1
|
Wang T, Ma X, Zheng Q, Ma C, Zhang Z, Pan H, Guo X, Wu X, Chu M, Liang C, Yan P. A comprehensive study on the longissius dorsi muscle of Ashdan yaks under different feeding regimes based on transcriptomic and metabolomic analyses. Anim Biotechnol 2024; 35:2294785. [PMID: 38193799 DOI: 10.1080/10495398.2023.2294785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Yak is an important dominant livestock species at high altitude, and the growth performance of yak has obvious differences under different feeding methods. This experiment was conducted to compare the effects of different feeding practices on growth performance and meat quality of yaks through combined transcriptomic and metabolomic analyses. In terms of yak growth performance, compared with traditional grazing, in-house feeding can significantly improve the average daily weight gain, carcass weight and net meat weight of yaks; in terms of yak meat quality, in-house feeding can effectively improve the quality of yak meat. A combined transcriptomic and metabolomic analysis revealed 31 co-enriched pathways, among which arginine metabolism, proline metabolism and glycerophospholipid metabolism may be involved in the development of the longissimus dorsi muscle of yak and the regulation of meat quality-related traits. The experimental results increased our understanding of yak meat quality and provided data materials for subsequent deep excavation of the mechanism of yak meat quality.
Collapse
Affiliation(s)
- Tong Wang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
- Life science and Engineering College, Northwest Minzu University, Lanzhou, China
| | - Xiaoming Ma
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Qingbo Zheng
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Chaofan Ma
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
- Life science and Engineering College, Northwest Minzu University, Lanzhou, China
| | - Zhilong Zhang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Heping Pan
- Life science and Engineering College, Northwest Minzu University, Lanzhou, China
| | - Xian Guo
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Xiaoyun Wu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Min Chu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Chunnian Liang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Ping Yan
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| |
Collapse
|
2
|
Keshtkaran M, Hassanpour S, Asadollahi KP, Zendehdel M. Effects of in ovo injection of the L-carnosine on physiological indexes of neonatal broiler chicken. Poult Sci 2024; 103:103380. [PMID: 38198911 PMCID: PMC10825529 DOI: 10.1016/j.psj.2023.103380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024] Open
Abstract
The objective of the present investigation was to ascertain the impact of in ovo administration of L-carnosine on physiological indicators in neonatal broiler chickens. A total of 280 viable broiler eggs were allocated to 7 distinct groups: control, Sham in ovo injection of sterile water on d 7 of incubation. Groups 3 and 4 were subjected to in ovo injections of L-carnosine (25 and 50 µg) on d 7 of incubation. Group 5, functioning as a sham in ovo, received an injection of sterile water on d 18 of incubation. Groups 6 and 7 were in ovo injected with L-carnosine (25 and 50 µg) on d 18 of incubation. All eggs were subjected to incubation, and the hatching rate and body weight were measured post-hatch. Subsequently, blood samples were collected, and the levels of biochemical constituents in the serum were determined. Based on the outcomes, the administration of L-carnosine (50 µg) on d 7 of incubation led to a significant increase in post-hatch body weight compared to the control group (P < 0.05). The in ovo injection of L-carnosine (25 and 50 µg) on d 7 and 18 of incubation resulted in a significant decrease in the levels of serum glucose, triglyceride (TG), low-density lipoprotein (LDL), phosphorus (P), alkaline phosphatase (ALP), aspartate aminotransferase (AST), and alanine transaminase (ALT) in the newly hatched chickens (P < 0.05). Furthermore, the in-ovo injection of L-carnosine (25 and 50 µg) on d 7 and 18 of incubation led to a significant increase in the levels of serum high-density lipoprotein (HDL), calcium, and total protein (TP) in the newly hatched chickens (P < 0.05). Nonetheless, L-carnosine did not have a significant effect on the levels of serum IgY and IgA in the newly hatched chickens (P > 0.05). These findings indicate that the in ovo administration of L-carnosine yielded favorable outcomes in neonatal broiler chickens.
