1
|
Bansal K, Singh V, Singh S, Mishra S. Neuroprotective Potential of Hesperidin as Therapeutic Agent in the Treatment of Brain Disorders: Preclinical Evidence-based Review. Curr Mol Med 2024; 24:316-326. [PMID: 36959141 DOI: 10.2174/1566524023666230320144722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 03/25/2023]
Abstract
Neurodegenerative disorders (NDs) are progressive morbidities that represent a serious health issue in the aging world population. There is a contemporary upsurge in worldwide interest in the area of traditional remedies and phytomedicines are widely accepted by researchers due to their health-promoted effects and fewer side effects. Hesperidin, a flavanone glycoside present in the peels of citrus fruits, possesses various biological activities including anti-inflammatory and antioxidant actions. In various preclinical studies, hesperidin has provided significant protective actions in a variety of brain disorders such as Alzheimer's disease, epilepsy, Parkinson's disease, multiple sclerosis, depression, neuropathic pain, etc. as well as their underlying mechanisms. The findings indicate that the neuroprotective effects of hesperidin are mediated by modulating antioxidant defence activities and neural growth factors, diminishing apoptotic and neuro-inflammatory pathways. This review focuses on the potential role of hesperidin in managing and treating diverse brain disorders.
Collapse
Affiliation(s)
- Keshav Bansal
- Institute of Pharmaceutical Research, GLA University, Mathura-281406, Uttar Pradesh, India
| | - Vanshita Singh
- Institute of Pharmaceutical Research, GLA University, Mathura-281406, Uttar Pradesh, India
| | - Sakshi Singh
- Institute of Pharmaceutical Research, GLA University, Mathura-281406, Uttar Pradesh, India
| | - Samiksha Mishra
- Institute of Pharmaceutical Research, GLA University, Mathura-281406, Uttar Pradesh, India
| |
Collapse
|
2
|
Shao J, Yu W, Wei W, Wang S, Zheng Z, Li L, Sun Y, Zhang J, Li Z, Ren X, Zang W, Cao J. MAPK-ERK-CREB signaling pathway upregulates Nav1.6 in oxaliplatin-induced neuropathic pain in the rat. Toxicol Lett 2023; 384:149-160. [PMID: 37453670 DOI: 10.1016/j.toxlet.2023.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
The voltage-gated sodium channel subtype Nav1.6 is involved in the electrophysiological changes of primary sensory neurons that occur in oxaliplatin-induced neuropathic pain, but its regulatory mechanism remains unclear. In this study, Western blot, RT-qPCR, immunofluorescence staining, chromatin immunoprecipitation were used to prove the mechanism of MAPK-ERK-CREB signaling pathway participating in oxaliplatin-induced neuropathic pain by regulating Nav1.6. The results showed that p-Raf1 and p-ERK, key molecules in MAPK/ERK pathway, and Nav1.6 were significantly increased in DRGs of oxaliplatin-induced neuropathic pain rats. Inhibition of p-Raf1 and p-ERK respectively not only reduced the expression of Nav1.6 protein in DRGs of OXA rats, but also caused a decrease in Nav1.6 mRNA, which led us to further explore the transcription factor CREB regulated by MAPK/ERK pathway. Results showed that CREB was co-distributed with Nav1.6. Inhibition of CREB resulted in decreased mRNA and protein expression of Nav1.6, and alleviated oxaliplatin-induced neuropathic pain. A chromatin immunoprecipitation experiment proved that OXA caused p-CREB to directly bind to the promoter region of Scn8A, which is the encoding gene for Nav1.6, and promote the transcription of Scn8A. In summary, in this study, we found that oxaliplatin can activate the MAPK/ERK pathway, which promotes the expression and activation of CREB and leads to an increase in Scn8A transcription, and then leads to an increase in Nav1.6 protein expression to enhance neuronal excitability and cause pain. This study provides an experimental basis for the molecular mechanism of sodium channel regulation in oxaliplatin-induced neuropathic pain.
Collapse
Affiliation(s)
- Jinping Shao
- Department of Human Anatomy, School of Basic Medicine, Zhengzhou University, Zhengzhou 450001, China; Institute of Neuroscience, Zhengzhou University, Zhengzhou 450052, China
| | - Wenli Yu
- Department of Human Anatomy, School of Basic Medicine, Zhengzhou University, Zhengzhou 450001, China; Institute of Neuroscience, Zhengzhou University, Zhengzhou 450052, China; Xinyang Central Hospital, Xinyang, China
| | - Wei Wei
- Department of Human Anatomy, School of Basic Medicine, Zhengzhou University, Zhengzhou 450001, China; Institute of Neuroscience, Zhengzhou University, Zhengzhou 450052, China
| | - Suifeng Wang
- Institute of Neuroscience, Zhengzhou University, Zhengzhou 450052, China; The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zhenli Zheng
- Department of Human Anatomy, School of Basic Medicine, Zhengzhou University, Zhengzhou 450001, China; Institute of Neuroscience, Zhengzhou University, Zhengzhou 450052, China
| | - Lei Li
- Department of Human Anatomy, School of Basic Medicine, Zhengzhou University, Zhengzhou 450001, China; Institute of Neuroscience, Zhengzhou University, Zhengzhou 450052, China
| | - Yanyan Sun
- Department of Human Anatomy, School of Basic Medicine, Zhengzhou University, Zhengzhou 450001, China; Institute of Neuroscience, Zhengzhou University, Zhengzhou 450052, China
| | - Jingjing Zhang
- Department of Human Anatomy, School of Basic Medicine, Zhengzhou University, Zhengzhou 450001, China; Institute of Neuroscience, Zhengzhou University, Zhengzhou 450052, China
| | - Zhihua Li
- Department of Human Anatomy, School of Basic Medicine, Zhengzhou University, Zhengzhou 450001, China; Institute of Neuroscience, Zhengzhou University, Zhengzhou 450052, China
| | - Xiuhua Ren
- Department of Human Anatomy, School of Basic Medicine, Zhengzhou University, Zhengzhou 450001, China; Institute of Neuroscience, Zhengzhou University, Zhengzhou 450052, China
| | - Weidong Zang
- Department of Human Anatomy, School of Basic Medicine, Zhengzhou University, Zhengzhou 450001, China; Institute of Neuroscience, Zhengzhou University, Zhengzhou 450052, China.
