1
|
Biesek J, Wlaźlak S, Adamski M. Changes in physicochemical parameters of duck eggs and extra-embryonic structures during incubation. Animal 2023; 17:101024. [PMID: 37981451 DOI: 10.1016/j.animal.2023.101024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 11/21/2023] Open
Abstract
Duckling embryogenesis should be deepened due to the hatching technology and its modification possibilities. Many changes occur in incubated eggs, which expose the embryo to hazards. The study aimed to analyse the physicochemical properties of eggshell, yolk, thick albumen (TA), and amniotic fluid (AF) of incubated hatching eggs from 52-week-old Cherry Valley ducks. The morphological features of 18 fresh eggs were analysed. Over 28 days, a total of 800 eggs underwent incubation. Eggshell surface temperature and egg weight loss were measured on days 1, 4, 7, 10, 14, 18, 21, and 25. Eggshell, TA, AF, and yolk were collected from eggs at incubation days 1-21 (every week). TA was collected on days 0, 1, and 7, while AF on days 7, 14, and 21. The analysis covered a range of physicochemical parameters. Eggshell thickness decreased with incubation, reaching its lowest point posthatch (P < 0.001). The highest pH for TA was recorded on day 1, while the lowest was on day 7 when comparing days 0, 1, and 7 (P < 0.001). TA pH was consistently higher than in AF (P < 0.001). However, the pH of TA was the highest on day 1 and the lowest on day 7 (P < 0.001). Yolk pH increased from days 1 to 21 (P < 0.001). There was also a noticeable in egg weight loss (0.34% daily) (P < 0.001). Vitelline membrane strength decreased from day 0 to day 1 (P < 0.001). Lysozyme activity in thick albumen on day 7 was higher than on days 0 and 1 (P < 0.001). Lysozyme activity in AF was higher on day 21 than days 7 and 14 (P < 0.001). TA viscosity was highest on day 0 and lowest on day 1, compared to other days (P < 0.001). AF viscosity and CP content exhibited an increase on day 21 as compared to days 7 and 14 (P < 0.001). The CP content in TA was notably higher on day 7 than on days 0 and 1 (P < 0.001). Polyunsaturated fatty acids declined, while monounsaturated and transfatty acids increased (P < 0.001). Viscosity and lysozyme activity increased on day 7 in TA and day 21 in AF. TA and the amniotic cavity appeared to facilitate the transfer of substances, particularly CP. Viscosity could be an indicator for optimising incubation conditions, as incorrect changes can affect embryo mortality. The results showed the different utilisation of nutrients, such as fatty acids. It could support research on the in-ovo administration of various substances.
Collapse
Affiliation(s)
- Jakub Biesek
- Department of Animal Breeding and Nutrition, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, 85-084 Bydgoszcz, Poland.
| | - Sebastian Wlaźlak
- Department of Animal Breeding and Nutrition, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, 85-084 Bydgoszcz, Poland
| | - Marek Adamski
- Department of Animal Breeding and Nutrition, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, 85-084 Bydgoszcz, Poland
| |
Collapse
|
2
|
Patty DJ, Nugraheni AD, Ana ID, Aminatun, Sari YW, Gunawarman, Yusuf Y. The enhanced properties and bioactivity of poly-ε-caprolactone/poly lactic- co-glycolic acid doped with carbonate hydroxyapatite-egg white. RSC Adv 2023; 13:34427-34438. [PMID: 38024968 PMCID: PMC10667861 DOI: 10.1039/d3ra07486b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 12/01/2023] Open
Abstract
Synthetic polymers, such as PCL and PLGA, are among the main material choices in tissue engineering because of their stable structures and strong mechanical properties. In this study, we designed polycaprolactone (PCL)/polylactic-co-glycolate acid (PLGA) nanofibers doped with carbonate hydroxyapatite (CHA) and egg white (EW) with enhanced properties. The addition of CHA and EW significantly influenced the properties and morphology of PCL/PLGA nanofibers; whereby the CHA substitution (PCL/PLGA/CHA) greatly increased the mechanical properties related to the Young's modulus and EW doping (PCL/PLGA/CHA/EW) increased the elongation at break. Bioactivity tests of PCL/PLGA/CHA/EW after immersion in the SBF for 3 to 9 days showed increased fiber diameters and a good swelling capacity that could improve cell adhesion, while biocompatibility tests with NIH-3T3 fibroblast cells showed good cell proliferation (85%) after 48 h and antibacterial properties against S. aureus.
Collapse
Affiliation(s)
- Diana Julaidy Patty
- Department of Physics, Faculty of Mathematics and Natural Science, Universitas Gadjah Mada Yogyakarta Indonesia
- Department of Physics, Faculty of Mathematics and Natural Science, Universitas Pattimura Ambon Indonesia
| | - Ari Dwi Nugraheni
- Department of Physics, Faculty of Mathematics and Natural Science, Universitas Gadjah Mada Yogyakarta Indonesia
| | - Ika Dewi Ana
- Department of Dental Biomedical Sciences, Faculty of Dentistry, Universitas Gadjah Mada Yogyakarta Indonesia
- Research Collaboration Center for Biomedical Scaffolds National Research and Innovation Agency of the Republic of Indonesia (BRIN), Universitas Gadjah Mada (UGM) Bulaksumur Yogyakarta 55281 Indonesia
| | - Aminatun
- Department of Physics, Universitas Airlangga Surabaya 60115 Indonesia
| | - Yessie Widya Sari
- Department of Physics, Institut Pertanian Bogor Bogor 16680 Indonesia
| | - Gunawarman
- Department of Mechanical Engineering, Universitas Andalas Padang 25163 Indonesia
| | - Yusril Yusuf
- Department of Physics, Faculty of Mathematics and Natural Science, Universitas Gadjah Mada Yogyakarta Indonesia
- Research Collaboration Center for Biomedical Scaffolds National Research and Innovation Agency of the Republic of Indonesia (BRIN), Universitas Gadjah Mada (UGM) Bulaksumur Yogyakarta 55281 Indonesia
| |
Collapse
|
3
|
Javůrková VG, Mikšík I. New insights into the relationships between egg maternal components: the interplays between albumen steroid hormones, proteins and eggshell protoporphyrin. Comp Biochem Physiol A Mol Integr Physiol 2023; 279:111401. [PMID: 36781044 DOI: 10.1016/j.cbpa.2023.111401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 02/13/2023]
Abstract
Recent studies have shown that the egg yolk maternal components, which are a mixture of substances that can affect the developing embryo, do not act separately but are interconnected and co-adapted. Surprisingly, no study to date has focused on the associations between maternally derived albumen steroids and albumen and eggshell compounds with pleiotropic effects. Eggshell pigment protoporphyrin (PROTO IX) should provide primary antimicrobial protection for eggs, but as a proven pro-oxidant, it may compromise female fitness. Abundant albumen proteins ovotransferrin (OVOTR) and lysozyme (LSM) have been shown to have antimicrobial, antioxidant, immunoregulatory and growth-regulatory roles. To investigate associations between albumen steroids and OVOTR, LSM and eggshell cuticle PROTO IX, we used chicken eggs with differently pigmented eggshells. We found that albumen steroid hormones were strongly intercorrelated. In addition, we revealed that albumen LSM and testosterone (T) were positively associated, while a negative association was found between albumen LSM and pregnenolone (P5). Eggshell cuticle PROTO IX was negatively associated with the concentration of albumen 17α-hydroxypregnenolone (17-OHP5). Finally, of all the hormones tested, only the concentration of albumen 17-OHP5 correlated negatively with egg volume and varied with eggshell colour and chicken breed. Although experimental evidence for the effect of maternal albumen steroids on avian developing embryo is still scarce, our study is the first to highlight co-variation and potential co-adjustment of maternally derived albumen steroids, proteins and eggshell cuticle pigment suggesting similar allocation mechanisms known for yolk maternal compounds with the potential to influence the avian embryo and offspring phenotype.
