1
|
Deehan EC, Al Antwan S, Witwer RS, Guerra P, John T, Monheit L. Perspective: Revisiting the Concepts of Prebiotic and Prebiotic Effect in Light of Scientific and Regulatory Progress - A Consensus Paper from the Global Prebiotic Association (GPA). Adv Nutr 2024:100329. [PMID: 39481540 DOI: 10.1016/j.advnut.2024.100329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/18/2024] [Accepted: 10/25/2024] [Indexed: 11/02/2024] Open
Abstract
The term prebiotic has been used for almost three decades and has undergone numerous updates over the years. The scientific literature reveals that despite continuous efforts to establish a globally unified definition to guide jurisdictional regulations and product innovations, ambiguity continues to surround the terms prebiotic and prebiotic effect, leading to products that lack in full regulatory adherence being marketed worldwide. Thus, to reflect the current state of scientific research and knowledge and for the continuous advancement of the category, an update to the current prebiotic definition is warranted. This update includes removing the term selectivity, considering additional locations of action besides the gut, highlighting prebiotic performance benefits such as cognitive and athletic, and providing a clear standalone definition for prebiotic effect. The Global Prebiotic Association (GPA) is a leading information and industry hub committed to raising awareness about prebiotics, their emerging and well-established health benefits, and prebiotic product integrity and efficacy. In this position paper, GPA builds on previous prebiotic definitions to propose the following expanded definition for prebiotic: "a compound or ingredient that is utilized by the microbiota producing a health or performance benefit." In addition to prebiotic, GPA also defines prebiotic effect as: "a health or performance benefit that arises from alteration of the composition and/or activity of the microbiota, as a direct or indirect result of the utilization of a specific and well-defined compound or ingredient by microorganisms." With these two definitions, GPA aims to paint a clearer picture for the term prebiotic, and by incorporating an industry point of view, these updated definitions may be used alongside current scientific and regulatory perspectives to move the category forward. STATEMENT OF SIGNIFICANCE: The purpose of this paper is to revisit the concepts of prebiotic and prebiotic effect by providing a scientific-based industry perspective. The proposed definitions of prebiotic and prebiotic effect reflect the recent discoveries in metagenomics and prebiotic research after the International Scientific Association for Probiotics and Prebiotics' (ISAPP's) 2017 prebiotic definition and propose terminology changes that are timely and necessary. These changes aim to maintain the clarity and usefulness of the prebiotic definition to the scientific community, industry, healthcare providers, and consumers, while ensuring scientific validity, comprehensiveness, and justification of each part of the prebiotic definition, including abandoning the term selectivity and introducing concepts of performance benefits and prebiotic effect.
Collapse
Affiliation(s)
- Edward C Deehan
- Department of Food Science and Technology, University of Nebraska, Lincoln, NE, 68588, USA; Nebraska Food for Health Center, University of Nebraska, Lincoln, NE, 68588, USA; Scientific & Technical Committee, Global Prebiotic Association, 540 N. Dearborn St., Suite 10837, Chicago, IL, 60610, USA.
| | - Santa Al Antwan
- SGS Nutrasource, 120 Research Ln, Guelph, ON, N1G 0B4, Canada
| | - Rhonda S Witwer
- Scientific & Technical Committee, Global Prebiotic Association, 540 N. Dearborn St., Suite 10837, Chicago, IL, 60610, USA; Archer Daniels Midland Company, 4666 Faries Parkway, Decatur, IL, 62525, USA
| | - Paula Guerra
- Scientific & Technical Committee, Global Prebiotic Association, 540 N. Dearborn St., Suite 10837, Chicago, IL, 60610, USA; SGS Nutrasource, 120 Research Ln, Guelph, ON, N1G 0B4, Canada.
| | - Tania John
- Scientific & Technical Committee, Global Prebiotic Association, 540 N. Dearborn St., Suite 10837, Chicago, IL, 60610, USA; SGS Nutrasource, 120 Research Ln, Guelph, ON, N1G 0B4, Canada
| | - Len Monheit
- Scientific & Technical Committee, Global Prebiotic Association, 540 N. Dearborn St., Suite 10837, Chicago, IL, 60610, USA; Global Prebiotic Association / Industry Transparency Center, 540 N. Dearborn St., Suite 10837, Chicago, IL, 60610, USA
| |
Collapse
|
2
|
He W, Xie Z, Wittig NK, Zachariassen LF, Andersen A, Andersen HJ, Birkedal H, Nielsen DS, Hansen AK, Bertram HC. Yogurt Benefits Bone Mineralization in Ovariectomized Rats with Concomitant Modulation of the Gut Microbiome. Mol Nutr Food Res 2022; 66:e2200174. [PMID: 36039478 PMCID: PMC9788323 DOI: 10.1002/mnfr.202200174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/04/2022] [Indexed: 12/30/2022]
Abstract
SCOPE Evidence supports that gut-modulating foods potentially can suppress bone loss in postmenopausal women. This study aims to investigate the effect of milk calcium-enriched milk, yogurt, and yogurt-inulin combination on the gut-bone association. METHODS AND RESULTS A 6-week intervention study is conducted in ovariectomized rats. Four pastes containing milk calcium-fortified milk (M-Ca), milk calcium-fortified yogurt (Y-Ca), inulin-fortified Y-Ca (Y-I-Ca), or an isoconcentration of calcium carbonate (Ca-N), and a calcium-deficient paste are provided. M-Ca does not influence bone mineral density and content (BMD and BMC), femur mechanical strength, or femoral microstructure compared to Ca-N, but Y-Ca increases spine BMD. The serum metabolome reveals that Y-Ca modulated glycine-related pathways with reduced glycine, serine, and threonine. No additive effects of yogurt and inulin are found on bone parameters. Correlation analysis shows that increased lactobacilli and reduced Clostridiaceae members in Y-Ca is associated with an increased spine BMD. Increases in Bifidobacterium pseudolongum, Turicibacter, Blautia, and Allobaculum and gut short-chain fatty acids in Y-I-Ca are not reflected in bone parameters. CONCLUSION Yogurt as calcium vehicle contributes to increased spine BMD concomitant with changes in the gut microbiome and glycine-related pathways, while adding inulin to yogurt does not affect bone mineralization in ovariectomized rats.
