1
|
Abtin S, Seyedaghamiri F, Aalidaeijavadi Z, Farrokhi AM, Moshrefi F, Ziveh T, Zibaii MI, Aliakbarian H, Rezaei-Tavirani M, Haghparast A. A review on the consequences of molecular and genomic alterations following exposure to electromagnetic fields: Remodeling of neuronal network and cognitive changes. Brain Res Bull 2024; 217:111090. [PMID: 39349259 DOI: 10.1016/j.brainresbull.2024.111090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/10/2024] [Accepted: 09/26/2024] [Indexed: 10/02/2024]
Abstract
The use of electromagnetic fields (EMFs) is essential in daily life. Since 1970, concerns have grown about potential health hazards from EMF. Exposure to EMF can stimulate nerves and affect the central nervous system, leading to neurological and cognitive changes. However, current research results are often vague and contradictory. These effects include changes in memory and learning through changes in neuronal plasticity in the hippocampus, synapses and hippocampal neuritis, and changes in metabolism and neurotransmitter levels. Prenatal exposure to EMFs has negative effects on memory and learning, as well as changes in hippocampal neuron density and histomorphology of hippocampus. EMF exposure also affects the structure and function of glial cells, affecting gate dynamics, ion conduction, membrane concentration, and protein expression. EMF exposure affects gene expression and may change epigenetic regulation through effects on DNA methylation, histone modification, and microRNA biogenesis, and potentially leading to biological changes. Therefore, exposure to EMFs possibly leads to changes in cellular and molecular mechanisms in central nervous system and alter cognitive function.
Collapse
Affiliation(s)
- Shima Abtin
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemehsadat Seyedaghamiri
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Aalidaeijavadi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Mohammad Farrokhi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fazel Moshrefi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayebeh Ziveh
- Laboratory of Biophysics and Molecular Biology, Departments of Biophysics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | | | - Hadi Aliakbarian
- Faculty of Electrical Engineering, KN Toosi University of Technology, Tehran, Iran
| | | | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran; Department of Basic Sciences, Iranian Academy of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Lai H, Levitt BB. Cellular and molecular effects of non-ionizing electromagnetic fields. REVIEWS ON ENVIRONMENTAL HEALTH 2024; 39:519-529. [PMID: 37021652 DOI: 10.1515/reveh-2023-0023] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
The way that living cells respond to non-ionizing electromagnetic fields (EMF), including static/extremely-low frequency and radiofrequency electromagnetic fields, fits the pattern of 'cellular stress response' - a mechanism manifest at the cellular level intended to preserve the entire organism. It is a set pattern of cellular and molecular responses to environmental stressors, such as heat, ionizing radiation, oxidation, etc. It is triggered by cellular macromolecular damage (in proteins, lipids, and DNA) with the goal of repairing and returning cell functions to homeostasis. The pattern is independent of the type of stressor encountered. It involves cell cycle arrest, induction of specific molecular mechanisms for repair, damage removal, cell proliferation, and cell death if damage is too great. This response could be triggered by EMF-induced alternation in oxidative processes in cells. The concept that biological response to EMF is a 'cellular stress response' explains many observed effects of EMF, such as nonlinear dose- and time-dependency, increased and decreased risks of cancer and neurodegenerative diseases, enhanced nerve regeneration, and bone healing. These responses could be either detrimental or beneficial to health, depending on the duration and intensity of the exposure, as well as specific aspects of the living organism being exposed. A corollary to electromagnetic hypersensitivity syndrome (EHS) could be an inappropriate response of the hippocampus/limbic system to EMF, involving glucocorticoids on the hypothalamic-pituitary-adrenal axis.