Collapse
Affiliation(s)
- Veronika Gvoždíková Javůrková
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands; Institute of Vertebrate Biology of the Czech Academy of Sciences, Květná 8, 603 65 Brno, Czech Republic.
| | - Ivan Mikšík
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic
| |
Collapse
|
4
|
Gul H, Habib G, Khan IM, Rahman SU, Khan NM, Wang H, Khan NU, Liu Y. Genetic resilience in chickens against bacterial, viral and protozoal pathogens. Front Vet Sci 2022; 9:1032983. [PMID: 36439341 PMCID: PMC9691405 DOI: 10.3389/fvets.2022.1032983] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/28/2022] [Indexed: 06/13/2024] Open
Abstract
The genome contributes to the uniqueness of an individual breed, and enables distinctive characteristics to be passed from one generation to the next. The allelic heterogeneity of a certain breed results in a different response to a pathogen with different genomic expression. Disease resistance in chicken is a polygenic trait that involves different genes that confer resistance against pathogens. Such resistance also involves major histocompatibility (MHC) molecules, immunoglobulins, cytokines, interleukins, T and B cells, and CD4+ and CD8+ T lymphocytes, which are involved in host protection. The MHC is associated with antigen presentation, antibody production, and cytokine stimulation, which highlight its role in disease resistance. The natural resistance-associated macrophage protein 1 (Nramp-1), interferon (IFN), myxovirus-resistance gene, myeloid differentiation primary response 88 (MyD88), receptor-interacting serine/threonine kinase 2 (RIP2), and heterophile cells are involved in disease resistance and susceptibility of chicken. Studies related to disease resistance genetics, epigenetics, and quantitative trait loci would enable the identification of resistance markers and the development of disease resistance breeds. Microbial infections are responsible for significant outbreaks and have blighted the poultry industry. Breeding disease-resistant chicken strains may be helpful in tackling pathogens and increasing the current understanding on host genetics in the fight against communicable diseases. Advanced technologies, such as the CRISPR/Cas9 system, whole genome sequencing, RNA sequencing, and high-density single nucleotide polymorphism (SNP) genotyping, aid the development of resistant breeds, which would significantly decrease the use of antibiotics and vaccination in poultry. In this review, we aimed to reveal the recent genetic basis of infection and genomic modification that increase resistance against different pathogens in chickens.
Collapse
Affiliation(s)
- Haji Gul
- Anhui Province Key Laboratory of Embryo Development and Reproduction Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, China
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Gul Habib
- Department of Microbiology, Abbottabad University of Science and Technology, Abbottabad, Pakistan
| | - Ibrar Muhammad Khan
- Anhui Province Key Laboratory of Embryo Development and Reproduction Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, China
| | - Sajid Ur Rahman
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Nazir Muhammad Khan
- Department of Zoology, University of Science and Technology, Bannu, Pakistan
| | - Hongcheng Wang
- Anhui Province Key Laboratory of Embryo Development and Reproduction Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, China
| | - Najeeb Ullah Khan
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar, Pakistan
| | - Yong Liu
- Anhui Province Key Laboratory of Embryo Development and Reproduction Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, China
| |
Collapse
|
5
|
Patty DJ, Nugraheni AD, Ana ID, Yusuf Y. Dual functional carbonate-hydroxyapatite nanocomposite from Pinctada maxima and egg-white for bone tissue engineering. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:1043-1062. [PMID: 35107394 DOI: 10.1080/09205063.2022.2036934] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/24/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
This study aims to design a 3D carbonate-hydroxyapatite (CHA)/sago (S) based egg white (EW) microstructure with antibacterial properties to improve the performance of bone grafts for bone tissue engineering. In this study, Pinctada maxima (P. maxima) shell was used as a calcium (Ca) source in CHA synthesis. The annealing temperature of CHA at 900, 1000, and 1100 °C affected microstructural and lattice parameters, with stoichiometry 1.72-1.77, and B-type CHA was identified. CHA/S with various concentrations of EW (10 and 30 wt.%) effectively increased pore size and porosity. XRD spectra confirmed that sago and EW in CHA nanocomposite stable the crystal structure. FTIR spectrum shows protein phosphorylation in CHA nanocomposite due to PO43- ion exchange. In-vitro bioactivity of CHA-S10 (MTT assay) showed increased cell viability and optical density (OD; 24-48 h) to control. Antibacterial activity of CHA-S10 and CHA/S (control) against bacteria associated with periodontal disease and bone infection (Actinobacillus actinomycetemcomitans [A. actinomycetemcomitans], Porphyromonas gingivalis [P. gingivalis], Fusobacterium nucleatum [F. nucleatum; gram negative], and Staphylococcus aureus [S. aureus; gram positive]) by disc diffusion method showed that CHA-S10 and CHA/S had strong antibacterial activity. In conclusion, EW's properties had proven the CHA/S/EW as bone grafts, effectively increasing pore size, porosity, biocompatibility, and strong antibacterial properties.
Collapse
Affiliation(s)
- Diana Julaidy Patty
- Department of Physics, Faculty of Mathematics and Natural Science, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Department of Physics, Faculty of Mathematics and Natural Science, Universitas Pattimura, Ambon, Indonesia
| | - Ari Dwi Nugraheni
- Department of Physics, Faculty of Mathematics and Natural Science, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Ika Dewi Ana
- Department of Dental Biomedical Sciences, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Yusril Yusuf
- Department of Physics, Faculty of Mathematics and Natural Science, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
6
|
Patty DJ, Nugraheni AD, Ana ID, Yusuf Y. In vitro bioactivity of 3D microstructure hydroxyapatite/collagen based-egg white as an antibacterial agent. J Biomed Mater Res B Appl Biomater 2022; 110:1412-1424. [PMID: 35040555 DOI: 10.1002/jbm.b.35009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 12/13/2021] [Accepted: 12/28/2021] [Indexed: 12/28/2022]
Abstract
The present study aims to design 3D scaffold hydroxyapatite (HA)/collagen (Coll) based egg-white (EW) as antibacterial properties. The calcium source in HA synthesis derived from the Pinctada maxima shell cultivated on Bali Island has proven biocompatibility, and the compressive strength exceeded human bone. HA synthesis by precipitation with heat treatment in oven-dried at 80°C (HA-80) and annealed at 900°C (HA-900), has crystallinity 48% and 85%, respectively, were used for scaffold design. The physicochemical properties of X-ray diffractometer spectra showed that increasing temperature affected the crystallinity and HA phase formed. Furthermore, the crystal structure of HA changed in nanocomposite due to the substitution of Coll and EW, and the Fourier transform infrared spectroscopy spectra confirmed that the absorption peak of the phosphate group (1027-1029 cm-1 ) decreased intensity, presumably by protein binding of EW and Coll. The cell viability of HA/Coll/EW in 24, 48, and 72 h incubation period was 112.34 ± 4.36, 104.89 ± 3.41, 72.88 ± 6.85, respectively. The decreases of cell viability due to high cell density and reduced nutrients in wells. Antibacterial activity of HA/Col/EW exhibited a strong zone of inhibition against bacteria causing periodontitis; Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum, and Staphylococcus aureus.
