1
|
Díaz AV, Walker M, Webster JP. Reaching the World Health Organization elimination targets for schistosomiasis: the importance of a One Health perspective. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220274. [PMID: 37598697 PMCID: PMC10440173 DOI: 10.1098/rstb.2022.0274] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 07/19/2023] [Indexed: 08/22/2023] Open
Abstract
The past three years has seen the launch of a new World Health Organization (WHO) neglected tropical diseases (NTDs) roadmap, together with revised control and elimination guidelines. Across all, there is now a clear emphasis on the need to incorporate a One Health approach, recognizing the critical links between human and animal health and the environment. Schistosomiasis, caused by Schistosoma spp. trematodes, is a NTD of global medical and veterinary importance, with over 220 million people and untold millions of livestock currently infected. Its burden remains extremely high in certain regions, particularly within sub-Saharan Africa, despite over two decades of mass preventive chemotherapy (mass drug administration), predominantly to school-aged children. In Africa, in contrast to Asia, any zoonotic component of schistosomiasis transmission and its implications for disease control has, until recently, been largely ignored. Here, we review recent epidemiological, clinical, molecular, and modelling work across both Asia and Africa. We outline the evolutionary history and transmission dynamics of Schistosoma species, and emphasize the emerging risk raised by both wildlife reservoirs and viable hybridization between human and animal schistosomes. To achieve the 2030 WHO roadmap elimination targets, a truly multi-disciplinary One Health perspective must be implemented. This article is part of the theme issue 'Challenges and opportunities in the fight against neglected tropical diseases: a decade from the London Declaration on NTDs'.
Collapse
Affiliation(s)
- Adriana V. Díaz
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield AL9 7TA, UK
| | - Martin Walker
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield AL9 7TA, UK
- Department of Infectious Disease Epidemiology, London Centre for Neglected Tropical Disease Research, Faculty of Medicine, Imperial College, London W2 1PG, UK
| | - Joanne P. Webster
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield AL9 7TA, UK
- Department of Infectious Disease Epidemiology, London Centre for Neglected Tropical Disease Research, Faculty of Medicine, Imperial College, London W2 1PG, UK
| |
Collapse
|
2
|
Alharbi MH, Condemine C, Hesketh J, Kayuni SA, Arme TM, Archer J, Jones S, LaCourse EJ, Makaula P, Musaya J, Stothard JR. Biomphalaria pfeifferi (Gastropoda: Planorbidae) in Lake Malawi and Upper Shire River, Mangochi District, Malawi: Distribution, Genetic Diversity and Pre-Patent Schistosome Infections. Trop Med Infect Dis 2023; 8:126. [PMID: 36828541 PMCID: PMC9963223 DOI: 10.3390/tropicalmed8020126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/01/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
In November 2017, Biomphalaria pfeifferi, the key intermediate host for Schistosoma mansoni in Africa, was first reported in Lake Malawi, Mangochi District. Two subsequent malacological surveys in 2018 and 2019 confirmed its lacustrine presence, as well as its presence along the Upper Shire River. These surveys provided sufficient specimens for analyses of the genetic structure and a transmission assessment for intestinal schistosomiasis. A total of 76 collected snails were characterized by a DNA sequence analysis of a 650 bp fragment of the mitochondrial cytochrome oxidase subunit 1 (cox1); by size fractionation of six fluorescently labelled microsatellite loci (Bgμl16, Bgμl, Bpf8, rg6, U-7, and rg9);by denaturing PAGE; and by detection of pre-patent Schistosoma infection by real-time PCR with a TaqMan® probe. Five closely related cox1 haplotypes were identified, all present within a single location, with only one haplotype common across all the other locations sampled. No allelic size variation was detected with the microsatellites and all loci were monomorphic. Overall, the pre-patent prevalence of Schistosoma spp. was 31%, with infected snails found at several sampling locations. In this part of Lake Malawi, Bi. pfeifferi exhibits low genetic diversity and is clearly being exposed to the miracidia of S. mansoni, which is likely facilitating the autochthonous transmission of this parasite.
