1
|
MacKenzie EG, Snow NJ, Chaves AR, Reza SZ, Ploughman M. Weak grip strength among persons with multiple sclerosis having minimal disability is not related to agility or integrity of the corticospinal tract. Mult Scler Relat Disord 2024; 88:105741. [PMID: 38936325 DOI: 10.1016/j.msard.2024.105741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/23/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024]
Abstract
INTRODUCTION Mobility impairment is common in multiple sclerosis (MS); however, agility has received less attention. Agility requires strength and neuromuscular coordination to elicit controlled propulsive rapid whole-body movement. Grip strength is a common method to assess whole body force production, but also reflects neuromuscular integrity and global brain health. Impaired agility may be linked to loss of neuromuscular integrity (reflected by grip strength or corticospinal excitability). OBJECTIVES We aimed to determine whether grip strength would be associated with agility and transcranial magnetic stimulation (TMS)-based indices of corticospinal excitability and inhibition in persons with MS having low disability. We hypothesized that low grip strength would predict impaired agility and reflect low corticospinal excitability. METHODS We recruited 34 persons with relapsing MS (27 females; median [range] age 45.5 [21.0-65.0] years) and mild disability (median [range] Expanded Disability Status Scale 2.0 [0-3.0]), as well as a convenience sample of age- and sex-matched apparently healthy controls. Agility was tested by measuring hop length during bipedal hopping on an instrumented walkway. Grip strength was measured using a calibrated dynamometer. Corticospinal excitability and inhibition were examined using TMS-based motor evoked potential (MEP) and corticospinal silent period (CSP) recruitment curves, respectively. RESULTS MS participants had significantly lower grip strength than controls independent of sex. Females with and without MS had weaker grip strength than males. There were no statistically significant sex or group differences in agility. After controlling for sex, weaker grip strength was associated with shorter hop length in controls only (r = 0.645, p < .05). Grip strength did not significantly predict agility in persons with MS, nor was grip strength predicted by corticospinal excitability or inhibition. CONCLUSIONS In persons with MS having low disability, grip strength (normalized to body mass) was reduced despite having intact agility and walking performance. Grip strength was not associated with corticospinal excitability or inhibition, suggesting peripheral neuromuscular function, low physical activity or fitness, or other psychosocial factors may be related to weakness. Low grip strength is a putative indicator of early neuromuscular aging in persons with MS having mild disability and normal mobility.
Collapse
Affiliation(s)
- Evan G MacKenzie
- Faculty of Medicine, Recovery & Performance Laboratory, Memorial University of Newfoundland and Labrador, Room 400, L.A. Miller Center, 100 Forest Road, St. John's, St. John's, NL A1A 1E5, Canada
| | - Nicholas J Snow
- Faculty of Medicine, Recovery & Performance Laboratory, Memorial University of Newfoundland and Labrador, Room 400, L.A. Miller Center, 100 Forest Road, St. John's, St. John's, NL A1A 1E5, Canada
| | - Arthur R Chaves
- Faculty of Health Sciences, Interdisciplinary School of Health Sciences, University of Ottawa, ON, Canada; Neuromodulation Research Clinic, The Royal's Institute of Mental Health Research, ON, Canada; Département de Psychoéducation et de Psychologie, Université du Québec en Outaouais, QC, Canada
| | - Syed Z Reza
- Faculty of Medicine, Recovery & Performance Laboratory, Memorial University of Newfoundland and Labrador, Room 400, L.A. Miller Center, 100 Forest Road, St. John's, St. John's, NL A1A 1E5, Canada
| | - Michelle Ploughman
- Faculty of Medicine, Recovery & Performance Laboratory, Memorial University of Newfoundland and Labrador, Room 400, L.A. Miller Center, 100 Forest Road, St. John's, St. John's, NL A1A 1E5, Canada.
| |
Collapse
|
2
|
Ma K, Goetz SM. A user-friendly input-output curve analysis tool for variable direct responses to brain stimulation. Brain Stimul 2024; 17:134-136. [PMID: 38244772 DOI: 10.1016/j.brs.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/22/2024] Open
Affiliation(s)
- Ke Ma
- Department of Engineering, School of Technology, University of Cambridge, Cambridge, United Kingdom
| | - Stephan M Goetz
- Department of Engineering, School of Technology, University of Cambridge, Cambridge, United Kingdom; Department of Psychiatry and Behavioural Sciences, School of Medicine, Duke University, Durham, NC, United States of America; Department of Electrical and Computer Engineering, School of Engineering, Duke University, Durham, NC, United States of America; Department of Neurosurgery, School of Medicine, Duke University, Durham, NC, United States of America; Duke Institute for Brain Sciences, Duke University, Durham, NC, United States of America.
| |
Collapse
|
3
|
Wattananon P, Thu KW, Maharjan S, Sornkaew K, Wang HK. Cortical excitability and multifidus activation responses to transcranial direct current stimulation in patients with chronic low back pain during remission. Sci Rep 2023; 13:16242. [PMID: 37758911 PMCID: PMC10533487 DOI: 10.1038/s41598-023-43597-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/26/2023] [Indexed: 09/29/2023] Open
Abstract
Evidence indicates that patients with chronic low back pain (CLBP) have lumbar multifidus muscle (LM) activation deficit which might be caused by changes in cortical excitability. Anodal transcranial direct current stimulation (a-tDCS) can be used to restore cortical excitability. This study aimed to (1) determine the immediate effects of a-tDCS on the cortical excitability and LM activation and (2) explore the relationship between cortical excitability and LM activation. Thirteen participants with CLBP during remission and 11 healthy participants were recruited. Cortical excitability (peak-to-peak motor evoked potential amplitude; P2P and cortical silent period; CSP) and LM activation were measured at pre- and post-intervention. We found significant difference (P < 0.05) in P2P between groups. However, no significant differences (P > 0.05) in P2P, CSP and LM activation were found between pre- and post-intervention in CLBP. The CLBP group demonstrated significant correlation (P = 0.05) between P2P and LM activation. Although our finding demonstrates change in P2P in the CLBP group, one-session of a-tDCS cannot induce changes in cortical excitability and LM activation. However, moderate to strong correlation between P2P and LM activation suggests the involvement of cortical level in LM activation deficit. Therefore, non-significant changes could have been due to inadequate dose of a-tDCS.
Collapse
Affiliation(s)
- Peemongkon Wattananon
- Spine Biomechanics Laboratory, Faculty of Physical Therapy, Mahidol University, 999 Phuttamonthon 4 Road, Salaya, 73170, Nakhon Pathom, Thailand.
| | - Khin Win Thu
- Spine Biomechanics Laboratory, Faculty of Physical Therapy, Mahidol University, 999 Phuttamonthon 4 Road, Salaya, 73170, Nakhon Pathom, Thailand
| | - Soniya Maharjan
- Spine Biomechanics Laboratory, Faculty of Physical Therapy, Mahidol University, 999 Phuttamonthon 4 Road, Salaya, 73170, Nakhon Pathom, Thailand
| | - Kanphajee Sornkaew
- Department of Physical Therapy, Faculty of Allied Health Sciences, Naresuan University, 99 Nakhonsawan-Phitsanulok Road, Tumbon Thapho, Phitsanulok, 65000, Thailand
| | - Hsing-Kuo Wang
- Sports Physiotherapy Lab, School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University, No.17, Xuzhou Rd., Zhongzheng District, Taipei City 100, Taiwan
| |
Collapse
|
4
|
Milardovich D, Souza VH, Zubarev I, Tugin S, Nieminen JO, Bigoni C, Hummel FC, Korhonen JT, Aydogan DB, Lioumis P, Taherinejad N, Grasser T, Ilmoniemi RJ. DELMEP: a deep learning algorithm for automated annotation of motor evoked potential latencies. Sci Rep 2023; 13:8225. [PMID: 37217502 DOI: 10.1038/s41598-023-34801-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 05/08/2023] [Indexed: 05/24/2023] Open
Abstract
The analysis of motor evoked potentials (MEPs) generated by transcranial magnetic stimulation (TMS) is crucial in research and clinical medical practice. MEPs are characterized by their latency and the treatment of a single patient may require the characterization of thousands of MEPs. Given the difficulty of developing reliable and accurate algorithms, currently the assessment of MEPs is performed with visual inspection and manual annotation by a medical expert; making it a time-consuming, inaccurate, and error-prone process. In this study, we developed DELMEP, a deep learning-based algorithm to automate the estimation of MEP latency. Our algorithm resulted in a mean absolute error of about 0.5 ms and an accuracy that was practically independent of the MEP amplitude. The low computational cost of the DELMEP algorithm allows employing it in on-the-fly characterization of MEPs for brain-state-dependent and closed-loop brain stimulation protocols. Moreover, its learning ability makes it a particularly promising option for artificial-intelligence-based personalized clinical applications.
Collapse
Affiliation(s)
- Diego Milardovich
- Institute for Microelectronics, Technische Universität Wien, Gußhausstraße 27-29/E360, 1040, Vienna, Austria.
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland.
- BioMag Laboratory, HUS Medical Imaging Center, University of Helsinki, Aalto University and Helsinki University Hospital, Helsinki, Finland.
| | - Victor H Souza
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
- BioMag Laboratory, HUS Medical Imaging Center, University of Helsinki, Aalto University and Helsinki University Hospital, Helsinki, Finland
- School of Physiotherapy, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Ivan Zubarev
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| | - Sergei Tugin
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
- BioMag Laboratory, HUS Medical Imaging Center, University of Helsinki, Aalto University and Helsinki University Hospital, Helsinki, Finland
- Department of Neurology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Jaakko O Nieminen
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
- BioMag Laboratory, HUS Medical Imaging Center, University of Helsinki, Aalto University and Helsinki University Hospital, Helsinki, Finland
| | - Claudia Bigoni
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX) and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL), 1202, Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX) and Brain Mind Institute (BMI), Ecole Polytechnique Fédérale de Lausanne (EPFL Valais), Clinique Romande de Réadaptation, 1951, Sion, Switzerland
| | - Friedhelm C Hummel
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX) and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL), 1202, Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX) and Brain Mind Institute (BMI), Ecole Polytechnique Fédérale de Lausanne (EPFL Valais), Clinique Romande de Réadaptation, 1951, Sion, Switzerland
- Clinical Neuroscience, Geneva University Hospital (HUG), 1205, Geneva, Switzerland
| | - Juuso T Korhonen
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| | - Dogu B Aydogan
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Pantelis Lioumis
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
- BioMag Laboratory, HUS Medical Imaging Center, University of Helsinki, Aalto University and Helsinki University Hospital, Helsinki, Finland
| | - Nima Taherinejad
- Institute for Computer Technology, Technische Universität Wien, Vienna, Austria
- Institute of Computer Engineering, Heidelberg University, Heidelberg, Germany
| | - Tibor Grasser
- Institute for Microelectronics, Technische Universität Wien, Gußhausstraße 27-29/E360, 1040, Vienna, Austria
| | - Risto J Ilmoniemi
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
- BioMag Laboratory, HUS Medical Imaging Center, University of Helsinki, Aalto University and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
5
|
Demjan M, Säisänen L, Reijonen J, Rissanen S, Määttä S, Julkunen P. Near-threshold recruitment characteristics of motor evoked potentials in transcranial magnetic stimulation. Brain Res 2023; 1805:148284. [PMID: 36796474 DOI: 10.1016/j.brainres.2023.148284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/13/2023] [Accepted: 02/12/2023] [Indexed: 02/16/2023]
Abstract
Transcranial magnetic stimulation (TMS) can induce motor evoked potentials (MEPs). In TMS applications, near-threshold stimulation intensities (SIs) are often used for characterizing corticospinal excitability using MEPs. We aimed to characterize the individual near-threshold recruitment of MEPs and to test the assumptions related to selection of the suprathreshold SI. We utilized MEP data from a right-hand muscle induced at variable SIs. The single-pulse TMS (spTMS) data from previous studies (27 healthy volunteers), as well as data from new measurements (10 healthy volunteers) that included also MEPs modulated by paired-pulse TMS (ppTMS), were included. The probability of MEP (pMEP) was represented with individually fitted cumulative distribution function (CDF) with two parameters: resting motor threshold (rMT) and spread relative to rMT. MEPs were recorded with 110% and 120% of rMT as well as with Mills-Nithi upper threshold (UT). The individual near-threshold characteristics varied with CDF parameters: the rMT and the relative spread (median: 0.052). The rMT was lower with ppTMS than with spTMS (p < 0.001), while the relative spread remained similar (p = 0.812). At suprathreshold SIs, the probability of MEP was similar between UT and 110% of rMT (pMEP > 0.88), and higher for 120% of rMT (pMEP > 0.98). The individual near-threshold characteristics determine how probably MEPs are produced at common suprathreshold SIs. At the population level, the used SIs UT and 110% of rMT produced MEPs at similar probability. The individual variability in the relative spread parameter was large; therefore, the method of determining the proper suprathreshold SI for TMS applications is of crucial importance.
