1
|
Gallardo RA, da Silva AP. Immune Responses and B Complex Associated Resistance to Infectious Bronchitis Virus in Chickens. Avian Dis 2021; 65:612-618. [DOI: 10.1637/aviandiseases-d-21-00099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 09/15/2021] [Indexed: 11/05/2022]
Affiliation(s)
- Rodrigo A. Gallardo
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, 1089 Veterinary Medicine Drive, 4008 VM3B, Davis, CA 95616
| | - Ana P. da Silva
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, 1089 Veterinary Medicine Drive, 4008 VM3B, Davis, CA 95616
| |
Collapse
|
2
|
Asfor AS, Nazki S, Reddy VR, Campbell E, Dulwich KL, Giotis ES, Skinner MA, Broadbent AJ. Transcriptomic Analysis of Inbred Chicken Lines Reveals Infectious Bursal Disease Severity Is Associated with Greater Bursal Inflammation In Vivo and More Rapid Induction of Pro-Inflammatory Responses in Primary Bursal Cells Stimulated Ex Vivo. Viruses 2021; 13:v13050933. [PMID: 34069965 PMCID: PMC8157851 DOI: 10.3390/v13050933] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/07/2021] [Accepted: 05/14/2021] [Indexed: 01/26/2023] Open
Abstract
In order to better understand differences in the outcome of infectious bursal disease virus (IBDV) infection, we inoculated a very virulent (vv) strain into White Leghorn chickens of inbred line W that was previously reported to experience over 24% flock mortality, and three inbred lines (15I, C.B4 and 0) that were previously reported to display no mortality. Within each experimental group, some individuals experienced more severe disease than others but line 15I birds experienced milder disease based on average clinical scores, percentage of birds with gross pathology, average bursal lesion scores and average peak bursal virus titre. RNA-Seq analysis revealed that more severe disease in line W was associated with significant up-regulation of pathways involved in inflammation, cytoskeletal regulation by Rho GTPases, nicotinic acetylcholine receptor signaling, and Wnt signaling in the bursa compared to line 15I. Primary bursal cell populations isolated from uninfected line W birds contained a significantly greater percentage of KUL01+ macrophages than cells isolated from line 15I birds (p < 0.01) and, when stimulated ex vivo with LPS, showed more rapid up-regulation of pro-inflammatory gene expression than those from line 15I birds. We hypothesize that a more rapid induction of pro-inflammatory cytokine responses in bursal cells following IBDV infection leads to more severe disease in line W birds than in line 15I.
Collapse
Affiliation(s)
- Amin S. Asfor
- Birnaviruses Group, The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK; (A.S.A.); (S.N.); (V.R.A.P.R.); (E.C.); (K.L.D.)
- Department of Pathology and Infectious Diseases, Faculty of Health and Medical Sciences, School of Veterinary Medicine, University of Surrey, Guilford GU2 7AL, UK
| | - Salik Nazki
- Birnaviruses Group, The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK; (A.S.A.); (S.N.); (V.R.A.P.R.); (E.C.); (K.L.D.)
| | - Vishwanatha R.A.P. Reddy
- Birnaviruses Group, The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK; (A.S.A.); (S.N.); (V.R.A.P.R.); (E.C.); (K.L.D.)
| | - Elle Campbell
- Birnaviruses Group, The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK; (A.S.A.); (S.N.); (V.R.A.P.R.); (E.C.); (K.L.D.)
| | - Katherine L. Dulwich
- Birnaviruses Group, The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK; (A.S.A.); (S.N.); (V.R.A.P.R.); (E.C.); (K.L.D.)
| | - Efstathios S. Giotis
- Section of Virology, Faculty of Medicine, Imperial College London, St. Mary’s Campus, Norfolk Place, London W2 1PG, UK; (E.S.G.); (M.A.S.)
- School of Life Sciences, University of Essex, Colchester C04 3SQ, UK
| | - Michael A. Skinner
- Section of Virology, Faculty of Medicine, Imperial College London, St. Mary’s Campus, Norfolk Place, London W2 1PG, UK; (E.S.G.); (M.A.S.)
| | - Andrew J. Broadbent
- Birnaviruses Group, The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK; (A.S.A.); (S.N.); (V.R.A.P.R.); (E.C.); (K.L.D.)
- Department of Pathology and Infectious Diseases, Faculty of Health and Medical Sciences, School of Veterinary Medicine, University of Surrey, Guilford GU2 7AL, UK
- Department of Animal and Avian Sciences, College of Agriculture and Natural Resources, University of Maryland, College Park, MD 20742, USA
- Correspondence: ; Tel.: +1-3-014-050-376
| |
Collapse
|
3
|
da Silva AP, Gallardo RA. The Chicken MHC: Insights into Genetic Resistance, Immunity, and Inflammation Following Infectious Bronchitis Virus Infections. Vaccines (Basel) 2020; 8:vaccines8040637. [PMID: 33147703 PMCID: PMC7711580 DOI: 10.3390/vaccines8040637] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/20/2020] [Accepted: 10/29/2020] [Indexed: 11/16/2022] Open
Abstract
The chicken immune system has provided an immense contribution to basic immunology knowledge by establishing major landmarks and discoveries that defined concepts widely used today. One of many special features on chickens is the presence of a compact and simple major histocompatibility complex (MHC). Despite its simplicity, the chicken MHC maintains the essential counterpart genes of the mammalian MHC, allowing for a strong association to be detected between the MHC and resistance or susceptibility to infectious diseases. This association has been widely studied for several poultry infectious diseases, including infectious bronchitis. In addition to the MHC and its linked genes, other non-MHC loci may play a role in the mechanisms underlying such resistance. It has been reported that innate immune responses, such as macrophage function and inflammation, might be some of the factors driving resistance or susceptibility, consequently influencing the disease outcome in an individual or a population. Information about innate immunity and genetic resistance can be helpful in developing effective preventative measures for diseases such as infectious bronchitis, to which a systemic antibody response is often not associated with disease protection. In this review, we summarize the importance of the chicken MHC in poultry disease resistance, particularly to infectious bronchitis virus (IBV) infections and the role played by innate immunity and inflammation on disease outcome. We highlight how future studies focusing on the MHC and non-MHC genes can potentially bring clarity to observed resistance in some chicken B haplotype lines.
