7. [PMID: 20299762 DOI: 10.5650/jos.59.161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To optimize the adequate atherogenic diet composition for nutritional atherosclerosis studies utilizing B6.KOR-Apoe(shl) mice, we investigated the effect of dietary cholesterol, AIN formula, and dietary fats on the development of atherosclerosis. Cholesterol supplementation (0.15-2%) for 12 weeks resulted in a dose-dependent increase in the development of atherosclerosis. Furthermore, there were no significant differences in the degree of atherosclerosis between B6.KOR-Apoe(shl) mice fed a modified-AIN-76 diet and those fed a modified-AIN-93M diet containing corn oil or soybean oil for 10 and 12 weeks. The present experiment indicates that the adequate dietary level of cholesterol was 0.15%, and that further studies are necessary to determine the optimal level of various types of dietary oils for nutritional atherosclerosis experiments in B6.KOR-Apoe(shl) mice.
Collapse
Affiliation(s)
- Takafumi Okabe
- United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| | | | | | | | | | | | | |
Collapse
|
16
|
Guillen N, Acín S, Surra JC, Arnal C, Godino J, García-Granados A, Muniesa P, Ruiz-Gutiérrez V, Osada J. Apolipoprotein E determines the hepatic transcriptional profile of dietary maslinic acid in mice. J Nutr Biochem 2009; 20:882-93. [DOI: 10.1016/j.jnutbio.2008.08.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 08/08/2008] [Accepted: 08/11/2008] [Indexed: 01/30/2023]
|
17
|
Ferré N, Martínez-Clemente M, López-Parra M, González-Périz A, Horrillo R, Planagumà A, Camps J, Joven J, Tres A, Guardiola F, Bataller R, Arroyo V, Clària J. Increased susceptibility to exacerbated liver injury in hypercholesterolemic ApoE-deficient mice: potential involvement of oxysterols. Am J Physiol Gastrointest Liver Physiol 2009; 296:G553-62. [PMID: 19136384 DOI: 10.1152/ajpgi.00547.2007] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The contribution of metabolic factors to the severity of liver disease is not completely understood. In this study, apolipoprotein E-deficient (ApoE-/-) mice were evaluated to define potential effects of hypercholesterolemia on the severity of carbon tetrachloride (CCl4)-induced liver injury. Under baseline conditions, hypercholesterolemic ApoE-/- mice showed increased hepatic oxidative stress (SOD activity/4-hydroxy-2-nonenal immunostaining) and higher hepatic TGF-beta1, MCP-1, and TIMP-1 expression than wild-type control mice. After CCl4 challenge, ApoE-/- mice exhibited exacerbated steatosis (Oil Red O staining), necroinflammation (hematoxylin-eosin staining), macrophage infiltration (F4/80 immunohistochemistry), and fibrosis (Sirius red staining and alpha-smooth muscle actin immunohistochemistry) and more severe liver injury [alanine aminotransferase (ALT) and aspartate aminotransferase] than wild-type controls. Direct correlations were identified between serum cholesterol and hepatic steatosis, fibrosis, and ALT levels. These changes did not reflect the usual progression of the disease in ApoE-/- mice, since exacerbated liver injury was not present in untreated age-paired ApoE-/- mice. Moreover, hepatic cytochrome P-450 expression was unchanged in ApoE-/- mice. To explore potential mechanisms, cell types relevant to liver pathophysiology were exposed to selected cholesterol-oxidized products. Incubation of hepatocytes with a mixture of oxysterols representative of those detected by GC-MS in livers from ApoE-/- mice resulted in a concentration-dependent increase in total lipoperoxides and SOD activity. In hepatic stellate cells, oxysterols increased IL-8 secretion through a NF-kappaB-independent mechanism and upregulated TIMP-1 expression. In macrophages, oxysterols increased TGF-beta1 secretion and MCP-1 expression in a concentration-dependent manner. Oxysterols did not compromise cell viability. Taken together, these findings demonstrate that hypercholesterolemic mice are sensitized to liver injury and that cholesterol-derived products (i.e., oxysterols) are able to induce proinflammatory and profibrogenic mechanisms in liver cells.