Collapse
Affiliation(s)
- Weiwei He
- Department of Food ScienceAarhus UniversityAgro Food Park 48Aarhus N8200Denmark
| | - Zhuqing Xie
- Department of Food ScienceUniversity of CopenhagenDK‐1958FrederiksbergDenmark
| | - Nina Kølln Wittig
- Department of Chemistry and iNANOAarhus UniversityDK‐8000Aarhus CDenmark
| | - Line F. Zachariassen
- Department of Veterinary and Animal SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenDK‐1958FrederiksbergDenmark
| | | | | | - Henrik Birkedal
- Department of Chemistry and iNANOAarhus UniversityDK‐8000Aarhus CDenmark
| | - Dennis S. Nielsen
- Department of Food ScienceUniversity of CopenhagenDK‐1958FrederiksbergDenmark
| | - Axel K. Hansen
- Department of Veterinary and Animal SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenDK‐1958FrederiksbergDenmark
| | | |
Collapse
|
3
|
Qiu Z, Qiao Y, Zhang B, Sun-Waterhouse D, Zheng Z. Bioactive polysaccharides and oligosaccharides from garlic (Allium sativum L.): Production, physicochemical and biological properties, and structure-function relationships. Compr Rev Food Sci Food Saf 2022; 21:3033-3095. [PMID: 35765769 DOI: 10.1111/1541-4337.12972] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 02/08/2022] [Accepted: 04/11/2022] [Indexed: 02/06/2023]
Abstract
Garlic is a common food, and many of its biological functions are attributed to its components including functional carbohydrates. Garlic polysaccharides and oligosaccharides as main components are understudied but have future value due to the growing demand for bioactive polysaccharides/oligosaccharides from natural sources. Garlic polysaccharides have molecular weights of 1 × 103 to 2 × 106 Da, containing small amounts of pectins and fructooligosaccharides and large amounts of inulin-type fructans ((2→1)-linked β-d-Fruf backbones alone or with attached (2→6)-linked β-d-Fruf branched chains). This article provides a detailed review of research progress and identifies knowledge gaps in extraction, production, composition, molecular characteristics, structural features, physicochemical properties, bioactivities, and structure-function relationships of garlic polysaccharides/oligosaccharides. Whether the extraction processes, synthesis approaches, and modification methods established for other non-garlic polysaccharides are also effective for garlic polysaccharides/oligosaccharides (to preserve their desired molecular structures and bioactivities) requires verification. The metabolic processes of ingested garlic polysaccharides/oligosaccharides (as food ingredients/dietary supplements), their modes of action in healthy humans or populations with chronic conditions, and molecular/chain organization-bioactivity relationships remain unclear. Future research directions related to garlic polysaccharides/oligosaccharides are discussed.
Collapse
Affiliation(s)
- Zhichang Qiu
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Yiteng Qiao
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Bin Zhang
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Dongxiao Sun-Waterhouse
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China.,School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Zhenjia Zheng
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
4
|
Topolska K, Bienko M, Ptaszek P, Florkiewicz A, Radzki RP, Filipiak-Florkiewicz A. When Incorporated into Fruit Sorbet Matrix, Are the Fructans in Natural Raw Materials More Beneficial for Bone Health than Commercial Formulation Added Alone? Animals (Basel) 2022; 12:ani12091134. [PMID: 35565561 PMCID: PMC9101039 DOI: 10.3390/ani12091134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/07/2022] [Accepted: 04/19/2022] [Indexed: 11/16/2022] Open
Abstract
We assessed the extent to which fructans from various sources and added in various forms (raw materials in diet alone or incorporated into a strawberry matrix) differ in their effectiveness towards selected parameters related to bone health under calcium hypoalimentation in growing female Wistar rats. The aim of this study was to evaluate the levels of selected parameters involved in calcium metabolism, in response to a 12-week restriction of Ca intake: serum ions (Ca, Mg, P); the activity of alkaline phosphatase—using a BS 120 analyzer; the markers of bone turnover (osteocalcin, CTX; using a Rat-MidTMOsteocalcinEIA Kit and RatLapsTMEIA, respectively); and the bone mineral content (BMC) and density (BMD), using a Norland Excell Plus Densitometer. Among the examined markers, the CTX concentration increased dramatically under calcium hypoalimentation. The presence of Jerusalem artichoke (independently of the form of addition) and yacon root powder (with strawberry sorbet matrix) in the rats’ diet led to a significantly lower CTX concentration than was observed in the low-calcium control group. The type of fructan influenced the bone mass content. When fructan was added to the low-calcium diet as an ingredient of sorbet, it exerted more pronounced effects on the biochemical parameters of bone metabolism than when added alone, in the growing-female-rat model.