Collapse
|
4
|
Association of LEI0258 Marker Alleles and Susceptibility to Virulent Newcastle Disease Virus Infection in Kuroiler, Sasso, and Local Tanzanian Chicken Embryos. J Pathog 2020; 2020:5187578. [PMID: 32328309 PMCID: PMC7168712 DOI: 10.1155/2020/5187578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 02/13/2020] [Accepted: 03/12/2020] [Indexed: 11/17/2022] Open
Abstract
Newcastle disease (ND) control by vaccination and an institution of biosecurity measures is less feasible in backyard chicken in developing countries. Therefore, an alternative disease control strategy like the genetic selection of less susceptible chicken genotypes is a promising option. In the present study, genetic polymorphism of LEIO258 marker and association with susceptibility to virulent Newcastle disease virus (NDV) infection in Kuroilers, Sasso, and local Tanzanian chicken embryos were investigated. Samples from high (15%) and less (15%) susceptible cohorts were genotyped by sequencing of LEI0258 marker. A total of 75 DNA sequences comprised of 29 Kuroiler, 29 local Tanzanian chickens, and 17 Sasso were analyzed. Neighbor-joining phylogenetic trees were constructed to depict the clustering of LEI0258 marker alleles and relationship with susceptibility. Alleles with frequency ≥3 were considered for association with susceptibility by the use of the inference technique. The present findings suggest that some LEI0258 marker genetic polymorphisms apart from LEI0258 marker allelic based on sizes may be linked with chicken MHC-B haplotypes that confer chickens variability in resistance or susceptibility to infections. Furthermore, these results demonstrate the presence of relationship between LEI0258 marker polymorphisms and variations in chicken susceptibility to NDV infection, which could be utilized in breeding programs designed to improve chicken disease resistance.
Collapse
|
5
|
Fulton JE. Advances in methodologies for detecting MHC-B variability in chickens. Poult Sci 2020; 99:1267-1274. [PMID: 32111304 PMCID: PMC7587895 DOI: 10.1016/j.psj.2019.11.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/08/2019] [Accepted: 11/08/2019] [Indexed: 11/19/2022] Open
Abstract
The chicken major histocompatibility B complex (MHC-B) region is of great interest owing to its very strong association with resistance to many diseases. Variation in the MHC-B was initially identified by hemagglutination of red blood cells with specific alloantisera. New technologies, developed to identify variation in biological materials, have been applied to the chicken MHC. Protein variation encoded by the MHC genes was examined by immunoprecipitation and 2-dimensional gel electrophoresis. Increased availability of DNA probes, PCR, and sequencing resulted in the application of DNA-based methods for MHC detection. The chicken reference genome, completed in 2004, allowed further refinements in DNA methods that enabled more rapid examination of MHC variation and extended such analyses to include very diverse chicken populations. This review progresses from the inception of MHC-B identification to the present, describing multiple methods, plus their advantages and disadvantages.
Collapse
Affiliation(s)
- J E Fulton
- Research and Development, Hy-Line International, Dallas Center, IA 50063, USA.
| |
Collapse
|
6
|
|
7
|
Dai M, Xu C, Chen W, Liao M. Progress on chicken T cell immunity to viruses. Cell Mol Life Sci 2019; 76:2779-2788. [PMID: 31101935 PMCID: PMC11105491 DOI: 10.1007/s00018-019-03117-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/14/2019] [Accepted: 04/24/2019] [Indexed: 12/20/2022]
Abstract
Avian virus infection remains one of the most important threats to the poultry industry. Pathogens such as avian influenza virus (AIV), avian infectious bronchitis virus (IBV), and infectious bursal disease virus (IBDV) are normally controlled by antibodies specific for surface proteins and cellular immune responses. However, standard vaccines aimed at inducing neutralizing antibodies must be administered annually and can be rendered ineffective because immune-selective pressure results in the continuous mutation of viral surface proteins of different strains circulating from year to year. Chicken T cells have been shown to play a crucial role in fighting virus infection, offering lasting and cross-strain protection, and offer the potential for developing universal vaccines. This review provides an overview of our current knowledge of chicken T cell immunity to viruses. More importantly, we point out the limitations and barriers of current research and a potential direction for future studies.
Collapse
Affiliation(s)
- Manman Dai
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, People's Republic of China
| | - Chenggang Xu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, People's Republic of China
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture, Guangzhou, People's Republic of China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, People's Republic of China
| | - Weisan Chen
- T Cell Lab, Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Bundoora, Australia.
| | - Ming Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, People's Republic of China.
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture, Guangzhou, People's Republic of China.
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, People's Republic of China.
| |
Collapse
|
8
|
Irizarry KJL, Downs E, Bryden R, Clark J, Griggs L, Kopulos R, Boettger CM, Carr TJ, Keeler CL, Collisson E, Drechsler Y. RNA sequencing demonstrates large-scale temporal dysregulation of gene expression in stimulated macrophages derived from MHC-defined chicken haplotypes. PLoS One 2017; 12:e0179391. [PMID: 28846708 PMCID: PMC5573159 DOI: 10.1371/journal.pone.0179391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 05/29/2017] [Indexed: 11/18/2022] Open
Abstract
Discovering genetic biomarkers associated with disease resistance and enhanced immunity is critical to developing advanced strategies for controlling viral and bacterial infections in different species. Macrophages, important cells of innate immunity, are directly involved in cellular interactions with pathogens, the release of cytokines activating other immune cells and antigen presentation to cells of the adaptive immune response. IFNγ is a potent activator of macrophages and increased production has been associated with disease resistance in several species. This study characterizes the molecular basis for dramatically different nitric oxide production and immune function between the B2 and the B19 haplotype chicken macrophages.A large-scale RNA sequencing approach was employed to sequence the RNA of purified macrophages from each haplotype group (B2 vs. B19) during differentiation and after stimulation. Our results demonstrate that a large number of genes exhibit divergent expression between B2 and B19 haplotype cells both prior and after stimulation. These differences in gene expression appear to be regulated by complex epigenetic mechanisms that need further investigation.