Collapse
Affiliation(s)
- Michal Demjan
- Department of Clinical Neurophysiology, Kuopio University Hospital, POB 100, 70200 KYS Kuopio, Finland; Department of Technical Physics, University of Eastern Finland, POB 1627, 70210 Kuopio, Finland; Bittium Biosignals Oy, Pioneerinkatu 6, 70800 Kuopio, Finland
| | - Laura Säisänen
- Department of Technical Physics, University of Eastern Finland, POB 1627, 70210 Kuopio, Finland
| | - Jusa Reijonen
- Department of Clinical Neurophysiology, Kuopio University Hospital, POB 100, 70200 KYS Kuopio, Finland; Department of Technical Physics, University of Eastern Finland, POB 1627, 70210 Kuopio, Finland
| | - Saara Rissanen
- Department of Technical Physics, University of Eastern Finland, POB 1627, 70210 Kuopio, Finland
| | - Sara Määttä
- Department of Clinical Neurophysiology, Kuopio University Hospital, POB 100, 70200 KYS Kuopio, Finland
| | - Petro Julkunen
- Department of Clinical Neurophysiology, Kuopio University Hospital, POB 100, 70200 KYS Kuopio, Finland; Department of Technical Physics, University of Eastern Finland, POB 1627, 70210 Kuopio, Finland.
| |
Collapse
|
6
|
Covariation of the amplitude and latency of motor evoked potentials elicited by transcranial magnetic stimulation in a resting hand muscle. Exp Brain Res 2023; 241:927-936. [PMID: 36811686 PMCID: PMC9985579 DOI: 10.1007/s00221-023-06575-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 02/13/2023] [Indexed: 02/24/2023]
Abstract
Transcranial magnetic stimulation (TMS) is a non-invasive brain stimulation technique used to study human neurophysiology. A single TMS pulse delivered to the primary motor cortex can elicit a motor evoked potential (MEP) in a target muscle. MEP amplitude is a measure of corticospinal excitability and MEP latency is a measure of the time taken for intracortical processing, corticofugal conduction, spinal processing, and neuromuscular transmission. Although MEP amplitude is known to vary across trials with constant stimulus intensity, little is known about MEP latency variation. To investigate MEP amplitude and latency variation at the individual level, we scored single-pulse MEP amplitude and latency in a resting hand muscle from two datasets. MEP latency varied from trial to trial in individual participants with a median range of 3.9 ms. Shorter MEP latencies were associated with larger MEP amplitudes for most individuals (median r = - 0.47), showing that latency and amplitude are jointly determined by the excitability of the corticospinal system when TMS is delivered. TMS delivered during heightened excitability could discharge a greater number of cortico-cortical and corticospinal cells, increasing the amplitude and, by recurrent activation of corticospinal cells, the number of descending indirect waves. An increase in the amplitude and number of indirect waves would progressively recruit larger spinal motor neurons with large-diameter fast-conducting fibers, which would shorten MEP onset latency and increase MEP amplitude. In addition to MEP amplitude variability, understanding MEP latency variability is important given that these parameters are used to help characterize pathophysiology of movement disorders.
Collapse
|
7
|
Ozdemir RA, Kirkman S, Magnuson JR, Fried PJ, Pascual-Leone A, Shafi MM. Phase matters when there is power: Phasic modulation of corticospinal excitability occurs at high amplitude sensorimotor mu-oscillations. NEUROIMAGE. REPORTS 2022; 2:100132. [PMID: 36570046 PMCID: PMC9784422 DOI: 10.1016/j.ynirp.2022.100132] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Prior studies have suggested that oscillatory activity in cortical networks can modulate stimulus-evoked responses through time-varying fluctuations in neural excitation-inhibition dynamics. Studies combining transcranial magnetic stimulation (TMS) with electromyography (EMG) and electroencephalography (EEG) can provide direct measurements to examine how instantaneous fluctuations in cortical oscillations contribute to variability in TMS-induced corticospinal responses. However, the results of these studies have been conflicting, as some reports showed consistent phase effects of sensorimotor mu-rhythms with increased excitability at the negative mu peaks, while others failed to replicate these findings or reported unspecific mu-phase effects across subjects. Given the lack of consistent results, we systematically examined the modulatory effects of instantaneous and pre-stimulus sensorimotor mu-rhythms on corticospinal responses with offline EEG-based motor evoked potential (MEP) classification analyses across five identical visits. Instantaneous sensorimotor mu-phase or pre-stimulus mu-power alone did not significantly modulate MEP responses. Instantaneous mu-power analyses showed weak effects with larger MEPs during high-power trials at the overall group level analyses, but this trend was not reproducible across visits. However, TMS delivered at the negative peak of high magnitude mu-oscillations generated the largest MEPs across all visits, with significant differences compared to other peak-phase combinations. High power effects on MEPs were only observed at the trough phase of ongoing mu oscillations originating from the stimulated region, indicating site and phase specificity, respectively. More importantly, such phase-dependent power effects on corticospinal excitability were reproducible across multiple visits. We provide further evidence that fluctuations in corticospinal excitability indexed by MEP amplitudes are partially driven by dynamic interactions between the magnitude and the phase of ongoing sensorimotor mu oscillations at the time of TMS, and suggest promising insights for (re)designing neuromodulatory TMS protocols targeted to specific cortical oscillatory states.
Collapse
Affiliation(s)
- Recep A. Ozdemir
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA,Department of Neurology, Harvard Medical School, Boston, MA, USA,Corresponding author. Mouhsin Shafi Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Medical Center, Harvard Medical School, Boston, MA, USA. (R.A. Ozdemir)
| | - Sofia Kirkman
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Justine R. Magnuson
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA,Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Peter J. Fried
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA,Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Alvaro Pascual-Leone
- Department of Neurology, Harvard Medical School, Boston, MA, USA,Hinda and Arthur Marcus Institute for Aging Research and Deanne and Sidney Wolk Center for Memory Health, Hebrew Senior Life, Boston, MA, USA,Guttmann Brain Health Institute, Institut Guttmann de Neurorehabilitació, Universitat Autonoma de Barcelona, Badalona, Spain
| | - Mouhsin M. Shafi
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA,Department of Neurology, Harvard Medical School, Boston, MA, USA,Corresponding author. Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA. (M.M. Shafi)
| |
Collapse
|
8
|
Caulfield KA, Fleischmann HH, Cox CE, Wolf JP, George MS, McTeague LM. Neuronavigation maximizes accuracy and precision in TMS positioning: Evidence from 11,230 distance, angle, and electric field modeling measurements. Brain Stimul 2022; 15:1192-1205. [PMID: 36031059 PMCID: PMC10026380 DOI: 10.1016/j.brs.2022.08.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Researchers and clinicians have traditionally relied on elastic caps with markings to reposition the transcranial magnetic stimulation (TMS) coil between trains and sessions. Newer neuronavigation technology co-registers the patient's head and structural magnetic resonance imaging (MRI) scan, providing the researcher with real-time feedback about how to adjust the coil to be on-target. However, there has been no head to head comparison of accuracy and precision across treatment sessions. OBJECTIVE /Hypothesis: In this two-part study, we compared elastic cap and neuronavigation targeting methodologies on distance, angle, and electric field (E-field) magnitude values. METHODS In 42 participants receiving up to 50 total accelerated rTMS sessions in 5 days, we compared cap and neuronavigation targeting approaches in 3408 distance and 6816 angle measurements. In Experiment 1, TMS administrators saved an on-target neuronavigation location at Beam F3, which served as the landmark for all other measurements. Next, the operators placed the TMS coil based on cap markings or neuronavigation software to measure the distance and angle differences from the on-target sample. In Experiment 2, we saved each XYZ coordinate of the TMS coil from cap and neuronavigation targeting in 12 participants to compare the E-field magnitude differences at the cortical prefrontal target in 1106 cap and neuronavigation models. RESULTS Cap targeting was significantly off-target for distance, placing the coil an average of 10.66 mm off-target (Standard error of the mean; SEM = 0.19 mm) compared to 0.3 mm (SEM = 0.03 mm) for neuronavigation (p < 0.0001). Cap targeting also significantly deviated for angles off-target, averaging 7.79 roll/pitch degrees (SEM = 1.07°) off-target and 5.99 yaw degrees (SEM = 0.12°) off-target; in comparison, neuronavigation targeting positioned the coil 0.34 roll/pitch degrees (SEM = 0.01°) and 0.22 yaw (SEM = 0.004°) off-target (both p < 0.0001). Further analyses revealed that there were significant inter-operator differences on distance and angle positioning for F3 (all p < 0.05), but not neuronavigation. Lastly, cap targeting resulted in significantly lower E-fields at the intended prefrontal cortical target, with equivalent E-fields as 110.7% motor threshold (MT; range = 58.3-127.4%) stimulation vs. 119.9% MT (range = 115-123.3%) from neuronavigated targeting with 120% MT stimulation applied (p < 0.001). CONCLUSIONS Cap-based targeting is an inherent source of target variability compared to neuronavigation. Additionally, cap-based coil placement is more prone to differences across operators. Off-target coil placement secondary to cap-based measurements results in significantly lower amounts of stimulation reaching the cortical target, with some individuals receiving only 48.6% of the intended on-target E-field. Neuronavigation technology enables more precise and accurate TMS positioning, resulting in the intended stimulation intensities at the targeted cortical level.
Collapse
Affiliation(s)
- Kevin A Caulfield
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA.
| | - Holly H Fleischmann
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA; Department of Psychology, University of Georgia, Athens, GA, USA
| | - Claire E Cox
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA
| | - Julia P Wolf
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA
| | - Mark S George
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA; Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| | - Lisa M McTeague
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA; Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| |
Collapse
|
9
|
Gulde P, Cetin M, Hermsdörfer J, Rieckmann P. Changes in thumb tapping rates and central motor conduction times are associated in persons with multiple sclerosis. Neurol Sci 2022; 43:4945-4951. [PMID: 35378656 PMCID: PMC9349079 DOI: 10.1007/s10072-022-05991-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/26/2022] [Indexed: 11/07/2022]
Abstract
Introduction In persons with multiple sclerosis, nerve conductivity can be reduced. The assessment is generally performed via motor evoked potentials (MEP). So far, a strongly associated motor performance surrogate for changes in the extracted central motor conduction time (CMCT) is missing. Methods CMCT and performance in the nine-hole peg test and maximum thumb tapping frequencies over 10 s of 12 persons with multiple sclerosis were measured prior to and after training over 5 consecutive days. Each training consisted of 10,000 thumb taps at maximum effort with the dominant upper limb. Results The dominant upper limb improved in maximum tapping frequency over 10 s (d = 0.79) and 10,000 taps (d = 1.04), the nine-hole peg test (d = 0.60), and CMCT (d = 0.52). The nondominant upper limb only improved in the nine-hole peg test (d = 0.38). Models of multiple linear regression predicted 0.78 (model 1, tapping performance as factors) and 0.87 (model 2, patient baseline characteristics as factors) of the variance in CMCT changes. Discussion Changes in CMCT were well predictable, although the assessment of those surrogates is either not economic (model 1) or rather describing a potential of change (model 2). However, we were able to show moderate changes in CMCT within 5 days.
Collapse
|
10
|
Goetz SM, Howell B, Wang B, Li Z, Sommer MA, Peterchev AV, Grill WM. Isolating two sources of variability of subcortical stimulation to quantify fluctuations of corticospinal tract excitability. Clin Neurophysiol 2022; 138:134-142. [PMID: 35397278 PMCID: PMC9271909 DOI: 10.1016/j.clinph.2022.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/17/2022] [Accepted: 02/01/2022] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Investigate the variability previously found with cortical stimulation and handheld transcranial magnetic stimulation (TMS) coils, criticized for its high potential of coil position fluctuations, bypassing the cortex using deep brain electrical stimulation (DBS) of the corticospinal tract with fixed electrodes where both latent variations of the coil position of TMS are eliminated and cortical excitation fluctuations should be absent. METHODS Ten input-output curves were recorded from five anesthetized cats with implanted DBS electrodes targeting the corticospinal tract. Goodness of fit of regressions with a conventional single variability source as well as a dual variability source model was quantified using a Schwarz Bayesian Information approach to avoid overfitting. RESULTS Motor evoked potentials (MEPs) through DBS of the corticospinal tract revealed short-term fluctuations in excitability of the targeted neuron pathway reflecting endogenous input-side variability at similar magnitude as TMS despite bypassing cortical networks. CONCLUSION Input-side variability, i.e., variability resulting in changing MEP amplitudes as if the stimulation strength was modulated, also emerges in electrical stimulation at a similar degree and is not primarily a result of varying stimulation, such as minor coil movements in TMS. More importantly, this variability component is present, although the cortex is bypassed. Thus, it may be of spinal origin, which can include cortical input from spinal projections. Further, the nonlinearity of the compound variability entails complex heteroscedastic non-Gaussian distributions and typically does not allow simple linear averages in statistical analysis of MEPs. As the average is dominated by outliers, it risks bias. With appropriate regression, the net effects of excitatory and inhibitory inputs to the targeted neuron pathways become noninvasively observable and quantifiable. SIGNIFICANCE The neural responses evoked by artificial stimulation in the cerebral cortex are variable. For example, MEPs in response to repeated presentations of the same stimulus can vary from no response to saturation across trials. Several sources of such variability have been suggested, and most of them may be technical in nature, but localization is missing.