Collapse
Affiliation(s)
- Mahta Keshtkaran
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shahin Hassanpour
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Kaveh Parvandar Asadollahi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Morteza Zendehdel
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, 14155-6453 Tehran, Iran
| |
Collapse
|
3
|
Wang F, Yin Y, Wang Q, Xie J, Fu C, Guo H, Chen J, Yin Y. Effects of dietary β-alanine supplementation on growth performance, meat quality, carnosine content, amino acid composition and muscular antioxidant capacity in Chinese indigenous Ningxiang pig. J Anim Physiol Anim Nutr (Berl) 2022; 107:878-886. [PMID: 36575591 DOI: 10.1111/jpn.13797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/21/2022] [Accepted: 12/06/2022] [Indexed: 12/29/2022]
Abstract
β-alanine has been demonstrated to improve carcass traits and meat quality of animals. However, no research has been found on the effects of dietary β-alanine in the meat quality control of finishing pigs, which are among the research focus. Therefore, this study aimed to evaluate the effects of dietary β-alanine supplementation on growth performance, meat quality, carnosine content, amino acid composition and muscular antioxidant capacity of Chinese indigenous Ningxiang pigs. The treatments contained a basal diet (control, CON) and a basal diet supplemented with 600 mg/kg β-alanine. Each treatment group consisted of five pens, with five pigs per pen. Results showed that compared with CON, supplemental β-alanine did not affect the final body weight, average daily gain, average daily feed intake and the feed-to-gain ratio of pigs. Dietary β-alanine supplementation tended to increase the pH45 min (p = 0.071) while decreasing the shear force (p = 0.085) and the drip loss (p = 0.091). Moreover, it improved (p < 0.05) the activities of glutathione peroxidase and catalase and lessened (p < 0.05) malondialdehyde concentration. Added β-alanine in diets of finishing pigs could enhance the concentrations of arginine, alanine, and glutamate (p < 0.05) in the longissimus dorsi muscle and tended to raise the levels of cysteine, glycine and anserine (p = 0.060, p = 0.098 and p = 0.091 respectively). Taken together, our results showed that dietary β-alanine supplementation contributed to the improvement of the carcass traits, meat quality and anserine content, the amelioration of muscle antioxidant capacity and the regulation of amino acid composition in Chinese indigenous Ningxiang pigs.
Collapse
Affiliation(s)
- Fang Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Yexin Yin
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Qiye Wang
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center of Healthy Livestock, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Junyan Xie
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center of Healthy Livestock, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Chenxing Fu
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Henghua Guo
- Anhui Huaheng Biotechnology, Hefei, Anhui, China
| | - Jiashun Chen
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Yulong Yin
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China.,Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center of Healthy Livestock, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| |
Collapse
|
4
|
Suwanvichanee C, Sinpru P, Promkhun K, Kubota S, Riou C, Molee W, Yongsawatdigul J, Thumanu K, Molee A. Effects of β-alanine and L-histidine supplementation on carnosine contents in and quality and secondary structure of proteins in slow-growing Korat chicken meat. Poult Sci 2022; 101:101776. [PMID: 35303689 PMCID: PMC8927833 DOI: 10.1016/j.psj.2022.101776] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 11/09/2022] Open
Abstract
Carnosine enrichment of slow-growing Korat chicken (KRC) meat helps differentiate KRC from mainstream chicken. We aimed to investigate the effects of β-alanine and L-histidine supplementation on the carnosine synthesis in and quality and secondary structure of proteins in slow-growing KRC meat. Four hundred 21-day-old female KRC were used, and a completely randomized design was applied. The chickens were divided into 4 experimental groups: basal diet (A), basal diet supplemented with 1.0% β-alanine (B), 0.5% L-histidine (C), and 1.0% β-alanine combined with 0.5% L-histidine (D). Each group consisted of 5 replicates (20 chickens per replicate). On d 70, 2 chickens per replicate were slaughtered, and the levels of carnosine, anserine, and thiobarbituric acid reactive substances were analyzed. Biochemical changes were monitored using synchrotron radiation-based Fourier transform infrared microspectroscopy; 5 chickens per replicate were slaughtered, and the meat quality was analyzed. Statistical analysis was performed using ANOVA and principal component analysis (PCA). Group D chickens exhibited the highest carnosine meat content, followed by those in groups B and C. However, amino acid supplementation did not affect anserine content and growth performance. Higher carnosine levels correlated with increasing pH45 min and decreasing drip loss, cooking loss, shear force, and lipid oxidation. PCA revealed that supplementation with only β-alanine or L-histidine was related to increased content of β-sheets, β-turns, and aliphatic bending groups and decreased content of α-helix groups. This study is the first to report such findings in slow-growing chicken. Our findings suggest that KRC can synthesize the highest carnosine levels after both β-alanine and L-histidine supplementation. Higher carnosine contents do not adversely affect meat quality, improve meat texture, and alter the secondary structures of proteins. The molecular mechanism underlying carnosine synthesis in chickens needs further study to better understand and reveal markers that facilitate the development of nutrient selection programs.