Collapse
Affiliation(s)
- Kristopher J. L. Irizarry
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California, United States of America
- The Applied Genomics Center, Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, California, United States of America
- * E-mail: (KI); (YD)
| | - Eileen Downs
- College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, United States of America
| | - Randall Bryden
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California, United States of America
| | - Jory Clark
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California, United States of America
| | - Lisa Griggs
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California, United States of America
| | - Renee Kopulos
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, United States of America
| | - Cynthia M. Boettger
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States of America
| | - Thomas J. Carr
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States of America
| | - Calvin L. Keeler
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States of America
| | - Ellen Collisson
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California, United States of America
| | - Yvonne Drechsler
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California, United States of America
- * E-mail: (KI); (YD)
| |
Collapse
|
9
|
Collisson E, Griggs L, Drechsler Y. Macrophages from disease resistant B2 haplotype chickens activate T lymphocytes more effectively than macrophages from disease susceptible B19 birds. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 67:249-256. [PMID: 27746172 PMCID: PMC7102680 DOI: 10.1016/j.dci.2016.09.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 09/21/2016] [Accepted: 09/21/2016] [Indexed: 06/06/2023]
Abstract
Resistance to respiratory pathogens, including coronavirus-induced infection and clinical illness in chickens has been correlated with the B (MHC) complex and differential ex vivo macrophage responses. In the current study, in vitro T lymphocyte activation measured by IFNγ release was significantly higher in B2 versus B19 haplotypes. AIV infection of macrophages was required to activate T lymphocytes and prior in vivo exposure of chickens to NP AIV plasmid enhanced responses to infected macrophages. This study suggests that the demonstrated T lymphocyte activation is in part due to antigen presentation by the macrophages as well as cytokine release by the infected macrophages, with B2 haplotypes showing stronger activation. These responses were present both in CD4 and CD8 T lymphocytes. In contrast, T lymphocytes stimulated by ConA showed greater IFNγ release of B19 haplotype cells, further indicating the greater responses in B2 haplotypes to infection is due to macrophages, but not T cells. In summary, resistance of B2 haplotype chickens appears to be directly linked to a more vigorous innate immune response and the role macrophages play in activating adaptive immunity.
Collapse
Affiliation(s)
- Ellen Collisson
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766, United States
| | - Lisa Griggs
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766, United States
| | - Yvonne Drechsler
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766, United States.
| |
Collapse
|
10
|
Fulton JE, Lund AR, McCarron AM, Pinegar KN, Korver DR, Classen HL, Aggrey S, Utterbach C, Anthony NB, Berres ME. MHC variability in heritage breeds of chickens. Poult Sci 2016; 95:393-9. [PMID: 26827122 DOI: 10.3382/ps/pev363] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 10/01/2015] [Indexed: 11/20/2022] Open
Abstract
The chicken Major Histocompatibility Complex (MHC) is very strongly associated with disease resistance and thus is a very important region of the chicken genome. Historically, MHC (B locus) has been identified by the use of serology with haplotype specific alloantisera. These antisera can be difficult to produce and frequently cross-react with multiple haplotypes and hence their application is generally limited to inbred and MHC-defined lines. As a consequence, very little information about MHC variability in heritage chicken breeds is available. DNA-based methods are now available for examining MHC variability in these previously uncharacterized populations. A high density SNP panel consisting of 101 SNP that span a 230,000 bp region of the chicken MHC was used to examine MHC variability in 17 heritage populations of chickens from five universities from Canada and the United States. The breeds included 6 heritage broiler lines, 3 Barred Plymouth Rock, 2 New Hampshire and one each of Rhode Island Red, Light Sussex, White Leghorn, Dark Brown Leghorn, and 2 synthetic lines. These heritage breeds contained from one to 11 haplotypes per line. A total of 52 unique MHC haplotypes were found with only 10 of them identical to serologically defined haplotypes. Furthermore, nine MHC recombinants with their respective parental haplotypes were identified. This survey confirms the value of these non-commercially utilized lines in maintaining genetic diversity. The identification of multiple MHC haplotypes and novel MHC recombinants indicates that diversity is being generated and maintained within these heritage populations.
Collapse
Affiliation(s)
- J E Fulton
- Hy-Line International, Dallas Center, IA
| | - A R Lund
- Hy-Line International, Dallas Center, IA
| | | | | | | | | | - S Aggrey
- University of Georgia, Athens, GA
| | | | | | | |
Collapse
|
11
|
Fulton JE, McCarron AM, Lund AR, Pinegar KN, Wolc A, Chazara O, Bed'Hom B, Berres M, Miller MM. A high-density SNP panel reveals extensive diversity, frequent recombination and multiple recombination hotspots within the chicken major histocompatibility complex B region between BG2 and CD1A1. Genet Sel Evol 2016; 48:1. [PMID: 26743767 PMCID: PMC4705597 DOI: 10.1186/s12711-015-0181-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 12/23/2015] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The major histocompatibility complex (MHC) is present within the genomes of all jawed vertebrates. MHC genes are especially important in regulating immune responses, but even after over 80 years of research on the MHC, much remains to be learned about how it influences adaptive and innate immune responses. In most species, the MHC is highly polymorphic and polygenic. Strong and highly reproducible associations are established for chicken MHC-B haplotypes in a number of infectious diseases. Here, we report (1) the development of a high-density SNP (single nucleotide polymorphism) panel for MHC-B typing that encompasses a 209,296 bp region in which 45 MHC-B genes are located, (2) how this panel was used to define chicken MHC-B haplotypes within a large number of lines/breeds and (3) the detection of recombinants which contributes to the observed diversity. METHODS A SNP panel was developed for the MHC-B region between the BG2 and CD1A1 genes. To construct this panel, each SNP was tested in end-point read assays on more than 7500 DNA samples obtained from inbred and commercially used egg-layer lines that carry known and novel MHC-B haplotypes. One hundred and one SNPs were selected for the panel. Additional breeds and experimentally-derived lines, including lines that carry MHC-B recombinant haplotypes, were then genotyped. RESULTS MHC-B haplotypes based on SNP genotyping were consistent with the MHC-B haplotypes that were assigned previously in experimental lines that carry B2, B5, B12, B13, B15, B19, B21, and B24 haplotypes. SNP genotyping resulted in the identification of 122 MHC-B haplotypes including a number of recombinant haplotypes, which indicate that crossing-over events at multiple locations within the region lead to the production of new MHC-B haplotypes. Furthermore, evidence of gene duplication and deletion was found. CONCLUSIONS The chicken MHC-B region is highly polymorphic across the surveyed 209-kb region that contains 45 genes. Our results expand the number of identified haplotypes and provide insights into the contribution of recombination events to MHC-B diversity including the identification of recombination hotspots and an estimation of recombination frequency.
