1
|
Saran A, Marotta JJ. Implicit motor imagery: examining motor vs. visual strategies in laterality judgments among older adults. Front Psychol 2024; 15:1445152. [PMID: 39417018 PMCID: PMC11481337 DOI: 10.3389/fpsyg.2024.1445152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/10/2024] [Indexed: 10/19/2024] Open
Abstract
Cognitive states like motor imagery (MI; simulating actions without overtly executing them) share a close correspondence with action execution, and hence, activate the motor system in a similar way. However, as people age, reduction in specific cognitive abilities like motor action simulation and action planning/prediction are commonly experienced. The present study examined the effect of visual-spatial processing for both typical and challenging upper-limb movements using the Hand Laterality Judgment Task (HLJT), in which participants were asked to judge whether the depicted hand is a left or right hand. Several main findings emerged: (1) Compared to younger adults, older adults exhibited slower responses and greater error rates in both Experiment 1 and 2. This suggests that visual-spatial transformations undergo alterations with age; (2) Older adults displayed higher error rates with realistic hands at both back and palm viewpoints of the hands compared to younger adults. However, this pattern did not hold for response times; (3) Participants responded faster to medial hand orientations (i.e., closer to the midline of the body) compared to lateral hand orientations (i.e., farther from the midline of the body) for palm-views in both Experiment 1 and Experiment 2. Given that we observed better performance on medial orientations compared to lateral orientations, this suggests that participants follow the same motor rules and biomechanical constraints of the represented movement. Novel information is provided about differences in individuals' use of strategies (visual vs. motor imagery) to solve the HLJT for both mannequin and real hands.
Collapse
Affiliation(s)
- Aneet Saran
- Faculty of Arts, Department of Psychology, University of Manitoba, Winnipeg, MB, Canada
| | | |
Collapse
|
2
|
Muller CO, Metais A, Boublay N, Breuil C, Deligault S, Di Rienzo F, Guillot A, Collet C, Krolak-Salmon P, Saimpont A. Anodal transcranial direct current stimulation does not enhance the effects of motor imagery training of a sequential finger-tapping task in young adults. J Sports Sci 2024:1-12. [PMID: 38574326 DOI: 10.1080/02640414.2024.2328418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 03/01/2024] [Indexed: 04/06/2024]
Abstract
When applied over the primary motor cortex (M1), anodal transcranial direct current stimulation (a-tDCS) could enhance the effects of a single motor imagery training (MIt) session on the learning of a sequential finger-tapping task (SFTT). This study aimed to investigate the effect of a-tDCS on the learning of an SFTT during multiple MIt sessions. Two groups of 16 healthy young adults participated in three consecutive MIt sessions over 3 days, followed by a retention test 1 week later. They received active or sham a-tDCS during a MIt session in which they mentally rehearsed an eight-item complex finger sequence with their left hand. Before and after each session, and during the retention test, they physically repeated the sequence as quickly and accurately as possible. Both groups (i) improved their performance during the first two sessions, showing online learning; (ii) stabilised the level they reached during all training sessions, reflecting offline consolidation; and (iii) maintained their performance level one week later, showing retention. However, no significant difference was found between the groups, regardless of the MSL stage. These results emphasise the importance of performing several MIt sessions to maximise performance gains, but they do not support the additional effects of a-tDCS.
Collapse
Affiliation(s)
- Camille O Muller
- Universite Claude Bernard Lyon 1, LIBM, Inter-university Laboratory of Human Movement Sciences, UR 7424, F-69622 Villeurbanne, France
- EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Alès, Montpellier, France
| | - Angèle Metais
- Universite Claude Bernard Lyon 1, LIBM, Inter-university Laboratory of Human Movement Sciences, UR 7424, F-69622 Villeurbanne, France
| | - Nawale Boublay
- Centre de Recherche Clinique Vieillissement Cerveau - Fragilité, Hospices Civils de Lyon, Lyon, France
| | - Caroline Breuil
- Universite Claude Bernard Lyon 1, LIBM, Inter-university Laboratory of Human Movement Sciences, UR 7424, F-69622 Villeurbanne, France
| | - Sébastien Deligault
- Centre d'Etude et de Recherche Multimodal et Pluridisciplinaire en Imagerie du Vivant (CERMEP), Département de MagnétoEncéphalographie, Bron, France
| | - Franck Di Rienzo
- Universite Claude Bernard Lyon 1, LIBM, Inter-university Laboratory of Human Movement Sciences, UR 7424, F-69622 Villeurbanne, France
| | - Aymeric Guillot
- Universite Claude Bernard Lyon 1, LIBM, Inter-university Laboratory of Human Movement Sciences, UR 7424, F-69622 Villeurbanne, France
| | - Christian Collet
- Universite Claude Bernard Lyon 1, LIBM, Inter-university Laboratory of Human Movement Sciences, UR 7424, F-69622 Villeurbanne, France
| | - Pierre Krolak-Salmon