Collapse
|
5
|
Yang M, Chen R, Song YD, Zhou YM, Liu Q, Zhuang S. Effects of dietary betaine supplementation on growth performance, meat quality, muscle fatty acid composition and antioxidant ability in slow-growing broiler chickens. Br Poult Sci 2021; 63:351-359. [PMID: 34797186 DOI: 10.1080/00071668.2021.2008313] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
1. This study investigated the effects of dietary betaine supplementation on growth performance, meat quality, muscle fatty acid composition and antioxidant ability in slow-growing broiler chickens.2. In total, 400, one-day-old female Xueshan broiler chicks were randomly divided into five groups with eight replicates of ten chickens each for 102 d. Broilers were fed a basal diet supplemented with 0, 125, 250, 500 or 1,000 mg/kg betaine.3. Broilers fed betaine had better feed conversion efficiency and weight gain (P < 0.05) and increased meat redness and yellowness 24 h after slaughter. Supplementation linearly decreased cooking loss and drip loss from breast muscle (P < 0.05). Muscular resilience was improved and tenderness increased (P < 0.05). Intra-muscular saturated fatty acids decreased, while total monounsaturated fatty acids and polyunsaturated fatty acids increased (P < 0.05). Betaine increased activities of glutathione peroxidase (GPx) and total superoxide dismutase (SOD), glutathione (GSH) level, ratio of reduced glutathione/oxidised glutathione, and activity of scavenging hydroxyl radicals. It increased the activity of total antioxidant capacity (T-AOC) in the breast muscle (P < 0.05). Moreover, supplementation up-regulated (P < 0.05) mRNA expression levels of blood and antioxidant markers.4. In conclusion, 1000 mg/kg betaine can be recommended as a supplement for slow-growing, Xueshan chicken.
Collapse
Affiliation(s)
- M Yang
- College of Animal Science and Technology, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, P. R. China
| | - R Chen
- College of Animal Science and Technology, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, P. R. China
| | - Y D Song
- College of Animal Science and Technology, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, P. R. China
| | - Y M Zhou
- College of Animal Science and Technology, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, P. R. China
| | - Q Liu
- College of Animal Science and Technology, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, P. R. China
| | - S Zhuang
- College of Animal Science and Technology, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, P. R. China
| |
Collapse
|
6
|
Jukić I, Kolobarić N, Stupin A, Matić A, Kozina N, Mihaljević Z, Mihalj M, Šušnjara P, Stupin M, Ćurić ŽB, Selthofer-Relatić K, Kibel A, Lukinac A, Kolar L, Kralik G, Kralik Z, Széchenyi A, Jozanović M, Galović O, Medvidović-Kosanović M, Drenjančević I. Carnosine, Small but Mighty-Prospect of Use as Functional Ingredient for Functional Food Formulation. Antioxidants (Basel) 2021; 10:1037. [PMID: 34203479 PMCID: PMC8300828 DOI: 10.3390/antiox10071037] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 11/17/2022] Open
Abstract
Carnosine is a dipeptide synthesized in the body from β-alanine and L-histidine. It is found in high concentrations in the brain, muscle, and gastrointestinal tissues of humans and is present in all vertebrates. Carnosine has a number of beneficial antioxidant properties. For example, carnosine scavenges reactive oxygen species (ROS) as well as alpha-beta unsaturated aldehydes created by peroxidation of fatty acid cell membranes during oxidative stress. Carnosine can oppose glycation, and it can chelate divalent metal ions. Carnosine alleviates diabetic nephropathy by protecting podocyte and mesangial cells, and can slow down aging. Its component, the amino acid beta-alanine, is particularly interesting as a dietary supplement for athletes because it increases muscle carnosine, and improves effectiveness of exercise and stimulation and contraction in muscles. Carnosine is widely used among athletes in the form of supplements, but rarely in the population of cardiovascular or diabetic patients. Much less is known, if any, about its potential use in enriched food. In the present review, we aimed to provide recent knowledge on carnosine properties and distribution, its metabolism (synthesis and degradation), and analytical methods for carnosine determination, since one of the difficulties is the measurement of carnosine concentration in human samples. Furthermore, the potential mechanisms of carnosine's biological effects in musculature, metabolism and on immunomodulation are discussed. Finally, this review provides a section on carnosine supplementation in the form of functional food and potential health benefits and up to the present, neglected clinical use of carnosine.
Collapse
Affiliation(s)
- Ivana Jukić
- Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia; (I.J.); (N.K.); (A.S.); (A.M.); (N.K.); (Z.M.); (M.M.); (P.Š.); (M.S.); (A.K.)
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia; (Ž.B.Ć.); (K.S.-R.); (A.L.); (L.K.); (G.K.); (Z.K.); (A.S.); (M.J.); (O.G.); (M.M.-K.)
| | - Nikolina Kolobarić
- Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia; (I.J.); (N.K.); (A.S.); (A.M.); (N.K.); (Z.M.); (M.M.); (P.Š.); (M.S.); (A.K.)
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia; (Ž.B.Ć.); (K.S.-R.); (A.L.); (L.K.); (G.K.); (Z.K.); (A.S.); (M.J.); (O.G.); (M.M.-K.)
| | - Ana Stupin
- Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia; (I.J.); (N.K.); (A.S.); (A.M.); (N.K.); (Z.M.); (M.M.); (P.Š.); (M.S.); (A.K.)