Collapse
Affiliation(s)
- Mohammad H. Alharbi
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
- Ministry of Health, Buraydah 52367, Saudi Arabia
| | - Charlotte Condemine
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Josie Hesketh
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Sekeleghe A. Kayuni
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
- MASM Medi Clinics Limited, Medical Society of Malawi (MASM), Lilongwe P.O.Box 1254, Malawi
| | - Thomas M. Arme
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - John Archer
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Sam Jones
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - E. James LaCourse
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Peter Makaula
- Research for Health, Environment and Development (RHED), Mangochi P.O. Box 345, Malawi
| | - Janelisa Musaya
- Malawi Liverpool Wellcome Trust Clinical Research Programme, Private Bag, Blantyre P.O. Box 30096, Malawi
| | - J. Russell Stothard
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| |
Collapse
|
3
|
Systematic Review and Meta-Analysis on the Infection Rates of Schistosome Transmitting Snails in Southern Africa. Trop Med Infect Dis 2022; 7:tropicalmed7050072. [PMID: 35622699 PMCID: PMC9145527 DOI: 10.3390/tropicalmed7050072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 02/05/2023] Open
Abstract
Efforts to interrupt and eliminate schistosomiasis as a public health problem have increased in several Southern African countries. A systematic review was carried out on the infection rates of snails that cause schistosomiasis in humans. The searches were conducted in PubMed, Web of Science, and Scopus databases, using the PRISMA guidelines from inception to 24 February 2022. The study quality was assessed by using the Joanna Briggs Institute prevalence critical appraisal checklist. Pooled infection rates were estimated by using an inverse variance heterogeneity model, while heterogeneity was determined by using Cochran’s Q test and Higgins i2 statistics. A total of 572 articles were screened, but only 28 studies were eligible for inclusion based on predetermined criteria. In the selected studies, 82,471 Bulinus spp. and 16,784 Biomphalaria spp. snails were screened for cercariae. The pooled infectivity of schistosome intermediate host snails, Biomphalaria spp., and Bulinus spp. were 1%, 2%, and 1%, respectively. Snail infection rates were higher in the 1900s compared to the 2000s. A Luis Furuya–Kanamori index of 3.16 indicated publication bias, and a high level of heterogeneity was observed. Although snail infectivity in Southern Africa is relatively low, it falls within the interval of common snail infection rates, thus indicating the need for suitable snail control programs that could interrupt transmission and achieve elimination.
Collapse
|
4
|
Platt RN, Le Clec'h W, Chevalier FD, McDew‐White M, LoVerde PT, Ramiro de Assis R, Oliveira G, Kinung'hi S, Djirmay AG, Steinauer ML, Gouvras A, Rabone M, Allan F, Webster BL, Webster JP, Emery AM, Rollinson D, Anderson TJC. Genomic analysis of a parasite invasion: Colonization of the Americas by the blood fluke Schistosoma mansoni. Mol Ecol 2022; 31:2242-2263. [PMID: 35152493 PMCID: PMC9305930 DOI: 10.1111/mec.16395] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/25/2022] [Accepted: 01/31/2022] [Indexed: 11/29/2022]
Abstract
Schistosoma mansoni, a snail-borne, blood fluke that infects humans, was introduced into the Americas from Africa during the Trans-Atlantic slave trade. As this parasite shows strong specificity to the snail intermediate host, we expected that adaptation to South American Biomphalaria spp. snails would result in population bottlenecks and strong signatures of selection. We scored 475,081 single nucleotide variants in 143 S. mansoni from the Americas (Brazil, Guadeloupe and Puerto Rico) and Africa (Cameroon, Niger, Senegal, Tanzania, and Uganda), and used these data to ask: (i) Was there a population bottleneck during colonization? (ii) Can we identify signatures of selection associated with colonization? (iii) What were the source populations for colonizing parasites? We found a 2.4- to 2.9-fold reduction in diversity and much slower decay in linkage disequilibrium (LD) in parasites from East to West Africa. However, we observed similar nuclear diversity and LD in West Africa and Brazil, suggesting no strong bottlenecks and limited barriers to colonization. We identified five genome regions showing selection in the Americas, compared with three in West Africa and none in East Africa, which we speculate may reflect adaptation during colonization. Finally, we infer that unsampled populations from central African regions between Benin and Angola, with contributions from Niger, are probably the major source(s) for Brazilian S. mansoni. The absence of a bottleneck suggests that this is a rare case of a serendipitous invasion, where S. mansoni parasites were pre-adapted to the Americas and able to establish with relative ease.