Collapse
Affiliation(s)
| | | | | | | | - Anna Wolc
- Hy-Line International, Dallas Center, IA, USA.
- Iowa State University, 239C Kildee, Ames, IA, 50011, USA.
| | - Olympe Chazara
- Department of Pathology and Centre for Trophoblast Research, University of Cambridge, Cambridge, UK.
- Génétique Animale et Biologie Intégrative, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.
| | - Bertrand Bed'Hom
- Génétique Animale et Biologie Intégrative, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.
| | - Mark Berres
- Department of Animal Sciences, University of Wisconsin, Madison, USA.
| | - Marcia M Miller
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA.
| |
Collapse
|
12
|
Miller MM, Taylor RL. Brief review of the chicken Major Histocompatibility Complex: the genes, their distribution on chromosome 16, and their contributions to disease resistance. Poult Sci 2016; 95:375-92. [PMID: 26740135 PMCID: PMC4988538 DOI: 10.3382/ps/pev379] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 11/11/2015] [Indexed: 12/25/2022] Open
Abstract
Nearly all genes presently mapped to chicken chromosome 16 (GGA 16) have either a demonstrated role in immune responses or are considered to serve in immunity by reason of sequence homology with immune system genes defined in other species. The genes are best described in regional units. Among these, the best known is the polymorphic major histocompatibility complex-B (MHC-B) region containing genes for classical peptide antigen presentation. Nearby MHC-B is a small region containing two CD1 genes, which encode molecules known to bind lipid antigens and which will likely be found in chickens to present lipids to specialized T cells, as occurs with CD1 molecules in other species. Another region is the MHC-Y region, separated from MHC-B by an intervening region of tandem repeats. Like MHC-B, MHC-Y is polymorphic. It contains specialized class I and class II genes and c-type lectin-like genes. Yet another region, separated from MHC-Y by the single nucleolar organizing region (NOR) in the chicken genome, contains olfactory receptor genes and scavenger receptor genes, which are also thought to contribute to immunity. The structure, distribution, linkages and patterns of polymorphism in these regions, suggest GGA 16 evolves as a microchromosome devoted to immune defense. Many GGA 16 genes are polymorphic and polygenic. At the moment most disease associations are at the haplotype level. Roles of individual MHC genes in disease resistance are documented in only a very few instances. Provided suitable experimental stocks persist, the availability of increasingly detailed maps of GGA 16 genes combined with new means for detecting genetic variability will lead to investigations defining the contributions of individual loci and more applications for immunogenetics in breeding healthy poultry.
Collapse
Affiliation(s)
- Marcia M Miller
- Beckman Research Institute, City of Hope, Department of Molecular and Cellular Biology, Duarte, CA 91010
| | - Robert L Taylor
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV 26506
| |
Collapse
|
13
|
Nikbakht G, Esmailnejad A. Chicken major histocompatibility complex polymorphism and its association with production traits. Immunogenetics 2015; 67:247-52. [DOI: 10.1007/s00251-015-0832-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 02/17/2015] [Indexed: 10/23/2022]
|
14
|
Dawes ME, Griggs LM, Collisson EW, Briles WE, Drechsler Y. Dramatic differences in the response of macrophages from B2 and B19 MHC-defined haplotypes to interferon gamma and polyinosinic:polycytidylic acid stimulation. Poult Sci 2014; 93:830-8. [PMID: 24706959 PMCID: PMC7107093 DOI: 10.3382/ps.2013-03511] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The chicken MHC has been associated with disease resistance, though the mechanisms are not understood. The functions of macrophages, critical to both innate and acquired immunity, were compared between the more infectious bronchitis virus-resistant B2 and the more infectious bronchitis virus-susceptible B19 lines. In vivo peripheral blood concentrations of monocytes were similar in B2 or B19 homozygous haplotypes. Peripheral blood-derived macrophages were stimulated with poly I:C, simulating an RNA virus, or IFNγ, a cytokine at the interface of innate and adaptive immunity. Not only did B2-derived peripheral monocytes differentiate into macrophages more readily than the B19 monocytes, but as determined by NO production, macrophages from B2 and B2 on B19 genetic background chicks were also significantly more responsive to either stimulant. In conclusion, the correlation with resistance to illness following viral infection may be directly linked to a more vigorous innate immune response.
Collapse
Affiliation(s)
- Maisie E Dawes
- College of Veterinary Medicine, Western University of Health Sciences, 309 E. Second St., Pomona, CA 91766-1854
| | | | | | | | | |
Collapse
|
15
|
Banat GR, Tkalcic S, Dzielawa JA, Jackwood MW, Saggese MD, Yates L, Kopulos R, Briles W, Collisson EW. Association of the chicken MHC B haplotypes with resistance to avian coronavirus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 39:430-437. [PMID: 23178407 PMCID: PMC7103219 DOI: 10.1016/j.dci.2012.10.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 10/18/2012] [Accepted: 10/19/2012] [Indexed: 06/01/2023]
Abstract
Clinical respiratory illness was compared in five homozygous chicken lines, originating from homozygous B2, B8, B12 and B19, and heterozygous B2/B12 birds after infection with either of two strains of the infectious bronchitis virus (IBV). All chickens used in these studies originated from White Leghorn and Ancona linages. IBV Gray strain infection of MHC homozygous B12 and B19 haplotype chicks resulted in severe respiratory disease compared to chicks with B2/B2 and B5/B5 haplotypes. Demonstrating a dominant B2 phenotype, B2/B12 birds were also more resistant to IBV. Respiratory clinical illness in B8/B8 chicks was severe early after infection, while illness resolved similar to the B5 and B2 homozygous birds. Following M41 strain infection, birds with B2/B2 and B8/B8 haplotypes were again more resistant to clinical illness than B19/B19 birds. Real time RT-PCR indicated that infection was cleared more efficiently in trachea, lungs and kidneys of B2/B2 and B8/B8 birds compared with B19/B19 birds. Furthermore, M41 infected B2/B2 and B8/B8 chicks performed better in terms of body weight gain than B19/B19 chicks. These studies suggest that genetics of B defined haplotypes might be exploited to produce chicks resistant to respiratory pathogens or with more effective immune responses.
