1
|
Li D, Li Y, Pan W, Yang B, Fu C. Role of dynamin-related protein 1-dependent mitochondrial fission in drug-induced toxicity. Pharmacol Res 2024; 206:107250. [PMID: 38878917 DOI: 10.1016/j.phrs.2024.107250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 07/24/2024]
Abstract
Dynamin-related protein 1 (DRP1) is an essential controller of mitochondrial fission whose activity is tightly controlled to ensure balanced mitochondrial dynamics and maintain internal cellular homeostasis. Growing evidence suggests that DRP1-dependent mitochondrial fission plays a role in drug-induced toxicity (DIT). Therefore, understanding the molecular mechanisms underlying DIT and the precise regulation of DRP1 function will inform the development of potential therapeutic treatments for DIT. This review comprehensively summarizes the diverse DITs and their potential mechanism associated with DRP1-dependent mitochondrial fission and discusses in vivo and in vitro model studies of toxicity protection targeting DRP1.
Collapse
Affiliation(s)
- Dan Li
- The First Affiliated Hospital, Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; Institute of Pharmacy and Pharmacology, College of Basic Medical Science, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yueyan Li
- The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Wei Pan
- The First Affiliated Hospital, Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; Institute of Pharmacy and Pharmacology, College of Basic Medical Science, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Bo Yang
- The First Affiliated Hospital, Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; Institute of Pharmacy and Pharmacology, College of Basic Medical Science, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| | - Chengxiao Fu
- The First Affiliated Hospital, Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; Institute of Pharmacy and Pharmacology, College of Basic Medical Science, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; The First Affiliated Hospital, Hunan Provincial Clinical Medical Research Center for Drug Evaluation of Major Chronic Diseases,Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
2
|
Ebrahimi M, Dabbagh A, Madadi F. Propofol-induced hippocampal Neurotoxicity: A mitochondrial perspective. Brain Res 2024; 1831:148841. [PMID: 38428475 DOI: 10.1016/j.brainres.2024.148841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/25/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024]
Abstract
Propofol is a frequently used anesthetic. It can induce neurodegeneration and inhibit neurogenesis in the hippocampus. This effect may be temporary. It can, however, become permanent in vulnerable populations, such as the elderly, who are more susceptible to Alzheimer's disease, and neonates and children, whose brains are still developing and require neurogenesis. Current clinical practice strategies have failed to provide an effective solution to this problem. In addition, the molecular mechanism of this toxicity is not fully understood. Recent advances in molecular research have revealed that apoptosis, in close association with mitochondria, is a crucial mechanism through which propofol contributes to hippocampal toxicity. Preventing the toxicity of propofol on the hippocampus has shown promise in in-vivo, in-vitro, and to a lesser extent human studies. This study seeks to provide a comprehensive literature review of the effects of propofol toxicity on the hippocampus via mitochondria and to suggest translational suggestions based on these molecular results.
Collapse
Affiliation(s)
- Moein Ebrahimi
- Department of Anesthesiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Anesthesiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Dabbagh
- Department of Anesthesiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Anesthesiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Firoozeh Madadi
- Department of Anesthesiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Anesthesiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Zhang W, Liu Q, Wang J, Liu L. Anaesthesia and brain development: a review of propofol-induced neurotoxicity in pediatric populations. J Dev Orig Health Dis 2024; 15:e2. [PMID: 38450456 DOI: 10.1017/s2040174424000059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
With the advancement of medical technology, there are increasing opportunities for new-borns, infants, and pregnant women to be exposed to general anaesthesia. Propofol is commonly used for the induction of anaesthesia, maintenance of general intravenous anaesthesia and sedation of intensive-care children. Many previous studies have found that propofol has organ-protective effects, but growing evidence suggests that propofol interferes with brain development, affecting learning and cognitive function. The purpose of this review is to summarize the latest progress in understanding the neurotoxicity of propofol. Evidence from case studies and clinical studies suggests that propofol has neurotoxicity on the developing brain. We classify the findings on propofol-induced neurotoxicity based on its damage mechanism. We end by summarizing the current protective strategies against propofol neurotoxicity. Fully understanding the neurotoxic mechanisms of propofol can help us use it at a reasonable dosage, reduce its side effects, and increase patient safety.