Collapse
Affiliation(s)
- Kinga Topolska
- Department of Plant Product Technology and Nutrition Hygiene, Faculty of Food Technology, University of Agriculture in Krakow, al. Mickiewicza 21, 31-120 Krakow, Poland;
- Correspondence: ; Tel.: +48-12-6624832
| | - Marek Bienko
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-033 Lublin, Poland; (M.B.); (R.P.R.)
| | - Paweł Ptaszek
- Department of Fermentation Technology and Microbiology, Faculty of Food Technology, University of Agriculture in Krakow, al. Mickiewicza 21, 31-120 Krakow, Poland;
| | - Adam Florkiewicz
- Department of Food Analysis and Quality Assessment, Faculty of Food Technology, University of Agriculture in Krakow, al. Mickiewicza 21, 31-120 Krakow, Poland;
| | - Radoslaw P. Radzki
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-033 Lublin, Poland; (M.B.); (R.P.R.)
| | - Agnieszka Filipiak-Florkiewicz
- Department of Plant Product Technology and Nutrition Hygiene, Faculty of Food Technology, University of Agriculture in Krakow, al. Mickiewicza 21, 31-120 Krakow, Poland;
| |
Collapse
|
5
|
Barbero-Becerra V, Juárez-Hernández E, Chávez-Tapia NC, Uribe M. Inulin as a Clinical Therapeutic Intervention in Metabolic Associated Fatty Liver Disease. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2020.1867997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
| | - Eva Juárez-Hernández
- Translational Research Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
| | | | - Misael Uribe
- Gastroenterology and Obesity Unit., Medica Sur Clinic & Foundation, Mexico City, Mexico
| |
Collapse
|
6
|
Cao S, Cladis DP, Weaver CM. Use of Calcium Isotopic Tracers To Determine Factors That Perturb Calcium Metabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12886-12892. [PMID: 32299214 DOI: 10.1021/acs.jafc.0c01641] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Calcium plays an important role in maintaining bone health. Ensuring adequate calcium intake throughout life is essential for reaching greater peak bone mass in young adulthood and lowering osteoporotic fracture risk when aging. Calcium homeostasis involves a complex interaction between three organ systems: intestine, kidney, and bone. Metabolic balance plus kinetic studies using calcium isotopic tracers can estimate calcium metabolism parameters and pinpoint how organs and processes are perturbed by internal and external modifiers. Both modifiable factors (e.g., vitamin D supplementations and dietary bioactives) and non-modifiable factors (e.g., age, sex, and race) influence calcium utilization. Current evidence suggests that prebiotic fibers may offer an alternative approach to enhance calcium absorption through altering gut microbiota to ultimately improve bone health.
Collapse
Affiliation(s)
- Sisi Cao
- Department of Nutrition Science, Purdue University, West Lafayette, Indiana 47907, United States
| | - Dennis P Cladis
- Department of Food Science, Purdue University, West Lafayette, Indiana 47907, United States
| | - Connie M Weaver
- Department of Food Science, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
7
|
Wan X, Guo H, Liang Y, Zhou C, Liu Z, Li K, Niu F, Zhai X, Wang L. The physiological functions and pharmaceutical applications of inulin: A review. Carbohydr Polym 2020; 246:116589. [PMID: 32747248 DOI: 10.1016/j.carbpol.2020.116589] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 12/13/2022]
Abstract
Inulin (IN), a fructan-type plant polysaccharide, is widely found in nature. The major plant sources of IN include chicory, Jerusalem artichoke, dahlia etc. Studies have found that IN possessed a wide array of biological activities, e.g. as a prebiotic to improve the intestinal microbe environment, regulating blood sugar, regulating blood lipids, antioxidant, anticancer, immune regulation and so on. Currently, IN is widely used in the food and pharmaceutical industries. IN can be used as thickener, fat replacer, sweetener and water retaining agent in the food industry. IN also can be applied in the pharmaceutics as stabilizer, drug carrier, and auxiliary therapeutic agent for certain diseases such as constipation and diabetes. This paper reviews the physiological functions of IN and its applications in the field of pharmaceutics, analyzes its present research status and future research direction. This review will serve as a one-in-all resource for the researchers who are interested to work on IN.
Collapse
Affiliation(s)
- Xinhuan Wan
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hao Guo
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yiyu Liang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Changzheng Zhou
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zihao Liu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Kunwei Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fengju Niu
- Shandong Institute of Traditional Chinese Medicine, Ji'nan, China
| | - Xin Zhai
- Department of Ecology and Evolution, University of Chicago, Chicago, USA
| | - Lizhu Wang
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
8
|
Dahl WJ, Agro NC, Eliasson ÅM, Mialki KL, Olivera JD, Rusch CT, Young CN. Health Benefits of Fiber Fermentation. J Am Coll Nutr 2017; 36:127-136. [PMID: 28067588 DOI: 10.1080/07315724.2016.1188737] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Although fiber is well recognized for its effect on laxation, increasing evidence supports the role of fiber in the prevention and treatment of chronic disease. The aim of this review is to provide an overview of the health benefits of fiber and its fermentation, and describe how the products of fermentation may influence disease risk and treatment. Higher fiber intakes are associated with decreased risk of cardiovascular disease, type 2 diabetes, and some forms of cancer. Fiber may also have a role in lowering blood pressure and in preventing obesity by limiting weight gain. Fiber is effective in managing blood glucose in type 2 diabetes, useful for weight loss, and may provide therapeutic adjunctive roles in kidney and liver disease. In addition, higher fiber diets are not contraindicated in inflammatory bowel disease or irritable bowel syndrome and may provide some benefit. Common to the associations with disease reduction is fermentation of fiber and its potential to modulate microbiota and its activities and inflammation, specifically the production of anti-inflammatory short chain fatty acids, primarily from saccharolytic fermentation, versus the deleterious products of proteolytic activity. Because fiber intake is inversely associated with all-cause mortality, mechanisms by which fiber may reduce chronic disease risk and provide therapeutic benefit to those with chronic disease need further elucidation and large, randomized controlled trials are needed to confirm causality.Teaching Points• Strong evidence supports the association between higher fiber diets and reduced risk of cardiovascular disease, type 2 diabetes, and some forms of cancer.• Higher fiber intakes are associated with lower body weight and body mass index, and some types of fiber may facilitate weight loss.• Fiber is recommended as an adjunctive medical nutritional therapy for type 2 diabetes, chronic kidney disease, and certain liver diseases.• Fermentation and the resulting shifts in microbiota composition and its activity may be a common means by which fiber impacts disease risk and management.