Collapse
Key Words
- ibv, infectious bronchitis virus
- mhc, major histocompatibility complex
- m41, massachusetts 41
- rt-pcr, reverse transcription polymerase chain reaction
- sars, severe acute respiratory syndrome
- rsv, rous sarcoma virus
- mdv, marek’s disease virus
- spf, specific pathogen free
- pi, post infection
- eid50/ml, embryo infectious dose 50 per ml
- niu, northern illinois university
- pbs, phosphate buffer saline
- rna, ribonucleic acid
- 5′ utr, 5′ untranslated region
- bp, base pairs
- anova, analysis of variance
- ark, arkansas
- ctl, cytotoxic t lymphocyte
- aiv, avian influenza virus
- ifnγ, interferon gamma
- poly i:c, polyinosinic polycytidylic acid
- usda, united states department of agriculture
- nifa, national institute of food and agriculture
- infectious bronchitis virus
- chicken mhc b haplotype
- clinical illness
- infection of trachea
- lungs and kidneys
- resistant
Collapse
Affiliation(s)
- Ghida R. Banat
- College of Veterinary Medicine, Western University of Health Sciences, 309 E. 2nd St., Pomona, CA 91766-1854, USA
| | - Suzana Tkalcic
- College of Veterinary Medicine, Western University of Health Sciences, 309 E. 2nd St., Pomona, CA 91766-1854, USA
| | - Jennifer A. Dzielawa
- College of Veterinary Medicine, Texas A&M University, College Station, TX 77845, USA
| | - Mark W. Jackwood
- Poultry Diagnostic Research Center, Department of Population Health, College of Veterinary Medicine, University of Georgia, 953 College Station Road, Athens, GA 30602-4875, USA
| | - Miguel D. Saggese
- College of Veterinary Medicine, Western University of Health Sciences, 309 E. 2nd St., Pomona, CA 91766-1854, USA
| | - Linda Yates
- Department of Biological Sciences, Northern Illinois University, 415 Montgomery Hall, DeKalb, IL 60115-2861, USA
| | - Renee Kopulos
- Department of Biological Sciences, Northern Illinois University, 415 Montgomery Hall, DeKalb, IL 60115-2861, USA
| | - W.E. Briles
- Department of Biological Sciences, Northern Illinois University, 415 Montgomery Hall, DeKalb, IL 60115-2861, USA
| | - Ellen W. Collisson
- College of Veterinary Medicine, Western University of Health Sciences, 309 E. 2nd St., Pomona, CA 91766-1854, USA
- College of Veterinary Medicine, Texas A&M University, College Station, TX 77845, USA
| |
Collapse
|
16
|
An assessment of opportunities to dissect host genetic variation in resistance to infectious diseases in livestock. Animal 2012; 3:415-36. [PMID: 22444313 DOI: 10.1017/s1751731108003522] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
This paper reviews the evidence for host genetic variation in resistance to infectious diseases for a wide variety of diseases of economic importance in poultry, cattle, pig, sheep and Atlantic salmon. Further, it develops a method of ranking each disease in terms of its overall impact, and combines this ranking with published evidence for host genetic variation and information on the current state of genomic tools in each host species. The outcome is an overall ranking of the amenability of each disease to genomic studies that dissect host genetic variation in resistance. Six disease-based assessment criteria were defined: industry concern, economic impact, public concern, threat to food safety or zoonotic potential, impact on animal welfare and threat to international trade barriers. For each category, a subjective score was assigned to each disease according to the relative strength of evidence, impact, concern or threat posed by that particular disease, and the scores were summed across categories. Evidence for host genetic variation in resistance was determined from available published data, including breed comparison, heritability studies, quantitative trait loci (QTL) studies, evidence of candidate genes with significant effects, data on pathogen sequence and on host gene expression analyses. In total, 16 poultry diseases, 13 cattle diseases, nine pig diseases, 11 sheep diseases and three Atlantic salmon diseases were assessed. The top-ranking diseases or pathogens, i.e. those most amenable to studies dissecting host genetic variation, were Salmonella in poultry, bovine mastitis, Marek's disease and coccidiosis, both in poultry. The top-ranking diseases or pathogens in pigs, sheep and Atlantic salmon were Escherichia coli, mastitis and infectious pancreatic necrosis, respectively. These rankings summarise the current state of knowledge for each disease and broadly, although not entirely, reflect current international research efforts. They will alter as more information becomes available and as genome tools become more sophisticated for each species. It is suggested that this approach could be used to rank diseases from other perspectives as well, e.g. in terms of disease control strategies.
Collapse
|
17
|
Izadi F, Ritland C, Cheng KM. Genetic diversity of the major histocompatibility complex region in commercial and noncommercial chicken flocks using the LEI0258 microsatellite marker. Poult Sci 2012; 90:2711-7. [PMID: 22080008 DOI: 10.3382/ps.2011-01721] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microsatellite marker LEI0258 was used as an indicator to examine the variability of the major histocompatibility complex (MHC) region in 2 commercial layer flocks, 1 experimental layer cross, and 5 noncommercial flocks (used for free-run and free-range meat and egg production). We hypothesized that the populations from noncommercial sources may have more diversity in MHC genes than that in the commercial-source populations. Two related parameters, heterozygosity and the number of alleles harbored by a population, were used to assess the genetic variability. The different combinations of the 22 alleles created 66 genotypes in the 8 chicken populations that were studied. The noncommercial populations, except for the Silkies (SK), harbored more alleles than those in the 2 commercial populations, Lohmann Brown and Lohmann White. The observed heterozygosity of the MHC region was high in all of the populations, except for SK. Considering the 2 parameters we have examined, we can generalize that the intensively selected commercial egg-layer varieties seem to have less genetic variability in their MHC regions compared with that of the noncommercial flocks, which are less intensively selected. The LEI0258 variants can be used as markers to detect most of the MHC haplotypes, but in the different populations the same allele size may not always be associated with the same serologically defined haplotype. The information obtained from this study will be useful for genetic resource conservation and the development of breeding stocks that are suitable for free-range production.