- Centre de Recherche Clinique Vieillissement Cerveau - Fragilité, Hospices Civils de Lyon, Lyon, France
| | - Arnaud Saimpont
- Universite Claude Bernard Lyon 1, LIBM, Inter-university Laboratory of Human Movement Sciences, UR 7424, F-69622 Villeurbanne, France
| |
Collapse
|
3
|
Mollà-Casanova S, Page Á, López-Pascual J, Inglés M, Sempere-Rubio N, Aguilar-Rodríguez M, Muñoz-Gómez E, Serra-Añó P. Effects of mirror neuron activation therapies on functionality in older adults: Systematic review and meta-analysis. Geriatr Nurs 2024; 56:115-123. [PMID: 38346365 DOI: 10.1016/j.gerinurse.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/23/2024] [Accepted: 02/01/2024] [Indexed: 04/05/2024]
Abstract
PURPOSE To identify the effects of mirror neuron activation (MNAT) combined or not with physical exercise (PE) in healthy older adults, on functionality, balance, gait velocity and risk of falls. METHODS A systematic electronic search was performed in PubMed/MEDLINE, Cochrane, and Embase databases. RESULTS Thirteen randomized controlled trials were included in the qualitative analysis, and eleven in the quantitative analysis. All studies showed fair to high quality and the most frequent high-risk bias was "Blinding of participants and personnel". Compared to the control condition, higher improvement was shown in older people who received MNAT, on functionality (1.57 [0.57, 2.62], balance (1.95 [1.32, 2.572]), and gait velocity (1.20 [0.30, 2.11]). Compared to PE, MNAT combined with PE does not improve functionality. More studies are needed to assess MNAT effectiveness in the rest of the outcomes. CONCLUSIONS Neuron system activation through MNAT improves relevant abilities in older adults, with better results when including functional activities. However, the beneficial effects on these variables of adding MNAT to a PE program are controversial.
Collapse
Affiliation(s)
- Sara Mollà-Casanova
- UBIC research group, Department of Physiotherapy, Faculty of Physiotherapy, University of Valencia, Valencia, Spain
| | - Álvaro Page
- Instituto Universitario de Ingeniería Mecánica y Biomecánica, Universitat Politècnica de València, Camino de Vera s/n E46022, Valencia, Spain
| | - Juan López-Pascual
- Instituto de Biomecánica de Valencia, Universitat Politècnica de València, Camino de Vera s/n E46022, Valencia, Spain
| | - Marta Inglés
- UBIC research group, Department of Physiotherapy, Faculty of Physiotherapy, University of Valencia, Valencia, Spain
| | - Núria Sempere-Rubio
- UBIC research group, Department of Physiotherapy, Faculty of Physiotherapy, University of Valencia, Valencia, Spain
| | - Marta Aguilar-Rodríguez
- UBIC research group, Department of Physiotherapy, Faculty of Physiotherapy, University of Valencia, Valencia, Spain
| | - Elena Muñoz-Gómez
- UBIC research group, Department of Physiotherapy, Faculty of Physiotherapy, University of Valencia, Valencia, Spain.
| | - Pilar Serra-Añó
- UBIC research group, Department of Physiotherapy, Faculty of Physiotherapy, University of Valencia, Valencia, Spain
| |
Collapse
|
4
|
Seebacher B, Reindl M, Kahraman T. Factors and strategies affecting motor imagery ability in people with multiple sclerosis: a systematic review. Physiotherapy 2023; 118:64-78. [PMID: 36184292 DOI: 10.1016/j.physio.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 07/03/2022] [Accepted: 09/13/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND Although growing evidence has shown beneficial effects of motor imagery (MI) training in different populations including people with multiple sclerosis (pwMS), not all patients with neurological diseases may benefit from MI. OBJECTIVES To investigate factors and strategies affecting and enhancing MI ability in pwMS. DATA SOURCES MEDLINE/PubMed, PsycINFO, Cochrane Library, Scopus, EMBASE, EBSCOhost, Web of Science and REHABDATA databases, clinical trials registries, dissertation repositories, study bibliographies and internet search engines were searched through August 2021. STUDY SELECTION Any study type but single case studies investigating factors or strategies contributing to MI ability in pwMS. STUDY APPRAISAL AND SYNTHESIS METHODS Risk of bias (RoB) was assessed using the Joanna Briggs Institute Checklist for Case-Control and Analytical Cross-Sectional Studies and Cochrane RoB-2.0 tool for randomised trials. A qualitative synthesis was performed summarising main results. RESULTS Eight databases, 4 trial registries, 9 dissertation repositories, and 1 internet search engine were searched. Fourteen studies including 366 pwMS and 236 healthy controls were included. Most frequently, cognitive impairment was reported as a negative factor influencing MI ability in pwMS. Other negative factors were cognitive fatigue and disability. Inconsistent evidence was found on the contribution of MS phenotype, anxiety, and depression. Using a theory-based MI framework and familiarisation to MI and external cueing may enhance MI ability. LIMITATIONS Eligible studies were highly heterogeneous. CONCLUSION AND IMPLICATIONS OF KEY FINDINGS Cognitive impairment, cognitive fatigue and disability negatively influence MI ability in pwMS. Visual and/or auditory cueing of MI are strategies for facilitating MI ability. SYSTEMATIC REVIEW REGISTRATION NUMBER PROSPERO CRD42020173081 CONTRIBUTION OF THE PAPER.