Collapse
Affiliation(s)
- Weixin Zhang
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, China
| | - Qi Liu
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, China
| | - Junli Wang
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, China
| | - Li Liu
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
4
|
Zhao J, Wu S, Huang Y, Zhao Y, Liu H, Jiang Q, Shen Y, Chen M. Comparation of the effectiveness of conventional needle irrigation and photon-induced photoacoustic streaming with sodium hypochorite in the treatment of teeth with apical periodontitis: a randomized clinical trial. BMC Oral Health 2024; 24:293. [PMID: 38431616 PMCID: PMC10909256 DOI: 10.1186/s12903-024-04055-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/20/2024] [Indexed: 03/05/2024] Open
Abstract
Photon-initiated photoacoustic streaming (PIPS) with an Er: YAG laser has been introduced in root canal treatment to improve irrigation and facilitate the removal of bacteria in the root canal system. This study aimed to compare the antibacterial effectiveness of two different root canal irrigation techniques, conventional needle irrigation (CNI) and PIPS, using 1% sodium hypochlorite (NaOCl), in the treatment of teeth with apical periodontitis. Sixty patients with a total of sixty teeth affected by apical periodontitis were included in this study. The teeth underwent root canal therapy, and after mechanical instrumentation, they were randomly assigned to two groups (n = 30) based on the final irrigation protocol: CNI or PIPS with 1% NaOCl. Bacterial suspensions in the root canals were evaluated using Adenosine 5'-triphosphate (ATP) assay kit after mechanical instrumentation and after final irrigation. Then, a follow-up was conducted after 7 days. The results revealed that final irrigation significantly reduced ATP values in both the CNI and PIPS groups (P < 0.001). The ATP values after final irrigation was greater in the CNI group compared to the PIPS group (P < 0.001). After a 7-day follow-up, percussion tenderness and fistula were significantly resolved in both groups (P < 0.05). A multivariate linear regression model was used to identify the factors that influence post irrigation ATP values. The analysis demonstrated that pre-operative percussion tenderness (P = 0.006), the presence of a fistula (P < 0.001) and the method used in the final irrigation (P < 0.001) had a significant impact on the ATP value after final irrigation. These results indicate that employing PIPS with 1% NaOCl as the final irrigation protocol exhibited superior antibacterial effectiveness and has the potential to enhance clinical outcomes in the treatment of teeth afflicted with apical periodontitis.
Collapse
Affiliation(s)
- Jian Zhao
- Department of Endodontics, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medical, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510182, Guangdong, China
| | - Shengxuan Wu
- Department of Endodontics, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medical, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510182, Guangdong, China
| | - Yuting Huang
- Department of Endodontics, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medical, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510182, Guangdong, China
| | - Yuxuan Zhao
- Department of Endodontics, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medical, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510182, Guangdong, China
| | - He Liu
- Division of Endodontics, Faculty of Dentistry, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Qianzhou Jiang
- Department of Endodontics, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medical, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510182, Guangdong, China.
| | - Ya Shen
- Division of Endodontics, Faculty of Dentistry, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| | - Minle Chen
- Department of Stomatology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China.
| |
Collapse
|
5
|
Huan Y, Hao G, Shi Z, Liang Y, Dong Y, Quan H. The role of dynamin-related protein 1 in cerebral ischemia/hypoxia injury. Biomed Pharmacother 2023; 165:115247. [PMID: 37516018 DOI: 10.1016/j.biopha.2023.115247] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 07/31/2023] Open
Abstract
Mitochondrial dysfunction, especially in terms of mitochondrial dynamics, has been reported to be closely associated with neuronal outcomes and neurological impairment in cerebral ischemia/hypoxia injury. Dynamin-related protein 1 (Drp1) is a cytoplasmic GTPase that mediates mitochondrial fission and participates in neuronal cell death, calcium signaling, and oxidative stress. The neuroprotective role of Drp1 inhibition has been confirmed in several central nervous system disease models, demonstrating that targeting Drp1 may shed light on novel approaches for the treatment of cerebral ischemia/hypoxia injury. In this review, we aimed to highlight the roles of Drp1 in programmed cell death, oxidative stress, mitophagy, and mitochondrial function to provide a better understanding of mitochondrial disturbances in cerebral ischemia/hypoxia injury, and we also summarize the advances in novel chemical compounds targeting Drp1 to provide new insights into potential therapies for cerebral ischemia/hypoxia injury.