Collapse
Affiliation(s)
- F Izadi
- Avian Research Centre, University of British Columbia, Canada
| | | | | |
Collapse
|
18
|
Zhao G, Zheng M, Chen J, Wen J, Wu C, Li W, Liu L, Zhang Y. Differentially expressed genes in a flock of Chinese local-breed chickens infected with a subgroup J avian leukosis virus using suppression subtractive hybridization. Genet Mol Biol 2010; 33:44-50. [PMID: 21637603 PMCID: PMC3036089 DOI: 10.1590/s1415-47572009005000097] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Accepted: 07/20/2009] [Indexed: 11/22/2022] Open
Abstract
Avian leukosis virus subgroup J (ALV-J) is a new type of virus that mainly induces myeloid leukosis (ML) in chickens. To further elucidate the pathogenesis of ALV-J infection and tumor development, expression profiles from the bone marrow tissue of 15 infected and 18 non-infected birds from a local-breed poultry-farm under naturally infected conditions, were analyzed by suppression-subtractive hybridization. The birds were diagnosed as ML+ (or ML-) by specific ALV-J detection methods, involving serological tests for antigens and antibodies, and RT-PCR to detect viral RNA. A total of 59 partial gene sequences were revealed by differential screening of 496 forward and 384 reverse subtracted cDNA clones. Of these, 22 identified genes, including 8 up-regulated and 14 down-regulated, were related to immune functions, these genes being, MHC B-G antigen, translationally-controlled tumor protein (TPT1/TPTC), transferrin and ferritin, hemoglobin and Carbonic anhydrase. Four of the down-regulated genes were selected for further analysis, in view of their predicted roles in infection and immunity by real-time qRT-PCR, using RNA collected from the same birds as those used for SSH. The four genes were expressed at significantly lower levels (p < 0.001) in ALV-J infected birds than in non-infected ones.
Collapse
Affiliation(s)
- Guiping Zhao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, BeijingChina
| | - Maiqing Zheng
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, BeijingChina
| | - Jilan Chen
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, BeijingChina
| | - Jie Wen
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, BeijingChina
| | - Chunmei Wu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, BeijingChina
| | - Wenjuan Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, BeijingChina
| | - Libo Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, BeijingChina
| | - Yuan Zhang
- Department of Animal Genetics Breeding, China Agricultural University, BeijingChina
| |
Collapse
|
19
|
Schou TW, Labouriau R, Permin A, Christensen JP, Sørensen P, Cu HP, Nguyen VK, Juul-Madsen HR. MHC haplotype and susceptibility to experimental infections (Salmonella Enteritidis, Pasteurella multocida or Ascaridia galli) in a commercial and an indigenous chicken breed. Vet Immunol Immunopathol 2009; 135:52-63. [PMID: 19945754 DOI: 10.1016/j.vetimm.2009.10.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Revised: 10/26/2009] [Accepted: 10/27/2009] [Indexed: 10/20/2022]
Abstract
In three independent experimental infection studies, the susceptibility and course of infection of three pathogens considered of importance in most poultry production systems, Ascaridia galli, Salmonella Enteritidis and Pasteurella multocida were compared in two chicken breeds, the indigenous Vietnamese Ri and the commercial Luong Phuong. Furthermore, the association of the Major Histocompatibility Complex (MHC) with disease-related parameters was evaluated, using alleles of the LEI0258 microsatellite as markers for MHC haplotypes. The Ri chickens were found to be more resistant to A. galli and S. Enteritidis than commercial Luong Phuong chickens. In contrast, the Ri chickens were more susceptible to P. multocida, although production parameters were more affected in the Luong Phuong chickens. Furthermore, it was shown that the individual variations observed in response to the infections were influenced by the MHC. Using marker alleles of the microsatellite LEI0258, which is located within the MHC region, several MHC haplotypes were identified as being associated with infection intensity of A. galli. An association of the MHC with the specific antibody response to S. Enteritidis was also found where four MHC haplotypes were shown to be associated with high specific antibody response. Finally, one MHC haplotype was identified as being associated with pathological lesions and mortality in the P. multocida experiment. Although not statistically significant, our analysis suggested that this haplotype might be associated with resistance. These results demonstrate the presence of local genetic resources in Vietnamese chickens, which could be utilized in breeding programmes aiming at improving disease resistance.
Collapse
Affiliation(s)
- T W Schou
- Department of Veterinary Pathobiology, The Faculty of Life Sciences, University of Copenhagen, Stigbojlen 4, DK-1870 Frederiksberg C, Denmark; Department of Human Health and Safety, The DHI Group, Kogle Allé 2, 2970 Horsholm, Denmark.
| | - R Labouriau
- Department of Genetics and Biotechnology, Faculty of Agricultural Sciences, University of Aarhus, Blichers Allé 20, P.O. Box 50, DK-8830 Tjele, Denmark
| | - A Permin
- Department of Veterinary Pathobiology, The Faculty of Life Sciences, University of Copenhagen, Stigbojlen 4, DK-1870 Frederiksberg C, Denmark; Department of Human Health and Safety, The DHI Group, Kogle Allé 2, 2970 Horsholm, Denmark
| | - J P Christensen
- Department of Veterinary Pathobiology, The Faculty of Life Sciences, University of Copenhagen, Stigbojlen 4, DK-1870 Frederiksberg C, Denmark
| | - P Sørensen
- Department of Genetics and Biotechnology, Faculty of Agricultural Sciences, University of Aarhus, Blichers Allé 20, P.O. Box 50, DK-8830 Tjele, Denmark
| | - H P Cu
- Department of Bacteriology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi, Viet Nam
| | - V K Nguyen
- Department of Parasitology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi, Viet Nam
| | - H R Juul-Madsen
- Department of Animal Health and Bioscience, Faculty of Agricultural Sciences, University of Aarhus, Blichers Allé 20, P.O. Box 50, DK-8830 Tjele, Denmark
| |
Collapse
|
20
|
Schou TW, Permin A, Juul-Madsen HR, Sørensen P, Labouriau R, Nguyên TLH, Fink M, Pham SL. Gastrointestinal helminths in indigenous and exotic chickens in Vietnam: association of the intensity of infection with the Major Histocompatibility Complex. Parasitology 2006; 134:561-73. [PMID: 17166322 DOI: 10.1017/s0031182006002046] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Revised: 09/14/2006] [Accepted: 09/14/2006] [Indexed: 11/07/2022]
Abstract
This study compared the prevalence and intensity of infections of helminths in 2 chicken breeds in Vietnam, the indigenous Ri and the exotic Luong Phuong. Also, possible correlations with the Major Histocompatibility Complex (MHC) were tested. The most prevalent helminths were Ascaridia galli, Heterakis beramporia, Tetrameres mothedai, Capillaria obsignata, Raillietina echinobothrida and Raillietina tetragona. Differences in prevalence and intensity of infection were found between the 2 breeds. Comparing the 2 groups of adult birds, Ri chickens were observed to have higher prevalence and infection intensities of several species of helminths, as well as a higher mean number of helminth species. In contrast, A. galli and C. obsignata were shown to be more prevalent in Luong Phuong chickens. Furthermore, an age-dependent difference was indicated in the group of Ri chickens in which the prevalence and the intensity of infection was higher for the adult than the young chickens for most helminths. The most notable exception was the significantly lower prevalence and intensities of A. galli in the group of adult chickens. In contrast, the prevalence and intensity were very similar in both age groups of Luong Phuong chickens. Using a genetic marker located in the MHC, a statistically significant correlation between several MHC haplotypes and the infection intensity of different helminth species was inferred. This is the first report of an association of MHC haplotype with the intensity of parasite infections in chickens.