Collapse
Affiliation(s)
- Roy N. Platt
- Texas Biomedical Research InstituteSan AntonioTexasUSA
| | | | | | | | | | | | - Guilherme Oliveira
- Centro de Pesquisas René Rachou—Fiocruz/MGBelo HorizonteBrazil
- Instituto Tecnológico ValeBelémBrazil
| | | | - Amadou Garba Djirmay
- Réseau International Schistosomiases Environnemental Aménagement et Lutte (RISEAL)NiameyNiger
| | | | | | | | - Fiona Allan
- Department of Pathobiology and Population SciencesRoyal Veterinary College, Centre for Emerging, Endemic and Exotic DiseasesUniversity of LondonHertfordshireUK
- London Centre for Neglected Tropical Disease Research, Imperial College LondonSchool of Public HealthLondonUK
| | - Bonnie L. Webster
- Natural History MuseumLondonUK
- London Centre for Neglected Tropical Disease Research, Imperial College LondonSchool of Public HealthLondonUK
| | - Joanne P. Webster
- Department of Pathobiology and Population SciencesRoyal Veterinary College, Centre for Emerging, Endemic and Exotic DiseasesUniversity of LondonHertfordshireUK
- London Centre for Neglected Tropical Disease Research, Imperial College LondonSchool of Public HealthLondonUK
| | - Aidan M. Emery
- Natural History MuseumLondonUK
- London Centre for Neglected Tropical Disease Research, Imperial College LondonSchool of Public HealthLondonUK
| | - David Rollinson
- Natural History MuseumLondonUK
- London Centre for Neglected Tropical Disease Research, Imperial College LondonSchool of Public HealthLondonUK
| | | |
Collapse
|
5
|
Genetic diversity of Biomphalaria pfeifferi, the intermediate host of Schistosoma mansoni in Shamva district, Zimbabwe: role on intestinal schistosomiasis transmission. Mol Biol Rep 2020; 47:4975-4987. [PMID: 32533403 DOI: 10.1007/s11033-020-05541-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 05/23/2020] [Indexed: 10/24/2022]
Abstract
The fresh water snail Biomphalaria pfeifferi is the intermediate host for Schistosoma mansoni, which causes human intestinal schistosomiasis in Zimbabwe. Despite the medical importance of this intermediate host, there are no current data on its molecular characterization in Zimbabwe. In 2016, human water contact sites were identified in four communities in Madziwa area, Shamva district, Zimbabwe. The survey sites were recorded and mapped using a global positioning system. A 655 bp region of the mitochondrial cytochrome oxidase subunit I gene was amplified in 70 B. pfeifferi snails. The sequence data were analysed to determine the relationships between the individual snails, their inter, intra population diversity and structure. Overall, four unique cox1 haplotypes, with a haplotype diversity of 0.608, were identified in the snails. One haplotype spanned across most of the sites. There was no clear geographical clustering of haplotypes. The mean diversity among the haplotypes was very low (0.009), while the net divergence among the collection sites ranged from 0.000 to 0.026. The diversity within and between the sites was 0.017 and 0.012 respectively. This data advances our knowledge of the understanding of the population structure of B. pfeifferi in Madziwa area, Zimbabwe, with the high occurrence of one haplotype indicating the possibility of a recent bottleneck followed by population expansion. The population genetic structure of B. pfeifferi snails described here has provided an opportunity to investigate the contribution of snail genetics to variation in disease burden; and development of control strategies that exploit genetic differences in susceptibility to parasites.