Collapse
Affiliation(s)
- Yu Huan
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Guangzhi Hao
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Zuolin Shi
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Yong Liang
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Yushu Dong
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China.
| | - Huilin Quan
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
6
|
Hu C, Wang B, Liu Z, Chen Q, Ishikawa M, Lin H, Lian Q, Li J, Li JV, Ma D. Sevoflurane but not propofol enhances ovarian cancer cell biology through regulating cellular metabolic and signaling mechanisms. Cell Biol Toxicol 2023; 39:1395-1411. [PMID: 36207479 PMCID: PMC10425485 DOI: 10.1007/s10565-022-09766-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/26/2022] [Indexed: 11/02/2022]
Abstract
Perioperative risk factors, including the choice of anesthetics, may influence ovarian cancer recurrence after surgery. Inhalational anesthetic sevoflurane and intravenous agent propofol might affect cancer cell metabolism and signaling, which, in turn, may influence the malignancy of ovarian cancer cells. The different effects between sevoflurane and propofol on ovarian cancer cell biology and underlying mechanisms were studied. Cultured ovarian cancer cells were exposed to 2.5% sevoflurane, 4 μg/mL propofol, or sham condition as the control for 2 h followed by 24-h recovery. Glucose transporter 1 (GLUT1), mitochondrial pyruvate carrier 1 (MPC1), glutamate dehydrogenase 1 (GLUD1), pigment epithelium-derived factor (PEDF), p-Erk1/2, and hypoxia-inducible factor 1-alpha (HIF-1α) expressions were determined with immunostaining and/or Western blot. Cultured media were collected for 1H-NMR spectroscopy-based metabolomics analysis. Principal component analysis (PCA) and orthogonal projections to latent structures discriminant analysis (OPLS-DA) were used to analyze metabolomics data. Sevoflurane increased the GLUT1, MPC1, GLUD1, p-Erk1/2, and HIF-1α expressions but decreased the PEDF expression relative to the controls. In contrast to sevoflurane, propofol decreased GLUT1, MPC1, GLUD1, p-Erk1/2, and HIF-1α but increased PEDF expression. Sevoflurane increased metabolite isopropanol and decreased glucose and glutamine energy substrates in the media, but the opposite changes were found after propofol treatment. Our data indicated that, unlike the pro-tumor property of sevoflurane, propofol negatively modulated PEDF/Erk/HIF-1α cellular signaling pathway and inhibited ovarian cancer metabolic efficiency and survival, and hence decreased malignancy. The translational value of this work warrants further study. • Sevoflurane promoted but propofol inhibited ovarian cancer cell biology. • Sevoflurane upregulated but propofol downregulated the GLUT1, MPC1, and GLUD1 expressions of ovarian cancer cells. • Sevoflurane enhanced but propofol inhibited ovarian cancer cellular glucose. metabolism and glutaminolysis. • Sevoflurane downregulated PEDF but upregulated the Erk pathway and HIF-1α, while propofol had the adverse effects on ovarian cancer cells.