Collapse
Affiliation(s)
- Diana Julaidy Patty
- Department of Physics, Faculty of Mathematics and Natural Science, Universitas Gadjah Mada, Yogyakarta, Indonesia.,Department of Physics, Faculty of Mathematics and Natural Science, Universitas Pattimura, Ambon, Indonesia
| | - Ari Dwi Nugraheni
- Department of Physics, Faculty of Mathematics and Natural Science, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Ika Dewi Ana
- Department of Dental Biomedical Sciences, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Yusril Yusuf
- Department of Physics, Faculty of Mathematics and Natural Science, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
7
|
Svobodová J, Kreisinger J, Gvoždíková Javůrková V. Temperature-induced changes in egg white antimicrobial concentrations during pre-incubation do not influence bacterial trans-shell penetration but do affect hatchling phenotype in Mallards. PeerJ 2021; 9:e12401. [PMID: 34824913 PMCID: PMC8590799 DOI: 10.7717/peerj.12401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 10/06/2021] [Indexed: 01/10/2023] Open
Abstract
Microbiome formation and assemblage are essential processes influencing proper embryonal and early-life development in neonates. In birds, transmission of microbes from the outer environment into the egg’s interior has been found to shape embryo viability and hatchling phenotype. However, microbial transmission may be affected by egg-white antimicrobial proteins (AMPs), whose concentration and antimicrobial action are temperature-modulated. As both partial incubation and clutch covering with nest-lining feathers during the pre-incubation period can significantly alter temperature conditions acting on eggs, we experimentally investigated the effects of these behavioural mechanisms on concentrations of both the primary and most abundant egg-white AMPs (lysozyme and avidin) using mallard (Anas platyrhychos) eggs. In addition, we assessed whether concentrations of egg-white AMPs altered the probability and intensity of bacterial trans-shell penetration, thereby affecting hatchling morphological traits in vivo. We observed higher concentrations of lysozyme in partially incubated eggs. Clutch covering with nest-lining feathers had no effect on egg-white AMP concentration and we observed no association between concentration of egg-white lysozyme and avidin with either the probability or intensity of bacterial trans-shell penetration. The higher egg-white lysozyme concentration was associated with decreased scaled body mass index of hatchlings. These outcomes demonstrate that incubation prior to clutch completion in precocial birds can alter concentrations of particular egg-white AMPs, though with no effect on bacterial transmission into the egg in vivo. Furthermore, a higher egg white lysozyme concentration compromised hatchling body condition, suggesting a potential growth-regulating role of lysozyme during embryogenesis in precocial birds.
Collapse
Affiliation(s)
- Jana Svobodová
- Faculty of Environmental Sciences, Department of Ecology, Czech University of Life Sciences, Prague, Suchdol, Czech Republic
| | - Jakub Kreisinger
- Faculty of Science, Department of Zoology, Charles University Prague, Prague, Czech Republic
| | - Veronika Gvoždíková Javůrková
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czech Republic.,Faculty of Agrobiology, Food and Natural Resources, Department of Animal Science, Czech University of Life Sciences, Prague, Suchdol, Czech Republic
| |
Collapse
|
8
|
Guinea fowl (Numida meleagris) eggs and free-range housing: a convenient alternative to laying hens' eggs in terms of food safety? Poult Sci 2021; 100:101006. [PMID: 33662664 PMCID: PMC7930637 DOI: 10.1016/j.psj.2021.01.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/21/2020] [Accepted: 01/02/2021] [Indexed: 02/07/2023] Open
Abstract
The aim of this study was to evaluate the impact of the genotype (guinea fowl, native breed Leghorn, and commercial hybrid hens), storage time (0, 14, 28 d) and storage temperature (fresh, 5, 20°C) on eggshell quality traits and microbiological contamination of eggshell, eggshell membranes, and albumen. A total of 150 hens (50 hens per genotype—divided into 2 equal groups because of the results replication) were used. There were 150 eggs (50 per genotype) used for microbial analysis and 600 eggs used for the analysis of eggshell quality. The effects of genotype, storage time, and storage temperature were observed. Moreover, interactions between these factors were calculated. The significant effect of genotype (P = 0.0001) was found in egg weight, in all observed parameters of eggshell quality (proportion, thickness, strength, surface, and index), eggshell contamination of Escherichia coli (EC) and total number of micro-organisms (TNM), penetration of TNM into eggshell membranes (P = 0.0014), and penetration of TNM into albumen (P = 0.0019). Storage time significantly affected egg weight and all parameters of eggshell quality except the eggshell strength and index. It also significantly affected count of Enterococcus (ENT) on eggshell, TNM in eggshell membranes and TNM in albumen. Storage temperature significantly influenced egg weight (P = 0.0001) and all parameters but eggshell thickness and surface. Regarding the microbial contamination, storage temperature significantly affected a count of ENT on shell, TNM in shell membranes, and TNM in albumen. Concerning significant interactions, the interaction among genotype and storage time was found significant (P = 0.0148). Fresh and 28-day-old commercial hybrid eggs were the most contaminated, whereas guinea fowl eggs (fresh and 14 d old) and Leghorn hen eggs (fresh, 14, 28 d old) had the lowest level of contamination by EC. When looking for an alternative to laying hens, guinea fowls should be taken into consideration due to their higher resistance to diseases, ability of adaptation to different environmental conditions, and especially in terms of eggshell quality and therefore egg safety.
Collapse
|
9
|
Wellawa DH, Allan B, White AP, Köster W. Iron-Uptake Systems of Chicken-Associated Salmonella Serovars and Their Role in Colonizing the Avian Host. Microorganisms 2020; 8:E1203. [PMID: 32784620 PMCID: PMC7465098 DOI: 10.3390/microorganisms8081203] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 01/09/2023] Open
Abstract
Iron is an essential micronutrient for most bacteria. Salmonella enterica strains, representing human and animal pathogens, have adopted several mechanisms to sequester iron from the environment depending on availability and source. Chickens act as a major reservoir for Salmonella enterica strains which can lead to outbreaks of human salmonellosis. In this review article we summarize the current understanding of the contribution of iron-uptake systems to the virulence of non-typhoidal S. enterica strains in colonizing chickens. We aim to address the gap in knowledge in this field, to help understand and define the interactions between S. enterica and these important hosts, in comparison to mammalian models.
Collapse
Affiliation(s)
- Dinesh H. Wellawa
- Vaccine & Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, 120 Veterinary Rd., Saskatoon, SK S7N 5E3, Canada; (D.H.W.); (B.A.); (A.P.W.)
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Brenda Allan
- Vaccine & Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, 120 Veterinary Rd., Saskatoon, SK S7N 5E3, Canada; (D.H.W.); (B.A.); (A.P.W.)
| | - Aaron P. White
- Vaccine & Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, 120 Veterinary Rd., Saskatoon, SK S7N 5E3, Canada; (D.H.W.); (B.A.); (A.P.W.)
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Wolfgang Köster
- Vaccine & Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, 120 Veterinary Rd., Saskatoon, SK S7N 5E3, Canada; (D.H.W.); (B.A.); (A.P.W.)
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| |
Collapse
|
10
|
N-glycoproteomic analysis of duck egg yolk proteins: Implications for biofunctions and evolution. Int J Biol Macromol 2020; 151:19-26. [DOI: 10.1016/j.ijbiomac.2020.02.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 11/22/2022]
|
11
|
Zhang YH, Bai J, Jiang WN, Zhao CR, Ji JJ, Wang JZ, Liu YW. Promising hen egg-derived proteins/peptides (EDPs) for food engineering, natural products and precision medicines. Res Vet Sci 2020; 128:153-161. [DOI: 10.1016/j.rvsc.2019.11.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 10/19/2019] [Accepted: 11/27/2019] [Indexed: 01/15/2023]
|
12
|
Javůrková VG, Pokorná M, Mikšík I, Tůmová E. Concentration of egg white antimicrobial and immunomodulatory proteins is related to eggshell pigmentation across traditional chicken breeds. Poult Sci 2019; 98:6931-6941. [PMID: 31420680 PMCID: PMC8913977 DOI: 10.3382/ps/pez472] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 07/30/2019] [Indexed: 12/14/2022] Open
Affiliation(s)
- Veronika Gvoždíková Javůrková
- Department of Animal Science, Czech University of Life Sciences, Kamýcká 129, 165 00 Prague – Suchdol, Czech Republic
- Corresponding author
| | - Monika Pokorná
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 44 Prague 2, Czech Republic
| | - Ivan Mikšík
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Eva Tůmová
- Department of Animal Science, Czech University of Life Sciences, Kamýcká 129, 165 00 Prague – Suchdol, Czech Republic
| |
Collapse
|
13
|
Meng Y, Qiu N, Geng F, Huo Y, Sun H, Keast R. Identification of the Duck Egg White N-Glycoproteome and Insight into the Course of Biological Evolution. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:9950-9957. [PMID: 31403788 DOI: 10.1021/acs.jafc.9b03059] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Protein glycosylation is a ubiquitous posttranslational modification that modulates protein properties, thereby influencing bioactivities within a system. Duck egg white (DEW) proteins exhibit diverse biological properties compared with their chicken egg white (CEW) counterparts, which might be related to glycosylation. N-Glycoproteome analysis of DEW was conducted, and a total of 231 N-glycosites from 68 N-glycoproteins were identified. Gene ontology analysis was used to elucidate the biofunctions of DEW N-glycoproteins and compare them with those of CEW, which showed that the differences mostly involved molecular functions and biological processes. The biological functions of DEW N-glycoproteins were illuminated through bioinformatics analysis and comparison with CEW orthologues, which showed different allergenicities and antibacterial abilities. These divergences might be initiated by specific alterations in glycosylation, which can enhance the proteolysis resistance and protein steric hindrance. These results provide new insights for discovering the effects of N-glycosylation on biofunctions during the divergence of homologous proteins.