Collapse
|
6
|
Qiu C, Lu DB, Deng Y, Zou HY, Liang YS, Webster JP. Population genetics of Oncomelania hupensis snails, intermediate hosts of Schistosoma japonium, from emerging, re-emerging or established habitats within China. Acta Trop 2019; 197:105048. [PMID: 31173738 DOI: 10.1016/j.actatropica.2019.105048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 04/19/2019] [Accepted: 05/30/2019] [Indexed: 12/30/2022]
Abstract
Schistosomiasis remains one of the world's most significant neglected tropical diseases, second only to malaria in terms of socioeconomic impact. In 2014, China proposed the goal of schistosomiasis japonicum elimination by 2025. However, one major challenge is the widely distributed, and in certain cases potentially increasing, habitats of Oncomelania hupensis, the snail intermediate hosts of S. japonicum. Therefore, an understanding of population genetics of O. hupensis in new or re-emerged habitats, together with that of the established habitats with snail persistence, would be valuable in controlling and predicting the future transmission dynamics of schistosomiasis in China. Using nine microsatellite loci, we conducted population genetic analyses of snails sampled from one habitat where snails were detected for the first time, one (previously eliminated) habitat with re-emerged snails, and one habitat with established snail persistence. Results showed lower diversities, in terms of number of observed alleles per locus (Na), number of effective alleles per locus (NeA), observed (Ho) and expected heterozygosity (He), in snails from new or re-emerged snail habitats than from the habitat with snail persistence. The smallest effective population size was inferred in the re-emerged snail habitat, but the largest was in the new habitat rather than in the habitat with snail persistence. No bottleneck effects were detected in new or re-merged habitats. No or low sub-structure was inferred in new and persistent snail habitats. Snails from the three sites were clearly separated and low gene flow was estimated between sites. We propose that snails at the new habitat may have been introduced through immigration, whereas snails at the re-emerged habitat may be the consequence of those few snails remaining subsequently expanding through reproduction. We discuss our results in terms of their theoretical and applied implications.
Collapse
|
7
|
Population genetics of the Schistosoma snail host Bulinus truncatus in Egypt. Acta Trop 2017; 172:36-43. [PMID: 28408098 DOI: 10.1016/j.actatropica.2017.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 03/29/2017] [Accepted: 04/08/2017] [Indexed: 11/23/2022]
Abstract
The tropical freshwater snail Bulinus truncatus serves as an important intermediate host of several human and cattle Schistosoma species in many African regions. Despite some ecological and malacological studies, there is no information on the genetic diversity of B. truncatus in Egypt. Here, we sampled 70-100 snails in ten localities in Upper Egypt and the Nile Delta. Per locality, we sequenced 10 snails at a partial fragment of the cytochrome c oxidase subunit 1 gene (cox1) and we genotyped 25-30 snails at six microsatellite markers. A total of nine mitochondrial haplotypes were detected, of which five were unique to the Nile Delta and three were unique to Upper Egypt, indicating that snail populations may have evolved independently in both regions. Bayesian clustering and hierarchical F-statistics using microsatellite markers further revealed strong population genetic structure at the level of locality. Observed heterozygosity was much lower compared to what is expected under random mating, which could be explained by high selfing rates, population size reductions and to a lesser extent by the Wahlund effect. Despite these observations, we found signatures of gene flow and cross-fertilization, even between snails from the Nile Delta and Upper Egypt, indicating that B. truncatus can travel across large distances in Egypt. These observations could have serious consequences for disease epidemiology, as it means that infected snails from one region could rapidly and unexpectedly spark a new epidemic in another distant region. This could be one of the factors explaining the rebound of human Schistosoma infections in the Nile Delta, despite decades of sustained schistosomiasis control.