| | - Jing Cao
- Department of Human Anatomy, School of Basic Medicine, Zhengzhou University, Zhengzhou 450001, China; Institute of Neuroscience, Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
3
|
He XF, Kang YR, Fei XY, Chen LH, Li X, Ma YQ, Hu QQ, Qu SY, Wang HZ, Shao XM, Liu BY, Yi-Liang, Du JY, Fang JQ, Jiang YL. Inhibition of phosphorylated calcium/calmodulin-dependent protein kinase IIα relieves streptozotocin-induced diabetic neuropathic pain through regulation of P2X3 receptor in dorsal root ganglia. Purinergic Signal 2023; 19:99-111. [PMID: 34973115 PMCID: PMC9984656 DOI: 10.1007/s11302-021-09829-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/04/2021] [Indexed: 12/15/2022] Open
Abstract
Diabetic neuropathic pain (DNP) is frequent among patients with diabetes. We previously showed that P2X3 upregulation in dorsal root ganglia (DRG) plays a role in streptozotocin (STZ)-induced DNP but the underlying mechanism is unclear. Here, a rat model of DNP was established by a single injection of STZ (65 mg/kg). Fasting blood glucose was significantly elevated from the 1st to 3rd week. Paw withdrawal thresholds (PWTs) and paw withdrawal latencies (PWLs) in diabetic rats significantly reduced from the 2nd to 3rd week. Western blot analysis revealed that elevated p-CaMKIIα levels in the DRG of DNP rats were accompanied by pain-associated behaviors while CaMKIIα levels were unchanged. Immunofluorescence revealed significant increase in the proportion of p-CaMKIIα immune positive DRG neurons (stained with NeuN) in the 2nd and 3rd week and p-CaMKIIα was co-expressed with P2X3 in DNP rats. KN93, a CaMKII antagonist, significantly reduce mechanical hyperalgesia and thermal hyperalgesia and these effects varied dose-dependently, and suppressed p-CaMKIIα and P2X3 upregulation in the DRGs of DNP rats. These results revealed that the p-CaMKIIα upregulation in DRG is involved in DNP, which possibly mediated P2X3 upregulation, indicating CaMKIIα may be an effective pharmacological target for DNP management.
Collapse
Affiliation(s)
- Xiao-Fen He
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China.,Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China
| | - Yu-Rong Kang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China
| | - Xue-Yu Fei
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China.,Department of Acupucture, the Rehabilitation Hospital Affiliated To Tongxiang Health School, Jiaxing, Zhejiang, 314500, People's Republic of China
| | - Lu-Hang Chen
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China
| | - Xiang Li
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China
| | - Yi-Qi Ma
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China
| | - Qun-Qi Hu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China
| | - Si-Ying Qu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China
| | - Han-Zhi Wang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China
| | - Xiao-Mei Shao
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China.,Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China
| | - Bo-Yi Liu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China.,Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China
| | - Yi-Liang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China.,Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China
| | - Jun-Ying Du
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China
| | - Jian-Qiao Fang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China. .,Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China.
| | - Yong-Liang Jiang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China. .,Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China.
| |
Collapse
|
4
|
Bajaj S, Gupta S. Nutraceuticals: A Promising Approach Towards Diabetic Neuropathy. Endocr Metab Immune Disord Drug Targets 2023; 23:581-595. [PMID: 36263482 DOI: 10.2174/1871530323666221018090024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/16/2022] [Accepted: 05/25/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Various nutraceuticals from different sources have various beneficial actions and have been reported for many years. The important findings from the research conducted using various nutraceuticals exhibiting significant physiological and pharmacological activities have been summarized. METHODS An extensive investigation of literature was done using several worldwide electronic scientific databases like PUBMED, SCOPUS, Science Direct, Google Scholar, etc. The entire manuscript is available in the English language that is used for our various compounds of interest. These databases were thoroughly reviewed and summarized. RESULTS Nutraceuticals obtained from various sources play a vital role in the management of peripheral neuropathy associated with diabetes. Treatment with nutraceuticals has been beneficial as an alternative in preventing the progression. In particular, in vitro and in vivo studies have revealed that a variety of nutraceuticals have significant antioxidant and anti-inflammatory properties that may inhibit the early diabetes-driven molecular mechanisms that induce DPN. CONCLUSION Nutraceuticals obtained from different sources like a plant, an animal, and marine have been properly utilized for the safety of health. In our opinion, this review could be of great interest to clinicians, as it offers a complementary perspective on the management of DPN. Trials with a well-defined patient and symptom selection have shown robust pharmacological design as pivotal points to let these promising compounds become better accepted by the medical community.