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia; (Ž.B.Ć.); (K.S.-R.); (A.L.); (L.K.); (G.K.); (Z.K.); (A.S.); (M.J.); (O.G.); (M.M.-K.)
- Department of Pathophysiology, Physiology and Immunology, Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 10E, HR-31000 Osijek, Croatia
| | - Anita Matić
- Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia; (I.J.); (N.K.); (A.S.); (A.M.); (N.K.); (Z.M.); (M.M.); (P.Š.); (M.S.); (A.K.)
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia; (Ž.B.Ć.); (K.S.-R.); (A.L.); (L.K.); (G.K.); (Z.K.); (A.S.); (M.J.); (O.G.); (M.M.-K.)
| | - Nataša Kozina
- Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia; (I.J.); (N.K.); (A.S.); (A.M.); (N.K.); (Z.M.); (M.M.); (P.Š.); (M.S.); (A.K.)
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia; (Ž.B.Ć.); (K.S.-R.); (A.L.); (L.K.); (G.K.); (Z.K.); (A.S.); (M.J.); (O.G.); (M.M.-K.)
| | - Zrinka Mihaljević
- Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia; (I.J.); (N.K.); (A.S.); (A.M.); (N.K.); (Z.M.); (M.M.); (P.Š.); (M.S.); (A.K.)
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia; (Ž.B.Ć.); (K.S.-R.); (A.L.); (L.K.); (G.K.); (Z.K.); (A.S.); (M.J.); (O.G.); (M.M.-K.)
| | - Martina Mihalj
- Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia; (I.J.); (N.K.); (A.S.); (A.M.); (N.K.); (Z.M.); (M.M.); (P.Š.); (M.S.); (A.K.)
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia; (Ž.B.Ć.); (K.S.-R.); (A.L.); (L.K.); (G.K.); (Z.K.); (A.S.); (M.J.); (O.G.); (M.M.-K.)
- Department of Dermatology and Venereology, University Hospital Osijek, HR-31000 Osijek, Croatia
| | - Petar Šušnjara
- Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia; (I.J.); (N.K.); (A.S.); (A.M.); (N.K.); (Z.M.); (M.M.); (P.Š.); (M.S.); (A.K.)
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia; (Ž.B.Ć.); (K.S.-R.); (A.L.); (L.K.); (G.K.); (Z.K.); (A.S.); (M.J.); (O.G.); (M.M.-K.)
| | - Marko Stupin
- Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia; (I.J.); (N.K.); (A.S.); (A.M.); (N.K.); (Z.M.); (M.M.); (P.Š.); (M.S.); (A.K.)
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia; (Ž.B.Ć.); (K.S.-R.); (A.L.); (L.K.); (G.K.); (Z.K.); (A.S.); (M.J.); (O.G.); (M.M.-K.)
- Department for Cardiovascular Disease, University Hospital Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia
| | - Željka Breškić Ćurić
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia; (Ž.B.Ć.); (K.S.-R.); (A.L.); (L.K.); (G.K.); (Z.K.); (A.S.); (M.J.); (O.G.); (M.M.-K.)
- Department of Internal Medicine, General Hospital Vinkovci, Zvonarska 57, HR-32100 Vinkovci, Croatia
| | - Kristina Selthofer-Relatić
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia; (Ž.B.Ć.); (K.S.-R.); (A.L.); (L.K.); (G.K.); (Z.K.); (A.S.); (M.J.); (O.G.); (M.M.-K.)
- Department for Cardiovascular Disease, University Hospital Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia
- Department for Internal Medicine, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia
| | - Aleksandar Kibel
- Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia; (I.J.); (N.K.); (A.S.); (A.M.); (N.K.); (Z.M.); (M.M.); (P.Š.); (M.S.); (A.K.)
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia; (Ž.B.Ć.); (K.S.-R.); (A.L.); (L.K.); (G.K.); (Z.K.); (A.S.); (M.J.); (O.G.); (M.M.-K.)
- Department for Cardiovascular Disease, University Hospital Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia
| | - Anamarija Lukinac
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia; (Ž.B.Ć.); (K.S.-R.); (A.L.); (L.K.); (G.K.); (Z.K.); (A.S.); (M.J.); (O.G.); (M.M.-K.)
- Department of Rheumatology, Clinical Immunology and Allergology, Clinical Hospital Center Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia
| | - Luka Kolar
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia; (Ž.B.Ć.); (K.S.-R.); (A.L.); (L.K.); (G.K.); (Z.K.); (A.S.); (M.J.); (O.G.); (M.M.-K.)