Collapse
|
8
|
Webster JP, Davies CM, Ndamba J, Noble LR, Jones CS, Woolhouse MEJ. Spatio-temporal genetic variability in the schistosome intermediate host Biomphalaria pfeifferi. ANNALS OF TROPICAL MEDICINE AND PARASITOLOGY 2016. [DOI: 10.1080/00034983.2001.11813664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
9
|
Standley CJ, Goodacre SL, Wade CM, Stothard JR. The population genetic structure of Biomphalaria choanomphala in Lake Victoria, East Africa: implications for schistosomiasis transmission. Parasit Vectors 2014; 7:524. [PMID: 25406437 PMCID: PMC4254209 DOI: 10.1186/s13071-014-0524-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 11/05/2014] [Indexed: 11/23/2022] Open
Abstract
Background The freshwater snail Biomphalaria acts as the intermediate host of Schistosoma mansoni, a globally important human parasite. Understanding the population structure of intermediate host species can elucidate transmission dynamics and assist in developing appropriate control methods. Methods We examined levels of population genetic structure and diversity in 29 populations of Biomphalaria choanomphala collected around the shoreline of Lake Victoria in Uganda, Kenya and Tanzania, where S. mansoni is hyper-endemic. Molecular markers were utilized to estimate the degree to which snail populations are genetically differentiated from one another. Results High levels of snail genetic diversity were found coupled with evidence of geographically-determined population structure but low levels of local inbreeding. The data are consistent with an effect of schistosome infection on population structure of intermediate host snails, but other factors, such as habitat and historical demographic changes, could also be important determinants of the degree of population genetic structure in Biomphalaria choanomphala. Conclusions The low stratification of populations and high genetic diversity indicates potentially less local compatibility with intermediate snail populations than previously theorized, and highlights the importance of coordinated parasite control strategies across the region. Electronic supplementary material The online version of this article (doi:10.1186/s13071-014-0524-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Claire J Standley
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK. .,Department of Zoology, Wolfson Wellcome Biomedical Laboratory, Natural History Museum, Cromwell Road, London, SW7 5BD, UK. .,Present address: Milken Institute School of Public Health, George Washington University, Washington, D.C., 20052, USA.
| | - Sara L Goodacre
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK.
| | - Christopher M Wade
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK.
| | - J Russell Stothard
- Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| |
Collapse
|
10
|
Campbell G, Noble LR, Rollinson D, Southgate VR, Webster JP, Jones CS. Low genetic diversity in a snail intermediate host (Biomphalaria pfeifferi Krass, 1848) and schistosomiasis transmission in the Senegal River Basin. Mol Ecol 2009; 19:241-56. [PMID: 20025653 DOI: 10.1111/j.1365-294x.2009.04463.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Population genetic perturbations of intermediate hosts, often a consequence of human pressure on environmental resources, can precipitate unexpectedly severe disease outbreaks. Such disturbances are set to become increasingly common following range changes concomitant with climate shifts, dwindling natural resources and major infrastructure changes such as hydroprojects. Construction of the Diama dam in the Senegal River Basin (SRB) reduced river salinity, enabling the freshwater snail intermediate host Biomphalaria pfeifferi to rapidly expand its distribution. A serious public health problem ensued, with an epidemic of intestinal schistosomiasis occurring in the previously schistosome-free Richard-Toll region within 2 years. The current study aimed to assess the population variability of B. pfeifferi in the SRB, and speculate upon its subsequent impact on host-parasite interactions following such engineered ecological change. Genetic variation at nine polymorphic microsatellite loci revealed little population differentiation in SRB snails compared with those from natural habitats in Zimbabwe, where Schistosoma mansoni transmission is much lower. 'Open' SRB habitats are associated with greater water contact, smaller population sizes and less genetic diversity, with sites downstream of Richard-Toll showing greater inter- and intrapopulation variation, concomitant with less frequent human contact. These observations may be explained by rapid expansion into pristine habitat selecting for high fecundity genotypes at the expense of schistosome resistance, presenting S. mansoni with genetically homogenous highly fecund susceptible populations around the focal point, promoting development of a highly compatible host-parasite relationship. Longitudinal study of such systems may prove important in predicting public health risks engendered by future environmental engineering projects.