Collapse
Affiliation(s)
- Natàlia Ferré
- Department of Biochemistry and Molecular Genetics, Liver Unit, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Dried plums (prunes) reduce atherosclerosis lesion area in apolipoprotein E-deficient mice. Br J Nutr 2008; 101:233-9. [PMID: 18761779 DOI: 10.1017/s0007114508995684] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Dried plums are a fruit high in pectin with substantial antioxidant activity. Previous studies in rats and man indicate that dried plums or plum fibre lower liver and plasma cholesterol, respectively. The apoE-deficient mouse, which develops atherosclerotic lesions rapidly when fed cholesterol, was used to determine the ability of dried plums to reduce atherosclerosis. Diets containing 0.15% cholesterol and either 0 (B+C), 4.75% (Lo DP) or 9.5% (Hi DP) dried plum powder were fed for 5 months. An additional group fed the basal diet without cholesterol (B-C) was included as a negative control. Arterial trees were dissected, stained to visualize lesions, and lesion area was quantitated by imaging software. Urinary thiobarbituric acid-reactive substances (TBARS) excretion and serum amyloid P-component (SAP) were measured as indicators of oxidative stress and inflammation, respectively. Final serum cholesterol was significantly increased and serum TAG decreased in the B+C group and dried plum groups relative to the B-C group. Percentage arterial tree atherosclerotic lesion area was significantly lower in the B-C and Lo DP groups compared to the B+C group (P<0.05), with a trend for a difference between the B+C and Hi DP groups (P=0.075). SAP concentration was significantly lower in the B-C and Lo DP groups with the Hi DP group trending lower than the B+C group. Urinary TBARS excretion did not differ among the groups. These results suggest that consuming dried plums may help slow the development of atherosclerosis.
Collapse
|
19
|
Noshiro M, Usui E, Kawamoto T, Kubo H, Fujimoto K, Furukawa M, Honma S, Makishima M, Honma KI, Kato Y. Multiple mechanisms regulate circadian expression of the gene for cholesterol 7alpha-hydroxylase (Cyp7a), a key enzyme in hepatic bile acid biosynthesis. J Biol Rhythms 2007; 22:299-311. [PMID: 17660447 DOI: 10.1177/0748730407302461] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cholesterol 7alpha-hydroxylase (CYP7A) and sterol 12alpha-hydroxylase (CYP8B) in bile acid biosynthesis and 3-hydroxyl-3-methylglutaryl CoA reductase (HMGCR) in cholesterol biosynthesis are the key enzymes in hepatic metabolic pathways, and their transcripts exhibit circadian expression profiles in rodent liver. The authors determined transcript levels of these enzymes and the regulatory factors for Cyp7a--including Dbp, Dec2, E4bp4, Hnf4alpha, Pparalpha, Lxralpha, Rev-erbalpha, and Rev-erbbeta--in the liver of wild-type and homozygous Clock mutant mice (Clock/Clock) and examined the effects of these transcription factors on the transcription activities of Cyp7a. The expression profile of the Cyp7a transcript in wild-type mice showed a strong circadian rhythm in both the 12L:12D light-dark cycle and constant darkness, and that in Clock/Clock also exhibited a circadian rhythm at an enhanced level with a lower amplitude, although its protein level became arrhythmic at a high level. The expression profile of Cyp8b mRNA in wild-type mice showed a shifted circadian rhythm from that of Cyp7a, becoming arrhythmic in Clock/Clock at an expression level comparable to that of wild-type mice. The expression profile of Hmgcr mRNA also lost its strong circadian rhythm in Clock/Clock , showing an expression level comparable to that of wild-type mice. The expressions of Dbp, Dec2, Rev-erbalpha, and Rev-erb beta--potent regulators for Cyp7a expression--were abolished or became arrhythmic in Clock/Clock, while other regulators for Cyp7a-Lxralpha, Hnf4alpha, Pparalpha, and E4bp4--had either less affected or enhanced expression in Clock/Clock. In luciferase reporter assays, REV-ERBalpha/beta, DBP, LXRalpha, and HNF4alpha increased the promoter activity of Cyp7a, whereas DEC2 abolished the transcription from the Cyp7a promoter: E4BP4 and PPARalpha were moderate negative regulators. Furthermore, knockdown of REV-ERBalpha/beta with siRNA suppressed Cyp7a transcript levels, and in the electrophoretic mobility shift assay, REV-ERBalpha/beta bound to the promoter of Cyp7a . These observations suggest that (1) active CLOCK is essential for the robust circadian expression of hepatic metabolic enzymes (Cyp7a, Cyp8b, and Hmgcr); (2) clock-controlled genes--DBP, DEC2, and REV-ERBalpha/beta--are direct regulators required for the robust circadian rhythm of Cyp7a; and (3) the circadian rhythm of Cyp7a is regulated by multiple transcription factors, including DBP, REV-ERBalpha/beta, LXRalpha, HNF4alpha DEC2, E4BP4, and PPARalpha.