Collapse
Affiliation(s)
- Stefan M Goetz
- Department of Engineering, University of Cambridge, Cambridge, CB2 1PZ, UK; Department of Psychiatry & Behavioral Sciences, Duke University, Durham, NC 27710, USA; Department of Neurosurgery, Duke University, Durham, NC 27710, USA; Department of Electrical & Computer Engineering, Duke University, Durham, NC 27708, USA; Duke Institute of Brain Sciences, Duke University, Durham, NC 27710, USA.
| | - Bryan Howell
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Boshuo Wang
- Department of Psychiatry & Behavioral Sciences, Duke University, Durham, NC 27710, USA
| | - Zhongxi Li
- Department of Electrical & Computer Engineering, Duke University, Durham, NC 27708, USA
| | - Marc A Sommer
- Duke Institute of Brain Sciences, Duke University, Durham, NC 27710, USA; Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Department of Neurobiology, Duke University, Durham, NC 27710, USA
| | - Angel V Peterchev
- Department of Psychiatry & Behavioral Sciences, Duke University, Durham, NC 27710, USA; Department of Neurosurgery, Duke University, Durham, NC 27710, USA; Department of Electrical & Computer Engineering, Duke University, Durham, NC 27708, USA; Duke Institute of Brain Sciences, Duke University, Durham, NC 27710, USA; Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Warren M Grill
- Department of Neurosurgery, Duke University, Durham, NC 27710, USA; Department of Electrical & Computer Engineering, Duke University, Durham, NC 27708, USA; Duke Institute of Brain Sciences, Duke University, Durham, NC 27710, USA; Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Department of Neurobiology, Duke University, Durham, NC 27710, USA
| |
Collapse
|
11
|
Machetanz K, Wiesinger L, Leao MT, Liebsch M, Trakolis L, Wang S, Gharabaghi A, Tatagiba M, Naros G. Interhemispheric differences in time-frequency representation of motor evoked potentials in brain tumor patients. Clin Neurophysiol 2021; 132:2780-2788. [PMID: 34583121 DOI: 10.1016/j.clinph.2021.07.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/10/2021] [Accepted: 07/27/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Conventional time-series parameters are unreliable descriptors of motor-evoked potentials (MEPs) in brain tumor patients. Frequency domain analysis is suggested to provide additional information about the status of the cortico-spinal motor system. Aim of the present study was to describe the time-frequency representation of MEPs and its relation to the motor performance. METHODS This study enrolled 17 consecutive brain tumor patients with impaired dexterity. After brain mapping of the affected (AH) and non-affected (NAH) hemisphere, TMS was applied to the hotspots of the abductor pollicis brevis muscles (APB). Using a Morlet wavelet approach, event-related spectral perturbation (ERSP) and inter-trial coherence (ITC) of the MEPs were calculated and compared to the Grooved Pegboard Test (GPT). Additionally, inter- and intra-subject reliability was assessed by the intraclass correlation coefficient (ICC). RESULTS MEPs were projecting to a frequency band between 30 and 400 Hz with a local maximum between 100 and 150 Hz. There was a significant ERSP and ITC reduction of the AH in comparison to the NAH. In contrast, no interhemispheric differences were depicted in the conventional time-series analysis. ERSP and ITC values correlated significantly with GPT results (r = 0.35 and r = 0.50). Time-frequency MEP description had good inter-and intra-subject reliability (ICC = 0.63). CONCLUSIONS Brain tumors affect corticospinal transmission resulting in a reduction of temporal and spectral MEP synchronization correlating with the dexterity performance. SIGNIFICANCE Time-frequency representation of MEPs provide additional information beyond conventional time-domain features.
Collapse
Affiliation(s)
- Kathrin Machetanz
- Neurosurgical Clinic, Department of Neurosurgery and Neurotechnology, Eberhard Karls University, Tuebingen, Germany; Institute for Neuromodulation and Neurotechnology, Department of Neurosurgery and Neurotechnology, Eberhard Karls University Tuebingen, Germany
| | - Lasse Wiesinger
- Neurosurgical Clinic, Department of Neurosurgery and Neurotechnology, Eberhard Karls University, Tuebingen, Germany
| | - Maria Teresa Leao
- Neurosurgical Clinic, Department of Neurosurgery and Neurotechnology, Eberhard Karls University, Tuebingen, Germany
| | - Marina Liebsch
- Neurosurgical Clinic, Department of Neurosurgery and Neurotechnology, Eberhard Karls University, Tuebingen, Germany
| | - Leonidas Trakolis
- Neurosurgical Clinic, Department of Neurosurgery and Neurotechnology, Eberhard Karls University, Tuebingen, Germany
| | - Sophie Wang
- Neurosurgical Clinic, Department of Neurosurgery and Neurotechnology, Eberhard Karls University, Tuebingen, Germany
| | - Alireza Gharabaghi
- Institute for Neuromodulation and Neurotechnology, Department of Neurosurgery and Neurotechnology, Eberhard Karls University Tuebingen, Germany
| | - Marcos Tatagiba
- Neurosurgical Clinic, Department of Neurosurgery and Neurotechnology, Eberhard Karls University, Tuebingen, Germany
| | - Georgios Naros
- Neurosurgical Clinic, Department of Neurosurgery and Neurotechnology, Eberhard Karls University, Tuebingen, Germany; Institute for Neuromodulation and Neurotechnology, Department of Neurosurgery and Neurotechnology, Eberhard Karls University Tuebingen, Germany.
| |
Collapse
|
12
|
Nakamura J, Okada Y, Shiozaki T, Tanaka H, Ueta K, Ikuno K, Morioka S, Shomoto K. Reliability and laterality of the soleus H-reflex following galvanic vestibular stimulation in healthy individuals. Neurosci Lett 2021; 755:135910. [PMID: 33910060 DOI: 10.1016/j.neulet.2021.135910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 04/08/2021] [Accepted: 04/16/2021] [Indexed: 11/17/2022]
Abstract
The vestibulospinal tract (VST) plays an important role in the control of the ipsilateral antigravity muscles, and the balance of left and right VST excitability is important in human postural control. A method for measuring VST excitability is the application of galvanic vestibular stimulation (GVS) before tibial nerve stimulation that evokes the soleus H-reflex; the change rate of the H-reflex amplitude is then evaluated. Assessments of VST excitability and the left and right balance could be useful when determining the pathology for interventions in postural control impairments. However, the reliability and laterality of this assessment have not been clarified, nor has its relationship to postural control. We investigated the reliability, laterality and standing postural control in relation to the degree of facilitation of the H-reflex following GVS in 15 healthy adults. The assessments were performed in two sessions, one each for the left- and right-sides, in random order. The inter-session reliability of the short-interval assessments of an increase in the H-reflex following GVS on both sides were sufficient. The degree of H-reflex facilitation by GVS showed no significant difference between the left- and right-sides in any session. There was a moderate positive correlation between the mediolateral position of the center of pressure in the eyes-closed standing on foam condition and the left/right ratio of the degree of increased H-reflex in the first-session. We concluded that this method for evaluating the increase in the soleus H-reflex following GVS has high inter-session reliability in the short-interval that did not differ between sides.
Collapse
Affiliation(s)
- Junji Nakamura
- Department of Rehabilitation Medicine, Nishiyamato Rehabilitation Hospital, Nara, Japan; Graduate School of Health Sciences, Kio University, Nara, Japan.
| | - Yohei Okada
- Graduate School of Health Sciences, Kio University, Nara, Japan; Neurorehabilitation Research Center of Kio University, Nara, Japan
| | - Tomoyuki Shiozaki
- Department of Otolaryngology-Head and Neck Surgery, Nara Medical University, Nara, Japan
| | - Hiroaki Tanaka
- Department of Rehabilitation Medicine, Baba Memorial Hospital, Osaka, Japan
| | - Kozo Ueta
- Neurorehabilitation Research Center of Kio University, Nara, Japan; Department of Rehabilitation Medicine, Hoshigaoka Medical Center, Osaka, Japan
| | - Koki Ikuno
- Department of Rehabilitation Medicine, Nishiyamato Rehabilitation Hospital, Nara, Japan; Graduate School of Health Sciences, Kio University, Nara, Japan
| | - Shu Morioka
- Graduate School of Health Sciences, Kio University, Nara, Japan; Neurorehabilitation Research Center of Kio University, Nara, Japan
| | - Koji Shomoto
- Graduate School of Health Sciences, Kio University, Nara, Japan
| |
Collapse
|
13
|
Garcia MAC, Nogueira-Campos AA, Moraes VH, Souza VH. Can Corticospinal Excitability Shed Light Into the Effects of Handedness on Motor Performance? FRONTIERS IN NEUROERGONOMICS 2021; 2:651501. [PMID: 38235226 PMCID: PMC10790861 DOI: 10.3389/fnrgo.2021.651501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/01/2021] [Indexed: 01/19/2024]
Affiliation(s)
- Marco Antonio Cavalcanti Garcia
- Programa de Pós-Graduação em Ciências da Reabilitação e Desempenho Físico-Funcional, Faculdade de Fisioterapia, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
- Laboratório de Neurofisiologia Cognitiva (LabNeuro), Departamento de Fisiologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
- Grupo de Estudos em Neuro Biomecânica, Faculdade de Fisioterapia, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
- Núcleo de Pesquisas em Neurociências e Reabilitação Motora, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Anaelli Aparecida Nogueira-Campos
- Laboratório de Neurofisiologia Cognitiva (LabNeuro), Departamento de Fisiologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
- Grupo de Estudos em Neuro Biomecânica, Faculdade de Fisioterapia, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Victor Hugo Moraes
- Núcleo de Pesquisas em Neurociências e Reabilitação Motora, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Victor Hugo Souza
- Grupo de Estudos em Neuro Biomecânica, Faculdade de Fisioterapia, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| |
Collapse
|
14
|
Transcranial Random Noise Stimulation Acutely Lowers the Response Threshold of Human Motor Circuits. J Neurosci 2021; 41:3842-3853. [PMID: 33737456 DOI: 10.1523/jneurosci.2961-20.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/23/2021] [Accepted: 03/07/2021] [Indexed: 01/16/2023] Open
Abstract
Transcranial random noise stimulation (tRNS) over cortical areas has been shown to acutely improve performance in sensory detection tasks. One explanation for this behavioral effect is stochastic resonance (SR), a mechanism that explains how signal processing in nonlinear systems can benefit from added noise. While acute noise benefits of electrical RNS have been demonstrated at the behavioral level as well as in in vitro preparations of neural tissue, it is currently largely unknown whether similar effects can be shown at the neural population level using neurophysiological readouts of human cortex. Here, we hypothesized that acute tRNS will increase the responsiveness of primary motor cortex (M1) when probed with transcranial magnetic stimulation (TMS). Neural responsiveness was operationalized via the well-known concept of the resting motor threshold (RMT). We showed that tRNS acutely decreases RMT. This effect was small, but it was consistently replicated across four experiments including different cohorts (total N = 81, 46 females, 35 males), two tRNS electrode montages, and different control conditions. Our experiments provide critical neurophysiological evidence that tRNS can acutely generate noise benefits by enhancing the neural population response of human M1.SIGNIFICANCE STATEMENT A hallmark feature of stochastic resonance (SR) is that signal processing can benefit from added noise. This has mainly been demonstrated at the single-cell level in vitro where the neural response to weak input signals can be enhanced by simultaneously applying random noise. Our finding that transcranial random noise stimulation (tRNS) acutely increases the excitability of corticomotor circuits extends the principle of noise benefits to the neural population level in human cortex. Our finding is in line with the notion that tRNS might affect cortical processing via the SR phenomenon. It suggests that enhancing the response of cortical populations to an external stimulus might be one neurophysiological mechanism mediating performance improvements when tRNS is applied to sensory cortex during perception tasks.
Collapse
|
15
|
Examining the Relationship Between Neuroplasticity and Learned Helplessness After ACLR: Early Versus Late Recovery. J Sport Rehabil 2021; 30:70-77. [DOI: 10.1123/jsr.2019-0379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 12/12/2019] [Accepted: 01/02/2020] [Indexed: 11/18/2022]
Abstract
Context: Altered neural signaling is known to have a direct impact on psychological wellness. Therefore, disruptions in neural signaling after anterior cruciate ligament reconstruction may influence psychological dysfunction, in some cases manifesting as learned helplessness. Helplessness is a psychological paradigm that presents as altered neuromuscular control, reduced motivation, and psychological deficits. Objectives: The authors sought to evaluate the relationship between helplessness, neural activity, and quadriceps function at different time points after anterior cruciate ligament reconstruction. Evidence Acquisition: Twenty-nine individuals with unilateral anterior cruciate ligament reconstruction were categorized into early group (<2 y, age: 19.13 [2.18] y; height: 1.77 [0.11] m; mass: 76.903 [11.87] kg) or late group (>2 y, age: 22 [23] y; height: 1.67 [0.07] m; mass: 65.66 [11.33] kg). Quadriceps function (activation and strength), spinal-reflexive and corticospinal excitability (active motor thresholds and motor evoked potentials), and helplessness were obtained. A principal component analysis was performed by group (early and late) to identify which factors of helplessness were most associated with neural activity and quadriceps function. Pearson product moment correlation analyses were performed by group to determine associations between individual components and main outcomes. Evidence Synthesis: In the early group, cognitive readiness was associated with quadriceps strength of the injured limb (r2 = .513, P = .004), and self-awareness/management was associated with motor threshold of the injured limb (r2 = .238, P = .05). In the late group, intrinsic helplessness was associated with motor output of injured limb (r2 = .653, P = .01). Conclusion: Helplessness is made up of several attributional constructs, which are altered at different phases of recovery. Helplessness constructs interact differently with neural activity and quadriceps function across time. These findings are preliminary and do not establish a causal link between neural alterations and learned helplessness. Future studies should serially evaluate both changes in neural activity and learned helplessness attributes throughout recovery.