Collapse
Affiliation(s)
- Barbara Seebacher
- Clinical Department of Neurology, Medical University of Innsbruck, Austria; Department of Rehabilitation Research, Rehab Centre Münster, Austria.
| | - Markus Reindl
- Clinical Department of Neurology, Medical University of Innsbruck, Austria
| | - Turhan Kahraman
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Izmir Katip Celebi University, Turkey
| |
Collapse
|
5
|
Hilt PM, Bertrand MF, Féasson L, Lebon F, Mourey F, Ruffino C, Rozand V. Motor Imagery Training Is Beneficial for Motor Memory of Upper and Lower Limb Tasks in Very Old Adults. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3541. [PMID: 36834234 PMCID: PMC9963345 DOI: 10.3390/ijerph20043541] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Human aging is associated with a decline in the capacity to memorize recently acquired motor skills. Motor imagery training is a beneficial method to compensate for this deterioration in old adults. It is not yet known whether these beneficial effects are maintained in very old adults (>80 years), who are more affected by the degeneration processes. The aim of this study was to evaluate the effectiveness of a mental training session of motor imagery on the memorization of new motor skills acquired through physical practice in very old adults. Thus, 30 very old adults performed 3 actual trials of a manual dexterity task (session 1) or a sequential footstep task (session 2) as fast as they could before and after a 20 min motor imagery training (mental-training group) or watching a documentary for 20 min (control group). Performance was improved after three actual trials for both tasks and both groups. For the control group, performance decreased in the manual dexterity task after the 20 min break and remained stable in the sequential footstep task. For the mental-training group, performance was maintained in the manual dexterity task after the 20 min motor imagery training and increased in the sequential footstep task. These results extended the benefits of motor imagery training to the very old population, showing that even a short motor imagery training session improved their performance and favored the motor memory process. These results confirmed that motor imagery training is an effective method to complement traditional rehabilitation protocols.
Collapse
Affiliation(s)
- Pauline M. Hilt
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21000 Dijon, France
| | - Mathilde F. Bertrand
- Université Jean Monnet Saint-Etienne, Lyon 1, Université Savoie Mont-Blanc, Laboratoire Interuniversitaire de Biologie de la Motricité, F-42023 Saint-Etienne, France
| | - Léonard Féasson
- Université Jean Monnet Saint-Etienne, Lyon 1, Université Savoie Mont-Blanc, Laboratoire Interuniversitaire de Biologie de la Motricité, F-42023 Saint-Etienne, France
- Université Jean Monnet Saint-Etienne, CHU Saint-Etienne, Myology Unit, Referent Center for Neuromuscular Diseases, Laboratoire Interuniversitaire de Biologie de la Motricité, F-42023 Saint-Etienne, France
| | - Florent Lebon
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21000 Dijon, France
- Institut Universitaire de France (IUF), F-75005 Paris, France
| | - France Mourey
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21000 Dijon, France
| | - Célia Ruffino
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21000 Dijon, France
- Laboratory Culture Sport Health and Society (C3S−UR 4660), Sport and Performance Department, University of Bourgogne Franche-Comté, F-25000 Besançon, France
| | - Vianney Rozand
- Université Jean Monnet Saint-Etienne, Lyon 1, Université Savoie Mont-Blanc, Laboratoire Interuniversitaire de Biologie de la Motricité, F-42023 Saint-Etienne, France
| |
Collapse
|
6
|
Liu XJ, Ge S, Cordova A, Yaghi Z, Jiang BY, Yue GH, Yao WX. Elderly may benefit more from motor imagery training in gaining muscle strength than young adults: A systematic review and meta-analysis. Front Psychol 2023; 13:1052826. [PMID: 36687842 PMCID: PMC9845905 DOI: 10.3389/fpsyg.2022.1052826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/05/2022] [Indexed: 01/05/2023] Open
Abstract
Objective The current review was aimed to determine the effectiveness of mental imagery training (MIT) on the enhancement of maximum voluntary muscle contraction (MVC) force for healthy young and old adults. Data sources Six electronic databases were searched from July 2021 to March 2022. Search terms included: "motor imagery training," "motor imagery practice," "mental practice," "mental training," "movement imagery," "cognitive training," "strength," "force," "muscle strength," "performance," "enhancement," "improvement," "development," and "healthy adults." Study selection and data extraction Randomized controlled trials of MIT in enhancing muscle strength with healthy adults were selected. The decision on whether a study met the inclusion criteria of the review was made by two reviewers independently. Any disagreements between the two reviewers were first resolved by discussion between the two reviewers. If consensus could not be reached, then it would be arbitrated by a third reviewer. Data synthesis Twenty-five studies including both internal MIT and external MIT were included in meta-analysis for determining the efficacy of MIT on enhancing muscle strength and 22 internal MIT were used for subgroup analysis for examining dose-response relationship of MIT on MVC. Results MIT demonstrated significant benefit on enhancing muscle strength when compared with no exercise, Effect Size (ES), 1.10, 95% confidence interval (CI), 0.89-1.30, favoring MIT, but was inferior to physical training (PT), ES, 0.38, 95% CI, 0.15-0.62, favoring PT. Subgroup analysis demonstrated that MIT was more effective for older adults (ES, 2.17, 95% CI, 1.57-2.76) than young adults (ES, 0.95, 95% CI, 0.74-1.17), p = 0.0002, and for small finger muscles (ES, 1.64, 95% CI, 1.06-2.22) than large upper extremity muscles (ES, 0.86, 95% CI, 0.56-1.16), p = 0.02. No significant difference was found in the comparison of small finger muscles and large lower extremity muscles, p = 0.19 although the ES of the former (ES, 1.64, 95% CI, 1.06-2.22) was greater than that of the later (ES, 1.20, 95%, 0.88-1.52). Conclusion This review demonstrates that MIT has better estimated effects on enhancing MVC force compared to no exercise, but is inferior to PT. The combination of MIT and PT is equivalent to PT alone in enhancing muscle strength. The subgroup group analysis further suggests that older adults and small finger muscles may benefit more from MIT than young adults and larger muscles.