Collapse
Affiliation(s)
- Sakshi Bajaj
- Department of Pharmaceutical Sciences, M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana-133207, India
| | - Sumeet Gupta
- Department of Pharmaceutical Sciences, M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana-133207, India
| |
Collapse
|
5
|
Goyal S, Goyal S, Goins AE, Alles SR. Plant-derived natural products targeting ion channels for pain. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2023; 13:100128. [PMID: 37151956 PMCID: PMC10160805 DOI: 10.1016/j.ynpai.2023.100128] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/27/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023]
Abstract
Chronic pain affects approximately one-fifth of people worldwide and reduces quality of life and in some cases, working ability. Ion channels expressed along nociceptive pathways affect neuronal excitability and as a result modulate pain experience. Several ion channels have been identified and investigated as potential targets for new medicines for the treatment of a variety of human diseases, including chronic pain. Voltage-gated channels Na+ and Ca2+ channels, K+ channels, transient receptor potential channels (TRP), purinergic (P2X) channels and acid-sensing ion channels (ASICs) are some examples of ion channels exhibiting altered function or expression in different chronic pain states. Pharmacological approaches are being developed to mitigate dysregulation of these channels as potential treatment options. Since natural compounds of plant origin exert promising biological and pharmacological properties and are believed to possess less adverse effects compared to synthetic drugs, they have been widely studied as treatments for chronic pain for their ability to alter the functional activity of ion channels. A literature review was conducted using Medline, Google Scholar and PubMed, resulted in listing 79 natural compounds/extracts that are reported to interact with ion channels as part of their analgesic mechanism of action. Most in vitro studies utilized electrophysiological techniques to study the effect of natural compounds on ion channels using primary cultures of dorsal root ganglia (DRG) neurons. In vivo studies concentrated on different pain models and were conducted mainly in mice and rats. Proceeding into clinical trials will require further study to develop new, potent and specific ion channel modulators of plant origin.
Collapse
Affiliation(s)
- Sachin Goyal
- Department of Anesthesiology and Critical Care Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87106, USA
| | - Shivali Goyal
- School of Pharmacy, Abhilashi University, Chail Chowk, Mandi, HP 175045, India
| | - Aleyah E. Goins
- Department of Anesthesiology and Critical Care Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87106, USA
| | - Sascha R.A. Alles
- Department of Anesthesiology and Critical Care Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87106, USA
- Corresponding author.
| |
Collapse
|
6
|
Dong CR, Zhang WJ, Luo HL. Association between P2X3 receptors and neuropathic pain: As a potential therapeutic target for therapy. Biomed Pharmacother 2022; 150:113029. [PMID: 35489283 DOI: 10.1016/j.biopha.2022.113029] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 11/02/2022] Open
Abstract
Neuropathic pain is a common clinical symptom of various diseases, and it seriously affects the physical and mental health of patients. Owing to the complex pathological mechanism of neuropathic pain, clinical treatment of pain is challenging. Therefore, there is growing interest among researchers to explore potential therapeutic strategies for neuropathic pain. A large number of studies have shown that development of neuropathic pain is related to nerve conduction and related signaling molecules. P2X3 receptors (P2X3R) are ATP-dependent ion channels that participate in the transmission of neural information and related signaling pathways, sensitize the central nervous system, and play a key role in the development of neuropathic pain. In this paper, we summarized the structure and biological characteristics of the P2X3R gene and discussed the role of P2X3R in the nervous system. Moreover, we outlined the related pathological mechanisms of pain and described the relationship between P2X3R and chronic pain to provide valuable information for development of novel treatment strategies for pain.
Collapse
Affiliation(s)
- Cai-Rong Dong
- The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 343000, China
| | - Wen-Jun Zhang
- The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 343000, China.