Collapse
Affiliation(s)
- T W Schou
- Department of Veterinary Pathobiology, Section for Poultry Diseases, The Royal Veterinary and Agricultural University, Stigbojlen 4, DK-1870 Frederiksberg C, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Juul-Madsen HR, Dalgaard TS, Røntved CM, Jensen KH, Bumstead N. Immune response to a killed infectious bursal disease virus vaccine in inbred chicken lines with different major histocompatibility complex haplotypes. Poult Sci 2006; 85:986-98. [PMID: 16776466 DOI: 10.1093/ps/85.6.986] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The influence of MHC on antibody responses to killed infectious bursal disease virus (IBDV) vaccine was investigated in several MHC inbred chicken lines. We found a notable MHC haplotype effect on the specific antibody response against IBDV as measured by ELISA. Some MHC haplotypes were high responders (B201, B4, and BR5), whereas other MHC haplotypes were low responders (B19, B12 and BW3). The humoral response of 1 pair of recombinants isolated from a Red Jungle Fowl (BW3 and BW4) being identical on BF and BG, but different on BL, indicated that part of the primary vaccine response was an MHC II restricted T-cell dependent response. The humoral response in another pair of recombinant haplotypes originating in 2 different White Leghorn chickens being BF21, BL21, BG15 (BR4) and BF15, BL15, BG21 (BR5) on the MHC locus indicated that the BG locus may perform an adjuvant effect on the antibody response as well. Vaccination of chickens at different ages and in lines with different origin indicated that age and background genes also influence the specific antibody response against inactivated IBDV vaccine.
Collapse
|
22
|
Fulton JE, Juul-Madsen HR, Ashwell CM, McCarron AM, Arthur JA, O'Sullivan NP, Taylor RL. Molecular genotype identification of the Gallus gallus major histocompatibility complex. Immunogenetics 2006; 58:407-21. [PMID: 16738938 DOI: 10.1007/s00251-006-0119-0] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Accepted: 04/05/2006] [Indexed: 11/28/2022]
Abstract
The chicken major histocompatibility complex (MHC) is commonly defined by serologic reactions of erythrocytes with antibodies specific to the highly polymorphic MHC class I (BF) and MHC class IV (BG) antigens. The microsatellite marker LEI0258 is known to be physically located within the MHC, between the BG and BF regions. DNA from various serologically defined MHC haplotypes was amplified by polymerase chain reaction with primers surrounding this marker. Twenty-six distinctive allele sizes were identified. Some serologically well-defined MHC haplotypes shared a common LEI0258 allele size but could be distinguished either by the addition of information from another nearby marker (MCW0371) or by small indels or single nucleotide polymorphism (SNP) differences between the alleles. The association between LEI0258 allele and serologically defined MHC haplotype was very consistent for the same haplotype from multiple sources. Sequence information for the region defined by LEI0258 was obtained for 51 different haplotypes. Two internal repeats whose lengths were 13 and 12 bp, respectively, are the primary basis for allelic variability. Allele size variation ranges from 182 to 552 bp. Four indels and five SNPs in the surrounding sequence provide additional means for distinguishing alleles. Typing with LEI0258 and MCW0371 will be useful in identifying MHC haplotypes in outbred populations of chickens particularly for the initial development of serological reagents.
Collapse
Affiliation(s)
- Janet E Fulton
- Hy-Line International, P.O. Box 310, Dallas Center, IA, 50063, USA.
| | | | | | | | | | | | | |
Collapse
|
23
|
Bonneaud C, Richard M, Faivre B, Westerdahl H, Sorci G. An Mhc class I allele associated to the expression of T-dependent immune response in the house sparrow. Immunogenetics 2005; 57:782-9. [PMID: 16189664 DOI: 10.1007/s00251-005-0046-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2005] [Accepted: 08/22/2005] [Indexed: 11/26/2022]
Abstract
The major histocompatibility complex (Mhc) encodes for highly variable molecules, responsible for foreign antigen recognition and subsequent activation of immune responses in hosts. Mhc polymorphism should hence be related to pathogen resistance and immune activity, with individuals that carry either a higher diversity of Mhc alleles or one specific Mhc allele exhibiting a stronger immune response to a given antigen. Links between Mhc alleles and immune activity have never been explored in natural populations of vertebrates. To fill this gap, we challenged house sparrows (Passer domesticus) with two T-dependent antigens (phytohemagglutinin and sheep red blood cells) and examined both primary and secondary immune responses in relation to their Mhc class I genotypes. The total number of Mhc alleles had no influence on either primary or secondary response to the two antigens. One particular Mhc allele, however, was associated with an increased response to both antigens. Our results point toward a contribution of the Mhc, or of other genes in linkage disequilibrium with the Mhc, in the regulation of immune responses in a wild animal species.