Collapse
Affiliation(s)
- Yaqi Meng
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, National Research and Development Center for Egg Processing, College of Food Science and Technology , Huazhong Agricultural University , Wuhan 430070 , PR China
| | - Ning Qiu
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, National Research and Development Center for Egg Processing, College of Food Science and Technology , Huazhong Agricultural University , Wuhan 430070 , PR China
- Department of Chemical Engineering and Food Science , Hubei University of Arts and Science , Xiangyang 441053 , PR China
| | - Fang Geng
- Meat Processing Key Laboratory of Sichuan Province, College of Pharmacy and Biological Engineering , Chengdu University , No. 2025 Chengluo Avenue , Chengdu 610106 , PR China
| | - Yinqiang Huo
- Department of Chemical Engineering and Food Science , Hubei University of Arts and Science , Xiangyang 441053 , PR China
| | - Haohao Sun
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, National Research and Development Center for Egg Processing, College of Food Science and Technology , Huazhong Agricultural University , Wuhan 430070 , PR China
| | - Russell Keast
- Centre for Advanced Sensory Science, School of Exercise and Nutrition Sciences , Deakin University , Burwood , Victoria 3125 , Australia
| |
Collapse
|
14
|
Svobodová J, Šmídová L, Javůrková VG. Different incubation patterns affect selective antimicrobial properties of the egg interior: experimental evidence from eggs of precocial and altricial birds. ACTA ACUST UNITED AC 2019; 222:jeb.201442. [PMID: 30814292 DOI: 10.1242/jeb.201442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 02/22/2019] [Indexed: 12/14/2022]
Abstract
Avian eggs contend with omnipresent microorganisms entering the egg interior, where they affect embryo viability and hatchling phenotype. The incubation behaviour and deposition of egg white antimicrobial proteins (AMPs) vary highly across the avian altricial-precocial spectrum. Experimental evidence of how these alterations in avian reproductive strategies affect the antimicrobial properties of the precocial and altricial egg interior is lacking, however. Here, we tested the egg white antimicrobial activity in eggs of two representative model species, from each end of the avian altricial-precocial spectrum, against potentially pathogenic and beneficial probiotic microorganisms. Eggs were experimentally treated to mimic un-incubated eggs in the nest, partial incubation during the egg-laying period, the onset of full incubation and the increased deposition of two main egg white AMPs, lysozyme and ovotransferrin. We moreover assessed to what extent egg antimicrobial components, egg white pH and AMP concentrations varied as a result of different incubation patterns. Fully incubated precocial and altricial eggs decreased their antimicrobial activity against a potentially pathogenic microorganism, whereas partial incubation significantly enhanced the persistence of a beneficial probiotic microorganism in precocial eggs. These effects were most probably conditioned by temperature-dependent alterations in egg white pH and AMP concentrations. While lysozyme concentration and pH decreased in fully incubated precocial but not altricial eggs, egg white ovotransferrin increased along with the intensity of incubation in both precocial and altricial eggs. This study is the first to experimentally demonstrate that different incubation patterns may have selective antimicrobial potential mediated by species-specific effects on antimicrobial components in the egg white.
Collapse
Affiliation(s)
- Jana Svobodová
- Czech University of Life Sciences, Faculty of Environmental Sciences, Department of Ecology, Kamýcká 1176, 165 21 Prague 6, Czech Republic
| | - Lucie Šmídová
- Charles University, Faculty of Science, Department of Zoology, Viničná 7, 128 44 Prague 2, Czech Republic
| | - Veronika Gvoždíková Javůrková
- Czech University of Life Sciences, Faculty of Agrobiology, Food and Natural Resources, Department of Animal Science, Kamýcká 957, 165 21 Prague 6, Czech Republic
| |
Collapse
|
15
|
Réhault-Godbert S, Guyot N, Nys Y. The Golden Egg: Nutritional Value, Bioactivities, and Emerging Benefits for Human Health. Nutrients 2019; 11:E684. [PMID: 30909449 PMCID: PMC6470839 DOI: 10.3390/nu11030684] [Citation(s) in RCA: 232] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/15/2019] [Accepted: 03/19/2019] [Indexed: 12/26/2022] Open
Abstract
Egg is an encapsulated source of macro and micronutrients that meet all requirements to support embryonic development until hatching. The perfect balance and diversity in its nutrients along with its high digestibility and its affordable price has put the egg in the spotlight as a basic food for humans. However, egg still has to face many years of nutritionist recommendations aiming at restricting egg consumption to limit cardiovascular diseases incidence. Most experimental, clinical, and epidemiologic studies concluded that there was no evidence of a correlation between dietary cholesterol brought by eggs and an increase in plasma total-cholesterol. Egg remains a food product of high nutritional quality for adults including elderly people and children and is extensively consumed worldwide. In parallel, there is compelling evidence that egg also contains many and still-unexplored bioactive compounds, which may be of high interest in preventing/curing diseases. This review will give an overview of (1) the main nutritional characteristics of chicken egg, (2) emerging data related to egg bioactive compounds, and (3) some factors affecting egg composition including a comparison of nutritional value between eggs from various domestic species.
Collapse
Affiliation(s)
| | - Nicolas Guyot
- Biologie des Oiseaux et Aviculture, INRA, Université de Tours, 37380 Nouzilly, France.
| | - Yves Nys
- Biologie des Oiseaux et Aviculture, INRA, Université de Tours, 37380 Nouzilly, France.
| |
Collapse
|
16
|
Peralta-Sánchez JM, Martín-Platero AM, Wegener-Parfrey L, Martínez-Bueno M, Rodríguez-Ruano S, Navas-Molina JA, Vázquez-Baeza Y, Martín-Gálvez D, Martín-Vivaldi M, Ibáñez-Álamo JD, Knight R, Soler JJ. Bacterial density rather than diversity correlates with hatching success across different avian species. FEMS Microbiol Ecol 2019; 94:4847879. [PMID: 29438507 DOI: 10.1093/femsec/fiy022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 02/07/2018] [Indexed: 01/09/2023] Open
Abstract
Bacterial communities within avian nests are considered an important determinant of egg viability, potentially selecting for traits that confer embryos with protection against trans-shell infection. A high bacterial density on the eggshell increases hatching failure, whether this effect could be due to changes in bacterial community or just a general increase in bacterial density. We explored this idea using intra- and interspecific comparisons of the relationship between hatching success and eggshell bacteria characterized by culture and molecular techniques (fingerprinting and high-throughput sequencing). We collected information for 152 nests belonging to 17 bird species. Hatching failures occurred more frequently in nests with higher density of aerobic mesophilic bacteria on their eggshells. Bacterial community was also related to hatching success, but only when minority bacterial operational taxonomic units were considered. These findings support the hypothesis that bacterial density is a selective agent of embryo viability, and hence a proxy of hatching failure only within species. Although different avian species hold different bacterial densities or assemblages on their eggs, the association between bacteria and hatching success was similar for different species. This result suggests that interspecific differences in antibacterial defenses are responsible for keeping the hatching success at similar levels in different species.