| | - Hong-Liang Luo
- The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 343000, China
| |
Collapse
|
7
|
Lei X, Zeng J, Yan Y, Liu X. Blockage of HCN Channels Inhibits the Function of P2X Receptors in Rat Dorsal Root Ganglion Neurons. Neurochem Res 2022; 47:1083-1096. [PMID: 35064517 DOI: 10.1007/s11064-021-03509-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 12/06/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022]
Abstract
Hyperpolarization-activated cyclic nucleotide-gated channels and purinergic P2X receptors play critical roles in the nerve injury-induced pain hypersensitivity. Both HCN channels and P2XR are expressed in dorsal root ganglia sensory neurons. However, it is not clear whether the expression and function of P2X2 and P2X3 receptors can be modulated by HCN channel activity. For this reason, in rats with chronic constriction injury of sciatic nerve, we evaluated the effect of intrathecal administration of HCN channel blocker ZD7288 on nociceptive behavior and the expression of P2X2 and P2X3 in rat DRG. The mechanical withdrawal threshold was measured to evaluate pain behavior in rats. The protein expression of P2X2 and P2X3 receptor in rat DRG was observed by using Western Blot. The level of cAMP in rat DRG was measured by ELISA. As a result, decreased MWT was observed in CCI rats on 1 d after surgery, and the allodynia was sustained throughout the experimental period. In addition, CCI rats presented increased expression of P2X2 and P2X3 receptor in the ipsilateral DRG at 7 d and 14 d after CCI operation. Intrathecal injection of ZD7288 significantly reversed CCI-induced mechanical hyperalgesia, and attenuated the increased expression of P2X2 and P2X3 receptor in rat DRG, which open up the possibility that the expression of P2X2 and P2X3 receptor in DRG is down-regulated by HCN channel blocker ZD7288 in CCI rats. Furthermore, the level of cAMP in rat DRG significantly increased after nerve injury. Intrathecal administration of ZD7288 attenuated the increase of cAMP in DRG caused by nerve injury. Subsequently, effects of HCN channel activity on ATP-induced current (IATP) in rat DRG neurons were explored by using whole-cell patch-clamp techniques. ATP (100 μM) elicited three types of currents (fast, slow and mixed IATP) in cultured DRG neurons. Pretreatment with ZD7288 concentration-dependently inhibited three types of ATP-activated currents. On the other hand, pretreatment with 8-Br-cAMP (a cell-permeable cAMP analog, also known as an activator of PKA) significantly increased the amplitude of fast, slow and mixed IATP in DRG neurons. The enhanced effect of 8-Br-cAMP on ATP-activated currents could be reversed by ZD7288. In a summary, our observations suggest that the opening of HCN channels could enhance the expression and function of P2X2 and P2X3 receptor via the cAMP-PKA signaling pathway. This may be important for pathophysiological events occurring within the DRG, for where it is implicated in nerve injury-induced pain hypersensitivity.
Collapse
Affiliation(s)
- Xiaolu Lei
- Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, 563000, China
| | - Junwei Zeng
- Department of Physiology, Zunyi Medical University, No. 6, Xuefu west road, Zunyi, 563000, Guizhou province, China
| | - Yan Yan
- Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, 563000, China
| | - Xiaohong Liu
- Department of Physiology, Zunyi Medical University, No. 6, Xuefu west road, Zunyi, 563000, Guizhou province, China.
| |
Collapse
|
8
|
Study of the Involvement of the P2Y12 Receptor in Chronic Itching in Type 2 Diabetes Mellitus. Mol Neurobiol 2022; 59:1604-1618. [PMID: 35000152 DOI: 10.1007/s12035-021-02676-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022]
Abstract
Itching is a common clinical symptom in diabetic patients. This research is to carry out experiments on the pathological changes in the P2Y12 receptor in type 2 diabetes mellitus complicated with chronic itching. Changes in body weight, fasting blood glucose (FBG), thermal hyperalgesia, cold hyperalgesia, spontaneous itching, and sciatic nerve conduction velocity were detected. The content of reactive oxygen species (ROS) in the dorsal root ganglion was detected by chemical fluorescence. The expression of the P2Y12 receptor, NLRP3, ASC, interleukin-1β (IL-1β), and IL-18 was detected by Western blotting, real-time quantitative PCR, immunofluorescence double labelling, and enzyme-linked immunosorbent assay. Itching and pain behaviours of the mice in the type 2 diabetes mellitus + itch group were significantly increased, and the expression of P2Y12 and NLRP3 as well as the content of ROS increased, and these changes were significantly reversed by treatment with P2Y12 short hairpin RNA (shRNA) or P2Y12 antagonist ticagrelor. Upregulated P2Y12 receptor expression after the activation of satellite glial cells contributes to the increase in ROS content in vivo, followed by NLRP3 inflammasome activation, increased inflammatory cytokine release, and damage to peripheral nerves, which leads to chronic itching. Treatment with P2Y12 shRNA or ticagrelor can inhibit these pathological changes, thus improving itching behaviour. Development mechanism of diabetes mellitus complicated with chronic itching. Notes: The upregulation of P2Y12 receptor expression and the activation of SGCs lead to the increase of ROS content in vivo, followed by the activation of NLRP3 inflammasome, the increase of inflammatory cytokine release, the abnormal excitation of DRG neurons, and the damage of peripheral nerves, resulting in chronic itching. P2Y12 receptor-related inflammatory injury involves chronic itching in type 2 diabetes mellitus. Treatment with P2Y12 receptor shRNA or P2Y12 antagonist ticagrelor can inhibit these pathological changes and improve itching behaviour.
Collapse
|
9
|
Tian MM, Li YX, Liu S, Zhu CH, Lan XB, Du J, Ma L, Yang JM, Zheng P, Yu JQ, Liu N. Glycosides for Peripheral Neuropathic Pain: A Potential Medicinal Components. Molecules 2021; 27:255. [PMID: 35011486 PMCID: PMC8746348 DOI: 10.3390/molecules27010255] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/29/2021] [Accepted: 12/24/2021] [Indexed: 12/29/2022] Open
Abstract
Neuropathic pain is a refractory disease that occurs across the world and pharmacotherapy has limited efficacy and/or safety. This disease imposes a significant burden on both the somatic and mental health of patients; indeed, some patients have referred to neuropathic pain as being 'worse than death'. The pharmacological agents that are used to treat neuropathic pain at present can produce mild effects in certain patients, and induce many adverse reactions, such as sedation, dizziness, vomiting, and peripheral oedema. Therefore, there is an urgent need to discover novel drugs that are safer and more effective. Natural compounds from medical plants have become potential sources of analgesics, and evidence has shown that glycosides alleviated neuropathic pain via regulating oxidative stress, transcriptional regulation, ion channels, membrane receptors and so on. In this review, we summarize the epidemiology of neuropathic pain and the existing therapeutic drugs used for disease prevention and treatment. We also demonstrate how glycosides exhibit an antinociceptive effect on neuropathic pain in laboratory research and describe the antinociceptive mechanisms involved to facilitate the discovery of new drugs to improve the quality of life of patients experiencing neuropathic pain.