Collapse
Affiliation(s)
- Mitsuhide Noshiro
- Department of Dental and Medical Biochemistry, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
|
21
|
Prunet C, Petit JM, Ecarnot-Laubriet A, Athias A, Miguet-Alfonsi C, Rohmer JF, Steinmetz E, Néel D, Gambert P, Lizard G. High circulating levels of 7beta- and 7alpha-hydroxycholesterol and presence of apoptotic and oxidative markers in arterial lesions of normocholesterolemic atherosclerotic patients undergoing endarterectomy. ACTA ACUST UNITED AC 2005; 54:22-32. [PMID: 16376175 DOI: 10.1016/j.patbio.2004.11.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2004] [Accepted: 11/22/2004] [Indexed: 11/19/2022]
Abstract
In previous investigations, we found that 7beta-hydroxycholesterol had potent pro-apoptotic, and pro-oxidative properties. So, we asked whether the circulating level of this oxysterol was enhanced in atherosclerotic patients undergoing endarterectomy of the superficial femoral artery. To this end, 7beta-hydroxycholesterol serum concentrations were determined and compared with common lipid parameters in atherosclerotic patients, and in healthy subjects. 7alpha-hydroxycholesterol was simultaneously measured to evaluate the reliability of the method used for oxysterol analysis. On normal and atherosclerotic arterial fragments from patients, markers of oxidation (4-hydroxynonenal (4-HNE) adducts), and apoptosis (activated caspase-3; condensed/fragmented nuclei) were studied. Interestingly, high serum concentrations of 7beta- and 7alpha-hydroxycholesterol were found in normocholesterolemic atherosclerotic patients. However, in statin-treated patients, the circulating levels of 7beta- and 7alpha-hydroxycholesterol tend towards normal values. Therefore, 7beta- as well as 7alpha-hydroxycholesterol could be more appropriate markers of lipid metabolism disorders than cholesterol or LDL in normocholesterolemic patients with atherosclerosis of the lower limbs, and statins could normalize their serum concentrations. At the arterial level, apoptotic cells were mainly identified in low grade lesions and no statin effects were found on oxidation and apoptosis.