Collapse
Affiliation(s)
- Wendy J Dahl
- a Food Science and Human Nutrition Department , University of Florida/IFAS , Gainesville , Florida
| | - Nicole C Agro
- a Food Science and Human Nutrition Department , University of Florida/IFAS , Gainesville , Florida
| | - Åsa M Eliasson
- a Food Science and Human Nutrition Department , University of Florida/IFAS , Gainesville , Florida
| | - Kaley L Mialki
- a Food Science and Human Nutrition Department , University of Florida/IFAS , Gainesville , Florida
| | - Joseph D Olivera
- a Food Science and Human Nutrition Department , University of Florida/IFAS , Gainesville , Florida
| | - Carley T Rusch
- a Food Science and Human Nutrition Department , University of Florida/IFAS , Gainesville , Florida
| | - Carly N Young
- a Food Science and Human Nutrition Department , University of Florida/IFAS , Gainesville , Florida
| |
Collapse
|
9
|
Topolska K, Filipiak-Florkiewicz A, Florkiewicz A, Cieslik E. Fructan stability in strawberry sorbets in dependence on their source and the period of storage. Eur Food Res Technol 2016. [DOI: 10.1007/s00217-016-2783-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Inulin: Properties, health benefits and food applications. Carbohydr Polym 2016; 147:444-454. [PMID: 27178951 DOI: 10.1016/j.carbpol.2016.04.020] [Citation(s) in RCA: 379] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/23/2016] [Accepted: 04/06/2016] [Indexed: 02/07/2023]
Abstract
Inulin is a water soluble storage polysaccharide and belongs to a group of non-digestible carbohydrates called fructans. Inulin has attained the GRAS status in USA and is extensively available in about 36,000 species of plants, amongst, chicory roots are considered as the richest source of inulin. Commonly, inulin is used as a prebiotic, fat replacer, sugar replacer, texture modifier and for the development of functional foods in order to improve health due to its beneficial role in gastric health. This review provides a deep insight about its production, physicochemical properties, role in combating various kinds of metabolic and diet related diseases and utilization as a functional ingredient in novel product development.
Collapse
|
11
|
Salinas MV, Zuleta A, Ronayne P, Puppo MC. Wheat bread enriched with organic calcium salts and inulin. A bread quality study. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2016; 53:491-500. [PMID: 26787968 PMCID: PMC4711440 DOI: 10.1007/s13197-015-2008-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/18/2015] [Accepted: 08/24/2015] [Indexed: 12/27/2022]
Abstract
The objective of this work was to study quality parameters of enriched wheat bread with calcium citrate (Ca3CI2) or lactate (CaLA2) and inulin (In), also to optimize bread formulation. Fermentation time (tf), specific volume (Vs), browning index of crust (BI) and crumb properties (moisture, alveolus, texture) were studied. Generally, tf and Vs decreased with prebiotic increment. Ca3CI2 did not change Vs at equal inulin quantity, whereas with CaLA2 smaller breads were obtained (at 6.5 % In). Moisture of crumbs decreased with an increase in Ca3CI2 (at ≤ 6.5 %); while for CaLA2 was more influenced by the prebiotic. Up to 6.5 % In, the addition of both salts decreased crumb firmness and increased cohesiveness. Using a desirability function, the optimum calcium-prebiotic bread obtained with Ca3CI2 contained 2.40 g/kg Ca and 7.49 % In and with CaLA2 presented 1.33 g/kg Ca and 4.68 % In. Breads of high-quality with higher calcium and prebiotic quantity were able to obtain with Ca3CI2.
Collapse
Affiliation(s)
- María V. Salinas
- />Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA)-Facultad de Ciencias Exactas-UNLP-CONICET, 47 y 116, 1900 La Plata, Argentina
| | - Angela Zuleta
- />Catedra de Bromatologia y Nutrición-Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires, Junin 956, 1113 Buenos Aires, Argentina
| | - Patricia Ronayne
- />Catedra de Bromatologia y Nutrición-Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires, Junin 956, 1113 Buenos Aires, Argentina
| | - María C. Puppo
- />Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA)-Facultad de Ciencias Exactas-UNLP-CONICET, 47 y 116, 1900 La Plata, Argentina
- />Facultad de Ciencias Agrarias y Forestales-UNLP-CONICET, 60 y 119, 1900 La Plata, Argentina
| |
Collapse
|
12
|
Optimization of the formulation of nutritional breads based on calcium carbonate and inulin. Lebensm Wiss Technol 2015. [DOI: 10.1016/j.lwt.2014.08.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Lin Z, Zhang B, Liu X, Jin R, Zhu W. Effects of chicory inulin on serum metabolites of uric acid, lipids, glucose, and abdominal fat deposition in quails induced by purine-rich diets. J Med Food 2014; 17:1214-21. [PMID: 25314375 DOI: 10.1089/jmf.2013.2991] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Inulin, a group of dietary fibers, is reported to improve the metabolic disorders. In the present study, we investigated the effects of chicory inulin on serum metabolites of uric acid (UA), lipids, glucose, and abdominal fat deposition in quail model induced by a purine-rich diet. In this study, 60 male French quails were randomly allocated to five groups: CON (control group), MOD (model group), BEN (benzbromarone-treated group), CHI-H (high-dosage chicory inulin-treated group), and CHI-L (low-dosage chicory inulin-treated group). The serum UA level was significantly increased in the model group from days 7 to 28, as well as triglyceride (TG) and free fatty acid (FFA) increased later in the experimental period. The abdominal fat ratio was increased on day 28. Benzbromarone can decrease UA levels on days 14 and 28. The high and low dosage of chicory inulin also decreased serum UA levels on days 7, 14, and 28. The abdominal fat ratio, activity, and protein of acetyl-CoA carboxylase (ACC) were decreased in chicory inulin-treated groups. The activities of xanthine oxidase (XOD) and fatty acid synthase (FAS) were increased in the model group and decreased in the benzbromarone and chicory inulin groups. This study evaluated a quail model of induced hyperuricemia with other metabolic disorders caused by a high-purine diet. The results indicated that a purine-rich diet might contribute to the development of hyperuricemia, hypertriglyceridemia, and abdominal obesity. Chicory inulin decreased serum UA, TG, and abdominal fat deposition in a quail model of hyperuricemia by altering the ACC protein expression and FAS and XOD activities.