Collapse
|
16
|
Machine learning analysis of motor evoked potential time series to predict disability progression in multiple sclerosis. BMC Neurol 2020; 20:105. [PMID: 32199461 PMCID: PMC7085864 DOI: 10.1186/s12883-020-01672-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 03/02/2020] [Indexed: 11/25/2022] Open
Abstract
Background Evoked potentials (EPs) are a measure of the conductivity of the central nervous system. They are used to monitor disease progression of multiple sclerosis patients. Previous studies only extracted a few variables from the EPs, which are often further condensed into a single variable: the EP score. We perform a machine learning analysis of motor EP that uses the whole time series, instead of a few variables, to predict disability progression after two years. Obtaining realistic performance estimates of this task has been difficult because of small data set sizes. We recently extracted a dataset of EPs from the Rehabiliation & MS Center in Overpelt, Belgium. Our data set is large enough to obtain, for the first time, a performance estimate on an independent test set containing different patients. Methods We extracted a large number of time series features from the motor EPs with the highly comparative time series analysis software package. Mutual information with the target and the Boruta method are used to find features which contain information not included in the features studied in the literature. We use random forests (RF) and logistic regression (LR) classifiers to predict disability progression after two years. Statistical significance of the performance increase when adding extra features is checked. Results Including extra time series features in motor EPs leads to a statistically significant improvement compared to using only the known features, although the effect is limited in magnitude (ΔAUC = 0.02 for RF and ΔAUC = 0.05 for LR). RF with extra time series features obtains the best performance (AUC = 0.75±0.07 (mean and standard deviation)), which is good considering the limited number of biomarkers in the model. RF (a nonlinear classifier) outperforms LR (a linear classifier). Conclusions Using machine learning methods on EPs shows promising predictive performance. Using additional EP time series features beyond those already in use leads to a modest increase in performance. Larger datasets, preferably multi-center, are needed for further research. Given a large enough dataset, these models may be used to support clinicians in their decision making process regarding future treatment.
Collapse
|
17
|
Pisa M, Chieffo R, Giordano A, Gelibter S, Comola M, Comi G, Leocani L. Upper limb motor evoked potentials as outcome measure in progressive multiple sclerosis. Clin Neurophysiol 2020; 131:401-405. [DOI: 10.1016/j.clinph.2019.11.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 10/29/2019] [Accepted: 11/11/2019] [Indexed: 10/25/2022]
|
18
|
Lepley AS, Ly MT, Grooms DR, Kinsella-Shaw JM, Lepley LK. Corticospinal tract structure and excitability in patients with anterior cruciate ligament reconstruction: A DTI and TMS study. NEUROIMAGE-CLINICAL 2019; 25:102157. [PMID: 31901791 PMCID: PMC6948362 DOI: 10.1016/j.nicl.2019.102157] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/03/2019] [Accepted: 12/26/2019] [Indexed: 01/23/2023]
Abstract
BACKGROUND Underlying neural factors contribute to poor outcomes following anterior cruciate ligament reconstruction (ACLR). Neurophysiological adaptations have been identified in corticospinal tract excitability, however limited evidence exists on neurostructural changes that may influence motor recovery in ACLR patients. OBJECTIVE To 1) quantify hemispheric differences in structural properties of the corticospinal tract in patients with a history of ACLR, and 2) assess the relationship between excitability and corticospinal tract structure. METHODS Ten participants with ACLR (age: 22.6 ± 1.9 yrs; height: 166.3 ± 7.5 cm; mass: 65.4 ± 12.6 kg, months from surgery: 70.0 ± 23.6) volunteered for this cross-sectional study. Corticospinal tract structure (volume; fractional anisotropy [FA]; axial diffusivity [AD]; radial diffusivity [RD]; mean diffusivity [MD]) was assessed using diffusion tensor imaging, and excitability was assessed using transcranial magnetic stimulation (motor evoked potentials normalized to maximal muscle response [MEP]) for each hemisphere. Hemispheric differences were evaluated using paired samples t-tests. Correlational analyses were conducted on structural and excitability outcomes. RESULTS The hemisphere of the ACLR injured limb (i.e. hemisphere contralateral to the ACLR injured limb) demonstrated lower volume, lower FA, higher MD, and smaller MEPs compared to the hemisphere of the non-injured limb, indicating disrupted white matter structure and a reduction in excitability of the corticospinal tract. Greater corticospinal tract excitability was associated with larger corticospinal tract volume. CONCLUSIONS ACLR patients demonstrated asymmetry in structural properties of the corticospinal tract that may influence the recovery of motor function following surgical reconstruction. More research is warranted to establish the influence of neurostructural measures on patient outcomes and response to treatment in ACLR populations.
Collapse
Affiliation(s)
- Adam S Lepley
- School of Kinesiology, University of Michigan, Ann Arbor, MI 48109, United States; Brain Imaging Research Center, University of Connecticut, Storrs, CT, United States.
| | - Monica T Ly
- Brain Imaging Research Center, University of Connecticut, Storrs, CT, United States; Department of Psychological Sciences, University of Connecticut, Storrs, CT, United States
| | - Dustin R Grooms
- Ohio Musculoskeletal and Neurological Institute & Division of Athletic Training, School of Applied Health Sciences and Wellness, College of Health Sciences and Professions, Ohio University, Athens, OH, United States
| | | | - Lindsey K Lepley
- School of Kinesiology, University of Michigan, Ann Arbor, MI 48109, United States
| |
Collapse
|
19
|
Alterations in physical and neurocognitive wellness across recovery after ACLR: A preliminary look into learned helplessness. Phys Ther Sport 2019; 40:197-207. [PMID: 31590123 DOI: 10.1016/j.ptsp.2019.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/18/2019] [Accepted: 09/18/2019] [Indexed: 11/23/2022]
Abstract
OBJECTIVES Neural alterations after anterior cruciate ligament reconstruction (ACLR) may initiate a maladaptive neurocognitive response (learned helplessness [LH]). Understanding the interrelationships between neural inhibition, quadriceps function and psychological responses can provide clinicians areas to target during recovery. The purpose was to longitudinally evaluate neural excitability, strength and self-reported LH after ACL injury and to explore the relationship between these measures and knee mechanics and patient reported function. DESIGN Case-series. SETTING University. PARTICIPANTS Eight patients were evaluated across recovery after ACL injury. MAIN OUTCOME MEASURES Neural activity, quadriceps function, and self-reported LH were evaluated at pre-surgery, 3-months post-ACLR and at the time of return to play (RTP). RESULTS Patients presented with higher helplessness between 3-months and RTP. Neural excitability and quadriceps function were variable and associated with various aspects of LH. These findings indicate a systemic inability to generate appropriate neural signaling to the quadriceps and highlights how these changes may influence perceived helplessness and overall function after ACLR. CONCLUSIONS LH is related to both measures of physical function and neural outcomes and varies across recovery. This may provide clinicians with a feasible clinical tool that has the potential to identify a variety of impairments arising after ACLR.
Collapse
|
20
|
Effects of Repetitive Transcranial Magnetic Stimulation on Walking and Balance Function after Stroke: A Systematic Review and Meta-Analysis. Am J Phys Med Rehabil 2019; 97:773-781. [PMID: 29734235 DOI: 10.1097/phm.0000000000000948] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE The aim of this study was to investigate the effects of repetitive transcranial magnetic stimulation (rTMS) on walking and balance function in patients with stroke. DESIGN MEDLINE, EMBASE, CINAHL, PsycINFO, Web of Science, CENTRAL, and the Physiotherapy Evidence Database were comprehensively searched for randomized controlled trials published through March 2017 that investigated the effects of rTMS on lower limb function. Main outcomes included walking speed, balance function, motor function, and cortical excitability. RESULTS Nine studies were included. The meta-analysis revealed a significant effect of rTMS on walking speed (standardized mean difference, 0.64; 95% confidence interval [CI], 0.32-0.95), particularly ipsilesional stimulation (standardized mean difference, 0.80; 95% CI, 0.36-1.24). No significant effects were found for balance function (standardized mean difference, 0.10; 95% CI, -0.26 to 0.45), motor function (mean difference, 0.50, 95% CI: -0.68 to 1.68), or cortical excitability (motor-evoked potentials of the affected hemisphere: mean difference, 0.21 mV; 95% CI, -0.11 to 0.54; motor-evoked potentials of the unaffected hemisphere: mean difference, 0.09 mV; 95% CI, -0.16 to -0.02). CONCLUSION These results suggest that rTMS, particularly ipsilesional stimulation, significantly improves walking speed. Future studies with larger sample sizes and an adequate follow-up period are required to further understand the effects of rTMS on lower limb function and its relationship with changes in cortical excitability with the help of functional neuroimaging techniques. TO CLAIM CME CREDITS Complete the self-assessment activity and evaluation online at http://www.physiatry.org/JournalCME CME OBJECTIVES: Upon completion of this article, the reader should be able to: 1) Understand the potential neurophysiologic effects of rTMS; 2) Appreciate the potential benefits of rTMS on stroke recovery; and 3) Identify indications for including rTMS in a stroke rehabilitation program. LEVEL Advanced ACCREDITATION: The Association of Academic Physiatrists is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians.The Association of Academic Physiatrists designates this Journal-based CME activity for a maximum of 1.0 AMA PRA Category 1 Credit(s)™. Physicians should only claim credit commensurate with the extent of their participation in the activity.
Collapse
|
21
|
Nguyen DTA, Rissanen SM, Julkunen P, Kallioniemi E, Karjalainen PA. Principal Component Regression on Motor Evoked Potential in Single-Pulse Transcranial Magnetic Stimulation. IEEE Trans Neural Syst Rehabil Eng 2019; 27:1521-1528. [DOI: 10.1109/tnsre.2019.2923724] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
22
|
Jannati A, Fried PJ, Block G, Oberman LM, Rotenberg A, Pascual-Leone A. Test-Retest Reliability of the Effects of Continuous Theta-Burst Stimulation. Front Neurosci 2019; 13:447. [PMID: 31156361 PMCID: PMC6533847 DOI: 10.3389/fnins.2019.00447] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 04/18/2019] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVES The utility of continuous theta-burst stimulation (cTBS) as index of cortical plasticity is limited by inadequate characterization of its test-retest reliability. We thus evaluated the reliability of cTBS aftereffects, and explored the roles of age and common single-nucleotide polymorphisms in the brain-derived neurotrophic factor (BDNF) and apolipoprotein E (APOE) genes. METHODS Twenty-eight healthy adults (age range 21-65) underwent two identical cTBS sessions (median interval = 9.5 days) targeting the motor cortex. Intraclass correlation coefficients (ICCs) of the log-transformed, baseline-corrected amplitude of motor evoked potentials (ΔMEP) at 5-60 min post-cTBS (T5-T60) were calculated. Adjusted effect sizes for cTBS aftereffects were then calculated by taking into account the reliability of each cTBS measure. RESULTS ΔMEP at T50 was the most-reliable cTBS measure in the whole sample (ICC = 0.53). Area under-the-curve (AUC) of ΔMEPs was most reliable when calculated over the full 60 min post-cTBS (ICC = 0.40). cTBS measures were substantially more reliable in younger participants (< 35 years) and in those with BDNF Val66Val and APOE ε4- genotypes. CONCLUSION cTBS aftereffects are most reliable when assessed 50 min post-cTBS, or when cumulative ΔMEP measures are calculated over 30-60 min post-cTBS. Reliability of cTBS aftereffects is influenced by age, and BDNF and APOE polymorphisms. Reliability coefficients are used to adjust effect-size calculations for interpretation and planning of cTBS studies.
Collapse
Affiliation(s)
- Ali Jannati
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Peter J. Fried
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Gabrielle Block
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Lindsay M. Oberman
- Neuroplasticity and Autism Spectrum Disorder Program, Department of Psychiatry and Human Behavior, E.P. Bradley Hospital, Warren Alpert Medical School, Brown University, East Providence, RI, United States
| | - Alexander Rotenberg
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Alvaro Pascual-Leone
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Institut Guttman de Neurorehabilitació, Universitat Autónoma de Barcelona, Barcelona, Spain
| |
Collapse
|
23
|
Hardmeier M, Jacques F, Albrecht P, Bousleiman H, Schindler C, Leocani L, Fuhr P. Multicentre assessment of motor and sensory evoked potentials in multiple sclerosis: reliability and implications for clinical trials. Mult Scler J Exp Transl Clin 2019; 5:2055217319844796. [PMID: 31069107 PMCID: PMC6495443 DOI: 10.1177/2055217319844796] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/23/2019] [Indexed: 12/31/2022] Open
Abstract
Background Motor and sensory evoked potentials (EP) are potential candidate biomarkers for clinical trials in multiple sclerosis. Objective To determine test -retest reliability of motor EP (MEP) and sensory EP (SEP) and associated EP-scores in patients with multiple sclerosis. Methods In three centres, 16 relapsing and five progressive multiple sclerosis patients had MEPs and SEPs 1-29 days apart. Five neurophysiologists independently marked latencies by central reading. By variance component analysis, we estimated the critical difference (absolute reliability) for cross-sectional group comparison, comparison of longitudinal group changes, within-subject minimal detectable change and defined within-subject improvement. Results Cortical SEP responses and cortico-muscular MEP latencies were more reliable than central conduction times. For comparison of 20 subjects per arm, cross-sectional group difference ranged from 0.7 to 3.9 ms and 1.1 to 1.7, group difference in longitudinal changes from 0.4 to 1.8 ms and 0.36 to 0.62, within-subject minimal detectable change from 1.2 to 5.8 ms and 1.2 to 2.0, within-subject improvement from 0.8 to 3.8ms and 0.8 to 1.3, for single EP modalities and EP scores, respectively. Conclusions Multicentre EP assessment with central EP reading is feasible and reliable. The critical difference is reasonably low to detect significant group changes and to define responders. The results support the concept of using EP and EP-scores as candidate response biomarkers for quantification of disease progression and for studying remyelination in multiple sclerosis.