- Department of Internal Medicine, Vukovar General Hospital, HR-32000 Vukovar, Croatia
| | - Gordana Kralik
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia; (Ž.B.Ć.); (K.S.-R.); (A.L.); (L.K.); (G.K.); (Z.K.); (A.S.); (M.J.); (O.G.); (M.M.-K.)
- Nutricin j.d.o.o. Darda, HR-31326 Darda, Croatia
| | - Zlata Kralik
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia; (Ž.B.Ć.); (K.S.-R.); (A.L.); (L.K.); (G.K.); (Z.K.); (A.S.); (M.J.); (O.G.); (M.M.-K.)
- Department of Animal Production and Biotechnology, Faculty of Agrobiotechnical Sciences, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, HR-31000 Osijek, Croatia
| | - Aleksandar Széchenyi
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia; (Ž.B.Ć.); (K.S.-R.); (A.L.); (L.K.); (G.K.); (Z.K.); (A.S.); (M.J.); (O.G.); (M.M.-K.)
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, HR-31000 Osijek, Croatia
| | - Marija Jozanović
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia; (Ž.B.Ć.); (K.S.-R.); (A.L.); (L.K.); (G.K.); (Z.K.); (A.S.); (M.J.); (O.G.); (M.M.-K.)
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, HR-31000 Osijek, Croatia
| | - Olivera Galović
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia; (Ž.B.Ć.); (K.S.-R.); (A.L.); (L.K.); (G.K.); (Z.K.); (A.S.); (M.J.); (O.G.); (M.M.-K.)
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, HR-31000 Osijek, Croatia
| | - Martina Medvidović-Kosanović
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia; (Ž.B.Ć.); (K.S.-R.); (A.L.); (L.K.); (G.K.); (Z.K.); (A.S.); (M.J.); (O.G.); (M.M.-K.)
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, HR-31000 Osijek, Croatia
| | - Ines Drenjančević
- Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia; (I.J.); (N.K.); (A.S.); (A.M.); (N.K.); (Z.M.); (M.M.); (P.Š.); (M.S.); (A.K.)
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia; (Ž.B.Ć.); (K.S.-R.); (A.L.); (L.K.); (G.K.); (Z.K.); (A.S.); (M.J.); (O.G.); (M.M.-K.)
| |
Collapse
|
7
|
Zhang F, Jin C, Wang X, Yan H, Tan H, Gao C. Dietary supplementation with pioglitazone hydrochloride and l-carnosine improves the growth performance, muscle fatty acid profiles and shelf life of yellow-feathered broiler chickens. ACTA ACUST UNITED AC 2020; 7:168-175. [PMID: 33997345 PMCID: PMC8110847 DOI: 10.1016/j.aninu.2020.05.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 05/05/2020] [Accepted: 05/15/2020] [Indexed: 12/19/2022]
Abstract
The present study aimed to investigate the effects of dietary pioglitazone hydrochloride (PGZ) and l-carnosine (LC) supplementation on the growth performance, meat quality, antioxidant status, and meat shelf life of yellow-feathered broiler chickens. Five hundred broiler chickens were randomly assigned into 4 experimental diets using a 2 × 2 factorial arrangement with 2 PGZ supplemental levels (0 and 15 mg/kg) and 2 LC supplemental levels (0 and 400 mg/kg) in basal diets for 28 d. The feed-to-gain ratio decreased whereas the average daily gain increased with PGZ supplementation. Greater dressing percentages, contents of intramuscular fat (IMF) in breast and thigh muscles, C18:3n-6, C18:1n-9 and monounsaturated fatty acid (MUFA) percentages of thigh muscle were observed with PGZ addition. Additionally, significant synergistic effects between PGZ and LC on the C18:1n-9 and MUFA contents were found. Supplementation with LC decreased drip loss, cooking loss and total volatile basic nitrogen, and increased the redness (a∗) value, the superoxide dismutase and glutathione peroxidase activities in thigh muscles. Moreover, the malondialdehyde content decreased when diets were supplemented with LC, and there was a synergistic effect between PGZ and LC. Additionally, the mRNA abundance of lipogenesis-related genes, such as peroxisome proliferator-activated receptor γ (PPARγ), PPARγ co-activator 1α and fatty acid-binding protein 3, increased with PGZ supplementation, and relevant antioxidation genes, such as nuclear factor erythroid-2-related factor 2 and superoxide dismutase 1, were enhanced with LC supplementation. In conclusion, the results indicated that the supplementation of PGZ and LC could improve the growth performance, antioxidant ability, IMF content, and meat shelf life of yellow-feathered broiler chickens.