Collapse
Affiliation(s)
- Henry Lai
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - B Blake Levitt
- National Association of Science Writers, Berkeley, CA CA 94707, USA
| |
Collapse
|
3
|
Isaković J, Slatković F, Jagečić D, Petrović DJ, Mitrečić D. Pulsating Extremely Low-Frequency Electromagnetic Fields Influence Differentiation of Mouse Neural Stem Cells towards Astrocyte-like Phenotypes: In Vitro Pilot Study. Int J Mol Sci 2024; 25:4038. [PMID: 38612847 PMCID: PMC11012476 DOI: 10.3390/ijms25074038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Even though electromagnetic fields have been reported to assist endogenous neurogenesis, little is known about the exact mechanisms of their action. In this pilot study, we investigated the effects of pulsating extremely low-frequency electromagnetic fields on neural stem cell differentiation towards specific phenotypes, such as neurons and astrocytes. Neural stem cells isolated from the telencephalic wall of B6(Cg)-Tyrc-2J/J mouse embryos (E14.5) were randomly divided into three experimental groups and three controls. Electromagnetic field application setup included a solenoid placed within an incubator. Each of the experimental groups was exposed to 50Hz ELF-EMFs of varied strengths for 1 h. The expression of each marker (NES, GFAP, β-3 tubulin) was then assessed by immunocytochemistry. The application of high-strength ELF-EMF significantly increased and low-strength ELF-EMF decreased the expression of GFAP. A similar pattern was observed for β-3 tubulin, with high-strength ELF-EMFs significantly increasing the immunoreactivity of β-3 tubulin and medium- and low-strength ELF-EMFs decreasing it. Changes in NES expression were observed for medium-strength ELF-EMFs, with a demonstrated significant upregulation. This suggests that, even though ELF-EMFs appear to inhibit or promote the differentiation of neural stem cells into neurons or astrocytes, this effect highly depends on the strength and frequency of the fields as well as the duration of their application. While numerous studies have demonstrated the capacity of EMFs to guide the differentiation of NSCs into neuron-like cells or β-3 tubulin+ neurons, this is the first study to suggest that ELF-EMFs may also steer NSC differentiation towards astrocyte-like phenotypes.
Collapse
Affiliation(s)
| | - Filip Slatković
- Omnion Research International d.o.o., 10000 Zagreb, Croatia;
| | - Denis Jagečić
- Laboratory for Stem Cells, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
- Department of Histology and Embryology, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Dražen Juraj Petrović
- Laboratory for Stem Cells, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
- Department of Histology and Embryology, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
- Genos d.o.o., Laboratory for Glycobiology, 10000 Zagreb, Croatia
| | - Dinko Mitrečić
- Laboratory for Stem Cells, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
- Department of Histology and Embryology, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| |
Collapse
|
4
|
Eskandani R, Zibaii MI. Unveiling the biological effects of radio-frequency and extremely-low frequency electromagnetic fields on the central nervous system performance. BIOIMPACTS : BI 2023; 14:30064. [PMID: 39104617 PMCID: PMC11298025 DOI: 10.34172/bi.2023.30064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/09/2023] [Accepted: 11/26/2023] [Indexed: 08/07/2024]
Abstract
Introduction Radiofrequency electromagnetic radiation (RF-EMR) and extremely low-frequency electromagnetic fields (ELF-EMF) have emerged as noteworthy sources of environmental pollution in the contemporary era. The potential biological impacts of RF-EMR and ELF-EMF exposure on human organs, particularly the central nervous system (CNS), have garnered considerable attention in numerous research studies. Methods This article presents a comprehensive yet summarized review of the research on the explicit/implicit effects of RF-EMR and ELF-EMF exposure on CNS performance. Results Exposure to RF-EMR can potentially exert adverse effects on the performance of CNS by inducing changes in the permeability of the blood-brain barrier (BBB), neurotransmitter levels, calcium channel regulation, myelin protein structure, the antioxidant defense system, and metabolic processes. However, it is noteworthy that certain reports have suggested that RF-EMR exposure may confer cognitive benefits for various conditions and disorders. ELF-EMF exposure has been associated with the enhancement of CNS performance, marked by improved memory retention, enhanced learning ability, and potential mitigation of neurodegenerative diseases. Nevertheless, it is essential to acknowledge that ELF-EMF exposure has also been linked to the induction of anxiety states, oxidative stress, and alterations in hormonal regulation. Moreover, ELF-EMR exposure alters hippocampal function, notch signaling pathways, the antioxidant defense system, and synaptic activities. Conclusion The RF-EMR and ELF-EMF exposures exhibit both beneficial and adverse effects. Nevertheless, the precise conditions and circumstances under which detrimental or beneficial effects manifest (either individually or simultaneously) remain uncertain.