Collapse
Affiliation(s)
- Miao-Miao Tian
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China; (M.-M.T.); (S.L.); (C.-H.Z.); (X.-B.L.); (J.D.); (L.M.); (J.-M.Y.)
| | - Yu-Xiang Li
- College of Nursing, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China;
| | - Shan Liu
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China; (M.-M.T.); (S.L.); (C.-H.Z.); (X.-B.L.); (J.D.); (L.M.); (J.-M.Y.)
| | - Chun-Hao Zhu
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China; (M.-M.T.); (S.L.); (C.-H.Z.); (X.-B.L.); (J.D.); (L.M.); (J.-M.Y.)
| | - Xiao-Bing Lan
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China; (M.-M.T.); (S.L.); (C.-H.Z.); (X.-B.L.); (J.D.); (L.M.); (J.-M.Y.)
| | - Juan Du
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China; (M.-M.T.); (S.L.); (C.-H.Z.); (X.-B.L.); (J.D.); (L.M.); (J.-M.Y.)
| | - Lin Ma
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China; (M.-M.T.); (S.L.); (C.-H.Z.); (X.-B.L.); (J.D.); (L.M.); (J.-M.Y.)
| | - Jia-Mei Yang
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China; (M.-M.T.); (S.L.); (C.-H.Z.); (X.-B.L.); (J.D.); (L.M.); (J.-M.Y.)
| | - Ping Zheng
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China; (M.-M.T.); (S.L.); (C.-H.Z.); (X.-B.L.); (J.D.); (L.M.); (J.-M.Y.)
| | - Jian-Qiang Yu
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China; (M.-M.T.); (S.L.); (C.-H.Z.); (X.-B.L.); (J.D.); (L.M.); (J.-M.Y.)
- Ningxia Special Traditional Medicine Modern Engineering Research Center and Collaborative Innovation Center, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
| | - Ning Liu
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China; (M.-M.T.); (S.L.); (C.-H.Z.); (X.-B.L.); (J.D.); (L.M.); (J.-M.Y.)
- Ningxia Special Traditional Medicine Modern Engineering Research Center and Collaborative Innovation Center, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
| |
Collapse
|
10
|
Ai X, Dong X, Guo Y, Yang P, Hou Y, Bai J, Zhang S, Wang X. Targeting P2 receptors in purinergic signaling: a new strategy of active ingredients in traditional Chinese herbals for diseases treatment. Purinergic Signal 2021; 17:229-240. [PMID: 33751327 PMCID: PMC8155138 DOI: 10.1007/s11302-021-09774-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/15/2021] [Indexed: 02/06/2023] Open
Abstract
Adenosine triphosphate (ATP) and its metabolites adenosine diphosphate, adenosine monophosphate, and adenosine in purinergic signaling pathway play important roles in many diseases. Activation of P2 receptors (P2R) channels and subsequent membrane depolarization can induce accumulation of extracellular ATP, and furtherly cause kinds of diseases, such as pain- and immune-related diseases, cardiac dysfunction, and tumorigenesis. Active ingredients of traditional Chinese herbals which exhibit superior pharmacological activities on diversified P2R channels have been considered as an alternative strategy of disease treatment. Experimental evidence of potential ingredients in Chinese herbs targeting P2R and their pharmacological activities were outlined in the study.
Collapse
Affiliation(s)
- Xiaopeng Ai
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Chengdu Integrated TCM & Western Medicine Hospital, Chengdu, China
| | - Xing Dong
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Guo
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Peng Yang
- Chengdu Fifth People's Hospital, Chengdu, China
| | - Ya Hou
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinrong Bai
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sanyin Zhang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Chengdu Integrated TCM & Western Medicine Hospital, Chengdu, China.
| | - Xiaobo Wang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
11
|
Rao PN, Mainkar O, Bansal N, Rakesh N, Haffey P, Urits I, Orhurhu V, Kaye AD, Urman RD, Gulati A, Jones M. Flavonoids in the Treatment of Neuropathic Pain. Curr Pain Headache Rep 2021; 25:43. [PMID: 33961144 DOI: 10.1007/s11916-021-00959-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2021] [Indexed: 01/25/2023]
Abstract
PURPOSE OF REVIEW Chronic pain continues to present a large burden to the US healthcare system. Neuropathic pain, a common class of chronic pain, remains particularly difficult to treat despite extensive research efforts. Current pharmacologic regimens exert limited efficacy and wide, potentially dangerous side effect profiles. This review provides a comprehensive, preclinical evaluation of the literature regarding the role of flavonoids in the treatment of neuropathic pain. RECENT FINDINGS Flavonoids are naturally occurring compounds, found in plants and various dietary sources, which may have potential benefit in neuropathic pain. Numerous animal-model studies have demonstrated this benefit, including reversal of hyperalgesia and allodynia. Flavonoids have also exhibited an anti-inflammatory effect relevant to neuropathic pain, as evidenced by the reduction in multiple pro-inflammatory mediators, such as TNF-α, NF-κB, IL-1β, and IL-6. Flavonoids represent a potentially new treatment modality for neuropathic pain in preclinical models, though human clinical evidence is yet to be explored at this time.