Collapse
Affiliation(s)
- Martin Hardmeier
- Department of Neurology, Hospital of the University of Basel, Switzerland
| | | | - Philipp Albrecht
- Department of Neurology, Heinrich Heine University Düsseldorf, Germany
| | - Habib Bousleiman
- Department of Neurology, Hospital of the University of Basel, Switzerland
| | - Christian Schindler
- Swiss Tropical and Public Health Institute, University of Basel, Switzerland
| | - Letizia Leocani
- Departments of Neurology and Neurorehabilitation, Ospedale San Raffaele, Milano, Italy
| | - Peter Fuhr
- Department of Neurology, Hospital of the University of Basel, Switzerland
| |
Collapse
|
24
|
Lepley AS, Grooms DR, Burland JP, Davi SM, Kinsella-Shaw JM, Lepley LK. Quadriceps muscle function following anterior cruciate ligament reconstruction: systemic differences in neural and morphological characteristics. Exp Brain Res 2019; 237:1267-1278. [DOI: 10.1007/s00221-019-05499-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/20/2019] [Indexed: 11/29/2022]
|
25
|
Houde F, Laroche S, Thivierge V, Martel M, Harvey MP, Daigle F, Olivares-Marchant A, Beaulieu LD, Leonard G. Transcranial Magnetic Stimulation Measures in the Elderly: Reliability, Smallest Detectable Change and the Potential Influence of Lifestyle Habits. Front Aging Neurosci 2018; 10:379. [PMID: 30542278 PMCID: PMC6277861 DOI: 10.3389/fnagi.2018.00379] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 10/31/2018] [Indexed: 12/23/2022] Open
Abstract
Background: Transcranial magnetic stimulation (TMS) is a non-invasive technique that can be used to evaluate cortical function and corticospinal pathway in normal and pathological aging. Yet, the metrologic properties of TMS-related measurements is still limited in the aging population. Objectives: The aim of this cross-sectional study was to document the reliability and smallest detectable change of TMS measurements among community-dwelling seniors. A secondary objective was to test if TMS measurements differ between elders based on lifestyle, medical and socio-demographic factors. Methods: Motor evoked potentials (MEPs) elicited by single-pulse TMS were recorded in the first dorsal interosseous (FDI) in 26 elderly individuals (mean age = 70 ± 3.8 years). Resting motor threshold (rMT), MEP amplitudes and contralateral silent period (cSP) were measured on two separate occasions (1-week interval), and the standard error of the measurement (SEMeas), intraclass correlation coefficient (ICC), and smallest detectable change in an individual (SDCindv) were calculated. Lifestyle, medical and socio-demographic factors were collected using questionnaires. TMS-related outcomes were compared using independent sample t-test based on the presence of chronic health diseases, chronic medication intake, obesity, history of smoking, physical activity levels, gender, and level of education. Results: rMT and cSP measures were the most reliable outcomes, with the lowest SEMeas and highest ICCs, whereas MEP amplitude-related measures were less reliable. SDCindv levels were generally high, even for rMT (7.29 %MSO) and cSP (43.16–50.84 ms) measures. Although not systematically significant, results pointed toward a higher corticospinal excitability in elderly individuals who were regularly active, who had no chronic medical conditions and who did not take any medication. Conclusion: Even though SDCindv levels were relatively high, these results show that rMT and cSP are the most reliable outcomes to investigate age-related changes in the corticomotor system and suggest that the influence of factors such as lifestyle habits and medications on TMS measures should be investigated further.
Collapse
Affiliation(s)
- Francis Houde
- Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada.,Research Centre on Aging, CIUSSS de l'Estrie - CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Sarah Laroche
- Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada.,Research Centre on Aging, CIUSSS de l'Estrie - CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Veronique Thivierge
- Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada.,Research Centre on Aging, CIUSSS de l'Estrie - CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Marylie Martel
- Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada.,Research Centre on Aging, CIUSSS de l'Estrie - CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Marie-Philippe Harvey
- Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada.,Research Centre on Aging, CIUSSS de l'Estrie - CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Frederique Daigle
- Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada.,Research Centre on Aging, CIUSSS de l'Estrie - CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | - Louis-David Beaulieu
- Research Centre on Aging, CIUSSS de l'Estrie - CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada.,Biomechanical and Neurophysiological Research Lab in Neuro-Musculo-Skelettal Rehabilitation, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada
| | - Guillaume Leonard
- Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada.,Research Centre on Aging, CIUSSS de l'Estrie - CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
26
|
Davila-Pérez P, Jannati A, Fried PJ, Cudeiro Mazaira J, Pascual-Leone A. The Effects of Waveform and Current Direction on the Efficacy and Test-Retest Reliability of Transcranial Magnetic Stimulation. Neuroscience 2018; 393:97-109. [PMID: 30300705 PMCID: PMC6291364 DOI: 10.1016/j.neuroscience.2018.09.044] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 09/26/2018] [Accepted: 09/28/2018] [Indexed: 12/31/2022]
Abstract
The pulse waveform and current direction of transcranial magnetic stimulation (TMS) influence its interactions with the neural substrate; however, their role in the efficacy and reliability of single- and paired-pulse TMS measures is not fully understood. We investigated how pulse waveform and current direction affect the efficacy and test-retest reliability of navigated, single- and paired-pulse TMS measures. 23 healthy adults (aged 18-35 years) completed two identical TMS sessions, assessing resting motor threshold (RMT), motor-evoked potentials (MEPs), cortical silent period (cSP), short- and long-interval intra-cortical inhibition (SICI and LICI), and intracortical facilitation (ICF) using either monophasic posterior-anterior (monoPA; n = 9), monophasic anterior-posterior (monoAP; n = 7), or biphasic (biAP-PA; n = 7) pulses. Averages of each TMS measure were compared across the three groups and intraclass correlation coefficients were calculated to assess test-retest reliability. RMT was the lowest and cSP was the longest with biAP-PA pulses, whereas MEP latency was the shortest with monoPA pulses. SICI and LICI had the largest effect with monoPA pulses, whereas only monoAP and biAP-PA pulses resulted in significant ICF. MEP amplitude was more reliable with either monoPA or monoAP than with biAP-PA pulses. LICI was the most reliable with monoAP pulses, whereas ICF was the most reliable with biAP-PA pulses. Waveform/current direction influenced RMT, MEP latency, cSP, SICI, LICI, and ICF, as well as the reliability of MEP amplitude, LICI, and ICF. These results show the importance of considering TMS pulse parameters for optimizing the efficacy and reliability of TMS neurophysiologic measures.
Collapse
Affiliation(s)
- Paula Davila-Pérez
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Neuroscience and Motor Control Group (NEUROcom), Institute for Biomedical Research (INIBIC), Universidade da Coruña, A Coruña, Spain.
| | - Ali Jannati
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Peter J Fried
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Javier Cudeiro Mazaira
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Neuroscience and Motor Control Group (NEUROcom), Institute for Biomedical Research (INIBIC), Universidade da Coruña, A Coruña, Spain; Centro de Estimulación Cerebral de Galicia, A Coruña, Spain
| | - Alvaro Pascual-Leone
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Institut Guttman de Neurorehabilitació, Universitat Autónoma de Barcelona, Badalona, Barcelona, Spain.
| |
Collapse
|
27
|
Eccentric cross-exercise after anterior cruciate ligament reconstruction: Novel case series to enhance neuroplasticity. Phys Ther Sport 2018; 34:55-65. [PMID: 30223234 DOI: 10.1016/j.ptsp.2018.08.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/30/2018] [Accepted: 08/30/2018] [Indexed: 01/06/2023]
Abstract
OBJECTIVES Substantial changes in neural function are historically present after anterior cruciate ligament reconstruction (ACLR), and are not rectified with traditional rehabilitation. Cross-exercise is a potential means to enhance neural excitability and improve recovery after ACLR. Hence our purpose, was to detail changes in brain activation, neural excitability and patient-reported outcomes in a cohort that completed an 8-week quadriceps-focused eccentric cross-exercise training program immediately following ACLR. DESIGN Case series. SETTING University. PARTICPANTS Five patients participated in an 8-week (24-session) eccentric cross-exercise intervention after ACLR. MAIN OUTCOME MEASURES Brain activation, neural activity and patient-reported outcomes were evaluated within 2 weeks post-ACLR and again at 10-weeks post-ACLR after the intervention. Each cross-exercise session consisted of 4 sets of 10 isokinetic eccentric contractions at 60 deg/sec with the noninvolved limb. RESULTS Following the intervention, patients demonstrated a facilitated spinal reflexive and muscle activity response from the motor cortex during a time when these measures are known to be depressed. Patients also demonstrated a reduce dependence on frontal cortex activity to generate quadriceps contractions. Further patients reported significant reductions in pain and symptoms and greater knee function. CONCLUSIONS Eccentric cross-exercise after ACLR helps to facilitate positive adaptations in neural function and patient reported outcomes.
Collapse
|
28
|
Cha HG, Kim MK. Effects of strengthening exercise integrated repetitive transcranial magnetic stimulation on motor function recovery in subacute stroke patients: A randomized controlled trial. Technol Health Care 2018; 25:521-529. [PMID: 28106573 DOI: 10.3233/thc-171294] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To investigate the effects of strengthening exercise integrated repetitive transcranial magnetic stimulation (rTMS) on motor function recovery in subacute stroke patients. SUBJECTS AND METHODS Thirty subacute stroke patients were randomly assigned to three groups: an ankle strengthening exercise group (group I), ankle strengthening exercise integrated rTMS group (group II), or an rTMS group (control group (CG)). Study subjects received therapy five days per week for eight weeks. Motor-evoked potential testing, peak torque at the ankle joint, and 10 m walk test were performed before and after the eight-week treatment period. RESULTS Subjects in group II showed significantly higher amplitude of MEP, plantarflexor and dorsiflexor of peak torque, 10 m walk test than groups I and CG (p < 0.05). Subjects in groups I and II differed significantly in the pre- and post-test for all variables, (p < 0.05). In the CG group, the pre- and post-test scores for the amplitude of MEP, dorsiflexor, and 10-walk test differed significantly (p < 0.05). CONCLUSIONS Strengthening exercise integrated rTMS has positive effects on motor function recovery in subacute stroke patients.
Collapse
Affiliation(s)
- Hyun Gyu Cha
- Department of Physical Therapy, College of Tourism and Health Science, Joongbu University, Chungnam, Keumsan, Korea
| | - Myoung Kwon Kim
- Department of Physical Therapy, College of Rehabilitation Sciences, Daegu University, Jillyang, Gyeongsan, Gyeongbuk, Korea
| |
Collapse
|
29
|
Tedesco Triccas L, Hughes AM, Burridge JH, Din AE, Warner M, Brown S, Desikan M, Rothwell J, Verheyden G. Measurement of motor-evoked potential resting threshold and amplitude of proximal and distal arm muscles in healthy adults. A reliability study. J Rehabil Assist Technol Eng 2018; 5:2055668318765406. [PMID: 31191932 PMCID: PMC6453085 DOI: 10.1177/2055668318765406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 02/19/2018] [Indexed: 12/04/2022] Open
Abstract
Purpose Reliability of motor-evoked potential threshold and amplitude measurement of
upper limb muscles is important when detecting changes in cortical
excitability. The objective of this study was to investigate intra-rater,
test–retest reliability and minimal detectable change of resting motor
threshold and amplitude of a proximal and distal upper limb muscles,
anterior deltoid and distal extensor digitorum communis in healthy
adults. Method To measure motor-evoked potential responses, transcranial magnetic
stimulation was interfaced with electromyography and neuronavigation
equipment. Two measurements were conducted on day 1 and a third measurement
three days later. Reliability was analysed using intraclass correlation
coefficients. Results Twenty participants completed the study. Excellent intra-rater (intraclass
correlation coefficient = 0.91 (extensor digitorum), 0.94 (anterior
deltoid)) and good to excellent test–retest reliability (intraclass
correlation coefficient = 0.69 (anterior deltoid), 0.84 (extensor
digitorum)) was found for resting motor threshold. Minimal detectable change
for resting motor threshold was found at 10.95% (extensor digitorum) and
16.35% (anterior deltoid) between first and third measurements. Motor-evoked
potential amplitude of extensor digitorum communis had fair to good
intra-rater (intraclass correlation coefficient = 0.50) and test–retest
reliability (intraclass correlation coefficient = 0.65). Conclusions Our results suggest that resting motor threshold is a reliable
neurophysiological measure even for proximal shoulder muscles. Future
research should further explore the reliability of motor-evoked potential
amplitude before integration into neurological rehabilitation.
