1
|
Raj J, Farkaš H, Jakovčević Z, Vasiljević M, Kumar R, Asrani RK. Effects of supplemented multicomponent mycotoxin detoxifying agent in laying hens fed aflatoxin B1 and T2-toxin contaminated feeds. Poult Sci 2023; 102:102795. [PMID: 37327744 PMCID: PMC10404769 DOI: 10.1016/j.psj.2023.102795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 06/18/2023] Open
Abstract
The present study was conducted to determine the ability of multicomponent mycotoxin detoxifying agent (MMDA) in feed to prevent the gastrointestinal absorption of aflatoxin B1 (AFB1) and T2-toxin supplemented via spiked maize. For comparisons, hens were fed with uncontaminated basal diet without or with addition of MMDA at 2 g/kg feed. The trial consisted of 105 laying hens (Lohmann Brown) without obvious signs of disease allocated to 7 treatment groups in 35 pens. Responses were demonstrated on laying performance and health status throughout the 42 d experimental period. The results of laying performance indicated significantly decreased egg mass with increasing mycotoxin (AFB1 and T2-toxin) levels up to the maximum tolerated dosage, however simultaneous presence of MMDA laying performance was slightly modified linearly to increasing application. Dose-dependent pathological changes in liver and kidneys and their relative weights, changes in blood parameters and reduced eggshell weights were observed in the hens fed AFB1 and T2-toxin. The pathological changes in the hens fed with diets containing AFB1 and T2-toxin without MMDA were significantly higher as compared with the control group, but eggshell stability was not affected. The contents of AFB1, T2-toxin and their metabolites in liver and kidney tissues were significantly decreased in the hens supplemented with MMDA at 2 and 3 g/kg in feed. MMDA supplementation significantly reduced the deposition of AFB1, T2-toxin and their metabolites in liver and kidneys at the maximum tolerated dosage (2 and 3 g/kg) indicating specific binding to AFB1 and T2-toxin in the digestive tract as compared to the corresponding diets without MMDA. Exposure of AFB1 and T2-toxin indicated significantly decreased egg mass with increasing mycotoxin levels up to the maximum tolerated dosage because of the significantly reduced egg production. Therefore, in this study, MMDA could reduce negative effects of feeding AFB1 and T-2 to laying hens.
Collapse
Affiliation(s)
- Jog Raj
- Patent Co, DOO., Vlade Ćetković 1A, Mišićevo 24211, Serbia.
| | - Hunor Farkaš
- Patent Co, DOO., Vlade Ćetković 1A, Mišićevo 24211, Serbia
| | | | | | - Rakesh Kumar
- Department of Veterinary Pathology, DGCN College of Veterinary and Animal Sciences, CSK Himachal Pradesh Agricultural University, Palampur, Himachal Pradesh 176062, India
| | - Rajesh Kumar Asrani
- Department of Veterinary Pathology, DGCN College of Veterinary and Animal Sciences, CSK Himachal Pradesh Agricultural University, Palampur, Himachal Pradesh 176062, India
| |
Collapse
|
2
|
Khaleghipour B, Khosravinia H, Toghiyani M, Azarfar A. Efficacy of silymarin-nanohydrogle complex in attenuation of aflatoxins toxicity in Japanese quails. ITALIAN JOURNAL OF ANIMAL SCIENCE 2020. [DOI: 10.1080/1828051x.2020.1743782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Behrouz Khaleghipour
- Department of Animal Sciences, Agriculture Faculty, Lorestan University, Khorramabad, Iran
| | | | - Majid Toghiyani
- Department of Animal Sciences, Agriculture Faculty, Islamic Azad University Khorasgan Branch, Isfahan, Iran
| | - Arash Azarfar
- Department of Animal Sciences, Agriculture Faculty, Lorestan University, Khorramabad, Iran
| |
Collapse
|
3
|
Fouad AM, Ruan D, El-Senousey HK, Chen W, Jiang S, Zheng C. Harmful Effects and Control Strategies of Aflatoxin B₁ Produced by Aspergillus flavus and Aspergillus parasiticus Strains on Poultry: Review. Toxins (Basel) 2019; 11:E176. [PMID: 30909549 PMCID: PMC6468546 DOI: 10.3390/toxins11030176] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 12/14/2022] Open
Abstract
The presence of aflatoxin B₁ (AFB₁) in poultry diets decreases the hatchability, hatchling weight, growth rate, meat and egg production, meat and egg quality, vaccination efficiency, as well as impairing the feed conversion ratio and increasing the susceptibility of birds to disease and mortality. AFB₁ is transferred from poultry feed to eggs, meat, and other edible parts, representing a threat to the health of consumers because AFB₁ is carcinogenic and implicated in human liver cancer. This review considers how AFB₁ produced by Aspergillus flavus and Aspergillus parasiticus strains can affect the immune system, antioxidant defense system, digestive system, and reproductive system in poultry, as well as its effects on productivity and reproductive performance. Nutritional factors can offset the effects of AFB₁ in poultry and, thus, it is necessary to identify and select suitable additives to address the problems caused by AFB₁ in poultry.