Collapse
Affiliation(s)
- C Prunet
- Laboratoire de Biochimie Médicale, INSERM U498/IFR 100, CHU/Hôpital du Bocage, BP 77908, 21079 Dijon cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Tomoyori H, Kawata Y, Higuchi T, Ichi I, Sato H, Sato M, Ikeda I, Imaizumi K. Phytosterol oxidation products are absorbed in the intestinal lymphatics in rats but do not accelerate atherosclerosis in apolipoprotein E-deficient mice. J Nutr 2004; 134:1690-6. [PMID: 15226455 DOI: 10.1093/jn/134.7.1690] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Phytosterol oxidation products (oxyphytosterols) are formed during the processing and storage of foods. However, it is unknown whether oxyphytosterols affect human health. To address these issues, we prepared beta-sitosterol and campesterol oxides, evaluated their lymphatic absorption in rats, and examined the effect of an oxyphytosterol diet on atherosclerosis in apolipoprotein (apo) E-deficient mice. The lymphatic absorption of cholesterol and 6 oxyphytosterols (7alpha-hydroxy, 7beta-hydroxy, beta-epoxy, alpha-epoxy, dihydroxy, and 7-keto) of beta-sitosterol or campesterol was assessed in thoracic duct-cannulated rats fed an AIN-93G-based diet containing 2.5 g of cholesterol, oxyphytosterols, or intact phytosterols per kg. Lymphatic recoveries (on a mass basis) of oxycampesterols (15.9 +/- 2.8%, n = 10) and oxysitosterols (9.12 +/- 1.77%, n = 10) were higher than for campesterol (5.47 +/- 1.02%, n = 12, P < 0.05) and beta-sitosterol (2.16 +/- 0.37%, n = 12, P < 0.05), but lower than for cholesterol (37.3 +/- 8.3%, n = 6, P < 0.05). Apo E-deficient mice were fed an AIN-93G-based diet containing 0.2 g oxyphytosterols or intact phytosterols per kg for 9 wk. Diet-derived oxyphytosterols accumulated in the serum, liver, and aorta. Furthermore, the oxyphytosterol diet increased oxycholesterol in the serum compared to the phytosterol diet. However, there was no significant difference between the 2 groups in the serum and aortic cholesterol concentration, the lesion area in the aortic root, or 8-iso-prostaglandin F2alpha concentration in the urine. These results indicate that exogenous oxyphytosterols are well-absorbed and accumulate in the body, but do not promote the development of atherosclerosis in apo E-deficient mice.
Collapse
Affiliation(s)
- Hiroko Tomoyori
- Laboratory of Nutrition Chemistry, Division of Bioresource and Bioenvironmental Sciences, Graduate School, Kyushu University, Fukuoka 812-8681, Japan
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Souidi M, Dubrac S, Parquet M, Volle DH, Lobaccaro JMA, Mathé D, Combes O, Scanff P, Lutton C, Aigueperse J. Les oxystérols : métabolisme, rôles biologiques et pathologies associées. ACTA ACUST UNITED AC 2004; 28:279-93. [PMID: 15094678 DOI: 10.1016/s0399-8320(04)94919-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Maâmar Souidi
- Département de Protection de la santé de l'Homme et de Dosimétrie, Section Autonome de Radiobiologie Appliquée à la Médecine, Institut de Radioprotection et de Sûreté Nucléaire, IRSN, B.P No 17, 92262 Fontenay-aux-roses Cedex
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Schweizer RAS, Zürcher M, Balazs Z, Dick B, Odermatt A. Rapid hepatic metabolism of 7-ketocholesterol by 11beta-hydroxysteroid dehydrogenase type 1: species-specific differences between the rat, human, and hamster enzyme. J Biol Chem 2004; 279:18415-24. [PMID: 14973125 DOI: 10.1074/jbc.m313615200] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The role of 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) in the local activation of the glucocorticoid receptor by converting inactive 11-ketoglucocorticoids to active 11beta-hydroxyglucocorticoids is well established. Currently, 11beta-HSD1 is considered a promising target for treatment of obese and diabetic patients. Here, we demonstrate a role of 11beta-HSD1 in the metabolism of 7-ketocholesterol (7KC), the major dietary oxysterol. Comparison of recombinant 11beta-HSD1, transiently expressed in human embryonic kidney 293 cells, revealed the stereo-specific interconversion of 7KC and 7beta-hydroxycholesterol by rat and human 11beta-HSD1, whereas the hamster enzyme interconverted 7alpha-hydroxycholesterol, 7beta-hydroxycholesterol, and 7KC. In contrast to lysates, which efficiently catalyzed both oxidation and reduction, intact cells exclusively reduced 7KC. These findings were confirmed using rat and hamster liver homogenates, intact rat hepatocytes, and intact hamster liver tissue slices. Reduction of 7KC was abolished upon inhibition of 11beta-HSD1 by carbenoxolone (CBX) or 2'-hydroxyflavanone. In vivo, after gavage feeding rats, 7KC rapidly appeared in the liver and was converted to 7beta-hydroxycholesterol. CBX significantly decreased the ratio of 7beta-hydroxycholesterol to 7KC, supporting the evidence from cell culture experiments for 11beta-HSD1-dependent reduction of 7KC to 7beta-hydroxycholesterol. Upon inhibition of 11beta-HSD1 by CBX, 7KC tended to accumulate in the liver, and plasma 7KC concentration increased. Together, our results suggest that 11beta-HSD1 efficiently catalyzes the first step in the rapid hepatic metabolism of dietary 7KC, which may explain why dietary 7KC has little or no effect on the development of atherosclerosis.