Collapse
Affiliation(s)
- Juan Manuel Peralta-Sánchez
- Departamento de Microbiología, Universidad de Granada, Calle Fuentenueva, s/n, E-18071 Granada, Spain.,Department of Integrative Ecology, Estación Biológica de Doñana, C.S.I.C. Avda. Américo Vespucio s/n, E-41092 Seville, Spain
| | | | | | - Manuel Martínez-Bueno
- Departamento de Microbiología, Universidad de Granada, Calle Fuentenueva, s/n, E-18071 Granada, Spain
| | - Sonia Rodríguez-Ruano
- Departamento de Microbiología, Universidad de Granada, Calle Fuentenueva, s/n, E-18071 Granada, Spain.,Faculty of Science, University of South Bohemia, Branisovska 1760, 370 05 Ceske Budejovice, Czech Republic
| | - José Antonio Navas-Molina
- Department of Computer Science & Engineering University of California San Diego, La Jolla, CA 92093, USA
| | - Yoshiki Vázquez-Baeza
- Department of Computer Science & Engineering University of California San Diego, La Jolla, CA 92093, USA
| | - David Martín-Gálvez
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge, CB10 1SD, UK
| | - Manuel Martín-Vivaldi
- Departamento de Zoología, Universidad de Granada, Campus de Fuentenueva, s/n, E-18071 Granada, Spain
| | - Juan Diego Ibáñez-Álamo
- Groningen Institute for Evolutionary Life Sciences, University of Groningen. 9700 CC Groningen, The Netherlands
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA.,Center for Microbiome Innovation, University of California San Diego, La Jolla, CA 92093, USA
| | - Juan José Soler
- Departamento de Ecología Funcional y Evolutiva. Estación Experimental de Zonas Áridas, C.S.I.C., E-04120 Almería, Spain
| |
Collapse
|
17
|
Shimazaki Y, Takahashi A. Antibacterial activity of lysozyme-binding proteins from chicken egg white. J Microbiol Methods 2018; 154:19-24. [PMID: 30291881 DOI: 10.1016/j.mimet.2018.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/02/2018] [Accepted: 10/02/2018] [Indexed: 11/25/2022]
Abstract
The purpose of this study was to establish a method for determining the bacteriolytic activity after separation of lysozyme-binding proteins from egg white. Lysozyme-binding proteins such as ovotransferrin and ovalbumin were separated by non-denaturing two-dimensional electrophoresis (2DE) and transferred to a membrane. The lysozyme activity of the separated and immobilized egg white proteins was assessed directly to produce a non-denaturing 3D map of the egg white proteins by incorporating an axis that combined each spot's lysozyme-activity with the non-denaturing 2DE pattern. Lysozyme-ovotransferrin and lysozyme-ovalbumin complexes could be reconstructed in vitro after the cathode end fraction containing lysozyme was added to purified ovotransferrin and ovalbumin, respectively. These complexes retained lysozyme activity even after separation by non-denaturing 2DE. Furthermore, when the lysozyme-ovotransferrin complex from egg white was extracted after separation by isoelectric focusing by replacing the cathodic sodium hydroxide solution with phosphoric acid solution, the complex possessed bacteriolytic activity against both Bacillus subtilis and Escherichia coli. These methods can be applied to investigate protein complexes possessing bacteriolytic activity against a wide range of both Gram-positive and Gram-negative bacteria.
Collapse
Affiliation(s)
- Youji Shimazaki
- Department of Chemistry and Biology, Graduate School of Science and Engineering, Ehime University, Matsuyama, Japan; Faculty of Science, Ehime University, Matsuyama, Japan.
| | | |
Collapse
|
18
|
Thiyagarajan K, Bharti VK, Tyagi S, Tyagi PK, Ahuja A, Kumar K, Raj T, Kumar B. Synthesis of non-toxic, biocompatible, and colloidal stable silver nanoparticle using egg-white protein as capping and reducing agents for sustainable antibacterial application. RSC Adv 2018; 8:23213-23229. [PMID: 35540173 PMCID: PMC9081624 DOI: 10.1039/c8ra03649g] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 11/26/2020] [Accepted: 06/10/2018] [Indexed: 11/21/2022] Open
Abstract
For nearly a decade, silver nanoparticles (AgNPs) have been the most prevalent commercial nanomaterials products widely used in different biomedical applications due to their broad-spectrum antimicrobial activity. However, their poor long-term stability in different environments, namely, pH, ionic strength, and temperature, and cytotoxicity toward mammalian cells has restricted their more extensive applications. Hence, there is urgent need to develop highly biocompatible, non-toxic, and stable silver nanoparticles for wide-ranging environments and applications. In the present study, a simple, sustainable, cost-effective and green method has been developed to prepare highly stable aqueous colloidal silver nanoparticles (AgNPs-EW) using the ovalbumin, ovotransferrin, and ovomucoid of egg-white as reducing and capping agents accomplished under the irradiation of direct sunlight. Then, we evaluated the effects of freezing-drying (lyophilization) and freeze-thaw cycles on the stability of AgNPs-EW in aqueous solution under visual inspection, transmission electron microscopy, and absorbance spectroscopy. In addition, we studied the antibacterial activity against Salmonella typhimurium and Escherichia coli, carried out biocompatibility studies on chicken blood, and tested acute, chronic toxicity in Drosophila melanogaster. The results suggest that AgNPs-EW did not aggregate upon freeze-thawing and lyophilization, thus exhibiting remarkable stability. The antibacterial activity results showed that the AgNPs-EW had the highest antibacterial activity, and the minimum inhibitory concentration (MIC) of AgNPs-EW for E. Coli and S. typhimurium were 4 and 6 μg ml-1, respectively. The biocompatibility study revealed that the AgNPs-EW did not induce any hemolytic effect or structural damage to the cell membranes of chicken erythrocytes up to a concentration of 12 μg ml-1. Similarly, no acute and chronic toxicity was observed on melanization, fecundity, hatchability, viability, and the duration of development in the 1st generation of Drosophila melanogaster at the concentration range of 10 mg L-1 to 100 mg L-1 of AgNPs-EW, and all the flies completed their full developmental cycle. Therefore, the present study successfully demonstrated the green and sustainable preparation of non-toxic AgNPs-EW having good biocompatibility, enhanced colloidal stability, and antibacterial activity. Hence, the synthesized AgNPs-EW could be used for the development of an antimicrobial formulation for controlling microbial infection.
Collapse
Affiliation(s)
- Kalaiyarasan Thiyagarajan
- Defence Institute of High Altitude Research (DIHAR), Defence Research and Development Organization (DRDO) C/o 56 APO, Leh-Ladakh-194101 India +0172-2638900 +0172-2642900
| | - Vijay K Bharti
- Defence Institute of High Altitude Research (DIHAR), Defence Research and Development Organization (DRDO) C/o 56 APO, Leh-Ladakh-194101 India +0172-2638900 +0172-2642900
| | - Shruti Tyagi
- Department of Biotechnology, Meerut Institute of Engineering & Technology Meerut Uttar Pradesh-250005 India
| | - Pankaj K Tyagi
- Department of Biotechnology, Meerut Institute of Engineering & Technology Meerut Uttar Pradesh-250005 India
| | - Anami Ahuja
- Department of Biotechnology, Meerut Institute of Engineering & Technology Meerut Uttar Pradesh-250005 India
| | - Krishna Kumar
- Defence Institute of High Altitude Research (DIHAR), Defence Research and Development Organization (DRDO) C/o 56 APO, Leh-Ladakh-194101 India +0172-2638900 +0172-2642900
| | - Tilak Raj
- Defence Institute of High Altitude Research (DIHAR), Defence Research and Development Organization (DRDO) C/o 56 APO, Leh-Ladakh-194101 India +0172-2638900 +0172-2642900
| | - Bhuvnesh Kumar
- Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization (DRDO) Timarpur Delhi-110 054 India
| |
Collapse
|
19
|
Abstract
The role of bacteriolysis in the pathophysiology of microbial infections dates back to 1893 when Buchner and Pfeiffer reported for the first time the lysis of bacteria by immune serum and related this phenomenon to the immune response. Later on, basic anti-microbial peptides and certain beta-lactam antibiotics have been shown not only to kill microorganisms but also to induce bacteriolysis and the release of cell-wall components. In 2009, a novel paradigm was offered suggesting that the main cause of death in sepsis is due to the exclusive release from activated human phagocytic neutrophils (PMNs) traps adhering upon endothelial cells of highly toxic nuclear histone. Since activated PMNs also release a plethora of pro-inflammatory agonists, it stands to reason that these may act in synergy with histone to damage cells. Since certain beta lactam antibiotics may induce bacteriolysis, it is questioned whether these may aggravate sepsis patient's condition. Enigmatically, since the term bacteriolysis and its possible involvement in sepsis is hardly ever mentioned in the extensive clinical articles and reviews dealing with critical care, we hereby aim to refresh the concept of bacteriolysis and its possible role in the pathogenesis of post infectious sequelae.