Collapse
Affiliation(s)
- Cong Hu
- Zhejiang Province Key Lab of Anesthesiology, Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325027 Zhejiang China
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, SW10 9NH UK
| | - Bincheng Wang
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, SW10 9NH UK
| | - Zhigang Liu
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, SW7 2AZ UK
| | - Qiling Chen
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, SW7 2AZ UK
| | - Masashi Ishikawa
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, SW10 9NH UK
| | - Han Lin
- Zhejiang Province Key Lab of Anesthesiology, Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325027 Zhejiang China
| | - Qingquan Lian
- Zhejiang Province Key Lab of Anesthesiology, Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325027 Zhejiang China
| | - Jun Li
- Zhejiang Province Key Lab of Anesthesiology, Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325027 Zhejiang China
| | - Jia V. Li
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, SW7 2AZ UK
| | - Daqing Ma
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, SW10 9NH UK
| | - The ESA-IC Onco-Anaesthesiology Research Group
- Zhejiang Province Key Lab of Anesthesiology, Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325027 Zhejiang China
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, SW10 9NH UK
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, SW7 2AZ UK
| |
Collapse
|
7
|
Zhang J, Li Y. Propofol-Induced Developmental Neurotoxicity: From Mechanisms to Therapeutic Strategies. ACS Chem Neurosci 2023; 14:1017-1032. [PMID: 36854650 DOI: 10.1021/acschemneuro.2c00755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
Propofol is the most commonly used intravenous general anesthetic in clinical anesthesia, and it is also widely used in general anesthesia for pregnant women and infants. Some clinical and preclinical studies have found that propofol causes damage to the immature nervous system, which may lead to neurodevelopmental disorders and cognitive dysfunction in infants and children. However, its potential molecular mechanism has not been fully elucidated. Recent in vivo and in vitro studies have found that some exogenous drugs and interventions can effectively alleviate propofol-induced neurotoxicity. In this review, we focus on the relevant preclinical studies and summarize the latest findings on the potential mechanisms and therapeutic strategies of propofol-induced developmental neurotoxicity.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Anesthesiology, Affiliated Hospital of Qingdao University, Qingdao 266000, China.,Department of Medicine, Qingdao University, Qingdao 266000, China
| | - Yu Li
- Department of Anesthesiology, Affiliated Hospital of Qingdao University, Qingdao 266000, China
| |
Collapse
|
8
|
Chen J, Xiao F, Chen L, Zhou Z, Wei Y, Zhong Y, Li L, Xie Y. Role of ferroptosis in hypoxic preconditioning to reduce propofol neurotoxicity. Front Pharmacol 2023; 14:1121280. [PMID: 36817119 PMCID: PMC9932196 DOI: 10.3389/fphar.2023.1121280] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Background: An increasing number of studies have reported that neurotoxicity of propofol may cause long-term learning and cognitive dysfunction. Hypoxic preconditioning has been shown to have neuroprotective effects, reducing the neurotoxicity of propofol. Ferroptosis is a new form of death that is different from apoptosis, necrosis, autophagy and pyroptosis. However, it is unclear whether hypoxic preconditioning reduces propofol neurotoxicity associated with ferroptosis. Thus, we aimed to evaluate the effect of propofol on primary hippocampal neurons in vitro to investigate the neuroprotective mechanism of hypoxic preconditioning and the role of ferroptosis in the reduction of propofol neurotoxicity by hypoxic preconditioning. Methods: Primary hippocampal neurons were cultured for 8 days in vitro and pretreated with or without propofol, hypoxic preconditioning, agonists or inhibitors of ferroptosis. Cell counting kit-8, Calcein AM, Reactive oxygen species (ROS), Superoxide dismutase (SOD), Ferrous iron (Fe2+), Malondialdehyde (MDA) and Mitochondrial membrane potential assay kit with JC-1 (JC-1) assays were used to measure cell viability, Reactive oxygen species level, Superoxide dismutase content, Fe2+ level, MDA content, and mitochondrial membrane potential. Cell apoptosis was evaluated using flow cytometry analyses, and ferroptosis-related proteins were determined by Western blot analysis. Results: Propofol had neurotoxic effects that led to decreased hippocampal neuronal viability, reduced mitochondrial membrane potential, decreased SOD content, increased ROS level, increased Fe2+ level, increased MDA content, increased neuronal apoptosis, altered expression of ferroptosis-related proteins and activation of ferroptosis. However, hypoxic preconditioning reversed these effects, inhibited ferroptosis caused by propofol and reduced the neurotoxicity of propofol. Conclusion: The neurotoxicity of propofol in developing rats may be related to ferroptosis. Propofol may induce neurotoxicity by activating ferroptosis, while hypoxic preconditioning may reduce the neurotoxicity of propofol by inhibiting ferroptosis.