Collapse
Affiliation(s)
- Ramin Eskandani
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran 19839-69411, Iran
| | - Mohammad Ismail Zibaii
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran 19839-69411, Iran
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran 19839-69411, Iran
| |
Collapse
|
5
|
DastAmooz S, Broujeni ST, Sarahian N. A primary study on rat fetal development and brain-derived neurotrophic factor levels under the control of electromagnetic fields. J Public Health Afr 2023; 14:2347. [PMID: 37538938 PMCID: PMC10395370 DOI: 10.4081/jphia.2023.2347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/22/2022] [Indexed: 08/05/2023] Open
Abstract
Background In previous researches, electromagnetic fields have been shown to adversely affect the behavior and biology of humans and animals; however, body growth and brain-derived neurotrophic factor levels were not evaluated. Objective The original investigation aimed to examine whether Electromagnetic Fields (EMF) exposure had adverse effects on spatial learning and motor function in rats and if physical activity could diminish the damaging effects of EMF exposure. In this study, we measured anthropometric measurements and brain-derived neurotrophic factor (BDNF) levels in pregnant rats' offspring to determine if Wi-Fi EMF also affected their growth. These data we report for the first time in this publication. Methods Twenty Albino-Wistar pregnant rats were divided randomly into EMF and control (CON) groups, and after delivery, 12 male fetuses were randomly selected. For assessing the body growth change of offspring beginning at delivery, then at 21 postnatal days, and finally at 56 post-natal days, the crown-rump length of the body was assessed using a digital caliper. Examining BDNF factor levels, an Enzyme-linked immunosorbent assay ELISA kit was taken. Bodyweight was recorded by digital scale. Results Outcomes of the anthropometric measurements demonstrated that EMF blocked body growth in rats exposed to EMF. The results of the BDNF test illustrated that the BDNF in the EMF liter group was remarkably decreased compared to the CON group. The results indicate that EMF exposure could affect BDNF levels and harm body growth in pregnant rats' offspring. Conclusions The results suggest that EMF exposure could affect BDNF levels and impair body growth in pregnant rats' offspring.
Collapse
Affiliation(s)
- Sima DastAmooz
- Department of Sport Science and Physical Education, Chinese University of Hong Kong, China
| | - Shahzad Tahmasebi Broujeni
- Department of Behavioral and Cognitive Sciences in Sport, Faculty of Sport Sciences and Health, University of Tehran, Iran
| | - Nahid Sarahian
- Neuroscience Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran
| |
Collapse
|
6
|
Bayat M, Karimi N, Karami M, Haghighi AB, Bayat K, Akbari S, Haghani M. Chronic exposure to 2.45 GHz microwave radiation improves cognition and synaptic plasticity impairment in vascular dementia model. Int J Neurosci 2023; 133:111-122. [PMID: 33635159 DOI: 10.1080/00207454.2021.1896502] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Purpose: In this study, we evaluated the effects of 2.45 GHz microwave radiation on cognitive dysfunction induced by vascular dementia (VaD).Methods: The VaD was induced by bilateral-common carotid occlusion (2-VO). The rats were divided into 4 groups including: control (n = 6), sham (n = 6), 2-VO (n = 8), and 2-VO + Wi-Fi (n = 10) groups. Wi-Fi modem centrally located at the distance of 25 cm from the animal's cages and the animals were continuously exposed to Wi-Fi signal while they freely moved in the cage (2 h/day for forty-five days). Therefore, the power density (PD) and specific absorption rate value (SAR) decreased at a distance of 25 to 60 cm (PD = 0.018 to 0.0032 mW/cm2, SAR = 0.0346 to 0.0060 W/Kg). The learning, memory, and hippocampal synaptic-plasticity were evaluated by radial arm maze (RAM), passive avoidance (PA), and field-potential recording respectively. The number of hippocampal CA1 cells was also assessed by giemsa staining.Results: Our results showed that VaD model led to impairment in the spatial learning and memory performance in RAM and PA that were associated with long-term potentiation (LTP) impairment, decrease of basal-synaptic transmission (BST), increase of GABA transmission, and decline of neurotransmitter release-probability as well as hippocampal cell loss. Notably, chronic Wi-Fi exposure significantly recovered the learning-memory performance, LTP induction, and cell loss without any effect on BST.Conclusions: The LTP recovery by Wi-Fi in the 2-VO rats was probably related to significant increases in the hippocampal CA1 neuronal density, partial recovery of neurotransmitter release probability, and reduction of GABA transmissiSon as evident by rescue of paired-pulse ratio 10 ms.