Collapse
Affiliation(s)
- Lisa Tedesco Triccas
- 1Faculty of Health Sciences, University of Southampton, Southampton, UK.,Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Ann-Marie Hughes
- 1Faculty of Health Sciences, University of Southampton, Southampton, UK
| | - Jane H Burridge
- 1Faculty of Health Sciences, University of Southampton, Southampton, UK
| | - Amy E Din
- 1Faculty of Health Sciences, University of Southampton, Southampton, UK
| | - Martin Warner
- 1Faculty of Health Sciences, University of Southampton, Southampton, UK
| | - Simon Brown
- 1Faculty of Health Sciences, University of Southampton, Southampton, UK
| | | | - John Rothwell
- Institute of Neurology, Queen Square, University College London, London, UK
| | - Geert Verheyden
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
30
|
Wörsching J, Padberg F, Helbich K, Hasan A, Koch L, Goerigk S, Stoecklein S, Ertl-Wagner B, Keeser D. Test-retest reliability of prefrontal transcranial Direct Current Stimulation (tDCS) effects on functional MRI connectivity in healthy subjects. Neuroimage 2017; 155:187-201. [PMID: 28450138 DOI: 10.1016/j.neuroimage.2017.04.052] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 04/22/2017] [Indexed: 01/01/2023] Open
Abstract
Transcranial Direct Current Stimulation (tDCS) of the prefrontal cortex (PFC) can be used for probing functional brain connectivity and meets general interest as novel therapeutic intervention in psychiatric and neurological disorders. Along with a more extensive use, it is important to understand the interplay between neural systems and stimulation protocols requiring basic methodological work. Here, we examined the test-retest (TRT) characteristics of tDCS-induced modulations in resting-state functional-connectivity MRI (RS fcMRI). Twenty healthy subjects received 20minutes of either active or sham tDCS of the dorsolateral PFC (2mA, anode over F3 and cathode over F4, international 10-20 system), preceded and ensued by a RS fcMRI (10minutes each). All subject underwent three tDCS sessions with one-week intervals in between. Effects of tDCS on RS fcMRI were determined at an individual as well as at a group level using both ROI-based and independent-component analyses (ICA). To evaluate the TRT reliability of individual active-tDCS and sham effects on RS fcMRI, voxel-wise intra-class correlation coefficients (ICC) of post-tDCS maps between testing sessions were calculated. For both approaches, results revealed low reliability of RS fcMRI after active tDCS (ICC(2,1) = -0.09 - 0.16). Reliability of RS fcMRI (baselines only) was low to moderate for ROI-derived (ICC(2,1) = 0.13 - 0.50) and low for ICA-derived connectivity (ICC(2,1) = 0.19 - 0.34). Thus, for ROI-based analyses, the distribution of voxel-wise ICC was shifted to lower TRT reliability after active, but not after sham tDCS, for which the distribution was similar to baseline. The intra-individual variation observed here resembles variability of tDCS effects in motor regions and may be one reason why in this study robust tDCS effects at a group level were missing. The data can be used for appropriately designing large scale studies investigating methodological issues such as sources of variability and localisation of tDCS effects.
Collapse
Affiliation(s)
- Jana Wörsching
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University, Munich, Germany.
| | - Frank Padberg
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University, Munich, Germany
| | - Konstantin Helbich
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University, Munich, Germany
| | - Alkomiet Hasan
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University, Munich, Germany
| | - Lena Koch
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University, Munich, Germany
| | - Stephan Goerigk
- Department of Psychological Methodology and Assessment, Ludwig-Maximilians-University, Munich, Germany
| | - Sophia Stoecklein
- Institute for Clinical Radiology, Ludwig-Maximilians-University, Munich, Germany
| | - Birgit Ertl-Wagner
- Institute for Clinical Radiology, Ludwig-Maximilians-University, Munich, Germany
| | - Daniel Keeser
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University, Munich, Germany; Institute for Clinical Radiology, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
31
|
Beaulieu LD, Flamand VH, Massé-Alarie H, Schneider C. Reliability and minimal detectable change of transcranial magnetic stimulation outcomes in healthy adults: A systematic review. Brain Stimul 2016; 10:196-213. [PMID: 28031148 DOI: 10.1016/j.brs.2016.12.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 12/12/2016] [Accepted: 12/16/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Transcranial magnetic stimulation (TMS) is used worldwide for noninvasively testing human motor systems but its psychometric properties remain unclear. OBJECTIVE/HYPOTHESIS This work systematically reviewed studies on the reliability of TMS outcome measures of primary motor cortex (M1) excitability in healthy humans, with an emphasis on retrieving minimal detectable changes (MDC). METHODS The literature search was performed in three databases (Pubmed, CINAHL, Embase) up to June 2016 and additional studies were identified through hand-searching. French and English-written studies had to report the reliability of at least one TMS outcome of M1 in healthy humans. Two independent raters assessed the eligibility of potential studies, and eligible articles were reviewed using a structured data extraction form and two critical appraisal scales. RESULTS A total of 34 articles met the selection criteria, which tested the intra- and inter-rater reliability (relative and absolute subtypes) of several TMS outcomes. However, our critical appraisal of studies raised concerns on the applicability and generalization of results because of methodological and statistical pitfalls. Importantly, MDC were generally large and likely affected by various factors, especially time elapsed between sessions and number of stimuli delivered. CONCLUSIONS This systematic review underlined that the evidence about the reliability of TMS outcomes is scarce and affected by several methodological and statistical problems. Data and knowledge of the review provided however relevant insights on the ability of TMS outcomes to track plastic changes within an individual or within a group, and recommendations were made to level up the quality of future work in the field.
Collapse
Affiliation(s)
- Louis-David Beaulieu
- Clinical Neuroscience and Neurostimulation Laboratory, CHU de Québec Research Center - Neuroscience Division, Quebec City, Qc, Canada; Department of Rehabilitation, Faculty of Medicine, Université Laval, Quebec City, Qc, Canada.
| | - Véronique H Flamand
- Department of Rehabilitation, Faculty of Medicine, Université Laval, Quebec City, Qc, Canada; Center for Interdisciplinary Research in Rehabilitation and Social Integration, Quebec City, Qc, Canada
| | - Hugo Massé-Alarie
- Clinical Neuroscience and Neurostimulation Laboratory, CHU de Québec Research Center - Neuroscience Division, Quebec City, Qc, Canada; Department of Rehabilitation, Faculty of Medicine, Université Laval, Quebec City, Qc, Canada
| | - Cyril Schneider
- Clinical Neuroscience and Neurostimulation Laboratory, CHU de Québec Research Center - Neuroscience Division, Quebec City, Qc, Canada; Department of Rehabilitation, Faculty of Medicine, Université Laval, Quebec City, Qc, Canada
| |
Collapse
|
32
|
Fedele T, Blagovechtchenski E, Nazarova M, Iscan Z, Moiseeva V, Nikulin VV. Long-Range Temporal Correlations in the amplitude of alpha oscillations predict and reflect strength of intracortical facilitation: Combined TMS and EEG study. Neuroscience 2016; 331:109-19. [DOI: 10.1016/j.neuroscience.2016.06.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 06/03/2016] [Accepted: 06/09/2016] [Indexed: 12/01/2022]
|
33
|
Cassidy JM, Chu H, Chen M, Kimberley TJ, Carey JR. Interhemispheric Inhibition Measurement Reliability in Stroke: A Pilot Study. Neuromodulation 2016; 19:838-847. [PMID: 27333364 DOI: 10.1111/ner.12459] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/02/2016] [Accepted: 04/29/2016] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Reliable transcranial magnetic stimulation (TMS) measures for probing corticomotor excitability are important when assessing the physiological effects of noninvasive brain stimulation. The primary objective of this study was to examine test-retest reliability of an interhemispheric inhibition (IHI) index measurement in stroke. MATERIALS AND METHODS Ten subjects with chronic stroke (≥6 months) completed two IHI testing sessions per week for three weeks (six testing sessions total). A single investigator measured IHI in the contra-to-ipsilesional primary motor cortex direction and in the opposite direction using bilateral paired-pulse TMS. Weekly sessions were separated by 24 hours with a 1-week washout period separating testing weeks. To determine if motor-evoked potential (MEP) quantification method affected measurement reliability, IHI indices computed from both MEP amplitude and area responses were found. Reliability was assessed with two-way, mixed intraclass correlation coefficients (ICC(3,k) ). Standard error of measurement and minimal detectable difference statistics were also determined. RESULTS With the exception of the initial testing week, IHI indices measured in the contra-to-ipsilesional hemisphere direction demonstrated moderate to excellent reliability (ICC = 0.725-0.913). Ipsi-to-contralesional IHI indices depicted poor or invalid reliability estimates throughout the three-week testing duration (ICC= -1.153-0.105). The overlap of ICC 95% confidence intervals suggested that IHI indices using MEP amplitude vs. area measures did not differ with respect to reliability. CONCLUSIONS IHI indices demonstrated varying magnitudes of reliability irrespective of MEP quantification method. Several strategies for improving IHI index measurement reliability are discussed.
Collapse
Affiliation(s)
- Jessica M Cassidy
- Department of Physical Medicine and Rehabilitation, Programs in Physical Therapy and Rehabilitation Science, University of Minnesota, Minneapolis, MN, USA
| | - Haitao Chu
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Mo Chen
- Institute for Engineering in Medicine, University of Minnesota, Minneapolis, MN
| | - Teresa J Kimberley
- Department of Physical Medicine and Rehabilitation, Programs in Physical Therapy and Rehabilitation Science, University of Minnesota, Minneapolis, MN, USA
| | - James R Carey
- Department of Physical Medicine and Rehabilitation, Programs in Physical Therapy and Rehabilitation Science, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
34
|
Repeatability of functional anisotropy in navigated transcranial magnetic stimulation--coil-orientation versus response. Neuroreport 2016; 26:515-21. [PMID: 26011386 DOI: 10.1097/wnr.0000000000000380] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Transcranial magnetic stimulation (TMS) can be used for evaluating the function of motor pathways. According to the principles of electromagnetism and electrophysiology, TMS activates those neurons that are suitably oriented with respect to the TMS-induced electric field. We hypothesized that TMS could potentially be able to evaluate the neuronal structure, although until now, this putative application has not been exploited. We have developed a TMS-based method to evaluate the function and structure of the motor cortex concurrently in a quantitative manner. This method produced a measure, the anisotropy index (AI), which is based on the motor-evoked potentials induced at different coil orientations. The AI was demonstrated to exhibit an association with both motor cortex excitability and neuronal structure. In the present study, we evaluated the repeatability (intrasession and intersession) of AI in three consecutive measurements. In addition, we studied the repeatability of the optimal coil angle in inducing motor-evoked potentials. Two of the measurements were conducted on the same stimulation target and the third on a remapped target. The coefficient of repeatability of the AI was 0.022 for intrasession and 0.040 for intersession assessments. For the optimal stimulation angle, the coefficients of repeatability were 3.7° and 5.1°, respectively. Both the AI and the optimal stimulation angle demonstrated good repeatability (Cronbach's α>0.760). In conclusion, the results indicate that the AI can provide a reliable estimation of local functional anisotropy changes under conditions affecting the cortex, such as during stroke or focal dysplasia.
Collapse
|
35
|
Whole-Body and Local Muscle Vibration Immediately Improve Quadriceps Function in Individuals With Anterior Cruciate Ligament Reconstruction. Arch Phys Med Rehabil 2016; 97:1121-9. [PMID: 26869286 DOI: 10.1016/j.apmr.2016.01.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 01/21/2016] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To determine the immediate effects of a single session of whole-body vibration (WBV) and local muscle vibration (LMV) on quadriceps function in individuals with anterior cruciate ligament reconstruction (ACLR). DESIGN Singe-blind, randomized crossover trial. SETTING Research laboratory. PARTICIPANTS Population-based sample of individuals with ACLR (N=20; mean age ± SD, 21.1±1.2y; mean mass ± SD, 68.3±14.9kg; mean time ± SD since ACLR, 50.7±21.3mo; 14 women; 16 patellar tendon autografts, 3 hamstring autografts, 1 allograft). INTERVENTIONS Participants performed isometric squats while being exposed to WBV, LMV, or no vibration (control). Interventions were delivered in a randomized order during separate visits separated by 1 week. MAIN OUTCOME MEASURES Quadriceps active motor threshold (AMT), motor-evoked potential (MEP) amplitude, Hoffmann reflex (H-reflex) amplitude, peak torque (PT), rate of torque development (RTD), electromyographic amplitude, and central activation ratio (CAR) were assessed before and immediately after a WBV, LMV, or control intervention. RESULTS There was an increase in CAR (+4.9%, P=.001) and electromyographic amplitude (+16.2%, P=.002), and a reduction in AMT (-3.1%, P<.001) after WBV, and an increase in CAR (+2.7%, P=.001) and a reduction in AMT (-2.9%, P<.001) after LMV. No effect was observed after WBV or LMV in H-reflex, RTD, or MEP amplitude. AMT (-3.7%, P<.001), CAR (+5.7%, P=.005), PT (+.31Nm/kg, P=.004), and electromyographic amplitude (P=.002) in the WBV condition differed from the control condition postapplication. AMT (-3.0% P=.002), CAR (+3.6%, P=.005), and PT (+.30Nm/kg, P=.002) in the LMV condition differed from the control condition postapplication. No differences were observed between WBV and LMV postapplication in any measurement. CONCLUSIONS WBV and LMV acutely improved quadriceps function and could be useful modalities for restoring quadriceps strength in individuals with knee pathologies.