Collapse
Affiliation(s)
- Zhijian Lin
- 1 Department of Clinical Chinese Pharmacy, School of Chinese Pharmacy, Beijing University of Chinese Medicine , Beijing, China
| | | | | | | | | |
Collapse
|
14
|
Yang LC, Lu TJ, Lin WC. The prebiotic arabinogalactan of Anoectochilus formosanus prevents ovariectomy-induced osteoporosis in mice. J Funct Foods 2013. [DOI: 10.1016/j.jff.2013.07.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
15
|
Polydextrose Enhances Calcium Absorption and Bone Retention in Ovariectomized Rats. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2013; 2013:450794. [PMID: 26904599 PMCID: PMC4745538 DOI: 10.1155/2013/450794] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 04/20/2013] [Indexed: 01/14/2023]
Abstract
Purpose. To evaluate the effect of polydextrose (PDX) on Ca bioavailability and prevention of loss of bone mass. Methods. Twenty-four two-month-old ovariectomized rats were fed three isocaloric diets only varied in fiber source and content up to 60 days (FOS group, a commercial mixture of short- and long-chain fructooligosaccharide, OVX group fed AIN 93 diet, and PDX group). A SHAM group was included as control. Apparent Ca absorption percentage (%ABS), changes in total skeleton bone mineral content (tsBMC) and bone mineral density (BMD) and femur BMD, % Bone Volume, Ca and organic femur content, caecal weight, and pH were evaluated. Results. %ABS and caecum weight of PDX and FOS were higher, and caecum pH was lower compared to OVX and SHAM. PDX reached a higher pH and lower caecum weight than FOS possibly because PDX is not completely fermented in the colon. Changes in tsBMC and femur BMD in FOS and PDX were significant lower than SHAM but significantly higher than OVX. % Bone Volume and femur % of Ca in PDX were significantly higher than OVX and FOS but lower than SHAM. Conclusions. PDX increased Ca absorption and prevented bone loss in OVX rats.
Collapse
|
16
|
Yang LC, Lin WC, Lu TJ. Characterization and prebiotic activity of aqueous extract and indigestible polysaccharide from Anoectochilus formosanus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:8590-8599. [PMID: 22793881 DOI: 10.1021/jf3018832] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Anoectochilus formosanus (Orchidaceae) is a folk medicine in Asia. This study investigated the in vivo and in vitro prebiotic effects of an aqueous extract of A. formosanus (SAEAF) and of an indigestible polysaccharide (AFP) isolated from SAEAF. Chemical analyses showed AFP was mainly composed of arabinogalactan type II (AG-II), with an average molecular weight of 29 kDa. Following 4 weeks of oral administration to rats, SAEAF exhibited prebiotic effects including a decrease in cecum pH and increases of calcium absorption and fecal bifidobacteria. Furthermore, through a bioactivity-guided separation strategy, AFP was proven to be a bifidogenic component in vitro fecal strains fermentation and in vivo administration to mice. In RT-PCR analysis of Bifidobacterium , AFP increased the expression of ABC transporter related to nutrient uptake. Thus, AFP, a polysaccharide from A. formosanus, was demonstrated to be a prebiotic that has a positive health effect on gut microbiota.