Collapse
Affiliation(s)
- Isaac Ginsburg
- a Institute for Dental sciences, The Hebrew University Hadassah Faculty of Dental Medicine, Ein Kerem Campus , Jerusalem , Israel
| | - Erez Koren
- b Teva Pharmaceutical Industries Ltd. , Kfar Saba , Israel
| |
Collapse
|
20
|
Krkavcová E, Kreisinger J, Hyánková L, Hyršl P, Javůrková V. The hidden function of egg white antimicrobials: egg weight-dependent effects of avidin on avian embryo survival and hatchling phenotype. Biol Open 2018. [PMID: 29540428 PMCID: PMC5936061 DOI: 10.1242/bio.031518] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Avidin is a key egg white antimicrobial protein with strong binding capacity for biotin, an essential growth and immune cell precursor. As such, it is assumed to have a pronounced, though still poorly explored, effect on hatchling phenotype. We tested the effect of experimentally increased egg white avidin concentration (AVIDIN+) on hatching success, chick morphology, post-hatching growth performance and innate immune function in a model bird, Japanese quail (Coturnix japonica). Probability of embryo survival in the late embryonic phase increased with increasing egg weight in control eggs, but not in AVIDIN+ eggs. Chicks hatching from lighter AVIDIN+ eggs had a shorter tarsus than chicks hatching from heavier AVIDIN+ eggs. This suggests that an increase in egg white avidin favours embryo survival in lighter eggs during late embryogenesis, but at the expense of reduced structural body size. Plasma complement activity in 6-day-old AVIDIN+ chicks decreased with increasing body mass and tarsus length; the opposite was observed in control chicks, implying that the later post-hatching innate immune function of larger chicks was compromised by an increase in egg white avidin concentration. Here, we document an important role of egg white antimicrobials in maintenance of embryo viability, avian hatchling morphology and immune phenotype. Summary: This is the first experimental study to evaluate the effects of increased concentration of egg white antimicrobial protein avidin on embryo viability, hatchling morphology and immune phenotype in birds.
Collapse
Affiliation(s)
- Eva Krkavcová
- Department of Zoology, Charles University, Viničná 7, 128 44, Prague, Czech Republic
| | - Jakub Kreisinger
- Department of Zoology, Charles University, Viničná 7, 128 44, Prague, Czech Republic
| | - Ludmila Hyánková
- Department of Genetics and Breeding of Farm Animals, VÚŽv.v.i., Přátelství 815, 104 00, Prague-Uhříněves, Czech Republic
| | - Pavel Hyršl
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
| | - Veronika Javůrková
- The Czech Academy of Sciences, Institute of Vertebrate Biology, Květná 8, 603 65 Brno, Czech Republic .,Department of Animal Husbandry, Czech University of Life Sciences, Kamýcká 129, 165 00 Prague - Suchdol, Czech Republic
| |
Collapse
|
21
|
Dearborn DC, Page SM, Dainson M, Hauber ME, Hanley D. Eggshells as hosts of bacterial communities: An experimental test of the antimicrobial egg coloration hypothesis. Ecol Evol 2017; 7:9711-9719. [PMID: 29188002 PMCID: PMC5696418 DOI: 10.1002/ece3.3508] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/07/2017] [Accepted: 09/14/2017] [Indexed: 12/14/2022] Open
Abstract
Oviparous animals have evolved multiple defenses to prevent microbes from penetrating their eggs and causing embryo mortality. In birds, egg constituents such as lysozyme and antibodies defend against microbial infestation, but eggshell pigments might also impact survival of bacteria. If so, microbes could exert an important selective pressure on the evolution of eggshell coloration. In a previous lab experiment, eggshell protoporphyrin caused drastic mortality in cultures of Gram positive, but not Gram negative, bacteria when exposed to light. Here, we test this "photodynamic antimicrobial hypothesis" in a field experiment. In a paired experimental design, we placed sanitized brown, protoporphyrin-rich chicken eggs alongside white eggs that lack protoporphyrin. We deployed eggs for 48 hr without incubation, as can occur between laying and incubation, when microbial infection risk is highest. Eggs were placed on the open ground exposed to sunlight and in dark underground storm-petrel burrows. We predicted that the proportion of Gram-positive bacteria on brown eggs should be lower when exposed to sunlight than when kept in the dark, but we expected no such difference for white eggs. Although our data revealed variation in bacterial community composition, the proportion of Gram-positive bacteria on eggshells did not vary by egg color, and there was no interaction between egg color and location. Instead, Gram-positive bacteria were proportionally more common on eggs on the ground than eggs in burrows. Overall, our experiment did not support the photodynamic antimicrobial hypothesis. The diverse range of avian egg colors is generated by just two pigments, but over 10 hypotheses have been proposed for the evolution of eggshell color. If our results are generalizable, eggshell protoporphyrin might not play a substantial role in defending eggs against microbes, which narrows the field of candidate hypotheses for the evolution of avian eggshell coloration.
Collapse
Affiliation(s)
| | - Symmantha M Page
- Department of Biology Bates College Lewiston ME USA.,College of Veterinary Medicine Midwestern University Glendale AZ USA
| | - Miri Dainson
- Department of Animal Biology School of Integrative Biology University of Illinois Urbana-Champaign IL USA
| | - Mark E Hauber
- Department of Animal Biology School of Integrative Biology University of Illinois Urbana-Champaign IL USA
| | - Daniel Hanley
- Department of Biology Long Island University - Post Brookville NY USA
| |
Collapse
|
22
|
Dash P, Ghosh G. Amino acid profiling and antimicrobial activity of Cucurbita moschata and Lagenaria siceraria seed protein hydrolysates. Nat Prod Res 2017; 32:2050-2053. [PMID: 28783965 DOI: 10.1080/14786419.2017.1359174] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cucurbita moschata and Lagenaria siceraria seed proteins were extracted and hydrolysed with trypsin in order to recover antibacterial peptides. Amino acid content and molecular weight distribution were estimated to justify their co-relationship with antimicrobial activity. Antimicrobial activities of C. moschata and L. siceraria seed protein hydrolysates against three Gram-negative bacteria and two Gram-positive bacteria were evaluated. Seed protein hydrolysates of both of these plants have significantly higher activity against Acinetobacter baumannii (p < 0.05). The lethal concentration (LC50) values of L. siceraria hydrolysates (LSH) and C. moschata hydrolysates (CMH) were 70 ± 6.2 and 135.6 ± 4.5 μg/mL in viable count method and 73.2 ± 2.9 and 122.9 ± 3.2 μg/mL in turbidity method, respectively, against A. baumannii. Based on the above findings, seed protein hydrolysates of these plants may be considered as nutritional food and functional antimicrobial agents in food system.