Collapse
Affiliation(s)
- Prashant N Rao
- Department of Anesthesiology, New York-Presbyterian, Weill Cornell Medical College, 525 East 68th Street, Box 124, New York, NY, 10065, USA
| | - Ojas Mainkar
- Department of Anesthesiology, New York-Presbyterian, Weill Cornell Medical College, 525 East 68th Street, Box 124, New York, NY, 10065, USA
| | - Nitin Bansal
- Department of Anesthesiology, New York-Presbyterian, Weill Cornell Medical College, 525 East 68th Street, Box 124, New York, NY, 10065, USA
| | - Neal Rakesh
- Department of Anesthesiology, New York-Presbyterian, Weill Cornell Medical College, 525 East 68th Street, Box 124, New York, NY, 10065, USA
| | - Paul Haffey
- Department of Anesthesiology, New York-Presbyterian, Weill Cornell Medical College, 525 East 68th Street, Box 124, New York, NY, 10065, USA
| | - Ivan Urits
- Southcoast Health, Southcoast Health Physicians Group, New Bedford, MA, USA
- Department of Anesthesiology, Louisiana State University Health Shreveport, Shreveport, LA, USA
| | - Vwaire Orhurhu
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Alan D Kaye
- Department of Anesthesiology, Louisiana State University Health Shreveport, Shreveport, LA, USA
| | - Richard D Urman
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Amitabh Gulati
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mark Jones
- Department of Anesthesiology, New York-Presbyterian, Weill Cornell Medical College, 525 East 68th Street, Box 124, New York, NY, 10065, USA.
| |
Collapse
|
12
|
Yu J, Du J, Fang J, Liu Y, Xiang X, Liang Y, Shao X, Fang J. The interaction between P2X3 and TRPV1 in the dorsal root ganglia of adult rats with different pathological pains. Mol Pain 2021; 17:17448069211011315. [PMID: 33906494 PMCID: PMC8108079 DOI: 10.1177/17448069211011315] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Peripheral inflammatory and neuropathic pain are closely related to the activation of purinergic receptor P2X ligand-gated ion channel 3 (P2X3) and transient receptor potential vanilloid 1 (TRPV1), but the interaction between P2X3 and TRPV1 in different types of pathological pain has rarely been reported. In this study, complete Freund’s adjuvant (CFA)-induced inflammatory pain and spared nerve injury (SNI)-induced neuropathic pain models were established in adult rats. The interactions between P2X3 and TRPV1 in the dorsal root ganglion were observed by pharmacological, co-immunoprecipitation, immunofluorescence and whole-cell patch-clamp recording assays. TRPV1 was shown to promote the induction of spontaneous pain caused by P2X3 in the SNI model, but the induction of spontaneous pain behaviour by TRPV1 was not completely dependent on P2X3 in vivo. In both the CFA and SNI models, the activation of peripheral P2X3 enhanced the effect of TRPV1 on spontaneous pain, while the inhibition of peripheral TRPV1 reduced the induction of spontaneous pain by P2X3 in the CFA model. TRPV1 and P2X3 had inhibitory effects on each other in the inflammatory pain model. During neuropathic pain, P2X3 facilitated the function of TRPV1, while TRPV1 had an inhibitory effect on P2X3. These results suggest that the mutual effects of P2X3 and TRPV1 differ in cases of inflammatory and neuropathic pain in rats.
Collapse
Affiliation(s)
- Jie Yu
- Department of Neurobiology and Acupuncture Research, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China.,Department of Acupuncture and Massage, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Junying Du
- Department of Neurobiology and Acupuncture Research, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Junfan Fang
- Department of Neurobiology and Acupuncture Research, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yingjun Liu
- Department of Neurobiology and Acupuncture Research, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xuaner Xiang
- Department of Neurobiology and Acupuncture Research, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yi Liang
- Department of Neurobiology and Acupuncture Research, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaomei Shao
- Department of Neurobiology and Acupuncture Research, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jianqiao Fang
- Department of Neurobiology and Acupuncture Research, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
13
|
Fei X, He X, Tai Z, Wang H, Qu S, Chen L, Hu Q, Fang J, Jiang Y. Electroacupuncture alleviates diabetic neuropathic pain in rats by suppressing P2X3 receptor expression in dorsal root ganglia. Purinergic Signal 2020; 16:491-502. [PMID: 33011961 PMCID: PMC7855163 DOI: 10.1007/s11302-020-09728-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/02/2020] [Indexed: 02/07/2023] Open
Abstract
Diabetic neuropathic pain (DNP) is a troublesome diabetes complication all over the world. P2X3 receptor (P2X3R), a purinergic receptor from dorsal root ganglion (DRG), has important roles in neuropathic pain pathology and nociceptive sensations. Here, we investigated the involvement of DRG P2X3R and the effect of 2 Hz electroacupuncture (EA) on DNP. We monitored the rats' body weight, fasting blood glucose level, paw withdrawal thresholds, and paw withdrawal latency, and evaluated P2X3R expression in DRG. We found that P2X3R expression is upregulated on DNP, while 2 Hz EA is analgesic against DNP and suppresses P2X3R expression in DRG. To evaluate P2X3R involvement in pain modulation, we then treated the animals with A317491, a P2X3R specific antagonist, or α β-me ATP, a P2X3R agonist. We found that A317491 alleviates hyperalgesia, while α β-me ATP blocks EA's analgesic effects. Our findings indicated that 2 Hz EA alleviates DNP, possibly by suppressing P2X3R upregulation in DRG.