Collapse
|
36
|
Alternative Stimulation Intensities for Mapping Cortical Motor Area with Navigated TMS. Brain Topogr 2016; 29:395-404. [DOI: 10.1007/s10548-016-0470-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/16/2016] [Indexed: 10/22/2022]
|
37
|
Cha HG, Kim MK. Effects of repetitive transcranial magnetic stimulation on arm function and decreasing unilateral spatial neglect in subacute stroke: a randomized controlled trial. Clin Rehabil 2015; 30:649-56. [DOI: 10.1177/0269215515598817] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 07/12/2015] [Indexed: 11/17/2022]
Abstract
Objective: The objective of this study is to investigate the effect of repetitive transcranial magnetic stimulation (rTMS) on the functional recovery of stroke patients with unilateral neglect. Design: Randomized controlled experimental study. Setting: Outpatient rehabilitation hospital. Subjects: Thirty patients with stroke were randomly assigned to two groups: an rTMS group (experimental) and a control group. Interventions: Stroke patients in the experimental group underwent comprehensive rehabilitation therapy and rTMS. Stroke patients in the control group underwent sham therapy and comprehensive rehabilitation therapy. Participants in both groups received therapy 5 days per week for 4 weeks. Main measures: Line bisection, Albert, Box and block and Grip strength tests were assessed before and after the four-week therapy period. Results: A significant difference in the post-training gains in Line bisection (16.53 SD 9.78 vs. 3.60 SD 5.02), Albert (14.13 SD 4.92 vs. 3.26 SD 2.01), Box and block (15.06 SD 9.68 vs. 6.93 SD 7.52), and Grip strength tests (3.60 SD 2.66 vs 0.80 SD 1.26) was observed between the experimental group and the control group ( P<0.05). In addition, the effect size for gains in the experimental and control groups was very strong in AT, BBT (effect size=2.15, 0.77 respectively). Conclusion: We conclude that rTMS might be effective in improvement in reduction of the unilateral neglect and motor function.
Collapse
Affiliation(s)
- Hyun Gyu Cha
- Department of Physical Therapy, Kyungbuk College, Hyucheon-dong, Yeongju, Republic of Korea
| | - Myoung Kwon Kim
- Department of Physical Therapy, College of Rehabilitation Sciences, Daegu University, Jillyang, Gyeongsan, Republic of Korea
| |
Collapse
|
38
|
Sankarasubramanian V, Roelle SM, Bonnett CE, Janini D, Varnerin NM, Cunningham DA, Sharma JS, Potter-Baker KA, Wang X, Yue GH, Plow EB. Reproducibility of transcranial magnetic stimulation metrics in the study of proximal upper limb muscles. J Electromyogr Kinesiol 2015; 25:754-64. [PMID: 26111434 DOI: 10.1016/j.jelekin.2015.05.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 05/11/2015] [Accepted: 05/29/2015] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVE Reproducibility of transcranial magnetic stimulation (TMS) metrics is essential in accurately tracking recovery and disease. However, majority of evidence pertains to reproducibility of metrics for distal upper limb muscles. We investigate for the first time, reliability of corticospinal physiology for a large proximal muscle - the biceps brachii and relate how varying statistical analyses can influence interpretations. METHODS 14 young right-handed healthy participants completed two sessions assessing resting motor threshold (RMT), motor evoked potentials (MEPs), motor map and intra-cortical inhibition (ICI) from the left biceps brachii. Analyses included paired t-tests, Pearson's, intra-class (ICC) and concordance correlation coefficients (CCC) and Bland-Altman plots. RESULTS Unlike paired t-tests, ICC, CCC and Pearson's were >0.6 indicating good reliability for RMTs, MEP intensities and locations of map; however values were <0.3 for MEP responses and ICI. CONCLUSIONS Corticospinal physiology, defining excitability and output in terms of intensity of the TMS device, and spatial loci are the most reliable metrics for the biceps. MEPs and variables based on MEPs are less reliable since biceps receives fewer cortico-motor-neuronal projections. Statistical tests of agreement and associations are more powerful reliability indices than inferential tests. SIGNIFICANCE Reliable metrics of proximal muscles when translated to a larger number of participants would serve to sensitively track and prognosticate function in neurological disorders such as stroke where proximal recovery precedes distal.
Collapse
Affiliation(s)
| | - Sarah M Roelle
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH, United States
| | - Corin E Bonnett
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH, United States
| | - Daniel Janini
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH, United States
| | - Nicole M Varnerin
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH, United States
| | - David A Cunningham
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH, United States
| | - Jennifer S Sharma
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH, United States
| | - Kelsey A Potter-Baker
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH, United States
| | - Xiaofeng Wang
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, United States
| | - Guang H Yue
- Human Performance and Engineering Research, Kessler Foundation, West Orange, NJ, United States
| | - Ela B Plow
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH, United States; Department of Physical Medicine and Rehabilitation, Cleveland Clinic, Cleveland, OH, United States; Center for Neurological Restoration, Cleveland Clinic, Cleveland, OH, United States.
| |
Collapse
|
39
|
Pietrosimone BG, Lepley AS, Ericksen HM, Clements A, Sohn DH, Gribble PA. Neural Excitability Alterations After Anterior Cruciate Ligament Reconstruction. J Athl Train 2015; 50:665-74. [PMID: 25844855 DOI: 10.4085/1062-6050-50.1.11] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
CONTEXT Neuromuscular dysfunction is common after anterior cruciate ligament reconstruction (ACL-R). However, little is known about quadriceps spinal-reflex and descending corticomotor excitability after ACL-R. Understanding the effects of ACL-R on spinal-reflex and corticomotor excitability will help elucidate the origins of neuromuscular dysfunction. OBJECTIVE To determine whether spinal-reflex excitability and corticomotor excitability differed between the injured and uninjured limbs of patients with unilateral ACL-R and between these limbs and the matched limbs of healthy participants. DESIGN Case-control study. SETTING Laboratory. PATIENTS OR OTHER PARTICIPANTS A total of 28 patients with unilateral ACL-R (9 men, 19 women; age = 21.28 ± 3.79 years, height = 170.95 ± 10.04 cm, mass = 73.18 ± 18.02 kg, time after surgery = 48.10 ± 36.17 months) and 29 participants serving as healthy controls (9 men, 20 women; age = 21.55 ± 2.70 years, height = 170.59 ± 8.93 cm, mass = 71.89 ± 12.70 kg) volunteered. MAIN OUTCOME MEASURE(S) Active motor thresholds (AMTs) were collected from the vastus medialis (VM) using transcranial magnetic stimulation. We evaluated VM spinal reflexes using the Hoffmann reflex normalized to maximal muscle responses (H : M ratio). Voluntary quadriceps activation was measured with the superimposed-burst technique and calculated using the central activation ratio (CAR). We also evaluated whether ACL-R patients with high or low voluntary activation had different outcomes. RESULTS The AMT was higher in the injured than in the uninjured limb in the ACL-R group (t27 = 3.32, P = .003) and in the matched limb of the control group (t55 = 2.05, P = .04). The H : M ratio was bilaterally higher in the ACL-R than the control group (F1,55 = 5.17, P = .03). The quadriceps CAR was bilaterally lower in the ACL-R compared with the control group (F1,55 = 10.5, P = .002). The ACL-R group with low voluntary activation (CAR < 0.95) had higher AMT than the control group (P = .02), whereas the ACL-R group with high voluntary activation (CAR ≥ 0.95) demonstrated higher H : M ratios than the control group (P = .05). CONCLUSIONS The higher VM AMT in the injured limbs of ACL-R patients suggested that corticomotor deficits were present after surgery. Higher bilateral H : M ratios in ACL-R patients may be a strategy to reflexively increase excitability to maintain voluntary activation.
Collapse
Affiliation(s)
- Brian G Pietrosimone
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill; Departments of
| | | | - Hayley M Ericksen
- Department of Kinesiology and Health, Northern Kentucky University, Highland Heights
| | | | - David H Sohn
- Division of Orthopaedics, University of Toledo, OH
| | | |
Collapse
|
40
|
Lepley AS, Bahhur NO, Murray AM, Pietrosimone BG. Quadriceps corticomotor excitability following an experimental knee joint effusion. Knee Surg Sports Traumatol Arthrosc 2015; 23:1010-7. [PMID: 24326780 DOI: 10.1007/s00167-013-2816-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 12/03/2013] [Indexed: 10/25/2022]
Abstract
PURPOSE Deficits in quadriceps strength and voluntary activation are common following knee injury. These deficits are hypothesized to generate from a neural level, however, it remains unclear how corticomotor pathways are affected following acute injury. The purpose of this investigation was to examine whether corticomotor alterations of the quadriceps were present following a simulated knee joint injury using an experimental effusion model. METHODS Participants completed two testing sessions, an experimental knee effusion and control session, separated by 7 days. The central activation ratio was used to assess change in quadriceps activation. Corticomotor excitability was assessed pre- and post-intervention via active motor thresholds (AMTs) and motor evoked potentials (MEPs) normalized to maximal muscle responses. MEPs were assessed at different percentages of AMT, and associated slopes between these percentages were analysed. Paired-sample t tests were performed on percentage change scores calculated from pre-intervention outcome measures to assess change in corticomotor excitability and changes in the slope of MEP values as percentage of AMT increased. RESULTS Quadriceps activation significantly decreased during the effusion session. AMT and MEP change scores were not different between effusion and control conditions. No substantial differences were found in slope between any percentages of AMT. CONCLUSIONS An experimental knee effusion did not induce changes in corticomotor excitability. Further research is needed to understand how corticomotor pathways are affected following joint injury. Corticomotor excitability alterations may not be the cause of acute changes in neuromuscular activation following joint effusion. Future research should determine whether clinically altering corticomotor excitability will improve physical function. LEVEL OF EVIDENCE II.
Collapse
Affiliation(s)
- Adam S Lepley
- Musculoskeletal Health and Movement Science Laboratory, Department of Kinesiology, University of Toledo, 2801 W. Bancroft Street, Toledo, OH, 43606-3390, USA,
| | | | | | | |
Collapse
|
41
|
Lepley AS, Gribble PA, Thomas AC, Tevald MA, Sohn DH, Pietrosimone BG. Quadriceps neural alterations in anterior cruciate ligament reconstructed patients: A 6-month longitudinal investigation. Scand J Med Sci Sports 2015; 25:828-39. [PMID: 25693627 DOI: 10.1111/sms.12435] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2015] [Indexed: 12/11/2022]
Abstract
The purpose of this investigation was to evaluate differences in quadriceps corticospinal excitability, spinal-reflexive excitability, strength, and voluntary activation before, 2 weeks post and 6 months post-anterior cruciate ligament reconstruction (ACLr). This longitudinal, case-control investigation examined 20 patients scheduled for ACLr (11 females, 9 males; age: 20.9 ± 4.4 years; height:172.4 ± 7.5 cm; weight:76.2 ± 11.8 kg) and 20 healthy controls (11 females, 9 males; age:21.7 ± 3.7 years; height: 173.7 ± 9.9 cm; weight: 76.1 ± 19.7 kg). Maximal voluntary isometric contractions (MVIC), central activation ratio (CAR), normalized Hoffmann spinal reflexes, active motor threshold (AMT), and normalized motor-evoked potential (MEP) amplitudes at 120% of AMT were measured in the quadriceps muscle at the specific time points. ACLr patients demonstrated bilateral reductions in spinal-reflexive excitability compared with controls before surgery (P = 0.02) and 2 weeks post-surgery (P ≤ 0.001). ACLr patients demonstrated higher AMT at 6 months post-surgery (P ≤ 0.001) in both limbs. No MEP differences were detected. Quadriceps MVIC and CAR were lower in both limbs of the ACLr group before surgery and 6 months post-surgery (P ≤ 0.05) compared with controls. Diminished excitability of spinal-reflexive and corticospinal pathways are present at different times following ACLr and occur in combination with clinical deficits in quadriceps strength and activation. Early rehabilitation strategies targeting spinal-reflexive excitability may help improve postoperative outcomes, while later-stage rehabilitation may benefit from therapeutic techniques aimed at improving corticospinal excitability.