Collapse
Affiliation(s)
- Li-Chan Yang
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan, Republic of China
| | | | | |
Collapse
|
17
|
Krupa-Kozak U, Altamirano-Fortoul R, Wronkowska M, Rosell CM. Breadmaking performance and technological characteristic of gluten-free bread with inulin supplemented with calcium salts. Eur Food Res Technol 2012. [DOI: 10.1007/s00217-012-1782-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
18
|
Jurgoński A, Juśkiewicz J, Kowalska K, Zduńczyk Z. Does dietary inulin affect biological activity of a grapefruit flavonoid-rich extract? Nutr Metab (Lond) 2012; 9:31. [PMID: 22495063 PMCID: PMC3372432 DOI: 10.1186/1743-7075-9-31] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 04/11/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The aim of the study was to verify that the concomitant presence of grapefruit flavonoid extract with inulin in a Western-type diet may provide synergistic effects to the hindgut metabolism, as well as blood lipid and mineral profiles. METHODS Forty male Wistar rats were distributed into 4 groups and fed for 28 days with diets rich in fat, cholesterol and protein. A two-way repeated measures ANOVA was applied to assess the effects of inulin (v. sucrose, 5% of the diet), the addition of dietary grapefruit flavonoid extract (diets without or with 0.3% of an extract from hard parts of grapefruit) and the interaction between these two dietary factors. RESULTS When compared to the control sucrose-containing diet, the diet enriched with inulin led to typical changes within the caecum, the main part of hindgut fermentation in rats, such as acidification of the digesta, support of bifidobacteria growth and increase of propionate and butyrate production. The dietary grapefruit flavonoid extract without inulin increased the bulk and pH value of caecal digesta, whereas short-chain fatty acid concentration and the bifidobacteria population were lowered compared to the extract-free diets. Simultaneous dietary addition of both tested components decreased slightly the pH value and increased somewhat the bifidobacteria number and the propionate concentration, however to the level observed with the control sucrose-containing diet. With regard to blood lipids, dietary grapefruit flavonoid extract decreased the triglyceride concentration regardless of the dietary carbohydrate type. CONCLUSION Inulin does not provide any additional benefit to the blood lipid profile caused by the dietary application of grapefruit flavonoid extract and it does not counteract clearly detrimental effects of the extract in the hindgut. Adding grapefruit extract to the diet must be performed with caution due to possible adverse hindgut responses with overdoses.
Collapse
Affiliation(s)
- Adam Jurgoński
- Division of Food Science, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland.
| | | | | | | |
Collapse
|
19
|
Abstract
En la búsqueda de medidas de prevención de enfermedades crónicas no trasmisibles, se piensa en los prebióticos como una forma efectiva, saludable y relativamente barata para la optimización de la absorción de Ca. El aumento de la expectativa de vida de la población y el incremento de enfermedades como la osteoporosis traen graves consecuencias a la salud del individuo, acarreando importantes desembolsos económicos. En esta revisión se condensa el conocimiento presente sobre el efecto fisiológico del consumo de carbohidratos prebióticos y su posible interferencia en la biodisponibilidad del Ca, como también las posibilidades de su empleo en estrategias para combatir las deficiencias del mineral. Se elaboró una recopilación de los estudios originales realizados con mayor impacto en el tema, dando preferencia a los publicados en los últimos 6 años. Utilizamos las bases de datos PubMed, Lilacs e SciELO, usando las palabras claves calcio, prebióticos e probióticos.
Collapse
|
20
|
Martin BR, Braun MM, Wigertz K, Bryant R, Zhao Y, Lee W, Kempa-Steczko A, Weaver CM. Fructo-oligosaccharides and calcium absorption and retention in adolescent girls. J Am Coll Nutr 2011; 29:382-6. [PMID: 21041813 DOI: 10.1080/07315724.2010.10719855] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BACKGROUND Several studies have shown a positive effect of fructo-oligosaccharides on calcium absorption and retention in animals and humans. Effects of levels of these pre-biotics that can be functionally incorporated into manufactured foods, have not been studied in controlled feeding studies. OBJECTIVES This study was designed to evaluate the effect of 9 g/d of fructo-oligosaccharides as part of a controlled diet on calcium absorption and retention in adolescent girls. DESIGN Fourteen healthy adolescent girls aged 11-13 y were studied in a metabolic setting for two 3-week periods separated by a 2-week washout period. In a randomized, double-blinded, crossover design, the teens received a diet containing either 9 g/d oligofructose-enriched inulin in a calcium-fortified cereal or the control cereal with no inulin. Both diets contained ~1500 mg calcium daily. Calcium retention was determined on the third week of each period. On day 14 of the diet period, fractional calcium absorption was determined from the enrichment of (44)Ca in 4-day urine collections. RESULTS Calcium absorption (67 ± 3 vs. 66 ± 3%) and retention (409 ± 394 vs. 464 ± 241 mg/d) were not significantly different when diets contained 9 g/d oligofructose-enriched inulin or not in a calcium-fortified cereal. CONCLUSIONS Daily consumption of cereal containing a combination of short- and long-chain fructo-oligosaccharides as part of a controlled diet did not benefit calcium absorption or retention in adolescent girls. Lack of response to the prebiotic in this cohort may relate to their already high calcium absorption efficiency.