Collapse
Affiliation(s)
- Xueyu Fei
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xiaofen He
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Zhaoxia Tai
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Hanzhi Wang
- Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Siying Qu
- Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Luhang Chen
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Qunqi Hu
- Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jianqiao Fang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Yongliang Jiang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
14
|
Effect of PKC/NF- κB on the Regulation of P2X 3 Receptor in Dorsal Root Ganglion in Rats with Sciatic Nerve Injury. Pain Res Manag 2020; 2020:7104392. [PMID: 33014214 PMCID: PMC7519985 DOI: 10.1155/2020/7104392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 09/01/2020] [Indexed: 11/17/2022]
Abstract
Background Protein kinase C (PKC), nuclear factor-kappa B p65 (NF-κB p65), and P2X3 receptor (P2X3R) play significant roles in the sensitization and transduction of nociceptive signals, which are considered as potential targets for the treatment of neuropathic pain. However, the mechanisms and relationships among them have not been clearly clarified. Methods 80 rats were randomized and divided into 10 groups (n = 8). Sciatic chronic constriction injury (CCI) rats were intrathecally administered with bisindolylmaleimide I (GF109203X), a PKC-selective antagonist once a day, or pyrrolidine dithiocarbamate (PDTC), an NF-κB inhibitor twice a day. Sham-operated rats were intrathecally administered with saline. Thermal withdrawal latency (TWL) and mechanical withdrawal threshold (MWT) were evaluated in all the groups before CCI operation (baseline) and on the 1st, 3rd, 7th, 10th, and 14th day after CCI operation. Protein levels of p-PKCα, p-NF-κB p65, and P2X3R were analyzed in the CCI ipsilateral L4-6 dorsal root ganglions (DRGs). Results Intrathecal injection of GF109203X or PDTC alleviated the TWL and MWT in the following 2 weeks after CCI surgery. The protein levels of p-PKCα, p-NF-κB p65, and P2X3R in the ipsilateral DRGs significantly increased after CCI operation, which could be partly reversed by intrathecal administration of GF109203X or PDTC. Conclusion The upregulation of p-PKCα, p-NF-κB p65, and P2X3R expression in the DRGs of CCI rats was involved in the occurrence and development of neuropathic pain. Phosphorylated PKCα and phosphorylated NF-κB p65 regulated with each other. Phosphorylated NF-κB p65 and PKCα have a mutual regulation relationship with P2X3R, respectively, while the specific regulatory mechanism needs further research.
Collapse
|
15
|
Adult Stress Promotes Purinergic Signaling to Induce Visceral Pain in Rats with Neonatal Maternal Deprivation. Neurosci Bull 2020; 36:1271-1280. [PMID: 32909219 PMCID: PMC7674540 DOI: 10.1007/s12264-020-00575-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/08/2020] [Indexed: 12/17/2022] Open
Abstract
Chronic visceral pain is one of the primary symptoms of patients with irritable bowel syndrome (IBS), which affects up to 15% of the population world-wide. The detailed mechanisms of visceral pain remain largely unclear. Our previous studies have shown that neonatal maternal deprivation (NMD) followed by adult multiple stress (AMS) advances the occurrence of visceral pain, likely due to enhanced norepinephrine (NE)-β2 adrenergic signaling. This study was designed to explore the roles of P2X3 receptors (P2X3Rs) in the chronic visceral pain induced by combined stress. Here, we showed that P2X3Rs were co-expressed in β2 adrenergic receptor (β2-AR)-positive dorsal root ganglion neurons and that NE significantly enhanced ATP-induced Ca2+ signals. NMD and AMS not only significantly increased the protein expression of P2X3Rs, but also greatly enhanced the ATP-evoked current density, number of action potentials, and intracellular Ca2+ concentration of colon-related DRG neurons. Intrathecal injection of the P2X3R inhibitor A317491 greatly attenuated the visceral pain and the ATP-induced Ca2+ signals in NMD and AMS rats. Furthermore, the β2-AR antagonist butoxamine significantly reversed the expression of P2X3Rs, the ATP-induced current density, and the number of action potentials of DRG neurons. Overall, our data demonstrate that NMD followed by AMS leads to P2X3R activation, which is most likely mediated by upregulation of β2 adrenergic signaling in primary sensory neurons, thus contributing to visceral hypersensitivity.