Collapse
Affiliation(s)
- Roberto A S Schweizer
- Division of Nephrology and Hypertension, Department of Clinical Research, University of Berne, 3010 Berne, Switzerland
| | | | | | | | | |
Collapse
|
25
|
Ni W, Tsuda Y, Takashima S, Sato H, Sato M, Imaizumi K. Anti-atherogenic effect of soya and rice-protein isolate, compared with casein, in apolipoprotein E-deficient mice. Br J Nutr 2003; 90:13-20. [PMID: 12844370 DOI: 10.1079/bjn2003878] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Our objective was to determine whether dietary plant proteins such as soya-protein isolate (SPI) and rice-protein isolate (RPI) compared with animal proteins, such as casein, could afford beneficial effects on atherosclerosis development in apolipoprotein E-deficient mice. In experiment 1, male and female mice were fed on a purified diet containing either casein, SPI or RPI for 9 weeks. The en face lesion area in the aorta (P<0.05) and the lesion size in the aortic root (P<0.05) in mice fed the casein-based diet were greater than those in the SPI or RPI groups. The plant protein groups had an increased concentration of serum l-arginine (P<0.05) and NO metabolites (NO2 plus NO3) (P<0.05) than did the casein group. The inhibitory effect of the plant proteins on the lesion formations was unrelated to gender and total serum cholesterol. In experiment 2, the l-arginine and l-methionine contents were the same in the l-arginine-supplemented casein-based and SPI-based diets, and between the l-methionine-supplemented SPI-based and the casein-based diets. Male mice were fed on the diets for 15 weeks. There were no significant differences in the en face lesion area and the lesion size between the casein group and the l-arginine-supplemented group, although the serum l-arginine (P<0.05) and NO2 plus NO3 (P<0.05) concentrations in the supplemented group were higher than those in the casein group. There were no significant effects of l-methionine supplementation on the lesion formations. In experiment 3, male mice were given the casein-based diet or the l-arginine-supplemented casein-based diet together with water or water containing an NO synthesis inhibitor for 9 weeks. When given the casein-based diet, the inhibitor drinking, compared with water drinking, resulted in a reduction of the serum NO2 plus NO3 concentration (P<0.01) and an increase in the en face lesion area (P<0.05) and the lesion size (P<0.01). When given the l-arginine-supplemented diet, the inhibitor drinking, compared with water drinking, resulted in no increase in the lesion area and size. These results demonstrate anti-atherogenic potentials of SPI- as well as RPI-derived proteins, but their l-arginine and l-methionine contents were not sufficient enough to explain the underlying mechanism(s).
Collapse
Affiliation(s)
- Weihua Ni
- Laboratory of Nutrition Chemistry, Division of Bioresource and Bioenvironmental Sciences, Graduate School, Kyushu University, Fukuoka 812-8581, Japan
| | | | | | | | | | | |
Collapse
|
26
|
Carpenter KLH. Good COP, bad COP: an unsolved murder. Are dietary cholesterol oxidation products guilty of atherogenicity? Br J Nutr 2002; 88:335-8. [PMID: 12323082 DOI: 10.1079/bjn2002707] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Keri L H Carpenter
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| |
Collapse
|