Collapse
Affiliation(s)
- Berdine R Martin
- Department of Foods and Nutrition, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
The different compartments of the gastrointestinal tract are inhabited by populations of micro-organisms. By far the most important predominant populations are in the colon where a true symbiosis with the host exists that is a key for well-being and health. For such a microbiota, 'normobiosis' characterises a composition of the gut 'ecosystem' in which micro-organisms with potential health benefits predominate in number over potentially harmful ones, in contrast to 'dysbiosis', in which one or a few potentially harmful micro-organisms are dominant, thus creating a disease-prone situation. The present document has been written by a group of both academic and industry experts (in the ILSI Europe Prebiotic Expert Group and Prebiotic Task Force, respectively). It does not aim to propose a new definition of a prebiotic nor to identify which food products are classified as prebiotic but rather to validate and expand the original idea of the prebiotic concept (that can be translated in 'prebiotic effects'), defined as: 'The selective stimulation of growth and/or activity(ies) of one or a limited number of microbial genus(era)/species in the gut microbiota that confer(s) health benefits to the host.' Thanks to the methodological and fundamental research of microbiologists, immense progress has very recently been made in our understanding of the gut microbiota. A large number of human intervention studies have been performed that have demonstrated that dietary consumption of certain food products can result in statistically significant changes in the composition of the gut microbiota in line with the prebiotic concept. Thus the prebiotic effect is now a well-established scientific fact. The more data are accumulating, the more it will be recognised that such changes in the microbiota's composition, especially increase in bifidobacteria, can be regarded as a marker of intestinal health. The review is divided in chapters that cover the major areas of nutrition research where a prebiotic effect has tentatively been investigated for potential health benefits. The prebiotic effect has been shown to associate with modulation of biomarkers and activity(ies) of the immune system. Confirming the studies in adults, it has been demonstrated that, in infant nutrition, the prebiotic effect includes a significant change of gut microbiota composition, especially an increase of faecal concentrations of bifidobacteria. This concomitantly improves stool quality (pH, SCFA, frequency and consistency), reduces the risk of gastroenteritis and infections, improves general well-being and reduces the incidence of allergic symptoms such as atopic eczema. Changes in the gut microbiota composition are classically considered as one of the many factors involved in the pathogenesis of either inflammatory bowel disease or irritable bowel syndrome. The use of particular food products with a prebiotic effect has thus been tested in clinical trials with the objective to improve the clinical activity and well-being of patients with such disorders. Promising beneficial effects have been demonstrated in some preliminary studies, including changes in gut microbiota composition (especially increase in bifidobacteria concentration). Often associated with toxic load and/or miscellaneous risk factors, colon cancer is another pathology for which a possible role of gut microbiota composition has been hypothesised. Numerous experimental studies have reported reduction in incidence of tumours and cancers after feeding specific food products with a prebiotic effect. Some of these studies (including one human trial) have also reported that, in such conditions, gut microbiota composition was modified (especially due to increased concentration of bifidobacteria). Dietary intake of particular food products with a prebiotic effect has been shown, especially in adolescents, but also tentatively in postmenopausal women, to increase Ca absorption as well as bone Ca accretion and bone mineral density. Recent data, both from experimental models and from human studies, support the beneficial effects of particular food products with prebiotic properties on energy homaeostasis, satiety regulation and body weight gain. Together, with data in obese animals and patients, these studies support the hypothesis that gut microbiota composition (especially the number of bifidobacteria) may contribute to modulate metabolic processes associated with syndrome X, especially obesity and diabetes type 2. It is plausible, even though not exclusive, that these effects are linked to the microbiota-induced changes and it is feasible to conclude that their mechanisms fit into the prebiotic effect. However, the role of such changes in these health benefits remains to be definitively proven. As a result of the research activity that followed the publication of the prebiotic concept 15 years ago, it has become clear that products that cause a selective modification in the gut microbiota's composition and/or activity(ies) and thus strengthens normobiosis could either induce beneficial physiological effects in the colon and also in extra-intestinal compartments or contribute towards reducing the risk of dysbiosis and associated intestinal and systemic pathologies.
Collapse
|
22
|
Weaver CM, Martin BR, Story JA, Hutchinson I, Sanders L. Novel fibers increase bone calcium content and strength beyond efficiency of large intestine fermentation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:8952-8957. [PMID: 20677817 DOI: 10.1021/jf904086d] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Dietary fibers are thought to benefit bone health through increasing mineral absorption and retention following fermentation in the lower gut and solubilization of minerals. This study compared eight fibers to cellulose following a 12 week intervention for production of short-chain fatty acids (SCFA), calcium absorption, mineral retention and bone content, and bone density and strength in a weanling rat model. Benefits to bone were poorly to modestly related to SCFA production, calcium absorption, or mineral retention, but some parameters were better predicted by cecal content weight, suggesting other mechanisms may be important. Nevertheless, two resistant starches, a soluble fiber dextrin and Polydextrose, increased bone calcium content. Soluble corn fiber and soluble fiber dextrin had the greatest benefit to bone properties including whole body bone mineral content and density and greater volumetric bone mineral density, cortical thickness and area, and peak breaking strength of the distal femur.
Collapse
Affiliation(s)
- Connie M Weaver
- Department of Foods and Nutrition, Purdue University, West Lafayette, Indiana 47907, USA.
| | | | | | | | | |
Collapse
|
23
|
Smith DL, Nagy TR, Wilson LS, Dong S, Barnes S, Allison DB. The effect of mannan oligosaccharide supplementation on body weight gain and fat accrual in C57Bl/6J mice. Obesity (Silver Spring) 2010; 18:995-9. [PMID: 19798073 PMCID: PMC2940117 DOI: 10.1038/oby.2009.308] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The prevalence of obesity in industrialized societies has become markedly elevated. In contrast, model organism research shows that reducing caloric intake below ad libitum levels provides many health and longevity benefits. Despite these benefits, few people are willing and able to reduce caloric intake over prolonged periods. Prior research suggests that mannooligosaccharide (MOS or mannan) supplementation can increase lifespan of some livestock and in rodents can reduce visceral fat without reducing caloric intake. Hence, we tested the effect of MOS supplementation as a possible calorie restriction (CR) mimetic (CRM) in mice. C57Bl/6J male mice were fed a high-fat "western" type diet with or without 1% MOS (by weight) supplementation (n = 24/group) from 8 to 20 weeks of age. Animals were housed individually and provided 95% of ad libitum food intake throughout the study. Body weight was measured weekly and body composition (lean and fat mass) measured noninvasively every 3 weeks. Individual fat depot weights were acquired by dissection at study completion. Supplementation of a high-fat diet with 1% MOS tended to reduce total food intake (mean +/- s.d.; control (CON): 293.69 +/- 10.53 g, MOS: 288.10 +/- 11.82 g; P = 0.09) during the study. Moreover, MOS supplementation had no significant effect on final body weight (CON: 25.21 +/- 2.31 g, MOS: 25.28 +/- 1.49 g; P = 0.91), total fat (CON: 4.72 +/- 0.90 g, MOS: 4.82 +/- 0.83 g; P = 0.69), or visceral fat (CON: 1.048 +/- 0.276 g, MOS: 1.004 +/- 0.247 g; P = 0.57). Contrary to previous research, MOS supplementation had no discernable effect on body weight gain or composition during this 12-week study, challenging the potential use of MOS as a CRM or body composition enhancer.