Collapse
|
16
|
Pulsed radiofrequency inhibits expression of P2X3 receptors and alleviates neuropathic pain induced by chronic constriction injury in rats. Chin Med J (Engl) 2020; 132:1706-1712. [PMID: 31261200 PMCID: PMC6759093 DOI: 10.1097/cm9.0000000000000302] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Background: Pulsed radiofrequency (PRF) is a minimally invasive interventional technique that provides a novel and effective treatment strategy for neuropathic pain (NP). PRF is advantageous because it does not damage nerves and avoids sensory loss after treatment. At present, animal studies have demonstrated that PRF is safe and effective for relieving the NP associated with sciatic nerve damage in rats with chronic constriction injury (CCI). However, the mechanism through which this effect occurs is unknown. An increasing body of evidence shows that the expression of the P2X ligand-gated ion channel 3 (P2X3) receptor is closely related to NP; this study was to investigate whether the expression of this receptor is involved in NP relief due to PRF. Methods: A total of 36 healthy adult male Sprague-Dawley (SD) rats were randomly divided into three groups: Sham group, CCI group, and PRF group. The right sciatic nerve was ligated in CCI group and PRF group to establish a CCI model; the right sciatic nerve was separated but not ligated in Sham group. On day 14 after the operation, PRF was administered to the ligated sciatic nerve in PRF group (42°C, 45 V, 2 min). A non-live electrode was placed at the exposed sciatic nerve for the rats in Sham and CCI groups. The hindpaw withdrawal threshold (HWT) and thermal withdrawal latency (TWL) were measured at the right hindpaw at different time points before and after PRF or sham therapy. On day 28 after treatment, the dorsal root ganglion (DRG) and spinal dorsal horn of the right L4–6 were harvested from each group to determine the mRNA and protein levels of the P2X3 receptor. Results: On day 28 after PRF treatment, the HWT (8.33 ± 0.67 g vs. 3.62 ± 0.48 g) and TWL (25.42 ± 1.90 s vs. 15.10 ± 1.71 s) were significantly higher in PRF group as compared to CCI group (P < 0.05). The mRNA expression of the P2X3 receptor in the DRG in PRF group was 23.7% lower than that in CCI group (P < 0.05), in the spinal dorsal horns in PRF group was 22.7% lower than that in CCI group (P < 0.05). The protein expression of the P2X3 receptor in the DRG in PRF group was 27.8% lower than that in CCI group (P < 0.05), in the spinal dorsal horns in PRF group was 35.6% lower than that in CCI group (P < 0.05). Conclusion: PRF possibly reduces NP in CCI rats by inhibiting the expression of the P2X3 receptor in the L4–6 DRG and spinal dorsal horns.
Collapse
|
17
|
de Melo Aquino B, da Silva Dos Santos DF, Jorge CO, Marques ACS, Teixeira JM, Parada CA, Oliveira-Fusaro MCG. P2X3 receptors contribute to muscle pain induced by static contraction by a mechanism dependent on neutrophil migration. Purinergic Signal 2019; 15:167-175. [PMID: 31115830 DOI: 10.1007/s11302-019-09659-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 05/13/2019] [Indexed: 01/02/2023] Open
Abstract
P2X3 receptors are involved with several pain conditions. Muscle pain induced by static contraction has an important socioeconomic impact. Here, we evaluated the involvement of P2X3 receptors on mechanical muscle hyperalgesia and neutrophil migration induced by static contraction in rats. Also, we evaluated whether static contraction would be able to increase muscle levels of TNF-α and IL-1β. Male Wistar rats were pretreated with the selective P2X3 receptor antagonist, A-317491, by intramuscular or intrathecal injection and the static contraction-induced mechanical muscle hyperalgesia was evaluated using the Randall-Selitto test. Neutrophil migration was evaluated by measurement of myeloperoxidase (MPO) kinetic-colorimetric assay and the cytokines TNF-α and IL-1β by enzyme-linked immunosorbent assay. Intramuscular or intrathecal pretreatment with A-317491 prevented static contraction-induced mechanical muscle hyperalgesia. In addition, A-317491 reduced static contraction-induced mechanical muscle hyperalgesia when administered 30 and 60 min of the beginning of static contraction, but not after 30 and 60 min of the end of static contraction. Intramuscular A-317491 also prevented static contraction-induced neutrophil migration. In a period of 24 h, static contraction did not increase muscle levels of TNF-α and IL-1β. These findings demonstrated that mechanical muscle hyperalgesia and neutrophil migration induced by static contraction are modulated by P2X3 receptors expressed on the gastrocnemius muscle and spinal cord dorsal horn. Also, we suggest that P2X3 receptors are important to the development but not to maintenance of muscle hyperalgesia. Therefore, P2X3 receptors can be pointed out as a target to musculoskeletal pain conditions induced by daily or work-related activities.
Collapse
Affiliation(s)
- Bruna de Melo Aquino
- Laboratory of Pain and Inflammation Research, School of Applied Sciences, State University of Campinas, Pedro Zaccaria 1300, Limeira, Sao Paulo, Brazil
| | - Diogo Francisco da Silva Dos Santos
- Laboratory of Pain and Inflammation Research, School of Applied Sciences, State University of Campinas, Pedro Zaccaria 1300, Limeira, Sao Paulo, Brazil
| | - Carolina Ocanha Jorge
- Laboratory of Pain and Inflammation Research, School of Applied Sciences, State University of Campinas, Pedro Zaccaria 1300, Limeira, Sao Paulo, Brazil
| | - Aline Carolina Salgado Marques
- Laboratory of Pain and Inflammation Research, School of Applied Sciences, State University of Campinas, Pedro Zaccaria 1300, Limeira, Sao Paulo, Brazil
| | - Juliana Maia Teixeira
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Monteiro Lobato 255, Campinas, Sao Paulo, Brazil
| | - Carlos Amilcar Parada
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Monteiro Lobato 255, Campinas, Sao Paulo, Brazil
| | | |
Collapse
|