Collapse
Affiliation(s)
- Xiao J. Liu
- College of Art, Beijing Sport University, Beijing, China
| | - Sha Ge
- College of Sports Science, Tianjin Normal University, Tianjin, China
| | - Alberto Cordova
- Department of Kinesiology, College for Health, Community, and Policy, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Zayd Yaghi
- Department of Kinesiology, College for Health, Community, and Policy, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Bo Y. Jiang
- School of Public Health, Jilin Medical University, Jilin, China
| | - Guang H. Yue
- Center for Mobility and Rehabilitation Engineering Research, Kessler Foundation, West Orange, NJ, United States
- Rutgers New Jersey Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Wan X. Yao
- Department of Kinesiology, College for Health, Community, and Policy, The University of Texas at San Antonio, San Antonio, TX, United States
| |
Collapse
|
7
|
Metais A, Muller CO, Boublay N, Breuil C, Guillot A, Daligault S, Di Rienzo F, Collet C, Krolak-Salmon P, Saimpont A. Anodal tDCS does not enhance the learning of the sequential finger-tapping task by motor imagery practice in healthy older adults. Front Aging Neurosci 2022; 14:1060791. [PMID: 36570544 PMCID: PMC9780548 DOI: 10.3389/fnagi.2022.1060791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/22/2022] [Indexed: 12/14/2022] Open
Abstract
Background Motor imagery practice (MIP) and anodal transcranial direct current stimulation (a-tDCS) are innovative methods with independent positive influence on motor sequence learning (MSL) in older adults. Objective The present study investigated the effect of MIP combined with a-tDCS over the primary motor cortex (M1) on the learning of a finger tapping sequence of the non-dominant hand in healthy older adults. Methods Thirty participants participated in this double-blind sham-controlled study. They performed three MIP sessions, one session per day over three consecutive days and a retention test 1 week after the last training session. During training / MIP, participants had to mentally rehearse an 8-element finger tapping sequence with their left hand, concomitantly to either real (a-tDCS group) or sham stimulation (sham-tDCS group). Before and after MIP, as well as during the retention test, participants had to physically perform the same sequence as fast and accurately as possible. Results Our main results showed that both groups (i) improved their performance during the first two training sessions, reflecting acquisition/on-line performance gains, (ii) stabilized their performance from one training day to another, reflecting off-line consolidation; as well as after 7 days without practice, reflecting retention, (iii) for all stages of MSL, there was no significant difference between the sham-tDCS and a-tDCS groups. Conclusion This study highlights the usefulness of MIP in motor sequence learning for older adults. However, 1.5 mA a-tDCS did not enhance the beneficial effects of MIP, which adds to the inconsistency of results found in tDCS studies. Future work is needed to further explore the best conditions of use of tDCS to improve motor sequence learning with MIP.
Collapse
Affiliation(s)
- Angèle Metais
- Univ Lyon, Université Claude Bernard Lyon 1, Laboratoire Interuniversitaire de Biologie de la Motricité, LIBM, Villeurbanne, France
| | - Camille O. Muller
- Univ Lyon, Université Claude Bernard Lyon 1, Laboratoire Interuniversitaire de Biologie de la Motricité, LIBM, Villeurbanne, France,EuroMov Digital Health in Motion, Université Montpellier, IMT Mines Alès, Montpellier, France
| | - Nawale Boublay
- Centre de Recherche Clinique Vieillissement Cerveau - Fragilité, Hospices Civils de Lyon, Lyon, France
| | - Caroline Breuil
- Univ Lyon, Université Claude Bernard Lyon 1, Laboratoire Interuniversitaire de Biologie de la Motricité, LIBM, Villeurbanne, France
| | - Aymeric Guillot
- Univ Lyon, Université Claude Bernard Lyon 1, Laboratoire Interuniversitaire de Biologie de la Motricité, LIBM, Villeurbanne, France
| | - Sébastien Daligault
- Centre de Recherche Multimodal et Pluridisciplinaire en Imagerie du Vivant (CERMEP), Département de MagnétoEncéphalographie, Bron, France
| | - Franck Di Rienzo
- Univ Lyon, Université Claude Bernard Lyon 1, Laboratoire Interuniversitaire de Biologie de la Motricité, LIBM, Villeurbanne, France
| | - Christian Collet
- Univ Lyon, Université Claude Bernard Lyon 1, Laboratoire Interuniversitaire de Biologie de la Motricité, LIBM, Villeurbanne, France
| | - Pierre Krolak-Salmon
- Centre de Recherche Clinique Vieillissement Cerveau - Fragilité, Hospices Civils de Lyon, Lyon, France
| | - Arnaud Saimpont
