1
|
Fu X, Diao W, Luo Y, Liu Y, Wang Z. Theoretical Insight into the Fluorescence Spectral Tuning Mechanism: A Case Study of Flavin-Dependent Bacterial Luciferase. J Chem Theory Comput 2024; 20:8652-8664. [PMID: 39298275 DOI: 10.1021/acs.jctc.4c00950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Bioluminescence of bacteria is widely applied in biological imaging, environmental toxicant detection, and many other situations. Understanding the spectral tuning mechanism not only helps explain the diversity of colors observed in nature but also provides principles for bioengineering new color variants for practical applications. In this study, time-dependent density functional theory (TD-DFT) and quantum mechanics and molecular mechanics (QM/MM) calculations have been employed to understand the fluorescence spectral tuning mechanism of bacterial luciferase with a focus on the electrostatic effect. The spectrum can be tuned by both a homogeneous dielectric environment and oriented external electric fields (OEEFs). Increasing the solvent polarity leads to a redshift of the fluorescence emission maximum, λF, accompanied by a substantial increase in density. In contrast, applying an OEEF along the long axis of the isoalloxazine ring (X-axis) leads to a significant red- or blue-shift in λF, depending on the direction of the OEEF, yet with much smaller changes in intensity. The effect of polar solvents is directionless, and the red-shifts can be attributed to the larger dipole moment of the S1 state compared with that of the S0 state. However, the effect of OEEFs directly correlates with the difference dipole moment between the S1 and S0 states, which is directional and is determined by the charge redistribution upon deexcitation. Moreover, the electrostatic effect of bacterial luciferase is in line with the presence of an internal electric field (IEF) pointing in the negative X direction. Finally, the key residues that contribute to this IEF and strategies for modulating the spectrum through site-directed point mutations are discussed.
Collapse
Affiliation(s)
- Xiaodi Fu
- Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
| | - Wenwen Diao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou 325000, China
| | - Yanling Luo
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yajun Liu
- Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Zhanfeng Wang
- Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
| |
Collapse
|
2
|
Al-Handawi MB, Polavaram S, Kurlevskaya A, Commins P, Schramm S, Carrasco-López C, Lui NM, Solntsev KM, Laptenok SP, Navizet I, Naumov P. Spectrochemistry of Firefly Bioluminescence. Chem Rev 2022; 122:13207-13234. [PMID: 35926147 DOI: 10.1021/acs.chemrev.1c01047] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The chemical reactions underlying the emission of light in fireflies and other bioluminescent beetles are some of the most thoroughly studied processes by scientists worldwide. Despite these remarkable efforts, fierce academic arguments continue around even some of the most fundamental aspects of the reaction mechanism behind the beetle bioluminescence. In an attempt to reach a consensus, we made an exhaustive search of the available literature and compiled the key discoveries on the fluorescence and chemiluminescence spectrochemistry of the emitting molecule, the firefly oxyluciferin, and its chemical analogues reported over the past 50+ years. The factors that affect the light emission, including intermolecular interactions, solvent polarity, and electronic effects, were analyzed in the context of both the reaction mechanism and the different colors of light emitted by different luciferases. The collective data points toward a combined emission of multiple coexistent forms of oxyluciferin as the most probable explanation for the variation in color of the emitted light. We also highlight realistic research directions to eventually address some of the remaining questions related to firefly bioluminescence. It is our hope that this extensive compilation of data and detailed analysis will not only consolidate the existing body of knowledge on this important phenomenon but will also aid in reaching a wider consensus on some of the mechanistic details of firefly bioluminescence.