Collapse
Affiliation(s)
- Mahnaz Bayat
- Clinical Neurology Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Narges Karimi
- Department of Physiology, the Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Karami
- Department of Physiology, the Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Kamjoo Bayat
- Department of Physics, K. N. Toosi University of Technology, Tehran, Iran
| | - Somayeh Akbari
- Department of Physiology, the Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoud Haghani
- Department of Physiology, the Medical School, Shiraz University of Medical Sciences, Shiraz, Iran.,Histomorphometry and Stereology Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
7
|
Abkhezr H, Mohaddes G, Nikniaz Z, Abbasalizad Farhangi M, Heydari H, Nikniaz L. The effect of Extremely Low Frequency Electromagnetic Field on spatial memory of mice and rats: A systematic review. LEARNING AND MOTIVATION 2023. [DOI: 10.1016/j.lmot.2023.101873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
8
|
Lai H. Neurological effects of static and extremely-low frequency electromagnetic fields. Electromagn Biol Med 2022; 41:201-221. [DOI: 10.1080/15368378.2022.2064489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Henry Lai
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
9
|
Ruan W, Shen S, Xu Y, Ran N, Zhang H. Mechanistic insights into procyanidins as therapies for Alzheimer's disease: A review. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
10
|
Li B, Jiang Y, Wang T, He X, Ma L, Li B, Li Y. Effect of atrazine on accumulation of iron via the iron transport proteins in the midbrain of SD rats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146666. [PMID: 34030342 DOI: 10.1016/j.scitotenv.2021.146666] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
Atrazine (ATR), a widely used herbicide that belongs to the triazine class, has detrimental effects on several organ systems. It has also been shown that ATR exposure results in dopaminergic neurotoxicity. However, the mechanism of herbicides causing ferroptosis in neurons is less concerned. So, the present study aimed to investigate the effects of long-term oral exposure to ATR on ferroptosis in adult male rats. In this study, we show that there was a dose-dependent increase in the concentration of iron in the midbrain. Simultaneously, the expression of tyrosine hydroxylase (TH) and Synuclein (α-syn) were altered by the ATR. We carried out miRNA profiling brain tissue in order to identify factors that mediate ferroptosis. We also found that the mRNA and protein expression of the transferrin receptor (TFR), divalent metal transporter 1 (DMT1), hephaestin (HEPH), and ferroportin 1 (Fpn1) in the midbrain were affected by ATR. Based on the current results and previously published data, it is clear that exposure of adult male rats to high doses of ATR leads to iron loading in the midbrain. The long-term adverse effects of ATR on the midbrain have a special relevance after exposure.
Collapse
Affiliation(s)
- Bingyun Li
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin 150081, Heilongjiang Province, China; Heilongjiang Provincial Key Lab of Trace Elements and Human Health, Harbin 150081, Heilongjiang Province, China
| | - Yujia Jiang
- Department of Toxicology, College of Public Health, Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Ting Wang
- Department of Toxicology, College of Public Health, Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Xi He
- Department of Toxicology, College of Public Health, Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Lin Ma
- Department of Toxicology, College of Public Health, Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Baixiang Li
- Department of Toxicology, College of Public Health, Harbin Medical University, Harbin 150081, Heilongjiang Province, China.
| | - Yanshu Li
- Department of Toxicology, College of Public Health, Harbin Medical University, Harbin 150081, Heilongjiang Province, China.