- Univ Lyon, Université Claude Bernard Lyon 1, Laboratoire Interuniversitaire de Biologie de la Motricité, LIBM, Villeurbanne, France,*Correspondence: Arnaud Saimpont,
| |
Collapse
|
8
|
Passarello N, Liparoti M, Padulo C, Sorrentino P, Alivernini F, Fairfield B, Lucidi F, Mandolesi L. Motor Imagery as a Key Factor for Healthy Ageing: A Review of New Insights and Techniques. Brain Sci 2022; 12:1492. [PMID: 36358418 PMCID: PMC9688582 DOI: 10.3390/brainsci12111492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 10/01/2023] Open
Abstract
Motor imagery (MI) describes a dynamic cognitive process where a movement is mentally simulated without taking place and holds potential as a means of stimulating motor learning and regaining motor skills. There is growing evidence that imagined and executed actions have common neural circuitry. Since MI counteracts cognitive and motor decline, a growing interest in MI-based mental exercise for older individuals has emerged. Here we review the last decade's scientific literature on age-related changes in MI skills. Heterogeneity in the experimental protocols, as well as the use of populations with unrepresentative age, is making it challenging to draw unambiguous conclusions about MI skills preservation. Self-report and behavioural tasks have shown that some MI components are preserved, while others are impaired. Evidence from neuroimaging studies revealed that, during MI tasks, older individuals hyperactivate their sensorimotor and attentional networks. Some studies have argued that this represents a compensatory mechanism, others claim that this is a sign of cognitive decline. However, further studies are needed to establish whether MI could be used as a promotion factor to improve cognitive functioning and well-being in older people.
Collapse
Affiliation(s)
- Noemi Passarello
- Department of Humanities, Federico II University of Naples, 80138 Naples, Italy
| | - Marianna Liparoti
- Department of Social and Developmental Psychology, Faculty of Medicine and Psychology, “Sapienza” University of Rome, 00185 Rome, Italy
| | - Caterina Padulo
- Department of Psychological, Health and Territorial Sciences, Gabriele d’Annunzio University of Chieti, 66100 Chieti, Italy
| | - Pierpaolo Sorrentino
- Institut de Neuroscience des Systemès, Aix-Marseille University, 13005 Marseille, France
| | - Fabio Alivernini
- Department of Social and Developmental Psychology, Faculty of Medicine and Psychology, “Sapienza” University of Rome, 00185 Rome, Italy
| | - Beth Fairfield
- Department of Humanities, Federico II University of Naples, 80138 Naples, Italy
| | - Fabio Lucidi
- Department of Social and Developmental Psychology, Faculty of Medicine and Psychology, “Sapienza” University of Rome, 00185 Rome, Italy
| | - Laura Mandolesi
- Department of Humanities, Federico II University of Naples, 80138 Naples, Italy
| |
Collapse
|
9
|
Suárez Rozo ME, Trapero-Asenjo S, Pecos-Martín D, Fernández-Carnero S, Gallego-Izquierdo T, Jiménez Rejano JJ, Nunez-Nagy S. Reliability of the Spanish Version of the Movement Imagery Questionnaire-3 (MIQ-3) and Characteristics of Motor Imagery in Institutionalized Elderly People. J Clin Med 2022; 11:jcm11206076. [PMID: 36294396 PMCID: PMC9604630 DOI: 10.3390/jcm11206076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/06/2022] [Accepted: 10/08/2022] [Indexed: 11/24/2022] Open
Abstract
Motor imagery (MI) training is increasingly used to improve the performance of specific motor skills. The Movement Imagery Questionnaire-3 (MIQ-3) is an instrument for assessing MI ability validated in Spanish although its reliability has not yet been studied in the elderly population. The main objective of this study was to test its reliability in institutionalized elderly people. Secondarily, we studied whether there are differences according to gender and age in MI ability (measured by the MIQ-3) and in temporal congruency (measured by mental chronometry of elbow and knee flexion-extension and getting up and sitting down from chair movements). The subjects were 60 elderly, institutionalized, Spanish-speaking individuals without cognitive impairment or dementia, and aged between 70 and 100 years. Cronbach's alpha showed high internal consistency in the internal visual and external visual subscales and moderate in the kinesthetic subscale. The intraclass correlation coefficient showed good test-retest reliability for all three subscales. Mixed factorial analysis of variances (ANOVAs) showed that MI ability decreased with increasing age range, the imagery time decreased concerning the execution of the same movement, and there were no gender differences in either IM ability or temporal congruence. The Spanish version of the MIQ-3 is a reliable instrument for measuring MI ability in institutionalized elderly.