Collapse
Affiliation(s)
- Marieh B Al-Handawi
- Smart Materials Lab (SML), New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Srujana Polavaram
- Smart Materials Lab (SML), New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Anastasiya Kurlevskaya
- Smart Materials Lab (SML), New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Patrick Commins
- Smart Materials Lab (SML), New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Stefan Schramm
- Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| | - César Carrasco-López
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Nathan M Lui
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Kyril M Solntsev
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Sergey P Laptenok
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Isabelle Navizet
- Univ. Gustave Eiffel, Univ. Paris Est Creteil, CNRS, UMR 8208, MSME, F-77454 Marne-la-Vallée, France
| | - Panče Naumov
- Smart Materials Lab (SML), New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.,Molecular Design Institute, Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| |
Collapse
|
3
|
Pira H, Risdian C, Müsken M, Schupp PJ, Wink J. Photobacterium arenosum WH24, Isolated from the Gill of Pacific Oyster Crassostrea gigas from the North Sea of Germany: Co-cultivation and Prediction of Virulence. Curr Microbiol 2022; 79:219. [PMID: 35704100 PMCID: PMC9200695 DOI: 10.1007/s00284-022-02909-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 05/20/2022] [Indexed: 11/28/2022]
Abstract
Cream colored bacteria from marine agar, strain WH24, WH77, and WH80 were isolated from the gill of the Crassostrea gigas a Pacific oyster with a filter-feeding habit that compels accompanying bacteria to demonstrate a high metabolic capacity, has proven able to colonize locations with changing circumstances. Based on the 16S rRNA gene sequence, all strains had high similarity to Photobacterium arenosum CAU 1568T (99.72%). This study involved phenotypic traits, phylogenetic analysis, antimicrobial activity evaluation, genome mining, Co-cultivation experiments, and chemical studies of crude extracts using HPLC and LC-HRESIMS. Photobacterium arenosum WH24 and Zooshikella harenae WH53Twere co-cultivated for 3 days in a rotary shaker at 160 rpm at 30 °C, and LC-MS monitored the chemical profiles of the co-cultures on the third day. The UV chromatograms of the extracts of the co-cultivation experiments show that Zooshikella harenae WH53T could be inhibited by strain WH24. The high virulence of Photobacterium arenosum WH24 was confirmed by genome analysis. Gene groups with high virulence potential were detected: tssA (ImpA), tssB (ImpB/vipA), tssC (ImpC/vipB), tssE, tssF (ImpG/vasA), tssG (ImpH/vasB), tssM (IcmF/vasK), tssJ (vasD), tssK (ImpJ/vasE), tssL (ImpK/vasF), clpV (tssH), vasH, hcp, lapP, plpD, and tpsB family.
Collapse
Affiliation(s)
- Hani Pira
- Microbial Strain Collection (MISG), Helmholtz Centre for Infection Research (HZI), 38124, Brunswick, Germany
| | - Chandra Risdian
- Microbial Strain Collection (MISG), Helmholtz Centre for Infection Research (HZI), 38124, Brunswick, Germany
- Research Unit for Clean Technology, National Research and Innovation Agency (BRIN), Bandung, 40135, Indonesia
| | - Mathias Müsken
- Central Facility for Microscopy, Helmholtz Centre for Infection Research (HZI), 38124, Brunswick, Germany
| | - Peter J Schupp
- Institute for Chemistry and Biology of the Marine Environment, University Oldenburg, Oldenburg, Germany
| | - Joachim Wink
- Microbial Strain Collection (MISG), Helmholtz Centre for Infection Research (HZI), 38124, Brunswick, Germany.
| |
Collapse
|
4
|
Jutras PV, Soldan R, Dodds I, Schuster M, Preston GM, van der Hoorn RAL. AgroLux: bioluminescent Agrobacterium to improve molecular pharming and study plant immunity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:600-612. [PMID: 34369027 DOI: 10.1111/tpj.15454] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/19/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Agroinfiltration in Nicotiana benthamiana is widely used to transiently express heterologous proteins in plants. However, the state of Agrobacterium itself is not well studied in agroinfiltrated tissues, despite frequent studies of immunity genes conducted through agroinfiltration. Here, we generated a bioluminescent strain of Agrobacterium tumefaciens GV3101 to monitor the luminescence of Agrobacterium during agroinfiltration. By integrating a single copy of the lux operon into the genome, we generated a stable 'AgroLux' strain, which is bioluminescent without affecting Agrobacterium growth in vitro and in planta. To illustrate its versatility, we used AgroLux to demonstrate that high light intensity post infiltration suppresses both Agrobacterium luminescence and protein expression. We also discovered that AgroLux can detect Avr/Cf-induced immune responses before tissue collapse, establishing a robust and rapid quantitative assay for the hypersensitive response (HR). Thus, AgroLux provides a non-destructive, versatile and easy-to-use imaging tool to monitor both Agrobacterium and plant responses.
Collapse
Affiliation(s)
- Philippe V Jutras
- Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Park Road, Oxford, OX1 3RB, UK
| | - Riccardo Soldan
- Department of Plant Sciences, University of Oxford, South Park Road, Oxford, OX1 3RB, UK
| | - Isobel Dodds
- Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Park Road, Oxford, OX1 3RB, UK
| | - Mariana Schuster
- Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Park Road, Oxford, OX1 3RB, UK
| | - Gail M Preston
- Department of Plant Sciences, University of Oxford, South Park Road, Oxford, OX1 3RB, UK
| | - Renier A L van der Hoorn
- Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Park Road, Oxford, OX1 3RB, UK
| |
Collapse
|
5
|
Carrasco-López C, Lui NM, Schramm S, Naumov P. The elusive relationship between structure and colour emission in beetle luciferases. Nat Rev Chem 2020; 5:4-20. [PMID: 37118106 DOI: 10.1038/s41570-020-00238-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2020] [Indexed: 12/23/2022]
Abstract
In beetles, luciferase enzymes catalyse the conversion of chemical energy into light through bioluminescence. The principles of this process have become a fundamental biotechnological tool that revolutionized biological research. Different beetle species can emit different colours of light, despite using the same substrate and highly homologous luciferases. The chemical reasons for these different colours are hotly debated yet remain unresolved. This Review summarizes the structural, biochemical and spectrochemical data on beetle bioluminescence reported over the past three decades. We identify the factors that govern what colour is emitted by wild-type and mutant luciferases. This topic is controversial, but, in general, we note that green emission requires cationic residues in a specific position near the benzothiazole fragment of the emitting molecule, oxyluciferin. The commonly emitted green-yellow light can be readily changed to red by introducing a variety of individual and multiple mutations. However, complete switching of the emitted light from red to green has not been accomplished and the synergistic effects of combined mutations remain unexplored. The minor colour shifts produced by most known mutations could be important in establishing a 'mutational catalogue' to fine-tune emission of beetle luciferases, thereby expanding the scope of their applications.