Collapse
Affiliation(s)
- G Campbell
- General Medical Council, St James's Buildings, 79 Oxford Street, Manchester, M1 6FQ, UK
| | | | | | | | | | | |
Collapse
|
11
|
Webster JP, Gower CM, Norton AJ. Evolutionary concepts in predicting and evaluating the impact of mass chemotherapy schistosomiasis control programmes on parasites and their hosts. Evol Appl 2008; 1:66-83. [PMID: 25567492 PMCID: PMC3352399 DOI: 10.1111/j.1752-4571.2007.00012.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Accepted: 12/05/2007] [Indexed: 11/28/2022] Open
Abstract
Schistosomiasis is a parasitic disease of significant medical and veterinary importance in many regions of the world. Recent shifts in global health policy have led towards the implementation of mass chemotherapeutic control programmes at the national scale in previously 'neglected' countries such as those within sub-Saharan Africa. Evolutionary theory has an important role to play in the design, application and interpretation of such programmes. Whilst celebrating the rapid success achieved to date by such programmes, in terms of reduced infection prevalence, intensity and associated human morbidity, evolutionary change in response to drug selection pressure may be predicted under certain circumstances, particularly in terms of the development of potential drug resistance, evolutionary changes in parasite virulence, transmission and host use, and/or competitive interactions with co-infecting pathogens. Theoretical and empirical data gained to date serve to highlight the importance of careful monitoring and evaluation of parasites and their hosts whenever and wherever chemotherapy is applied and where parasite transmission remains.
Collapse
Affiliation(s)
- Joanne P Webster
- Department of Infectious Disease Epidemiology, Imperial College Faculty of Medicine Norfolk Place, London, UK
| | - Charlotte M Gower
- Department of Infectious Disease Epidemiology, Imperial College Faculty of Medicine Norfolk Place, London, UK
| | - Alice J Norton
- Department of Infectious Disease Epidemiology, Imperial College Faculty of Medicine Norfolk Place, London, UK
| |
Collapse
|
12
|
Webster JP, Gower CM, Blair L. Do Hosts and Parasites Coevolve? Empirical Support from the Schistosoma System. Am Nat 2004; 164 Suppl 5:S33-51. [PMID: 15540140 DOI: 10.1086/424607] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Coevolution between host and parasite is, in principle, a powerful determinant of the biology and genetics of infection and disease. However, coevolution is difficult to demonstrate rigorously in practice and therefore has rarely been observed empirically, particularly in animal-parasite systems. Research on host-schistosome interactions has the potential for making an important contribution to the study of coevolution or reciprocal adaptation. This may be particularly pertinent because schistosomes represent an indirectly transmitted macroparasite, so often overlooked among both theoretical and empirical studies. Here we present ideas and experiments on host-schistosome interactions, in part reviewed from published work but focusing in particular on preliminary novel data from our ongoing studies of potential host-schistosome evolution and coevolution in the laboratory. The article is split into three main sections: we first focus on the evidence for evolution in the host, then in the parasite, before combining both to illustrate the gathering evidence of host-parasite coevolution in the snail-schistosome system. In particular, we demonstrate that genetic architecture, variability, and selective pressures are present for the evolution of resistance and susceptibility, virulence, and infectivity to occur, the mechanisms allowing such polymorphisms to be maintained, and that hosts and parasites appear to have reciprocal effects on each other's phenotype and genotype.