| |
Collapse
|
11
|
Khajei S, Mirnajafi-Zadeh J, Sheibani V, Ahmadi-Zeidabadi M, Masoumi-Ardakani Y, Rajizadeh MA, Esmaeilpour K. Electromagnetic field protects against cognitive and synaptic plasticity impairment induced by electrical kindling in rats. Brain Res Bull 2021; 171:75-83. [PMID: 33753209 DOI: 10.1016/j.brainresbull.2021.03.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 03/10/2021] [Accepted: 03/16/2021] [Indexed: 01/10/2023]
Abstract
Kindling results in abnormal synaptic potentiation and significant impairment in learning and memory. Electromagnetic field (EMF) effects on learning and memory in kindled animals and its effects on hippocampal neural activity are largely unknown. In the current study, the effects of EMF on learning and memory, as well as hippocampal synaptic plasticity, in kindled rats were investigated. EMF (10 mT; 100 Hz) was applied to fully kindled animals one hour/day for a period of one week. The behavioral and electrophysiological studies were performed 24 h following the EMF application. The kindled rats showed spatial learning deficits during the training phase of the Morris water maze (MWM) test. Moreover, there were increments in escape latency and path length compared to the sham group. The kindled rats spent less time in the target-quadrant probe test, indicating spatial memory impairment. Applying EMF to the KEMF group (kindling + EMF) restored learning and memory, and decreased escape latency and path length significantly compared to the kindled group. EMF alone had no significant effects on the learning and memory parameters. Based on the open field (OF) test results, EMF alone in the EMF group, but not in the kindled or the KEMF groups, decreased the total traveled distance and increased the spent time in the peripheral zone, compared to the sham group. Based on electrophysiological results, applying EMF in the KEMF group returned the ability of synaptic potentiation to the hippocampal CA1 area and high-frequency stimulation induced long-term potentiation (LTP). Accordingly, EMF can be considered a potential therapy for seizure-induced deficits in learning and memory.
Collapse
Affiliation(s)
- Sina Khajei
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Javad Mirnajafi-Zadeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Vahid Sheibani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Meysam Ahmadi-Zeidabadi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Yaser Masoumi-Ardakani
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Amin Rajizadeh
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Khadijeh Esmaeilpour
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
12
|
Brain-to-brain communication: the possible role of brain electromagnetic fields (As a Potential Hypothesis). Heliyon 2021; 7:e06363. [PMID: 33732922 PMCID: PMC7937662 DOI: 10.1016/j.heliyon.2021.e06363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/29/2020] [Accepted: 02/22/2021] [Indexed: 11/23/2022] Open
Abstract
Up now, the communication between brains of different humans or animals has been confirmed and confined by the sensory medium and motor facilities of body. Recently, direct brain-to-brain communication (DBBC) outside the conventional five senses has been verified between animals and humans. Nevertheless, no empirical studies or serious discussion have been performed to elucidate the mechanism behind this process. The validation of DBBC has been documented via recording similar pattern of action potentials occurring in the brain cortex of two animals. With regard to action potentials in brain neurons, the magnetic field resulting from the action potentials created in neurons is one of the tools where the brain of one animal can affect the brain of another. It has been shown that different animals, even humans, have the power to understand the magnetic field. Cryptochrome, which exists in the retina and in different regions of the brain, has been confirmed to be able to perceive magnetic fields and convert magnetic fields to action potentials. Recently, iron particles (Fe3O4) believed to be functioning as magnets have been found in various parts of the brain, and are postulated as magnetic field receptors. Newly developed supersensitive magnetic sensors made of iron magnets that can sense the brain's magnetic field have suggested the idea that these Fe3O4 particles or magnets may be capable of perceiving the brain's extremely weak magnetic field. The present study suggests that it is possible the extremely week magnetic field in one animal's brain to transmit vital and accurate information to another animal's brain.