Collapse
Affiliation(s)
| | - Sara Trapero-Asenjo
- Department of Nursing and Physiotherapy, Faculty of Medicine and Health Sciences, University of Alcalá, 28805 Alcalá de Henares, Spain
- Humanization in the Intervention of Physiotherapy for the Integral Attention to the People (HIPATIA) Research Group, Physiotherapy Department, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Correspondence:
| | - Daniel Pecos-Martín
- Department of Nursing and Physiotherapy, Faculty of Medicine and Health Sciences, University of Alcalá, 28805 Alcalá de Henares, Spain
- Physiotherapy and Pain Group, Physiotherapy Department, University of Alcalá, 28871 Alcalá de Henares, Spain
| | - Samuel Fernández-Carnero
- Department of Nursing and Physiotherapy, Faculty of Medicine and Health Sciences, University of Alcalá, 28805 Alcalá de Henares, Spain
- Physiotherapy and Pain Group, Physiotherapy Department, University of Alcalá, 28871 Alcalá de Henares, Spain
| | - Tomás Gallego-Izquierdo
- Department of Nursing and Physiotherapy, Faculty of Medicine and Health Sciences, University of Alcalá, 28805 Alcalá de Henares, Spain
- Physiotherapy and Pain Group, Physiotherapy Department, University of Alcalá, 28871 Alcalá de Henares, Spain
| | | | - Susana Nunez-Nagy
- Department of Nursing and Physiotherapy, Faculty of Medicine and Health Sciences, University of Alcalá, 28805 Alcalá de Henares, Spain
- Humanization in the Intervention of Physiotherapy for the Integral Attention to the People (HIPATIA) Research Group, Physiotherapy Department, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Physiotherapy and Pain Group, Physiotherapy Department, University of Alcalá, 28871 Alcalá de Henares, Spain
| |
Collapse
|
10
|
Sacheli LM, Verga C, Zapparoli L, Seghezzi S, Tomasetig G, Banfi G, Paulesu E. When action prediction grows old: An fMRI study. Hum Brain Mapp 2022; 44:373-387. [PMID: 35997233 PMCID: PMC9842895 DOI: 10.1002/hbm.26049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/03/2022] [Indexed: 01/25/2023] Open
Abstract
Predicting the unfolding of others' actions (action prediction) is crucial for successfully navigating the social world and interacting efficiently. Age-related changes in this domain have remained largely unexplored, especially for predictions regarding simple gestures and independent of contextual information or motor expertise. Here, we evaluated whether healthy aging impacts the neurophysiological processes recruited to anticipate, from the observation of implied-motion postures, the correct conclusion of simple grasping and pointing actions. A color-discrimination task served as a control condition to assess the specificity of the age-related effects. Older adults showed reduced efficiency in performance that was yet not specific to the action prediction task. Nevertheless, fMRI results revealed task-specific age-related differences: while both groups showed stronger recruitment of the lateral occipito-temporal cortex bilaterally during the action prediction than the control task, the younger participants additionally showed a higher bilateral engagement of parietal regions. Importantly, in both groups, the recruitment of visuo-motor processes in the right posterior parietal cortex was a predictor of good performance. These results support the hypothesis of decreased involvement of sensorimotor processes in cognitive tasks when processing action- and body-related stimuli in healthy aging. These results have implications for social interaction, which requires the fast reading of others' gestures.
Collapse
Affiliation(s)
- Lucia Maria Sacheli
- Psychology Department and Milan Center for NeuroscienceUniversity of Milano‐BicoccaMilanItaly
| | - Chiara Verga
- Psychology Department and Milan Center for NeuroscienceUniversity of Milano‐BicoccaMilanItaly,Department of Psychology, Faculty of Medicine and PsychologySapienza University of RomeRomeItaly
| | - Laura Zapparoli
- Psychology Department and Milan Center for NeuroscienceUniversity of Milano‐BicoccaMilanItaly,IRCCS Istituto Ortopedico GaleazziMilanItaly
| | - Silvia Seghezzi
- Psychology Department and Milan Center for NeuroscienceUniversity of Milano‐BicoccaMilanItaly
| | - Giulia Tomasetig
- Psychology Department and Milan Center for NeuroscienceUniversity of Milano‐BicoccaMilanItaly
| | - Giuseppe Banfi
- IRCCS Istituto Ortopedico GaleazziMilanItaly,San Raffaele Vita e Salute UniversityMilanItaly
| | - Eraldo Paulesu
- Psychology Department and Milan Center for NeuroscienceUniversity of Milano‐BicoccaMilanItaly,IRCCS Istituto Ortopedico GaleazziMilanItaly
| |
Collapse
|
11
|
Bek J, Humphries S, Poliakoff E, Brady N. Mental rotation of hands and objects in ageing and Parkinson's disease: differentiating motor imagery and visuospatial ability. Exp Brain Res 2022; 240:1991-2004. [PMID: 35680657 PMCID: PMC9288383 DOI: 10.1007/s00221-022-06389-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 05/16/2022] [Indexed: 11/16/2022]
Abstract
Motor imagery supports motor learning and performance and has the potential to be a useful strategy for neurorehabilitation. However, motor imagery ability may be impacted by ageing and neurodegeneration, which could limit its therapeutic effectiveness. Motor imagery can be assessed implicitly using a hand laterality task (HLT), whereby laterality judgements are slower for stimuli corresponding to physically more difficult postures, as indicated by a “biomechanical constraint” effect. Performance is also found to differ between back and palm views of the hand, which may differentially recruit visual and sensorimotor processes. Older adults and individuals with Parkinson’s disease (PD) have shown altered performance on the HLT; however, the effects of both ageing and PD on laterality judgements for the different hand views (back and palm) have not been directly examined. The present study compared healthy younger, healthy older, and PD groups on the HLT, an object-based mental rotation task, and an explicit motor imagery measure. The older and PD groups were slower than the younger group on the HLT, particularly when judging laterality from the back view, and exhibited increased biomechanical constraint effects for the palm. While response times were generally similar between older and PD groups, the PD group showed reduced accuracy for the back view. Letter rotation was slower and less accurate only in the PD group, while explicit motor imagery ratings did not differ significantly between groups. These results suggest that motor imagery may be slowed but relatively preserved in both typical ageing and neurodegeneration, while a PD-specific impairment in visuospatial processing may influence task performance. The findings have implications for the use of motor imagery in rehabilitation protocols.