Collapse
Affiliation(s)
- Jing Chen
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Fei Xiao
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lifei Chen
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhan Zhou
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yi Wei
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yu Zhong
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Li Li
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China,*Correspondence: Yubo Xie, ; Li Li,
| | - Yubo Xie
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China,Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, China,*Correspondence: Yubo Xie, ; Li Li,
| |
Collapse
|
9
|
Xiao F, Qin Y, Chen J, Li C, Qin Y, Wei Y, Xie Y. The propofol-induced mitochondrial damage in fetal rat hippocampal neurons via the AMPK/P53 signaling pathway. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1106. [PMID: 36388781 PMCID: PMC9652519 DOI: 10.21037/atm-22-4374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/26/2022] [Indexed: 08/04/2023]
Abstract
BACKGROUND Propofol is a commonly used general anesthetic that may cause neuronal damage, especially in infants and young children. Mitochondria play an essential role in cellular metabolism and signal transduction. Propofol may cause neurotoxicity by inhibiting mitochondrial function, but the mechanism by this which occurs remains unclear. METHODS First, the primary rat hippocampal neurons were cultured for 7 days in vitro. The neurons were incubated with propofol at different times or different concentrations, and then the adenosine triphosphate (ATP), reactive oxygen species (ROS), mitochondrial membrane potential, and apoptosis-related proteins were analyzed. Based on the results of the 1st phase, the neurons were then incubated with propofol (100 µM) or corresponding reagents, including 5-aminoimidazole-4-carboxamide ribonucleotide, tenovin-1, and pifithrin-α. Subsequently, the ATP, ROS, mitochondrial membrane potential, phospho-adenosine 5'-monophosphate-activated protein kinase (p-AMPK), protein 53 (p53), and related apoptosis proteins were analyzed. RESULTS Higher propofol concentrations or longer incubation times were associated with more pronounced decreases in ATP, B-cell lymphoma 2 (Bcl-2), and mitochondrial membrane potential, and more pronounced increases in ROS, BCL2-associated X (Bax), Cytochrome C (CytC), and cleaved caspase-9. Additionally, after incubation with propofol (100 µM), neuronal Bcl-2, p-AMPK, ATP, and mitochondrial membrane potential were downregulated, and ROS, p53, CytC, Bax, cleaved caspase-3, and cleaved caspase-9 were upregulated. AMPK activators or p53 inhibitors reversed the above-mentioned changes. CONCLUSIONS Propofol (100 µM)-induced mitochondrial damage in fetal rat hippocampal neurons may be mediated by the AMPK/p53 signaling pathway. Propofol (100 µM) was shown to inhibit the activity of AMPK in neurons, upregulate the expression of p53, and then activate the mitochondrial-dependent apoptosis pathway, which may lead to neuronal apoptosis.
Collapse
Affiliation(s)
- Fei Xiao
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yi Qin
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jing Chen
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chunlai Li
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yinying Qin
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yi Wei
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yubo Xie
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
10
|
Effect of preconditioning on propofol-induced neurotoxicity during the developmental period. PLoS One 2022; 17:e0273219. [PMID: 35984772 PMCID: PMC9390907 DOI: 10.1371/journal.pone.0273219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/04/2022] [Indexed: 11/19/2022] Open
Abstract
At therapeutic concentrations, propofol (PPF), an anesthetic agent, significantly elevates intracellular calcium concentration ([Ca2 +]i) and induces neural death during the developmental period. Preconditioning enables specialized tissues to tolerate major insults better compared with tissues that have already been exposed to sublethal insults. Here, we investigated whether the neurotoxicity induced by clinical concentrations of PPF could be alleviated by prior exposure to sublethal amounts of PPF. Cortical neurons from embryonic day (E) 17 Wistar rat fetuses were cultured in vitro, and on day in vitro (DIV) 2, the cells were preconditioned by exposure to PPF (PPF-PC) at either 100 nM or 1 μM for 24 h. For morphological observations, cells were exposed to clinical concentrations of PPF (10 μM or 100 μM) for 24 h and the survival ratio (SR) was calculated. Calcium imaging revealed significant PPF-induced [Ca2+]i elevation in cells on DIV 4 regardless of PPF-PC. Additionally, PPF-PC did not alleviate neural cell death induced by PPF under any condition. Our findings indicate that PPF-PC does not alleviate PPF-induced neurotoxicity during the developmental period.