Collapse
|
6
|
Biological Biosensors for Monitoring and Diagnosis. ENVIRONMENTAL AND MICROBIAL BIOTECHNOLOGY 2020. [PMCID: PMC7340096 DOI: 10.1007/978-981-15-2817-0_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Quantification and detection of various contaminants in the ecosystem have become critically important in the past few decades due to their exhaustive use in soil and aquatic ecosystems. The contamination by both organic and inorganic contaminants in the ecosystem has drawn attention due to their persistence, biological accumulation, and toxicity. Organic contaminants reach the air, water, food, soil, and other systems through drift mechanism and have detrimental effect on various life systems after entering the food chain, thus interfering the normal biological process of the ecosystem. Inorganic contaminants have less solubility, primarily get adsorbed, and accumulate on lower sediments. The sources of both organic and inorganic contaminants include anthropogenic activities which dispose industrial and sewage effluent directly into water bodies. Most of the contaminants are very much toxic and have tumorigenic, carcinogenic, and mutagenic effect on various life-forms. Biosensors have various prospective and existing applications in the detection of these compounds in the environment by transducing a signal. It also has immense applications in the detection of different contaminants in the food industry, environmental monitoring, disease diagnosis, etc. where reliable and precise analyses are required. This chapter points out a comprehensive glimpse on different biosensors and their characteristics, operating principles, and their designs, based on transduction types and biological components. Efforts have been made to summarize various applications of biosensors in food industry, environmental monitoring, drug delivery systems, and clinical diagnostics etc.
Collapse
|
7
|
Abstract
A biosensor is a device composed by a biological recognition element and a transducer that delivers selective information about a specific analyte. Technological and scientific advances in the area of biology, bioengineering, catalysts, electrochemistry, nanomaterials, microelectronics, and microfluidics have improved the design and performance of better biosensors. Enzymatic biosensors based on lipases, esterases, and phospholipases are valuable analytical apparatus which have been applied in food industry, oleochemical industry, biodegradable polymers, environmental science, and overall the medical area as diagnostic tools to detect cholesterol and triglyceride levels in blood samples. This chapter reviews recent developments and applications of lipase-, esterase-, and phospholipase-based biosensors.
Collapse
Affiliation(s)
- Georgina Sandoval
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ), Guadalajara, Jalisco, Mexico
| | - Enrique J Herrera-López
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ), Zapopan, Jalisco, Mexico.
| |
Collapse
|
8
|
Moi IM, Roslan NN, Leow ATC, Ali MSM, Rahman RNZRA, Rahimpour A, Sabri S. The biology and the importance of Photobacterium species. Appl Microbiol Biotechnol 2017; 101:4371-4385. [PMID: 28497204 DOI: 10.1007/s00253-017-8300-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/11/2017] [Accepted: 04/12/2017] [Indexed: 10/19/2022]
Abstract
Photobacterium species are Gram-negative coccobacilli which are distributed in marine habitats worldwide. Some species are unique because of their capability to produce luminescence. Taxonomically, about 23 species and 2 subspecies are validated to date. Genomes from a few Photobacterium spp. have been sequenced and studied. They are considered a special group of bacteria because some species are capable of producing essential polyunsaturated fatty acids, antibacterial compounds, lipases, esterases and asparaginases. They are also used as biosensors in food and environmental monitoring and detectors of drown victim, as well as an important symbiont.