Collapse
|
13
|
Gao Q, Leung A, Yang YH, Lau BWM, Wang Q, Liao LY, Xie YJ, He CQ. Extremely low frequency electromagnetic fields promote cognitive function and hippocampal neurogenesis of rats with cerebral ischemia. Neural Regen Res 2021; 16:1252-1257. [PMID: 33318402 PMCID: PMC8284293 DOI: 10.4103/1673-5374.301020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Extremely low frequency electromagnetic fields (ELF-EMF) can improve the learning and memory impairment of rats with Alzheimer’s disease, however, its effect on cerebral ischemia remains poorly understood. In this study, we established rat models of middle cerebral artery occlusion/reperfusion. One day after modeling, a group of rats were treated with ELF-EMF (50 Hz, 1 mT) for 2 hours daily on 28 successive days. Our results showed that rats treated with ELF-EMF required shorter swimming distances and latencies in the Morris water maze test than those of untreated rats. The number of times the platform was crossed and the time spent in the target quadrant were greater than those of untreated rats. The number of BrdU+ /NeuN+ cells, representing newly born neurons, in the hippocampal subgranular zone increased more in the treated than in untreated rats. Up-regulation in the expressions of Notch1, Hes1, and Hes5 proteins, which are the key factors of the Notch signaling pathway, was greatest in the treated rats. These findings suggest that ELF-EMF can enhance hippocampal neurogenesis of rats with cerebral ischemia, possibly by affecting the Notch signaling pathway. The study was approved by the Institutional Ethics Committee of Sichuan University, China (approval No. 2019255A) on March 5, 2019.
Collapse
Affiliation(s)
- Qiang Gao
- Department of Rehabilitation Medicine, West China Hospital of Sichuan University; Institute of Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu, Sichuan Province; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Aaron Leung
- Institute of Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu, Sichuan Province; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Yong-Hong Yang
- Department of Rehabilitation Medicine, West China Hospital of Sichuan University; Institute of Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu, Sichuan Province; Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Benson Wui-Man Lau
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Qian Wang
- Department of Rehabilitation Medicine, West China Hospital of Sichuan University; Institute of Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu, Sichuan Province, China
| | - Ling-Yi Liao
- Department of Rehabilitation Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Yun-Juan Xie
- Department of Rehabilitation Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Cheng-Qi He
- Department of Rehabilitation Medicine, West China Hospital of Sichuan University; Institute of Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu, Sichuan Province, China
| |
Collapse
|
14
|
Riancho J, Sanchez de la Torre JR, Paz-Fajardo L, Limia C, Santurtun A, Cifra M, Kourtidis K, Fdez-Arroyabe P. The role of magnetic fields in neurodegenerative diseases. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2021; 65:107-117. [PMID: 32198562 DOI: 10.1007/s00484-020-01896-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/19/2020] [Accepted: 03/06/2020] [Indexed: 06/10/2023]
Abstract
The term neurodegenerative diseases include a long list of diseases affecting the nervous system that are characterized by the degeneration of different neurological structures. Among them, Alzheimer disease (AD), Parkinson disease (PD), and amyotrophic lateral sclerosis (ALS) are the most representative ones. The vast majority of cases are sporadic and results from the interaction of genes and environmental factors in genetically predisposed individuals. Among environmental conditions, electromagnetic field exposure has begun to be assessed as a potential risk factor for neurodegeneration. In this review, we discuss the existing literature regarding electromagnetic fields and neurodegenerative diseases. Epidemiological studies in AD, PD, and ALS have shown discordant results; thus, a clear correlation between electromagnetic exposure and neurodegeneration has not been demonstrated. In addition, we discuss the role of electromagnetic radiation as a potential non-invasive therapeutic strategy for some neurodegenerative diseases, particularly for PD and AD.
Collapse
Affiliation(s)
- Javier Riancho
- Service of Neurology, Hospital Sierrallana-IDIVAL, Barrio Ganzo s/n, 39300, Torrelavega, Spain.
- CIBERNED, Barcelona, Spain.
- Medicine and Psychiatry Department, University of Cantabria, Santander, Spain.