Collapse
|
11
|
Li G, Liu J, Guan Y, Ji X. The role of hypoxia in stem cell regulation of the central nervous system: From embryonic development to adult proliferation. CNS Neurosci Ther 2021; 27:1446-1457. [PMID: 34817133 PMCID: PMC8611781 DOI: 10.1111/cns.13754] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/28/2021] [Accepted: 10/03/2021] [Indexed: 12/12/2022] Open
Abstract
Hypoxia is involved in the regulation of various cell functions in the body, including the regulation of stem cells. The hypoxic microenvironment is indispensable from embryonic development to the regeneration and repair of adult cells. In addition to embryonic stem cells, which need to maintain their self-renewal properties and pluripotency in a hypoxic environment, adult stem cells, including neural stem cells (NSCs), also exist in a hypoxic microenvironment. The subventricular zone (SVZ) and hippocampal dentate gyrus (DG) are the main sites of adult neurogenesis in the brain. Hypoxia can promote the proliferation, migration, and maturation of NSCs in these regions. Also, because most neurons in the brain are non-regenerative, stem cell transplantation is considered as a promising strategy for treating central nervous system (CNS) diseases. Hypoxic treatment also increases the effectiveness of stem cell therapy. In this review, we firstly describe the role of hypoxia in different stem cells, such as embryonic stem cells, NSCs, and induced pluripotent stem cells, and discuss the role of hypoxia-treated stem cells in CNS diseases treatment. Furthermore, we highlight the role and mechanisms of hypoxia in regulating adult neurogenesis in the SVZ and DG and adult proliferation of other cells in the CNS.
Collapse
Affiliation(s)
- Gaifen Li
- Laboratory of Brain DisordersMinistry of Science and TechnologyCollaborative Innovation Center for Brain DisordersBeijing Institute of Brain DisordersCapital Medical UniversityBeijingChina
- Department of NeurosurgeryXuanwu HospitalCapital Medical UniversityBeijingChina
| | - Jia Liu
- Laboratory of Brain DisordersMinistry of Science and TechnologyCollaborative Innovation Center for Brain DisordersBeijing Institute of Brain DisordersCapital Medical UniversityBeijingChina
| | - Yuying Guan
- Laboratory of Brain DisordersMinistry of Science and TechnologyCollaborative Innovation Center for Brain DisordersBeijing Institute of Brain DisordersCapital Medical UniversityBeijingChina
- Department of NeurosurgeryXuanwu HospitalCapital Medical UniversityBeijingChina
| | - Xunming Ji
- Laboratory of Brain DisordersMinistry of Science and TechnologyCollaborative Innovation Center for Brain DisordersBeijing Institute of Brain DisordersCapital Medical UniversityBeijingChina
- Department of NeurosurgeryXuanwu HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
12
|
Wen C, Yan L, Kong Y, Zhao J, Li Y, Jiang Q. The antibacterial efficacy of photon-initiated photoacoustic streaming in root canals with different diameters or tapers. BMC Oral Health 2021; 21:542. [PMID: 34674671 PMCID: PMC8532288 DOI: 10.1186/s12903-021-01903-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/06/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND In recent years, the concept of minimally invasive endodontics has been proposed, which could be described as preventing or treating diseases by preserving more dental tissue and creating minimal damage. In the process of root canal preparation, it was recommended to use instruments with a smaller taper to preserve more tooth tissue and improve the preservation rate of the affected teeth. Photon-induced photoacoustic streaming (PIPS) was a new type of laser-activated irrigation technology, which was now widely used in endodontic treatment. The purpose of this article was to evaluate the bactericidal effect of PIPS with NaOCl in root canals with different widths or tapers. METHODS Twenty-three maxillary first molars with three independent root canals were included in this study. The mesiobuccal (MB), distobuccal (DB), and palatal (P) root canals were prepared at sizes of #10/.02, #25/.02, and #25/.06, respectively. After being incubated with a bacterial suspension for 4 weeks, the specimen were irrigated with 2% NaOCl activated by conventional needle irrigation (CNI) (n = 10) or PIPS (n = 10). Three specimen were not treated (control group). Before and after irrigation, the presence of bacteria was assessed with an adenosine 5'-triphosphate (ATP) assay kit and biofilms were assessed using confocal laser scanning microscopy and scanning electron microscopy. RESULTS In specimen prepared