Collapse
Affiliation(s)
- Fan Zhang
- College of Animal Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China
| | - Chenglong Jin
- College of Animal Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China
| | - Xiuqi Wang
- College of Animal Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China
| | - Huichao Yan
- College of Animal Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China
| | - Huize Tan
- WENS Foodstuff Group Co., Ltd, Yunfu, 527400, Guangdong, China
| | - Chunqi Gao
- College of Animal Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China
| |
Collapse
|
8
|
Antioxidative Characteristics of Chicken Breast Meat and Blood after Diet Supplementation with Carnosine, L-histidine, and β-alanine. Antioxidants (Basel) 2020; 9:antiox9111093. [PMID: 33171823 PMCID: PMC7695160 DOI: 10.3390/antiox9111093] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/14/2020] [Accepted: 11/04/2020] [Indexed: 12/31/2022] Open
Abstract
The objective of the study was to test the effect of diets supplemented with β-alanine, L-histidine, and carnosine on the histidine dipeptide content and the antioxidative status of chicken breast muscles and blood. One-day-old Hubbard Flex male chickens were assigned to five treatments: control diet (C) and control diet supplemented with 0.18% L-histidine (ExpH), 0.3% β-alanine (ExpA), a mix of L-histidine\β-alanine (ExpH+A), and 0.27% carnosine (ExpCar). After 28 days, chicken breast muscles and blood samples were analyzed for the antioxidant enzyme activity (catalase (CAT), glutathione peroxidase (GPx), superoxide dismutase (SOD)), carnosine and anserine content, amino acid profile, and anti-radical activity (ABTS, DPPH, ferric reducing antioxidant power (FRAP)). The results of the study showed that carnosine supplementation effectively increased body weight and breast muscle share in chicken carcasses. Carnosine and L-histidine supplementation with or without β-alanine increased carnosine content in chicken breast muscles up to 20% (p = 0.003), but the boost seems to be too low to affect the potential antioxidant capacity and amino acid content. The β-alanine-enriched diet lowered dipeptide concentration in chicken blood serum (p = 0.002) and activated catalase in chicken breast muscles in relation to the control group (p = 0.003). It can be concluded that histidine or dipeptide supplementation of chicken diets differently affected the total antioxidant potential: in breast muscles, it increased dipeptide content, while in blood cell sediment (rich in erythrocytes), increased SOD and GPx activities were observed.
Collapse
|
9
|
Shimamoto S, Nakamura K, Tomonaga S, Furukawa S, Ohtsuka A, Ijiri D. Effects of Cyclic High Ambient Temperature and Dietary Supplementation of Orotic Acid, a Pyrimidine Precursor, on Plasma and Muscle Metabolites in Broiler Chickens. Metabolites 2020; 10:E189. [PMID: 32408619 PMCID: PMC7281580 DOI: 10.3390/metabo10050189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/10/2020] [Accepted: 05/10/2020] [Indexed: 01/29/2023] Open
Abstract
The aim of this study was to evaluate the effects of high ambient temperature (HT) and orotic acid supplementation on the plasma and muscle metabolomic profiles in broiler chickens. Thirty-two 14-day-old broiler chickens were divided into four treatment groups that were fed diets with or without 0.7% orotic acid under thermoneutral (25 ± 1 °C) or cyclic HT (35 ± 1 °C for 8 h/day) conditions for 2 weeks. The chickens exposed to HT had higher plasma malondialdehyde concentrations, suggesting an increase in lipid peroxidation, which is alleviated by orotic acid supplementation. The HT environment also affected the serine, glutamine, and tyrosine plasma concentrations, while orotic acid supplementation affected the aspartic acid, glutamic acid, and tyrosine plasma concentrations. Untargeted gas chromatography-triple quadrupole mass spectrometry (GC-MS/MS)-based metabolomics analysis identified that the HT affected the plasma levels of metabolites involved in purine metabolism, ammonia recycling, pyrimidine metabolism, homocysteine degradation, glutamate metabolism, urea cycle, β-alanine metabolism, glycine and serine metabolism, and aspartate metabolism, while orotic acid supplementation affected metabolites involved in pyrimidine metabolism, β-alanine metabolism, the malate-aspartate shuttle, and aspartate metabolism. Our results suggest that cyclic HT affects various metabolic processes in broiler chickens, and that orotic acid supplementation ameliorates HT-induced increases in lipid peroxidation.
Collapse
Affiliation(s)
- Saki Shimamoto
- Department of Agricultural Sciences and Natural Resources, Kagoshima University, Korimoto, Kagoshima 890-0065, Japan; (S.S.); (K.N.); (A.O.)