| | | | - Lucía Paz-Fajardo
- Service of Internal Medicine, Hospital Sierrallana, Torrelavega, Spain
| | - Cristina Limia
- Service of Internal Medicine, Hospital Sierrallana, Torrelavega, Spain
| | - Ana Santurtun
- Legal Medicine and Toxicology Unit, Department of Physiology and Pharmacology, University of Cantabria, Santander, Spain
| | - Michal Cifra
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Chaberská 1014/57, 182 51, Prague, Czech Republic
| | - Kostas Kourtidis
- Department of Environmental Engineering, Democritus University of Thrace, 67100, Xanthi, Greece
- Environmental and Networking Technologies and Applications Unit (ENTA), Athena Research and Innovation Center, 67100, Xanthi, Greece
| | - Pablo Fdez-Arroyabe
- Geography and Planning Department, Geobiomet Research Group, University of Cantabria, Santander, Spain
| |
Collapse
|
15
|
Ahmad RHMA, Fakhoury M, Lawand N. Electromagnetic Field: A Potential Innovative Treatment for Alzheimer’s Disease. CURRENT PSYCHIATRY RESEARCH AND REVIEWS 2020. [DOI: 10.2174/2666082216666200408103701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Reem Habib Mohamed Ali Ahmad
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut (AUB), Beirut, Lebanon
| | - Marc Fakhoury
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut (AUB), Beirut, Lebanon
| | - Nada Lawand
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut (AUB), Beirut, Lebanon
| |
Collapse
|
16
|
Karimi A, Ghadiri Moghaddam F, Valipour M. Insights in the biology of extremely low-frequency magnetic fields exposure on human health. Mol Biol Rep 2020; 47:5621-5633. [DOI: 10.1007/s11033-020-05563-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/27/2020] [Indexed: 12/12/2022]
|
17
|
Gaps in Knowledge Relevant to the "Guidelines for Limiting Exposure to Time-Varying Electric and Magnetic Fields (1 Hz-100 kHz)". HEALTH PHYSICS 2020; 118:533-542. [PMID: 32251081 DOI: 10.1097/hp.0000000000001261] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Sources of low-frequency fields are widely found in modern society. All wires or devices carrying or using electricity generate extremely low frequency (ELF) electric fields (EFs) and magnetic fields (MFs), but they decline rapidly with distance to the source. High magnetic flux densities are usually found in the vicinity of power lines and close to equipment using strong electrical currents, but can also be found in buildings with unbalanced return currents, or indoor transformer stations. For decades, epidemiological as well as experimental studies have addressed possible health effects of exposure to ELF-MFs. The main goal of ICNIRP is to protect people and the environment from detrimental exposure to all forms of non-ionizing radiation (NIR). To this end, ICNIRP provides advice and guidance by developing and disseminating exposure guidelines based on the available scientific research. Research in the low-frequency range began more than 40 years ago, and there is now a large body of literature available on which ICNIRP set its protection guidelines. A review of the literature has been carried out to identify possible relevant knowledge gaps, and the aim of this statement is to describe data gaps in research that would, if addressed, assist ICNIRP in further developing guidelines and setting revised recommendations on limiting exposure to electric and magnetic fields. It is articulated in two parts: the main document, which reviews the science related to LF data gaps, and the annex, which explains the methodology used to identify the data gaps.
Collapse
|
18
|
Lai H. Exposure to Static and Extremely-Low Frequency Electromagnetic Fields and Cellular Free Radicals. Electromagn Biol Med 2019; 38:231-248. [PMID: 31450976 DOI: 10.1080/15368378.2019.1656645] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This paper summarizes studies on changes in cellular free radical activities from exposure to static and extremely-low frequency (ELF) electromagnetic fields (EMF), particularly magnetic fields. Changes in free radical activities, including levels of cellular reactive oxygen (ROS)/nitrogen (RNS) species and endogenous antioxidant enzymes and compounds that maintain physiological free radical concentrations in cells, is one of the most consistent effects of EMF exposure. These changes have been reported to affect many physiological functions such as DNA damage; immune response; inflammatory response; cell proliferation and differentiation; wound healing; neural electrical activities; and behavior. An important consideration is the effects of EMF-induced changes in free radicals on cell proliferation and differentiation. These cellular processes could affect cancer development and proper growth and development in organisms. On the other hand, they could cause selective killing of cancer cells, for instance, via the generation of the highly cytotoxic hydroxyl free radical by the Fenton Reaction. This provides a possibility of using these electromagnetic fields as a non-invasive and low side-effect cancer therapy. Static- and ELF-EMF probably play important roles in the evolution of living organisms. They are cues used in many critical survival functions, such as foraging, migration, and reproduction. Living organisms can detect and respond immediately to low environmental levels of these fields. Free radical processes are involved in some of these mechanisms. At this time, there is no credible hypothesis or mechanism that can adequately explain all the observed effects of static- and ELF-EMF on free radical processes. We are actually at the impasse that there are more questions than answers.