Collapse
Affiliation(s)
- Camille Bonneaud
- Laboratoire de Parasitologie Evolutive CNRS UMR 7103, Université Pierre et Marie Curie Paris 6, 7 quai St Bernard, bât. A 7e étage, case 237, Paris cedex 05 75252, France
| | | | | | | | | |
Collapse
|
24
|
Juul-Madsen HR, Nielsen OL, Krogh-Maibom T, Røntved CM, Dalgaard TS, Bumstead N, Jørgensen PH. Major histocompatibility complex-linked immune response of young chickens vaccinated with an attenuated live infectious bursal disease virus vaccine followed by an infection. Poult Sci 2002; 81:649-56. [PMID: 12033414 DOI: 10.1093/ps/81.5.649] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The influence of the MHC on infectious bursal disease virus (IBDV) vaccine response in chickens was investigated in three different chicken lines containing four different MHC haplotypes. Two MHC haplotypes were present in all three lines with one haplotype (B19) shared between the lines. Line 1 further contains the BW1 haplotype isolated from a Red Jungle Fowl. Line 131 further contains the B131 haplotype isolated from a meat-type chicken. Finally, Line 21 further contains the international B21 haplotype. The chickens were vaccinated with live attenuated commercial IBDV vaccine at 3 wk of age, followed by a challenge with virulent IBDV at 6 wk of age. In this study, we found a notable MHC haplotype effect on the specific antibody response against IBDV, as measured by ELISA. The BW1 haplotype was found to have a significantly higher serum antibody titer against IBDV (7,872) than haplotypes B19 (mean 5,243), B21 (5,570), and B131 (5,333) at 8 d postinfection. However, a virus-neutralizing antibody test did not reflect this result. Nevertheless, the MHC haplotype-associated protective immunity was further supported by the bursa of Fabricius (bursa) recovery from the disease, as measured by histological scorings of the bursa. Chickens carrying the BW1 haplotype had a significantly lower bursa lesion score (1.7) than the haplotypes B19 (mean 3.8), B21 (3.6), and B131 (4.3) 8 d postinfection. Furthermore, multiple line effects were found in other variables when comparing Day 6 with Day 8. Body weight, relative weights of the bursa and the spleen, percentage and relative number of MHC II molecules on MHC II-positive lymphocytes, percentage and relative number of CD4 molecules on CD4-positive lymphocytes, and the specific antibody response all differed significantly among lines. Line 1, with Red Jungle Fowl genes, was clearly differentiated from the other two investigated lines. These results suggest an MHC II restricted T-cell dependent secondary antibody response against IBDV.
Collapse
|
25
|
Abstract
The genetics of a bird or flock has a profound impact on its ability to resist disease, because genetics define the maximum achievable performance level. Careful attention should be paid to genetics as an important component of a comprehensive disease management program including high-level biosecurity, sanitation, and appropriate vaccination programs. Some specific genes (e.g., the MHC) are known to play a role in disease resistance, but resistance is generally a polygenic phenomenon. Future research directions will expand knowledge of the impact of genetics on disease resistance by identifying non-MHC genetic control of resistance and by further elucidating mechanisms regulating expression of genes related to immune response.
Collapse
Affiliation(s)
- S J Lamont
- Department of Animal Science, Iowa State University, Ames 50011-3150, USA.
| |
Collapse
|
26
|
Poulsen DJ, Thureen DR, Keeler CL. Research notes: Comparison of disease susceptibility and resistance in three lines of chickens experimentally infected with infectious laryngotracheitis virus. Poult Sci 1998; 77:17-21. [PMID: 9469746 DOI: 10.1093/ps/77.1.17] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The susceptibility of three F1 hybrid lines of chickens to graded doses of infectious laryngotracheitis virus (ILTV) was investigated. The three F1 hybrid lines, each produced from mating two inbred lines, included the SC (B2B2) and TK (B15B21) lines and the 15I5 x 7(1) (B2B15) line. Although at 1 d of age all three lines were susceptible to ILTV, SC birds were significantly less susceptible (10%) than TK (80%) or 15I5 x 7(1) (50%) birds when exposed to 5,000 pfu of virus at 4 wk of age. The ability of each inbred F1 hybrid line to establish a protective immune response to ILTV was also determined. The SC birds required a smaller immunizing dose of virus (500 pfu) to mount a protective immune response to ILTV than the 15I5 x 7(1) line (5,000 pfu). A 5,000 pfu immunizing dose did not elicit a protective immune response in the TK line to a 10(6) pfu challenge dose of ILTV. These results also correlated with the ability to produce ILTV-specific antibodies. This study confirms and expands on observations that lines of chickens differ with respect to their susceptibility and resistance to ILTV.
Collapse
Affiliation(s)
- D J Poulsen
- Delaware Agricultural Experiment Station, Department of Animal and Food Sciences, College of Agricultural Sciences, University of Delaware, Newark 19717-1303, USA
| | | | | |
Collapse
|
27
|
Nestor KE, Saif YM, Zhu J, Noble DO, Patterson RA. The influence of major histocompatibility complex genotypes on resistance to Pasteurella multocida and Newcastle disease virus in turkeys. Poult Sci 1996; 75:29-33. [PMID: 8650107 DOI: 10.3382/ps.0750029] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Sublines homozygous for each of four MHC haplotypes were developed from randombred control populations of turkeys and challenged with Pasteurella multocida (capsular serogroup a, somatic serotype 3, 4) at 6 wk of age or Newcastle disease virus (NDV; Texas GB strain) at 4 wk of age. In addition, individuals from a randombred control line (RBC2) and a subline (F) of RBC2 long-term selected for increased 16-wk BW were included in most of the challenge trials. The duration of the challenge trials was 2 wk for both organisms. Mortality following challenge with P. multocida or NDV was higher in the F line than in its randombred control. The MHC genotypes differed in mortality following exposure to both organisms but the rankings of the genotypes were not the same for P. multocida and NDV. The increased susceptibility of the F line to both organisms could not be explained by known changes in the frequency of the MHC haplotypes.
Collapse
Affiliation(s)
- K E Nestor
- Department of Animal Sciences, Ohio Agricultural Research and Development Center, Ohio State University, Wooster 44691, USA
| | | | | | | | | |
Collapse
|