Collapse
Affiliation(s)
- Priyanka Dash
- a Department of Pharmacognosy, School of Pharmaceutical Sciences , Siksha 'O' Anusandhan University , Bhubaneswar , India
| | - Goutam Ghosh
- a Department of Pharmacognosy, School of Pharmaceutical Sciences , Siksha 'O' Anusandhan University , Bhubaneswar , India
| |
Collapse
|
23
|
Ginsburg I, van Heerden PV, Koren E. From amino acids polymers, antimicrobial peptides, and histones, to their possible role in the pathogenesis of septic shock: a historical perspective. J Inflamm Res 2017; 10:7-15. [PMID: 28203100 PMCID: PMC5293372 DOI: 10.2147/jir.s126150] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
This paper describes the evolution of our understanding of the biological role played by synthetic and natural antimicrobial cationic peptides and by the highly basic nuclear histones as modulators of infection, postinfectious sequelae, trauma, and coagulation phenomena. The authors discuss the effects of the synthetic polymers of basic poly α amino acids, poly l-lysine, and poly l-arginine on blood coagulation, fibrinolysis, bacterial killing, and blood vessels; the properties of natural and synthetic antimicrobial cationic peptides as potential replacements or adjuncts to antibiotics; polycations as opsonizing agents promoting endocytosis/phagocytosis; polycations and muramidases as activators of autolytic wall enzymes in bacteria, causing bacteriolysis and tissue damage; and polycations and nuclear histones as potential virulence factors and as markers of sepsis, septic shock, disseminated intravasclar coagulopathy, acute lung injury, pancreatitis, trauma, and other additional clinical disorders.
Collapse
Affiliation(s)
- Isaac Ginsburg
- Institute of Dental Sciences, Faculty of Dental Medicine, The Hebrew University of Jerusalem
| | | | - Erez Koren
- Institute of Dental Sciences, Faculty of Dental Medicine, The Hebrew University of Jerusalem
| |
Collapse
|
24
|
Giansanti F, Leboffe L, Angelucci F, Antonini G. The Nutraceutical Properties of Ovotransferrin and Its Potential Utilization as a Functional Food. Nutrients 2015; 7:9105-15. [PMID: 26556366 PMCID: PMC4663581 DOI: 10.3390/nu7115453] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 10/21/2015] [Accepted: 10/23/2015] [Indexed: 12/13/2022] Open
Abstract
Ovotransferrin or conalbumin belong to the transferrin protein family and is endowed with both iron-transfer and protective activities. In addition to its well-known antibacterial properties, ovotransferrin displays other protective roles similar to those already ascertained for the homologous mammalian lactoferrin. These additional functions, in many cases not directly related to iron binding, are also displayed by the peptides derived from partial hydrolysis of ovotransferrin, suggesting a direct relationship between egg consumption and human health.
Collapse
Affiliation(s)
- Francesco Giansanti
- Department of Health, Life and Environmental Sciences, University of L'Aquila, L'Aquila I-67100, Italy.
- Interuniversity Consortium INBB Biostructures and Biosystems National Institute, Rome I-00136, Italy.
| | - Loris Leboffe
- Interuniversity Consortium INBB Biostructures and Biosystems National Institute, Rome I-00136, Italy.
- Department of Sciences, Roma Tre University, Rome I-00146, Italy.
| | - Francesco Angelucci
- Department of Health, Life and Environmental Sciences, University of L'Aquila, L'Aquila I-67100, Italy.
| | - Giovanni Antonini
- Interuniversity Consortium INBB Biostructures and Biosystems National Institute, Rome I-00136, Italy.
- Department of Sciences, Roma Tre University, Rome I-00146, Italy.
| |
Collapse
|
25
|
Javůrková V, Krkavcová E, Kreisinger J, Hyršl P, Hyánková L. Effects of experimentally increased in ovo lysozyme on egg hatchability, chicks complement activity, and phenotype in a precocial bird. ACTA ACUST UNITED AC 2015. [PMID: 26205223 DOI: 10.1002/jez.1935] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In birds, spectrum of egg white proteins deposited into the egg during its formation are thought to be essential maternal effects. Particularly, egg white lysozyme (LSM), exhibiting great between and within species variability, is considered to be essential for developing avian embryos due to its physiological, antimicrobial, and innate immune defense functions. However, there have been few studies investigating effects of LSM on early post-hatching phenotype, despite its broad physiological and protective role during embryogenesis. Here, we test how experimentally increased concentrations of egg white LSM affect hatchability in Japanese quail (Coturnix japonica) and chick phenotype immediately after hatching (particularly body weight, tarsus length, plasma LSM concentration, and plasma complement activity). Chicks from eggs with increased LSM concentration displayed reduced tarsus length compared to chicks from control eggs while hatchability, body weight and plasma LSM concentration were unaffected. It is worth noting that no effect of increased in ovo lysozyme on eggs hatchability could be related to pathogen-free environment during artificial incubation of experimental eggs causing minimal pressure on embryo viability. While tangible in vivo mechanisms during avian embryogenesis remain to be tested, our study is the first to document experimentally that egg white LSM appears to have growth-regulation role during embryo development, with possible underlying phenotypic consequences in the early post-hatching period in precocial birds.
Collapse
Affiliation(s)
- Veronika Javůrková
- Department of Zoology, Biodiversity Research Group, Faculty of Science, Charles University in Prague, Prague 2, Czech Republic.,The Czech Academy of Sciences, Institute of Vertebrate Biology v.v.i., Brno, Czech Republic
| | - Eva Krkavcová
- Department of Zoology, Biodiversity Research Group, Faculty of Science, Charles University in Prague, Prague 2, Czech Republic
| | - Jakub Kreisinger
- Department of Zoology, Biodiversity Research Group, Faculty of Science, Charles University in Prague, Prague 2, Czech Republic.,Department of Biodiversity and Molecular Ecology, Fondazione Edmund Mach, Research and Innovation Centre, Trentino, Italy
| | - Pavel Hyršl
- Department of Animal Physiology and Immunology, Institute of Experimental Biology, Masaryk University, Brno, Czech Republic
| | - Ludmila Hyánková
- Department of Genetics and breeding of farm animals, Institute of Animal Science, Prague, Czech Republic
| |
Collapse
|
26
|
Maehashi K, Ueda M, Matano M, Takeuchi J, Uchino M, Kashiwagi Y, Watanabe T. Biochemical and functional characterization of transiently expressed in neural precursor (TENP) protein in emu egg white. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:5156-5162. [PMID: 24820544 DOI: 10.1021/jf5008117] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A protein transiently expressed in the neural precursors of developing tissues (TENP) was found to be present in emu (Dromaius novaehollandiae) egg white as one of the major proteins. Nucleotide analysis of its encoding cDNA revealed a sequence of 452 amino acids including a 19 amino acid peptide signal. Phylogenetic analysis determined that emu TENP was clustered within the bactericidal/permeability-increasing protein (BPI) superfamily together with other avian TENPs. RT-PCR analysis revealed that the emu TENP gene was highly expressed in the magnum of the oviduct, indicating that TENP is a major egg white component. Emu TENP was purified by anion exchange chromatography and ammonium sulfate fractionation. Unlike BPI, emu TENP exhibited antibacterial activity against Gram-positive bacteria, including Micrococcus luteus and Bacillus subtilis, but not against Gram-negative bacteria such as Escherichia coli and Salmonella Typhimurium. The results suggest that emu TENP is a potent novel antibacterial protein with a spectrum distinct from that of BPI.
Collapse
Affiliation(s)
- Kenji Maehashi
- Department of Fermentation Science, Faculty of Applied Bio-Science, Tokyo University of Agriculture , 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | | | | | | | | | | | | |
Collapse
|
27
|
Edwards D, Haring M, Gilchrist H, Schulte-Hostedde A. Do social mating systems limit maternal immune investment in shorebirds? CAN J ZOOL 2014. [DOI: 10.1139/cjz-2013-0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Across mating systems, females differ in the amount of resources they invest in offspring. For example, polyandrous females invest in acquiring multiple matings rather than providing parental care. We examined how the amount of maternal immune investment, measured as immunoglobulin Y and lysozyme activity in eggs, was influenced by female role across three social mating systems (polyandry, polygyny, and monogamy) in shorebirds. We predicted that polyandry should impose the greatest costs on the ability to provision eggs and monogamy, where females receive benefits from biparentality, the least. Contrary to our predictions, levels of maternally derived egg immune constituents were consistently high across measures in the polyandrous species and low in the monogamous species. Our results may support a link with pace-of-life where developmental costs are greater than the energetic costs of provisioning eggs, and (or) a role for sexual selection acting on maternal immune investment.