Collapse
Affiliation(s)
- Judith Bek
- School of Psychology, University College Dublin, Belfield, Dublin 4, Ireland. .,Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, UK.
| | - Stacey Humphries
- Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, UK
| | - Ellen Poliakoff
- Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, UK
| | - Nuala Brady
- School of Psychology, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
12
|
How D, Wagner H, Brach M. Using Motor Imagery to Access Alternative Attentional Strategies When Navigating Environmental Boundaries to Prevent Freezing of Gait – A Perspective. Front Hum Neurosci 2022; 16:750612. [PMID: 35422692 PMCID: PMC9003572 DOI: 10.3389/fnhum.2022.750612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 02/11/2022] [Indexed: 11/25/2022] Open
Abstract
Freezing of gait can cause reduced independence and quality of life for many with Parkinson’s disease. Episodes frequently occur at points of transition such as navigating a doorway. Therapeutic interventions, i.e., drugs and exercise, do not always successfully mitigate episodes. There are several different, but not exclusive causes for freezing of gait. People with freezing of gait are able to navigate dynamic situations like stairways by utilizing a different attentional strategy to over-ground walking, but may freeze when passing through a doorway. The question is, is it possible to employ a special attentional strategy to prevent freezing at this point? Motor imagery allows for learning motor skills in absolute safety and has been widely employed in a variety of populations, including other neuro-compromised groups. Motor imagery is not studied in a homologous manner in people with Parkinson’s Disease, leading to conflicting results, but may have the potential to establish a different attentional strategy which allows a subject to mitigate freezing of gait episodes. This paper will identify and discuss the questions that still need to be answered in order to consider this approach i.e., can this population access motor imagery, can motor imagery alter the attentional strategy employed when moving through doorways, what is the best motor imagery approach for people with Parkinson’s Disease and freezing of gait, and what dosage is most effective, while briefly outlining future research considerations.
Collapse
|
13
|
Watanabe M, Tani H. Using crutches during walking possibly reduces gait imagery accuracy among healthy young and older adults. J Phys Ther Sci 2022; 34:673-677. [PMID: 36213196 PMCID: PMC9535242 DOI: 10.1589/jpts.34.673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/11/2022] [Indexed: 11/30/2022] Open
Abstract
[Purpose] Although crutches are widely used in the field of rehabilitation to improve
gait performance, patients usually have difficulties using them, and this may increase
their risks for falls. This study aimed to define the accuracy of gait imagery during
walking with and without crutches, in healthy young and older adults, using the mental
chronometry method. [Participants and Methods] Overall, 99 healthy young (mean age, 20.2 ±
1.0 years) and 39 healthy older adults (mean age, 71.3 ± 2.9 years) performed the imagery
and execution tasks, which involved walking through a distance of 10 meters both with and
without crutches. Using the mental chronometry method, the accuracy of the motor imagery
was defined as the difference between the imagery time and the actual execution time.
Two-way analysis of variance and one-sample t-tests were performed to evaluate the
accuracy of the gait imagery. [Results] Both the young and older adults significantly
overestimated their gait speeds when using crutches; the overestimation was larger among
the older adults. [Conclusion] The overestimations indicate that participants estimated
their gait speeds with crutches to be faster than their actual speeds. Therefore, using
crutches decreased the accuracy of gait imagery and might therefore increase an
individual’s risk of falling during walking.
Collapse
Affiliation(s)
- Miyoko Watanabe
- Department of Physical Therapy, School of Health Sciences, International University of Health and Welfare: 2600-1 Kitakanemaru, Otawara-shi, Tochigi 324-8501, Japan
| | - Hiroaki Tani
- Department of Physical Therapy, School of Health Sciences, International University of Health and Welfare: 2600-1 Kitakanemaru, Otawara-shi, Tochigi 324-8501, Japan
| |
Collapse
|
14
|
Bunno Y, Suzuki T. Thenar Muscle Motor Imagery Increases Spinal Motor Neuron Excitability of the Abductor Digiti Minimi Muscle. Front Hum Neurosci 2021; 15:753200. [PMID: 34924979 PMCID: PMC8674616 DOI: 10.3389/fnhum.2021.753200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/05/2021] [Indexed: 11/28/2022] Open
Abstract
When a person attempts intended finger movements, unintended finger movement also occur, a phenomenon called “enslaving”. Given that motor imagery (MI) and motor execution (ME) share a common neural foundation, we hypothesized that the enslaving effect on the spinal motor neuron excitability occurs during MI. To investigate this hypothesis, electromyography (EMG) and F-wave analysis were conducted in 11 healthy male volunteers. Initially, the EMG activity of the left abductor digiti minimi (ADM) muscle during isometric opposition pinch movement by the left thumb and index finger at 50% maximal effort was compared with EMG activity during the Rest condition. Next, the F-wave and background EMG recordings were performed under the Rest condition, followed by the MI condition. Specifically, in the Rest condition, subjects maintained relaxation. In the MI condition, they imagined isometric left thenar muscle activity at 50% maximal voluntary contraction (MVC). During ME, ADM muscle activity was confirmed. During the MI condition, both F-wave persistence and the F-wave/M-wave amplitude ratio obtained from the ADM muscle were significantly increased compared with that obtained during the Rest condition. No difference was observed in the background EMG between the Rest and MI conditions. These results suggest that MI of isometric intended finger muscle activity at 50% MVC facilitates spinal motor neuron excitability corresponding to unintended finger muscle. Furthermore, MI may induce similar modulation of spinal motor neuron excitability as actual movement.