Collapse
Affiliation(s)
- A S Lepley
- Department of Kinesiology and Health Promotion, University of Kentucky, Lexington, Kentucky, USA
| | - P A Gribble
- Department of Rehabilitation Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - A C Thomas
- Biodynamics Research Laboratory, Department of Kinesiology, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - M A Tevald
- Department of Rehabilitation Sciences, University of Toledo, Toledo, Ohio, USA
| | - D H Sohn
- Department of Orthopedic Surgery, University of Toledo, Toledo, Ohio, USA
| | - B G Pietrosimone
- Department of Exercise and Sports Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
42
|
How Reproducible Are Transcranial Magnetic Stimulation–Induced MEPs in Subacute Stroke? J Clin Neurophysiol 2014; 31:556-62. [DOI: 10.1097/wnp.0000000000000114] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
43
|
Lepley AS, Ericksen HM, Sohn DH, Pietrosimone BG. Contributions of neural excitability and voluntary activation to quadriceps muscle strength following anterior cruciate ligament reconstruction. Knee 2014; 21:736-42. [PMID: 24618459 DOI: 10.1016/j.knee.2014.02.008] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 12/30/2013] [Accepted: 02/10/2014] [Indexed: 02/02/2023]
Abstract
BACKGROUND Persistent quadriceps weakness is common following anterior cruciate ligament reconstruction (ACLr). Alterations in spinal-reflexive excitability, corticospinal excitability and voluntary activation have been hypothesized as underlying mechanisms contributing to quadriceps weakness. The aim of this study was to evaluate the predictive capabilities of spinal-reflexive excitability, corticospinal excitability and voluntary activation on quadriceps strength in healthy and ACLr participants. METHODS Quadriceps strength was measured using maximal voluntary isometric contractions (MVIC). Voluntary activation was quantified via the central activation ratio (CAR). Corticospinal and spinal-reflexive excitability were measured using active motor thresholds (AMT) and Hoffmann reflexes normalized to maximal muscle responses (H:M), respectively. ACLr individuals were also split into high and low strength subsets based on MVIC. RESULTS CAR was the only significant predictor in the healthy group. In the ACLr group, CAR and H:M significantly predicted 47% of the variance in MVIC. ACLr individuals in the high strength subset demonstrated significantly higher CAR and H:M than those in the low strength subset. CONCLUSION Increased quadriceps voluntary activation, spinal-reflexive excitability and corticospinal excitability relates to increased quadriceps strength in participants following ACLr. CLINICAL RELEVANCE Rehabilitation strategies used to target neural alterations may be beneficial for the restoration of muscle strength following ACLr.
Collapse
Affiliation(s)
- Adam S Lepley
- Musculoskeletal Health and Movement Science Laboratory, Department of Kinesiology, University of Toledo, Toledo, OH, United States.
| | - Hayley M Ericksen
- Musculoskeletal Health and Movement Science Laboratory, Department of Kinesiology, University of Toledo, Toledo, OH, United States
| | - David H Sohn
- Department of Orthopedic Surgery, University of Toledo, Toledo, OH, United States
| | - Brian G Pietrosimone
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
44
|
Lewis GN, Signal N, Taylor D. Reliability of lower limb motor evoked potentials in stroke and healthy populations: How many responses are needed? Clin Neurophysiol 2014; 125:748-754. [DOI: 10.1016/j.clinph.2013.07.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 07/08/2013] [Accepted: 07/11/2013] [Indexed: 10/26/2022]
|
45
|
The reliability of topographic measurements from navigated transcranial magnetic stimulation in healthy volunteers and tumor patients. Acta Neurochir (Wien) 2013; 155:1309-17. [PMID: 23479092 DOI: 10.1007/s00701-013-1665-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 02/18/2013] [Indexed: 10/27/2022]
Abstract
BACKGROUND Navigated transcranial magnetic stimulation (nTMS) is increasingly being used for preoperative mapping of the motor cortex. Any new technology should undergo rigorous validation before being widely adopted in routine clinical practice. The aim of this experimental study was to assess the intraexaminer and interexaminer reliability of topographic mapping with nTMS. METHODS nTMS mapping of the motor cortex for the first dorsal interosseous (FDI) muscle was performed by an expert and a novice examiner, twice in ten healthy volunteers and once in ten tumor patients. The distances between the centers-of-gravity and hotspots were calculated, as were coefficients of variation. This study also compared orthogonal versus variable orientation of the stimulation coil. RESULTS The mean (range) distance between centers-of-gravity for the expert examiner in the test-retest protocol with healthy volunteers was 4.40 (1.86-7.68) mm. The mean (range) distance between centers-of-gravity for the expert vs. novice examiner was 4.89 (2.39-9.22) mm. There were no significant differences in this result between healthy volunteers and tumor patients. CONCLUSIONS nTMS is sufficiently reliable for clinical use, but examiners should make efforts to minimize sources of error. The reliability of nTMS in tumor patients appears comparable to healthy subjects.
Collapse
|
46
|
Pietrosimone BG, Gribble PA. Chronic ankle instability and corticomotor excitability of the fibularis longus muscle. J Athl Train 2013. [PMID: 23182009 DOI: 10.4085/1062-6050-47.6.11] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
CONTEXT Neuromuscular deficits are common in people with chronic ankle instability (CAI). Corticomotor pathways are very influential in the production of voluntary muscle function, yet these pathways have not been evaluated in people with CAI. OBJECTIVE To determine if corticomotor excitability of the fibularis longus (FL) differs between individuals with unilateral CAI and matched control participants without CAI. DESIGN Case-control study. SETTING Laboratory. Patients or Other Participants: Ten people with CAI (4 men, 6 women; age = 21.2 ± 1.23 years, height = 175.13 ± 9.7 cm, mass = 77.1 ± 13.58 kg) and 10 people without CAI (4 men, ± women; age = 21.2 ± 2.3 years; height = 172.34 ± 8.86 cm, mass = 73.4 ± 7.15 kg) volunteered for this study. MAIN OUTCOME MEASURE(S) Transcranial magnetic stimulation was performed over the motor cortex on neurons corresponding with the FL. All testing was performed with the participant in a seated position with a slightly flexed knee joint and the ankle secured in 10 8 of plantar flexion. The resting motor threshold (RMT), which was expressed as a percentage of 2 T, was considered the lowest amount of magnetic energy that would induce an FL motor evoked potential equal to or greater than 20 l V, as measured with surface electromyography, on 7 consecutive stimuli. In addition, the Functional Ankle Disability Index (FADI) and FADI Sport were used to assess self-reported function. RESULTS Higher RMTs were found in the injured and uninjured FL of the CAI group (60.8% ± 8.4% and 59.1% ± 8.99%, respectively) than the healthy group (52.8% ± 8.56% and 52% ± 7.0%, respectively; F(1,18) = 4.92, P = .04). No leg x group interactions (F(1,18) = 0.1, P = .76) or between-legs differences (F(1,18) = 0.74, P = .40) were found. A moderate negative correlation was found between RMT and FADI (r = 0.4, P = .04) and FADI Sport (r = 0.44, P = .03), suggesting that higher RMT is related to lower self-reported function. CONCLUSIONS Higher bilateral RMTs may indicate deficits in FL corticomotor excitability in people with CAI. In addition, a moderate correlation between RMT and FADI suggests that cortical excitability deficits may be influential in altering function.
Collapse
Affiliation(s)
- Brian G Pietrosimone
- Musculoskeletal Health and Movement Science Laboratory, University of Toledo, MS 119, 2801 West Bancroft Street, Toledo, OH 43606-3390, USA.
| | | |
Collapse
|
47
|
Abstract
STUDY DESIGN Reliability study. OBJECTIVES To determine the feasibility and reliability of using transcranial magnetic stimulation (TMS) to assess corticomotor excitability (CE) of the gluteus maximus. BACKGROUND Sport-specific skill training targeting greater utilization of the gluteus maximus has been proposed as a method to reduce the incidence of noncontact knee injuries. The use of TMS to assess changes in CE may help to determine training-induced central mechanisms associated with gluteus maximus activation. METHODS Within- and between-day reliability was measured in 10 healthy adults. The CE was measured by stimulating the gluteus maximus ìhotspotî at 120% and 150% of motor threshold, while subjects performed a double-leg bridge. An intraclass correlation coefficient (model 2,1), standard error of measurement, and minimal detectable change were calculated to determine the within- and between-day reliability for the following TMS variables: peak-to-peak motor-evoked potential (MEP) amplitudes, cortical silent period, and MEP latency. RESULTS It is feasible to measure the CE of the gluteus maximus with TMS. The intraclass correlation coefficients for all TMS outcome measures ranged from 0.73 to 0.97. The ranges of minimal detectable change, with respect to mean values for each TMS variable, were larger for MEP amplitude (304.7-585.4 µV) compared to those for cortical silent period duration (25.3-40.8 milliseconds) and MEP latency (1.1-2.1 milliseconds). CONCLUSION The present study demonstrated a feasible method for using TMS to measure CE of the gluteus maximus. Small minimal detectable change values for the cortical silent period and MEP latency provide a reference for future studies.
Collapse
|
48
|
Weiss C, Nettekoven C, Rehme AK, Neuschmelting V, Eisenbeis A, Goldbrunner R, Grefkes C. Mapping the hand, foot and face representations in the primary motor cortex — Retest reliability of neuronavigated TMS versus functional MRI. Neuroimage 2013; 66:531-42. [DOI: 10.1016/j.neuroimage.2012.10.046] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 10/11/2012] [Accepted: 10/19/2012] [Indexed: 12/15/2022] Open
|
49
|
Bastani A, Jaberzadeh S. A higher number of TMS-elicited MEP from a combined hotspot improves intra- and inter-session reliability of the upper limb muscles in healthy individuals. PLoS One 2012; 7:e47582. [PMID: 23077645 PMCID: PMC3471890 DOI: 10.1371/journal.pone.0047582] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 09/17/2012] [Indexed: 11/18/2022] Open
Abstract
We aimed to determine, using transcranial magnetic stimulation (TMS), the number of elicited motor evoked potentials (MEPs) that induces the highest intra- and inter-sessions reliability for the extensor carpi radialis (ECR) and first dorsal interosseus (FDI) muscles. Twelve healthy subjects participated in this study on two separate days. Single pulse magnetic stimuli were triggered with Magstim 2002 to obtain MEPs from the muscles of interest, with the subjects in a relaxed position. Reliability of MEP responses was investigated in three blocks of 5, 10 and 15 trials. The intra- and inter-session reliability of the MEPs' amplitudes and latencies were assessed using intraclass correlation coefficients (ICCs). Repeated measures ANOVA and paired t-tests revealed no significant time effect in the MEP amplitude and latency measurements (P>0.05). The ICCs indicated high intra-session reliability in the MEPs' amplitudes for the ECR and FDI muscles (0.77 to 0.99, 0.90 to 0.99, respectively) and latency (0.80 to 1.00, 0.75 to 0.97, respectively). The MEPs' amplitudes also had high inter-session reliability (0.84 to 0.97, 0.88 to 0.93, respectively), as did their latency (0.80 to 0.90, 0.75 to 0.97, respectively). Highest intra- and inter-session reliability was achieved for blocks of 10 and 15 trials. Our data suggest that intra- and inter-session comparisons should be performed using at least 10 MEPs in “combined hotspot” stimulation technique to ensure highest reliability.
Collapse
Affiliation(s)
- Andisheh Bastani
- Department of Physiotherapy, School of Primary Health Care, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia.
| | | |
Collapse
|
50
|
Forster MT, Senft C, Hattingen E, Lorei M, Seifert V, Szelényi A. Motor cortex evaluation by nTMS after surgery of central region tumors: a feasibility study. Acta Neurochir (Wien) 2012; 154:1351-9. [PMID: 22669201 DOI: 10.1007/s00701-012-1403-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 05/18/2012] [Indexed: 11/30/2022]
Abstract
BACKGROUND Largely discussed during the past decade, motor cortex reorganization in brain tumor surgery has been investigated only by few studies. We therefore aimed to investigate cortical motor representation after resection of perirolandic WHO grade II and III gliomas using navigated transcranial magnetic stimulation (nTMS). METHODS Five patients were examined before neurosurgery and after a follow-up period of 17.7 ± 6.8 months. As a control, five healthy age-matched subjects were equally studied by nTMS in two sessions spaced 12.6 (range 2-35) days apart. Resting motor thresholds (RMT), hotspots and centers of gravity (CoG) were identified for the first dorsal interosseous (FDI), abductor pollicis brevis (APB), extensor digitorum (EXT), tibialis anterior (TA) and abductor hallucis (AH) muscles. Euclidian distances, coefficients of variance and intraclass correlation coefficients (ICC) were calculated. RESULTS Healthy subjects showed moderate to excellent reliability measurement of RMT (ICC = 0.69-0.94). Average displacement of CoGs across sessions was 0.68 ± 0.34 cm in the dominant and 0.76 ± 0.38 cm in the non-dominant hemisphere; hotspots moved 0.87 ± 0.51 cm and 0.83 ± 0.45 cm, respectively. In one patient these parameters differed significantly from the control group (p < 0.05 for both CoGs and hotspots). Overall, all patients' CoGs moved 1.12 ± 0.93 cm, and hotspots were 1.06 ± 0.7 cm apart. In both patients and healthy subjects, movement of assessed parameters was more important along the X- than the Y-axis. CONCLUSIONS nTMS allows evaluating cortical reorganization after brain tumor surgery. It may contribute to the understanding of neurofunctional dynamics, thus influencing therapeutic strategy.
Collapse
Affiliation(s)
- Marie-Thérèse Forster
- Department of Neurosurgery, Goethe University Hospital, Schleusenweg 2-16, 60528, Frankfurt am Main, Germany.
| | | | | | | | | | | |
Collapse
|