Collapse
Affiliation(s)
- Daniel L Smith
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Hennessy A, Ross R, Devery R, Stanton C. Optimization of a reconstituted skim milk based medium for enhanced CLA production by bifidobacteria. J Appl Microbiol 2009; 106:1315-27. [DOI: 10.1111/j.1365-2672.2008.04098.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
25
|
|
26
|
Dietary long-chain inulin reduces abdominal fat but has no effect on bone density in growing female rats. Br J Nutr 2008; 100:451-9. [DOI: 10.1017/s0007114508894378] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
New strategies to improve Ca absorption and bone health are needed to address the current state of osteoporosis prevention and management. Inulin-type fructans have shown great promise as a dietary intervention strategy, but have not yet been tested in a young female model. Our objective was to investigate the effect of long chain (LC) inulin on bone mineralization and density in growing, female rats, as well as the quality of growth. Weanling Sprague–Dawley rats were assigned to inulin or cellulose treatments for either 4 or 8 weeks. Growth was measured weekly and quality of growth assessed using fat pad weights and dual-energy X-ray absorptiometry (DXA). Whole body (WB) and selected regions were analysed for bone mineral density (BMD) and body composition by DXA. Serum markers of bone turnover were assessed by enzyme-linked immunosorbent assays. Ca and P concentrations were determined in excised femurs by inductively coupled plasma spectrometry. Feeding inulin resulted in 4 % higher femoral weight (adjusted for body weight) and 6 % less feed intake. Inulin did not affect WB or regional BMD, but was associated with a 28 % lower parametrial fat pad mass, 21 % less WB fat mass and 5 % less WB mass. In summary, LC-inulin lowered body fat mass, without consequence to bone density in growing female rats.
Collapse
|
27
|
Abstract
A food (ingredient) is regarded as functional if it is satisfactorily demonstrated to affect beneficially 1 or more target functions in the body beyond adequate nutritional effects. The term inulin-type fructans covers all beta(2<--1) linear fructans including native inulin (DP 2-60, DP(av) = 12), oligofructose (DP 2-8, DP(av) = 4), and inulin HP (DP 10-60, DP(av) = 25) as well as Synergy 1, a specific combination of oligofructose and inulin HP. Inulin-type fructans resist digestion and function as dietary fiber improving bowel habits. But, unlike most dietary fibers, their colonic fermentation is selective, thus causing significant changes in the composition of the gut microflora with increased and reduced numbers of potentially health-promoting bacteria and potentially harmful species, respectively. Both oligofructose and inulin act in this way and thus are prebiotic: they also induce changes in the colonic epithelium and in miscellaneous colonic functions. In particular, the claim "inulin-type fructans enhance calcium and magnesium absorption" is scientifically substantiated, and the most active product is oligofructose-enriched inulin (Synergy 1). A series of studies furthermore demonstrate that inulin-type fructans modulate the secretion of gastrointestinal peptides involved in appetite regulation as well as lipid metabolism. Moreover, a large number of animal studies and preliminary human data show that inulin-type fructans reduce the risk of colon carcinogenesis and improve the management of inflammatory bowel diseases. Inulin-type fructans are thus functional food ingredients that are eligible for enhanced function claims, but, as more human data become available, risk reduction claims will become scientifically substantiated.
Collapse
|
28
|
Falony G, Vlachou A, Verbrugghe K, De Vuyst L. Cross-feeding between Bifidobacterium longum BB536 and acetate-converting, butyrate-producing colon bacteria during growth on oligofructose. Appl Environ Microbiol 2006; 72:7835-41. [PMID: 17056678 PMCID: PMC1694233 DOI: 10.1128/aem.01296-06] [Citation(s) in RCA: 243] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Accepted: 10/09/2006] [Indexed: 02/07/2023] Open
Abstract
In vitro coculture fermentations of Bifidobacterium longum BB536 and two acetate-converting, butyrate-producing colon bacteria, Anaerostipes caccae DSM 14662 and Roseburia intestinalis DSM 14610, with oligofructose as the sole energy source, were performed to study interspecies interactions. Two clearly distinct types of cross-feeding were identified. A. caccae DSM 14662 was not able to degrade oligofructose but could grow on the fructose released by B. longum BB536 during oligofructose breakdown. R. intestinalis DSM 14610 could degrade oligofructose, but only after acetate was added to the medium. Detailed kinetic analyses of oligofructose breakdown by the last strain revealed simultaneous degradation of the different chain length fractions, in contrast with the preferential degradation of shorter fractions by B. longum BB536. In a coculture of both strains, initial oligofructose degradation and acetate production by B. longum BB536 took place, which in turn also allowed oligofructose breakdown by R. intestinalis DSM 14610. These and similar cross-feeding mechanisms could play a role in the colon ecosystem and contribute to the combined bifidogenic/butyrogenic effect observed after addition of inulin-type fructans to the diet.
Collapse
Affiliation(s)
- Gwen Falony
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | | | | | | |
Collapse
|
29
|
Bosscher D, Van Loo J, Franck A. Inulin and oligofructose as functional ingredients to improve bone mineralization. Int Dairy J 2006. [DOI: 10.1016/j.idairyj.2005.10.028] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|