using PIPS irrigation, the ATP was reduced by more than 98%. When the root canal taper was 0.02, the size #25 root canals had a higher percentage of dead bacteria than the size #10 root canals in all regions (P < 0.05) in the PIPS group. When the root canal width was #25, the 0.02 taper group had a higher percentage of dead bacteria than the 0.06 taper group in the apical region (P < 0.05), except coronal and middle regions (P > 0.05). PIPS irrigation results in a greater percentage of dead bacteria and reduction of ATP in size #10/.02 root canals than CNI in size #25/.06 root canals in three regions (P < 0.05). CONCLUSION Increasing the width from #10 to #25 improves the bactericidal effect of PIPS in the root canal. Increasing the taper of the root canal from 0.02 to 0.06 at size #25 did not affect the bactericidal effects of PIPS. PIPS resulted in more dead bacteria in specimen with smaller tapers and root canal widths than CNI. PIPS can be used to clean the smear layer in the coronal region and open the dentin tubules. CLINICAL SIGNIFICANCE Activation of irrigants with PIPS brought about significant bacterial reduction smaller tapers and width root canals compared to CNI, which was beneficial to prevent excessive loss of tooth tissue and conserve the structural integrity of teeth.
Collapse
Affiliation(s)
- Cheng Wen
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medical, Guangzhou, 510182, Guangdong, China
| | - Liang Yan
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medical, Guangzhou, 510182, Guangdong, China
| | - Yuanyuan Kong
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medical, Guangzhou, 510182, Guangdong, China
| | - Jian Zhao
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medical, Guangzhou, 510182, Guangdong, China
| | - Yang Li
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medical, Guangzhou, 510182, Guangdong, China
| | - Qianzhou Jiang
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medical, Guangzhou, 510182, Guangdong, China.
| |
Collapse
|
13
|
Wen C, Kong Y, Zhao J, Li Y, Shen Y, Yang X, Jiang Q. Effectiveness of photon-initiated photoacoustic streaming in root canal models with different diameters or tapers. BMC Oral Health 2021; 21:307. [PMID: 34130673 PMCID: PMC8207708 DOI: 10.1186/s12903-021-01671-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 06/02/2021] [Indexed: 11/10/2022] Open
Abstract
Background This study aimed to compare the use of photon-initiated photoacoustic streaming (PIPS) and conventional needle irrigation (CNI) in conjunction with different concentrations of sodium hypochlorite (NaOCl) to remove Enterococcus faecalis (E. faecalis) suspended bacteria and biofilms from root canal systems with different diameters or tapers. Methods Artificial root canal samples (n = 480) were randomly divided into three groups (n = 160/group). The canals were prepared to fit file sizes #10/.02, #25/.02, or #25/.06. The size #10/.02 group was incubated for seven days. The size #25/.02 or #25/.06 group was incubated for 2 days. A stable biological model of E. faecalis infection was established. The root canals were washed with distilled water or with 1%, 2%, or 5.25% NaOCl combined with CNI or PIPS. Bacterial suspensions and biofilms were assessed using an ATP assay kit and fluorescence microscopy. Image-Pro Plus was used to analyse the average fluorescence intensity to determine the most suitable root canal irrigation solution. Results In the CNI and PIPS groups, the ATP value of the 5.25% NaOCl subgroup was the lowest, followed by that of the 2% and 1% NaOCl subgroups. The ATP value of the distilled water subgroup was the highest (P < 0.05). When the root canal taper was 0.02, the ATP value of the #10/.02 + PIPS group was significantly lower than that of the #25/.02 + CNI group (P < 0.05). The average fluorescence intensity of the #10/.02 + PIPS group was lower than that of the #25/.02 + CNI group (P < 0.05). When the apical diameter was #25, the ATP value of the 0.02 taper in the PIPS group was lower than that of the 0.06 taper in the CNI group (P < 0.05), and the average fluorescence intensity of the 0.02 taper + PIPS group was lower than that of the 0.06 taper + CNI group (P < 0.05). PIPS combined with 2% and 5.25% NaOCl effectively improved the long-term antibacterial effect after irrigation and re-culture for 6 h. Conclusions Compared with CNI, PIPS has greater ability to remove bacteria in root canals with a small preparation diameter and a small taper. PIPS with 2% and 5.25% NaOCl exhibited superior antibacterial and bacteriostatic effects.