Collapse
Affiliation(s)
- D.B. Edwards
- Department of Biology, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada
| | - M. Haring
- Department of Biology, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada
| | - H.G. Gilchrist
- Environment Canada, Canadian Wildlife Service, National Wildlife Research Centre, Carleton University, Ottawa, ON K1A 0H3, Canada
| | - A.I. Schulte-Hostedde
- Department of Biology, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada
| |
Collapse
|
28
|
Alonso-Castro AJ. Use of medicinal fauna in Mexican traditional medicine. JOURNAL OF ETHNOPHARMACOLOGY 2014; 152:53-70. [PMID: 24440438 DOI: 10.1016/j.jep.2014.01.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 01/07/2014] [Accepted: 01/07/2014] [Indexed: 05/22/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Mexico has great biodiversity of fauna. The use of fauna with medicinal properties is a common practice since pre-Hispanic times. In the last decade, there has been an interest in ethnozoological studies in Mexico. Therefore, more studies are needed in order to gather information regarding the use of fauna with medicinal properties in México. Ethnozoological studies are necessary in order to discover new medications for human health. This review presents current information in terms of ethnozoological, conservation status, trade, toxicological and pharmacological effects of fauna used for medicinal purposes in Mexican traditional medicine (MTM), based on scientific literature. Future prospects for research with medicinal fauna are discussed. MATERIALS AND METHODS Bibliographic investigation was carried out by analyzing recognized books and peer-reviewed papers, consulting worldwide accepted scientific databases from the last five decades. Reports included in this review complied with the three criteria cited as follows: (i) used in Mexican traditional medicine for medicinal and/or magical-religious purposes, (ii) with experimental studies regarding the toxicological or medicinal effects and/or with studies exploring mechanisms of medicinal effects, and (iii) with information obtained from a clear source. RESULTS A total of 163 animal species, belonging to 79 families and 4 taxonomic categories, used for medicinal purposes are reported in this review. Medicinal fauna used in MTM come from birds (48), fishes (3), insects (22), mammals (49) and reptiles (41). The most versatile species which had the greatest number of medicinal properties were Mephitis macroura (21 uses), Crotalus atrox (17 uses), Dasypus novemcinctus (13 uses) and Didelphis virginiana (13 uses). However, 14 of the 161 species listed in this review are classified as endangered. Animal species are mainly used for the treatment of inflammatory, respiratory and gastrointestinal diseases. Furthermore, insects and reptiles are the animal groups with more pharmacological studies. Approximately, 11% and 5% of medicinal fauna have been tested in terms of their pharmacological and toxicological effects, respectively. CONCLUSION Despite the use of medicinal fauna in MTM, during centuries, there are a very limited number of scientific studies published on this topic. This review highlights the need to perform pharmacological, toxicological and chemical studies with medicinal fauna used in MTM.
Collapse
|
29
|
Chang OK, Ha GE, Jeong SG, Seol KH, Oh MH, Kim DW, Jang A, Kim SH, Park BY, Ham JS. Antioxidant Activity of Porcine Skin Gelatin Hydrolyzed by Pepsin and Pancreatin. Korean J Food Sci Anim Resour 2013. [DOI: 10.5851/kosfa.2013.33.4.493] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
30
|
Podlas K, Richner H. Partial incubation and its function in great tits (Parus major)—an experimental test. Behav Ecol 2013. [DOI: 10.1093/beheco/ars224] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
31
|
Physiological roles of ovotransferrin. Biochim Biophys Acta Gen Subj 2011; 1820:218-25. [PMID: 21854833 DOI: 10.1016/j.bbagen.2011.08.004] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 07/29/2011] [Accepted: 08/04/2011] [Indexed: 01/24/2023]
Abstract
BACKGROUND Ovotransferrin is an iron-binding glycoprotein, found in avian egg white and in avian serum, belonging to the family of transferrin iron-binding glycoproteins. All transferrins show high sequence homology. In mammals are presents two different soluble glycoproteins with different functions: i) serum transferrin that is present in plasma and committed to iron transport and iron delivery to cells and ii) lactoferrin that is present in extracellular fluids and in specific granules of polymorphonuclear lymphocytes and committed to the so-called natural immunity. To the contrary, in birds, ovotransferrin remained the only soluble glycoprotein of the transferrin family present both in plasma and egg white. SCOPE OF REVIEW Substantial experimental evidences are summarized, illustrating the multiple physiological roles of ovotransferrin in an attempt to overcome the common belief that ovotransferrin is a protein dedicated only to iron transport and to iron withholding antibacterial activity. MAJOR CONCLUSIONS Similarly to the better known family member protein lactoferrin, ovotransferrin appears to be a multi-functional protein with a major role in avian natural immunity. GENERAL SIGNIFICANCE Biotechnological applications of ovotransferrin and ovotransferrin-related peptides could be considered in the near future, stimulating further research on this remarkable protein. This article is part of a Special Issue entitled Transferrins: Molecular mechanisms of iron transport and disorders.
Collapse
|
32
|
Goose-type lysozyme inhibitor (PliG) enhances survival of Escherichia coli in goose egg albumen. Appl Environ Microbiol 2011; 77:4697-9. [PMID: 21602367 DOI: 10.1128/aem.00427-11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The goose-type lysozyme inhibitor PliG enhances the survival of Escherichia coli in goose but not in chicken egg white, which contains goose- and chicken-type lysozymes, respectively. These results indicate that both the type of host lysozyme and the type of bacterial lysozyme inhibitor may affect bacterium-host interactions.
Collapse
|
33
|
Wellman-Labadie O, Lemaire S, Mann K, Picman J, Hincke MT. Antimicrobial activity of lipophilic avian eggshell surface extracts. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:10156-10161. [PMID: 20804124 DOI: 10.1021/jf101954g] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The avian eggshell cuticle is the waxy outermost layer of the mineralized eggshell in direct contact with the environment. In this study, lipophilic eggshell surface extracts from three domestic species were evaluated for their antimicrobial activity. Chicken and goose extracts demonstrated potent bactericidal activity against both Gram-positive and Gram-negative bacteria, while activity could not be detected for duck eggshell surface extracts. Using the chicken as a model species, evaluation of albumen, fecal material, and uropygial gland extracts eliminated these as a potential source of the observed activity. Results suggest that lipophilic components are incorporated into the egg during its formation and play a role in antimicrobial defense. This study represents the first successful extraction and evaluation of lipophilic antimicrobial components from the avian egg.
Collapse
Affiliation(s)
- Olivier Wellman-Labadie
- Department of Medicine, University of British Columbia, 835 West 10th Avenue, Vancouver, BC, Canada V5Z 4E8.
| | | | | | | | | |
Collapse
|
34
|
Wellman-Labadie O, Picman J, Hincke MT. Antimicrobial activity of cuticle and outer eggshell protein extracts from three species of domestic birds. Br Poult Sci 2008; 49:133-43. [PMID: 18409087 DOI: 10.1080/00071660802001722] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
1. The eggshell cuticle is the proteinaceous outermost layer of the eggshell which regulates water exchange and protects against entry of micro-organisms. In this study, we investigated the hypothesis that the cuticle may also reduce microbial contamination by providing a chemical defence. 2. Outer eggshell and cuticle protein was extracted from domestic chicken (Gallus gallus), duck (Anas platyrhynchos) and goose (Anser anser) eggs by HCl and urea treatment, respectively. Antimicrobial activity of the extracts against Gram-positive and Gram-negative bacteria was evaluated. 3. C-type lysozyme, ovotransferrin and ovocalyxin-32 were identified in all extracts by Western blotting. All extracts from all species demonstrated lysozyme enzymatic activity. Immobilised c-type lysozyme retained some enzymatic activity. Protein extracts demonstrated activity against Pseudomonas aeruginosa, Staphylococcus aureus and Bacillus subtilis suggesting the action of antimicrobial proteins in addition to lysozyme. 4. The results suggest that the antimicrobial outer eggshell and cuticle proteins present in a number of avian species may be a mechanism which enhances avian reproductive success.
Collapse
Affiliation(s)
- O Wellman-Labadie
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | | | | |
Collapse
|