Collapse
Affiliation(s)
- Henry Lai
- Department of Bioengineering, University of Washington , Seattle , WA , USA
| |
Collapse
|
19
|
Ahmadi-Zeidabadi M, Akbarnejad Z, Esmaeeli M, Masoumi-Ardakani Y, Mohammadipoor-Ghasemabad L, Eskandary H. Impact of extremely low-frequency electromagnetic field (100 Hz, 100 G) exposure on human glioblastoma U87 cells during Temozolomide administration. Electromagn Biol Med 2019; 38:198-209. [PMID: 31179753 DOI: 10.1080/15368378.2019.1625784] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Glioblastoma multiforme (GBM) is a highly malignant brain tumor with an extremely dismal prognosis, a median survival is12 months. Temozolomide (TMZ) is an alkylating agent widely used to treat cancer, resistance to this drug is often found. One unexplored possibility for overcoming this resistance is a treatment based on concomitant exposure to electromagnetic fields (EMF) and TMZ. Indeed, many evidences show that EMF affects cancer cells and drug performance. Therefore, the present study was carried out to evaluate the potential synergistic effect of 100 µM TMZ and EMF (100 Hz, 100 G) on human glioma cell line U87 U87 cells with four experimental groups (I-IV) were exposed to ELF-EMF and TMZ for 120 and 144 h, as follows: (I) control; (II) ELF-EMF; (III) TMZ; (IV) ELF-PEMFs / TMZ. mRNA expression of genes such as (Nestin,CD133, Notch4 and GFAP) were investigated by Real-time PCR and western blot. We also evaluated, SOD activity, MDA and calcium concentration by ELISA assay. Co-treatment synergistically decreased the expression of Nestin,CD133, and Notch4 and increased the GFAP genes. We also observed an increase in Superoxide dismutase (SOD) activity, Malondialdehyde (MDA) and Ca2+concentration in comparison to controls.TMZ prevents cancer progression not only through the induction of cell death, but also by inducing differentiation in cancer cells. In addition, our data demonstrate ELF-EMF (100 Hz, 100 G) can significantly enhance the effects of TMZ on human glioblastoma U87 cell. These findings may open new window for future studies.
Collapse
Affiliation(s)
- Meysam Ahmadi-Zeidabadi
- a Neuroscience Research Center, Institute of Neuropharmacology , Kerman University of Medical Sciences , Kerman , Iran
| | - Zeinab Akbarnejad
- b ENT and Head & Neck Research center and department, Hazrat Rasoul Hospital , The five senses Institute, Iran University of medical sciences , Tehran , Iran
| | - Marzie Esmaeeli
- a Neuroscience Research Center, Institute of Neuropharmacology , Kerman University of Medical Sciences , Kerman , Iran
| | - Yaser Masoumi-Ardakani
- c Physiology Research Center, Institute of Basic and Clinical Physiology Science , Kerman University of Medical Sciences , Kerman , Iran
| | | | - Hossein Eskandary
- a Neuroscience Research Center, Institute of Neuropharmacology , Kerman University of Medical Sciences , Kerman , Iran.,e Afzal Research Institute (NGO) , Kerman , Iran
| |
Collapse
|
20
|
DastAmooz S, Tahmasebi Boroujeni S, Shahbazi M, Vali Y. Physical activity as an option to reduce adverse effect of EMF exposure during pregnancy. Int J Dev Neurosci 2018; 71:10-17. [DOI: 10.1016/j.ijdevneu.2018.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 07/21/2018] [Accepted: 07/23/2018] [Indexed: 12/13/2022] Open
Affiliation(s)
- Sima DastAmooz
- Department of Motor Behavior, Faculty of Physical Education and Sport SciencesUniversity of TehranTehranIran
| | - Shahzad Tahmasebi Boroujeni
- Department of Motor Behavior, Faculty of Physical Education and Sport SciencesUniversity of TehranTehranIran
| | - Mehdi Shahbazi
- Department of Motor Behavior, Faculty of Physical Education and Sport SciencesUniversity of TehranTehranIran
| | - Yasamin Vali
- Department of Radiology and Surgery, Faculty of Veterinary MedicineUniversity of TehranTehranIran
| |
Collapse
|