Collapse
Affiliation(s)
- J P Webster
- Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom.
| | | | | |
Collapse
|
13
|
Lockyer AE, Jones CS, Noble LR, Rollinson D. Trematodes and snails: an intimate association. CAN J ZOOL 2004. [DOI: 10.1139/z03-215] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Trematode parasites share an intimate relationship with their gastropod intermediate hosts, which act as the vehicle for their development and transmission. They represent an enormous economic and medical burden in developing countries, stimulating much study of snail–trematode interactions. Laboratory-maintained snail–trematode systems and in vitro cell cultures are being used to investigate the molecular dialogue between host and parasite. These dynamic and finely balanced antagonistic relationships, in which parasites strongly influence the physiology of the host, are highly specific and may occasionally demonstrate co-speciation. We consider the mechanisms and responses deployed by trematodes and snails that result in compatibility or rejection of the parasite, and the macroevolutionary implications that they may effect. Although for gastropods the fossil record gives some insight into evolutionary history, elucidation of trematode evolution must rely largely upon molecular approaches, and for both, such techniques have provided fresh and often surprising evidence of their origins and dispersal over time. Co-evolution of snails and trematodes is becoming increasingly apparent at both cellular and population levels; the implications of which are only beginning to be understood for disease control. Untangling the complex interactions of trematodes and snails promise fresh opportunities for intervention to relieve the burden of parasitic disease.
Collapse
|
14
|
Charbonnel N, Quesnoit M, Razatavonjizay R, Brémond P, Jarne P. A Spatial and Temporal Approach to Microevolutionary Forces Affecting Population Biology in the Freshwater SnailBiomphalaria pfeifferi. Am Nat 2002; 160:741-55. [DOI: 10.1086/343875] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
15
|
Charbonnel N, Angers B, Rasatavonjizay R, Bremond P, Debain C, Jarne P. The influence of mating system, demography, parasites and colonization on the population structure of Biomphalaria pfeifferi in Madagascar. Mol Ecol 2002; 11:2213-28. [PMID: 12406234 DOI: 10.1046/j.1365-294x.2002.01586.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Current evolutionary forces and historical processes interact to shape the distribution of neutral genetic variability within and among populations. Focusing on the genetics of recently introduced organisms offers a good opportunity to understand the relative importance of these factors. This study concerns variation at 8 polymorphic microsatellite loci in 30 populations of Biomphalaria pfeifferi. The sampling area spans most of the species' range in Madagascar where it was probably introduced recently. Extremely low variation was found within all populations studied, which may partly result from high selfing rates. However, this cannot account for the variance of variation across populations, which is better explained by habitat openness (that reflects environmental stochasticity), the prevalence of the parasitic trematode Schistosoma mansoni and historical demography (colonization and subsequent bottlenecks). Large global differentiation was also observed, suggesting that current gene flow among populations is limited to small distances, within watersheds and to few individuals. Our data set also allowed us to test several hypotheses regarding colonization, based on bottleneck and admixture tests. The observed pattern requires at least two independent introductions from slightly differentiated genetic sources in the western part of Madagascar. Another introduction, from a very different genetic origin, should also be postulated to explain the genetic composition of eastern populations. That this introduction occurred recently suggests that the colonization of Madagascar by B. pfeifferi is an ongoing process.
Collapse
Affiliation(s)
- N Charbonnel
- CEFE-CNRS, 1919 route de Mende, 34293 Montpellier Cedex 5, France.
| | | | | | | | | | | |
Collapse
|
16
|
Charbonnel N, Angers B, Rasatavonjizay R, Bremond P, Jarne P. Evolutionary aspects of the metapopulation dynamics of Biomphalaria pfeifferi, the intermediate host of Schistosoma mansoni. J Evol Biol 2002. [DOI: 10.1046/j.1420-9101.2002.00381.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|