- Graduate School of Science and Technology, Niigata University, Nishi-ku, Niigata 950-2181, Japan
| | - Kiriko Nakamura
- Department of Agricultural Sciences and Natural Resources, Kagoshima University, Korimoto, Kagoshima 890-0065, Japan; (S.S.); (K.N.); (A.O.)
| | - Shozo Tomonaga
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan;
| | - Satoru Furukawa
- Furukawa Research Office Co. Ltd., Setagaya-ku, Tokyo 157-0066, Japan;
| | - Akira Ohtsuka
- Department of Agricultural Sciences and Natural Resources, Kagoshima University, Korimoto, Kagoshima 890-0065, Japan; (S.S.); (K.N.); (A.O.)
| | - Daichi Ijiri
- Department of Agricultural Sciences and Natural Resources, Kagoshima University, Korimoto, Kagoshima 890-0065, Japan; (S.S.); (K.N.); (A.O.)
| |
Collapse
|
10
|
Effects of Supplementing Drinking Water with Mixed Herb Extract or Outdoor Access on Meat Quality Characteristics in Broiler Chickens. ANNALS OF ANIMAL SCIENCE 2020. [DOI: 10.2478/aoas-2019-0076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Abstract
The aim of the present study was to determine the effects of supplementing drinking water with an extract of mixed herbs or housing with outdoor access on carcass traits, levels of antioxidant enzymes (SOD, CAT, GPx), reduced glutathione (GSH), malondialdehyde (MDA), and selected quality parameters of meat from broiler chickens. One-day-old Ross 308 broiler chickens were allocated to three groups: group I (control), in which birds were kept in compartments on litter and had no outdoor access; group II, in which birds were kept in compartments on litter without outdoor access and were supplemented with an extract of mixed herbs (50% Melissa officinalis L. and 50% Urtica dioica L.) at 2 ml/l of drinking water; and group III, in which birds were raised in compartments on litter and had outdoor access from day 1 of rearing. Throughout the rearing period, the broilers had free access to feed and water. On day 42, 20 birds were selected from each group, slaughtered and subjected to simplified slaughter analysis. Their breast and leg muscles were measured for pH, colour, water holding capacity (WHC) and drip loss, and analysed for the content of antioxidant enzymes (SOD, CAT, GPx), reduced glutathione (GSH), malondialdehyde (MDA) and fatty acids. The outdoor access reduced dressing percentage, both with (P≤0.01) and without giblets (P≤0.05). The supplementation of drinking water with the mixed herb extract (2 ml/l) improved the muscle antioxidant status (higher SOD, CAT and GSH content) and reduced lipid peroxidation in the leg muscles of the broilers (lower MDA level). In general, the supplementation of the diet with the mixture of herbs in the applied form and concentration, as well as the outdoor access had no effect on the other examined quality parameters of broiler meat.
Collapse
|
11
|
Barbaresi S, Maertens L, Claeys E, Derave W, De Smet S. Differences in muscle histidine-containing dipeptides in broilers. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:5680-5686. [PMID: 31150113 DOI: 10.1002/jsfa.9829] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/30/2019] [Accepted: 05/27/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Poultry meat has high levels of histidine-containing dipeptides (HCD) and consumption of meat rich in HCD may elicit certain health benefits. The aim of this work was to compare the HCD content (anserine and carnosine) in the breast and thigh muscles of two broiler strains differing in growth rate, feeding regime, and age at slaughter. A 3 (production system) × 2 (sex) × 2 (age at slaughter) full factorial arrangement was applied with fast-growing Ross 308 chicks fed ad libitum (ROSS-AL), slow-growing Sasso T451 chicks fed ad libitum (SASSO-AL), and Ross 308 chicks given limited feeding (ROSS-LIM). At the age of 40 and 62 days, eight birds per production system × sex combination were randomly selected for sampling of the breast and thigh muscle. Muscle HCD content was determined by high-performance liquid chromatography (HPLC). RESULTS Across treatments, levels of anserine were 2.5- and 1.9-fold higher than carnosine in breast and thigh muscle respectively (P < 0.001), and levels of anserine and carnosine were 2.2- and 2.8-fold higher respectively in breast versus thigh muscle (P < 0.001). In breast muscle, SASSO-AL had higher levels of HCD than ROSS-AL and ROSS-LIM (P < 0.001). Considering different market meat types, breast muscle of 62-day-old SASSO-AL birds had more than threefold higher content of HCD compared to thigh muscle of 40-day-old ROSS-AL birds (P < 0.001). CONCLUSION Large differences in muscle HCD content were found, varying according to type of muscle and broiler. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Silvia Barbaresi
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | | | - Erik Claeys
- Department of Animal Sciences and Aquatic Biology, LANUPRO, Ghent University, Ghent, Belgium
| | - Wim Derave
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Stefaan De Smet
- Department of Animal Sciences and Aquatic Biology, LANUPRO, Ghent University, Ghent, Belgium
| |
Collapse
|
12
|
Lu Z, He X, Ma B, Zhang L, Li J, Jiang Y, Zhou G, Gao F. Chronic Heat Stress Impairs the Quality of Breast-Muscle Meat in Broilers by Affecting Redox Status and Energy-Substance Metabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:11251-11258. [PMID: 29212325 DOI: 10.1021/acs.jafc.7b04428] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We investigated the molecular mechanisms by which chronic heat stress impairs the breast-meat quality of broilers. Broilers were assigned to three groups: the normal control (NC) group, heat-stress (HS) group, and pair-fed (PF) group. After 7 days of heat exposure (32 °C), the high temperature had caused oxidative stress; elevated the activity of citrate synthase (CS), the mRNA expression of M-CPT1, and the phosphorylation level of AMPKα; and reduced the mRNA expression of avUCP. After 14 days of heat exposure, the heat stress had increased the lightness and drip loss and decreased the pH and shear force of the breast meat. Additionally, the heat exposure had increased the mRNA expressions of FAS, ACC, and PDK4; the content of lipids; and the activities of lactic dehydrogenase and pyruvate kinase, and it had decreased the mRNA expression of M-CPT1 and the activity of CS. In conclusion, chronic heat stress impairs meat quality by causing mitochondria to malfunction and affecting energy-substance aerobic metabolism, resulting in increased glycolysis and intramuscular fat deposition.