Collapse
Affiliation(s)
- Cheng Wen
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medical, Guangzhou, 510182, Guangdong, China
| | - Yuanyuan Kong
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medical, Guangzhou, 510182, Guangdong, China
| | - Jian Zhao
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medical, Guangzhou, 510182, Guangdong, China
| | - Yang Li
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medical, Guangzhou, 510182, Guangdong, China
| | - Ya Shen
- Division of Endodontics, Faculty of Dentistry, The University of British Columbia (UBC), 2199 Wesbrook Mall, Vancouver, V6T 1Z3, Canada
| | - Xuechao Yang
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medical, Guangzhou, 510182, Guangdong, China
| | - Qianzhou Jiang
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medical, Guangzhou, 510182, Guangdong, China.
| |
Collapse
|
14
|
Chen Y, Guo S, Tang Y, Mou C, Hu X, Shao F, Yan W, Wu Q. Mitochondrial Fusion and Fission in Neuronal Death Induced by Cerebral Ischemia-Reperfusion and Its Clinical Application: A Mini-Review. Med Sci Monit 2020; 26:e928651. [PMID: 33156817 PMCID: PMC7654336 DOI: 10.12659/msm.928651] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mitochondria are highly dynamic organelles which are joined by mitochondrial fusion and divided by mitochondrial fission. The balance of mitochondrial fusion and fission plays a critical role in maintaining the normal function of neurons, of which the processes are both mediated by several proteins activated by external stimulation. Cerebral ischemia-reperfusion (I/R) injury can disrupt the balance of mitochondrial fusion and fission through regulating the expression and post-translation modification of fusion- and fission-related proteins, thereby destroying homeostasis of the intracellular environment and causing neuronal death. Furthermore, human intervention in fusion- and fission-related proteins can influence the function of neurons and change the outcomes of cerebral I/R injury. In recent years, researchers have found that mitochondrial dysfunction was one of the main factors involved in I/R, and mitochondria is an attractive target in I/R neuroprotection. Therefore, mitochondrial-targeted therapy of the nervous system for I/R gradually started from basic study to clinical application. In the present review, we highlight recent progress in mitochondria fusion and fission in neuronal death induced by cerebral I/R to help understanding the regulatory factors and signaling networks of aberrant mitochondrial fusion and fission contributing to neuronal death during I/R, as well as the potential neuroprotective therapeutics targeting mitochondrial dynamics, which may help clinical treatment and development of relevant dugs.
Collapse
Affiliation(s)
- Yike Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| | - Songxue Guo
- Department of Plastic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| | - Yajuan Tang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| | - Chaohui Mou
- Department of Neurosurgery, Taizhou First People's Hospital, Taizhou, Zhejiang, China (mainland)
| | - Xinben Hu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| | - Fangjie Shao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| | - Wei Yan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| | - Qun Wu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| |
Collapse
|