Collapse
Affiliation(s)
- Ahmed Mohamed Fouad
- Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza 12613, Egypt.
| | - Dong Ruan
- Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - HebatAllah Kasem El-Senousey
- Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza 12613, Egypt.
| | - Wei Chen
- Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - Shouqun Jiang
- Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - Chuntian Zheng
- Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| |
Collapse
|
4
|
Khaleghipour B, Khosravinia H, Toghiyani M, Azarfar A. Effects of silymarin on productive performance, liver function and serum biochemical profile in broiler Japanese quail challenged with dietary aflatoxins. ITALIAN JOURNAL OF ANIMAL SCIENCE 2019. [DOI: 10.1080/1828051x.2018.1548310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Behrouz Khaleghipour
- Department of Animal Science, Agriculture Faculty, Lorestan University, khorramabad, Iran
| | | | - Majid Toghiyani
- Department of Animal Science, Agriculture Faculty, Islamic Azad University Khorasgan Branch, Isfahan, Iran
| | - Arash Azarfar
- Department of Animal Science, Agriculture Faculty, Lorestan University, khorramabad, Iran
| |
Collapse
|
5
|
Rauf I, Wajid A, Hussain I, Ather S, Ali MA. Immunoprotective role of LaSota vaccine under immunosuppressive conditions in chicken challenged with velogenic avian avulavirus-1. Trop Anim Health Prod 2019; 51:1357-1365. [DOI: 10.1007/s11250-019-01814-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 01/16/2019] [Indexed: 12/15/2022]
|
6
|
Yavuz O, Özdemir Ö, Ortatatli M, Atalay B, Hatipoglu F, Terzi F. The Preventive Effects of Different Doses of Glucomannan on Experimental Aflatoxicosis in Japanese Quails. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2017. [DOI: 10.1590/1806-9061-2016-0349] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Aflatoxins produced by Aspergillus parasiticus present in the diet of quails increase the activities of cholinesterase and adenosine deaminase. Microb Pathog 2017; 107:309-312. [DOI: 10.1016/j.micpath.2017.03.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 03/30/2017] [Accepted: 03/30/2017] [Indexed: 12/12/2022]
|
8
|
Bagherzadeh Kasmani F, Mehri M. Effects of a multi-strain probiotics against aflatoxicosis in growing Japanese quails. Livest Sci 2015. [DOI: 10.1016/j.livsci.2015.04.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Mycotoxin-degradation profile of Rhodococcus strains. Int J Food Microbiol 2013; 166:176-85. [DOI: 10.1016/j.ijfoodmicro.2013.06.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 05/24/2013] [Accepted: 06/06/2013] [Indexed: 11/23/2022]
|
10
|
Sur E, Dönmez HH, Boydak M, Ataman MB. Effects of glucomannan on the sacculus rotundus and peripheral blood lymphocytes in New Zealand rabbits during aflatoxicosis. ScientificWorldJournal 2012; 2012:632945. [PMID: 22645440 PMCID: PMC3356728 DOI: 10.1100/2012/632945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Accepted: 02/07/2012] [Indexed: 11/17/2022] Open
Abstract
This study was aimed to determine the effects of the glucomannan added to aflatoxin- (AF-) contaminated diet on the sacculus rotundus and peripheral blood lymphocytes of New Zealand rabbits by histological and enzyme histochemical methods. Twenty-four adult rabbits of both sexes were divided into four equal groups, namely, as control, glucomannan 0.2 g/day, AF 125 μg/kg/day, and glucomannan combined with AF. The animals in all groups were treated for 12 weeks by the above-mentioned diet. When compared to control, AF-treatment caused significant decrease in alpha-naphthyl acetate esterase- (ANAE-) positive peripheral blood lymphocyte (PBL) percentages. The addition of the glucomannan to AFcontaining diet recovered the adverse effects of AF on sacculus rotundus and increased the ANAE-positive PBL counts. These results suggested that glucomannan was effective against the negative effects of AF in rabbits.
Collapse
Affiliation(s)
- Emrah Sur
- Department of Histology, Selçuk University Veterinary Faculty, 42031 Konya, Turkey
| | | | | | | |
Collapse
|
11
|
BOUDERGUE C, BUREL C, DRAGACCI S, FAVROT M, FREMY J, MASSIMI C, PRIGENT P, DEBONGNIE P, PUSSEMIER L, BOUDRA H, MORGAVI D, OSWALD I, PEREZ A, AVANTAGGIATO G. Review of mycotoxin‐detoxifying agents used as feed additives: mode of action, efficacy and feed/food safety. ACTA ACUST UNITED AC 2009. [DOI: 10.2903/sp.efsa.2009.en-22] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|