Collapse
Affiliation(s)
- Zhuang Lu
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University , Nanjing 210095, P.R. China
| | - Xiaofang He
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University , Nanjing 210095, P.R. China
| | - Bingbing Ma
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University , Nanjing 210095, P.R. China
| | - Lin Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University , Nanjing 210095, P.R. China
| | - Jiaolong Li
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University , Nanjing 210095, P.R. China
| | - Yun Jiang
- Ginling College, Nanjing Normal University , Nanjing 210097, P.R. China
| | - Guanghong Zhou
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University , Nanjing 210095, P.R. China
| | - Feng Gao
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University , Nanjing 210095, P.R. China
| |
Collapse
|
13
|
Chang S, Chen X, Huang Z, Chen D, Yu B, Chen H, He J, Luo J, Zheng P, Yu J, Luo Y. Dietary Sodium Butyrate Supplementation Promotes Oxidative Fiber Formation in Mice. Anim Biotechnol 2017; 29:212-215. [PMID: 28846494 DOI: 10.1080/10495398.2017.1358734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Sodium butyrate (SB), a sodium salt of butyric acid, has been shown to improve the animal production performance. The aim of this work was to test the effect of feeding mice with diets containing different dose of SB (1, 3, and 5%) on oxidative fiber formation. Dietary SB supplementation had no effect on body weights and food intakes. Dietary SB supplementation upregulated the expressions of oxidative fiber-related protein including MyHC I, MyHC IIa, myoglobin, and troponin-I-slow. Dietary SB supplementation also upregulated the expressions of phospho-FoxO1 and MEF2C protein, but did not affect total FoxO1 protein expression. Taken together, these results indicate that dietary SB supplementation promotes oxidative fiber formation in mice, which might be through inactivation of FoxO1 and upregulation of MEF2C expression.
Collapse
Affiliation(s)
- Shuai Chang
- a Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education , Institute of Animal Nutrition, Sichuan Agricultural University , Chengdu , Sichuan , P. R. China
| | - Xiaoling Chen
- a Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education , Institute of Animal Nutrition, Sichuan Agricultural University , Chengdu , Sichuan , P. R. China
| | - Zhiqing Huang
- a Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education , Institute of Animal Nutrition, Sichuan Agricultural University , Chengdu , Sichuan , P. R. China
| | - Daiwen Chen
- a Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education , Institute of Animal Nutrition, Sichuan Agricultural University , Chengdu , Sichuan , P. R. China
| | - Bing Yu
- a Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education , Institute of Animal Nutrition, Sichuan Agricultural University , Chengdu , Sichuan , P. R. China
| | - Hong Chen
- b College of Food Science , Sichuan Agricultural University , Yaan , Sichuan , P. R. China
| | - Jun He
- a Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education , Institute of Animal Nutrition, Sichuan Agricultural University , Chengdu , Sichuan , P. R. China
| | - Junqiu Luo
- a Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education , Institute of Animal Nutrition, Sichuan Agricultural University , Chengdu , Sichuan , P. R. China
| | - Ping Zheng
- a Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education , Institute of Animal Nutrition, Sichuan Agricultural University , Chengdu , Sichuan , P. R. China
| | - Jie Yu
- a Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education , Institute of Animal Nutrition, Sichuan Agricultural University , Chengdu , Sichuan , P. R. China
| | - Yuheng Luo
- a Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education , Institute of Animal Nutrition, Sichuan Agricultural University , Chengdu , Sichuan , P. R. China
| |
Collapse
|