Collapse
Affiliation(s)
- Ibrahim Musa Moi
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Department of Microbiology, Bauchi State University Gadau, P.M.B. O65, Bauchi, Bauchi State, Nigeria
| | - Noordiyanah Nadhirah Roslan
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Adam Thean Chor Leow
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Mohd Shukuri Mohamad Ali
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Raja Noor Zaliha Raja Abd Rahman
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Azam Rahimpour
- Department of Tissue Engineering and Regenerative Medicine, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Suriana Sabri
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia. .,Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| |
Collapse
|
9
|
Duarte-Gómez E, Graham D, Budzik M, Paxson B, Csonka L, Morgan M, Applegate B, San Martín-González M. High hydrostatic pressure effects on bacterial bioluminescence. Lebensm Wiss Technol 2014. [DOI: 10.1016/j.lwt.2013.12.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
10
|
Shining light on food microbiology; applications of Lux-tagged microorganisms in the food industry. Trends Food Sci Technol 2013. [DOI: 10.1016/j.tifs.2013.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
11
|
Alloush HM, Anderson E, Martin AD, Ruddock MW, Angell JE, Hill PJ, Mehta P, Smith MA, Smith JG, Salisbury VC. A bioluminescent microbial biosensor for in vitro pretreatment assessment of cytarabine efficacy in leukemia. Clin Chem 2010; 56:1862-70. [PMID: 20921267 DOI: 10.1373/clinchem.2010.145581] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND The nucleoside analog cytarabine (Ara-C [cytosine arabinoside]) is the key agent for treating acute myeloid leukemia (AML); however, up to 30% of patients fail to respond to treatment. Screening of patient blood samples to determine drug response before commencement of treatment is needed. This project aimed to construct and evaluate a self-bioluminescent reporter strain of Escherichia coli for use as an Ara-C biosensor and to design an in vitro assay to predict Ara-C response in clinical samples. METHODS We used transposition mutagenesis to create a cytidine deaminase (cdd)-deficient mutant of E. coli MG1655 that responded to Ara-C. The strain was transformed with the luxCDABE operon and used as a whole-cell biosensor for development an 8-h assay to determine Ara-C uptake and phosphorylation by leukemic cells. RESULTS Intracellular concentrations of 0.025 μmol/L phosphorylated Ara-C were detected by significantly increased light output (P < 0.05) from the bacterial biosensor. Results using AML cell lines with known response to Ara-C showed close correlation between the 8-h assay and a 3-day cytotoxicity test for Ara-C cell killing. In retrospective tests with 24 clinical samples of bone marrow or peripheral blood, the biosensor-based assay predicted leukemic cell response to Ara-C within 8 h. CONCLUSIONS The biosensor-based assay may offer a predictor for evaluating the sensitivity of leukemic cells to Ara-C before patients undergo chemotherapy and allow customized treatment of drug-sensitive patients with reduced Ara-C dose levels. The 8-h assay monitors intracellular Ara-CTP (cytosine arabinoside triphosphate) levels and, if fully validated, may be suitable for use in clinical settings.
Collapse
Affiliation(s)
- Habib M Alloush
- Faculty of Health and Life Sciences, University of the West of England, Bristol, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Howe K, Karsi A, Germon P, Wills RW, Lawrence ML, Bailey RH. Development of stable reporter system cloning luxCDABE genes into chromosome of Salmonella enterica serotypes using Tn7 transposon. BMC Microbiol 2010; 10:197. [PMID: 20653968 PMCID: PMC2918591 DOI: 10.1186/1471-2180-10-197] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 07/23/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Salmonellosis may be a food safety problem when raw food products are mishandled and not fully cooked. In previous work, we developed bioluminescent Salmonella enterica serotypes using a plasmid-based reporting system that can be used for real-time monitoring of the pathogen's growth on food products in short term studies. In this study, we report the use of a Tn7-based transposon system for subcloning of luxCDABE genes into the chromosome of eleven Salmonella enterica serotypes isolated from the broiler production continuum. RESULTS We found that the lux operon is constitutively expressed from the chromosome post-transposition and the lux cassette is stable without external pressure, i.e. antibiotic selection, for all Salmonella enterica serotypes used. Bioluminescence expression is based on an active electron transport chain and is directly related with metabolic activity. This relationship was quantified by measuring bioluminescence against a temperature gradient in aqueous solution using a luminometer. In addition, bioluminescent monitoring of two serotypes confirmed that our chicken skin model has the potential to be used to evaluate pathogen mitigation strategies. CONCLUSIONS This study demonstrated that our new stable reporting system eliminates bioluminescence variation due to plasmid instability and provides a reliable real-time experimental system to study application of preventive measures for Salmonella on food products in real-time for both short and long term studies.
Collapse
Affiliation(s)
- Kevin Howe
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA
| | - Attila Karsi
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA
- Institute for Digital Biology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Pierre Germon
- INRA, UR 1282 Infectiologie Animale et Santé Publique, Laboratoire de Pathogénie Bactérienne, Nouzilly, France
| | - Robert W Wills
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA
| | - Mark L Lawrence
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA
- Institute for Digital Biology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Richard H Bailey
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA
| |
Collapse
|