Collapse
Affiliation(s)
- Yoshibumi Bunno
- Graduate School of Health Sciences, Graduate School of Kansai University of Health Sciences, Osaka, Japan
| | - Toshiaki Suzuki
- Graduate School of Health Sciences, Graduate School of Kansai University of Health Sciences, Osaka, Japan
| |
Collapse
|
15
|
Motor Imagery of Walking in People Living with and without Multiple Sclerosis: A Cross-Sectional Comparison of Mental Chronometry. Brain Sci 2021; 11:brainsci11091131. [PMID: 34573154 PMCID: PMC8466525 DOI: 10.3390/brainsci11091131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/19/2021] [Accepted: 08/24/2021] [Indexed: 11/21/2022] Open
Abstract
Motor imagery represents the ability to simulate anticipated movements mentally prior to their actual execution and has been proposed as a tool to assess both individuals’ perception of task difficulty as well as their perception of their own abilities. People with multiple sclerosis (pwMS) often present with motor and cognitive dysfunction, which may negatively affect motor imagery. In this cross-sectional study, we explored differences in motor imagery of walking performance between pwMS (n = 20, age = 57.1 (SD = 8.6) years, 55% female) and age- and sex-matched healthy controls (n = 20, age = 58.1 (SD = 7.0) years, 60% female). Participants underwent mental chronometry assessments, a subset of motor imagery, which evaluated the difference between imagined and actual walking times across four walking tasks of increasing difficulty (i.e., large/narrow-width walkway with/without obstacles). Raw and absolute mental chronometry (A-MC) measures were recorded in single- (ST) and dual-task (DT) conditions. In ST conditions, pwMS had higher A-MC scores across all walking conditions (p ≤ 0.031, η2 ≥ 0.119), indicating lower motor imagery ability compared to healthy controls. During DT, all participants tended to underestimate their walking ability (3.38 ± 6.72 to 5.63 ± 9.17 s). However, after physical practice, pwMS were less able to adjust their imagined walking performance compared to healthy controls. In pwMS, A-MC scores were correlated with measures of balance confidence (ρ = −0.629, p < 0.01) and the self-reported expanded disability status scale (ρ = 0.747, p < 0.01). While the current study revealed that pwMS have lower motor imagery of walking performance compared to healthy individuals, further work is necessary to examine how the disassociation between mental chronometry and actual performance relates to quality of life and well-being.
Collapse
|
16
|
Pasman EP, McKeown MJ, Garg S, Cleworth TW, Bloem BR, Inglis JT, Carpenter MG. Brain connectivity during simulated balance in older adults with and without Parkinson's disease. Neuroimage Clin 2021; 30:102676. [PMID: 34215147 PMCID: PMC8102637 DOI: 10.1016/j.nicl.2021.102676] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 04/02/2021] [Accepted: 04/10/2021] [Indexed: 11/07/2022]
Abstract
Individuals with Parkinson's disease often experience postural instability, a debilitating and largely treatment-resistant symptom. A better understanding of the neural substrates contributing to postural instability could lead to more effective treatments. Constraints of current functional neuroimaging techniques, such as the horizontal orientation of most MRI scanners (forcing participants to lie supine), complicates investigating cortical and subcortical activation patterns and connectivity networks involved in healthy and parkinsonian balance control. In this cross-sectional study, we utilized a newly-validated MRI-compatible balance simulator (based on an inverted pendulum) that enabled participants to perform balance-relevant tasks while supine in the scanner. We utilized functional MRI to explore effective connectivity underlying static and dynamic balance control in healthy older adults (n = 17) and individuals with Parkinson's disease while on medication (n = 17). Participants performed four tasks within the scanner with eyes closed: resting, proprioceptive tracking of passive ankle movement, static balancing of the simulator, and dynamic responses to random perturbations of the simulator. All analyses were done in the participant's native space without spatial transformation to a common template. Effective connectivity between 57 regions of interest was computed using a Bayesian Network learning approach with false discovery rate set to 5%. The first 12 principal components of the connection weights, binomial logistic regression, and cross-validation were used to create 4 separate models: contrasting static balancing vs {rest, proprioception} and dynamic balancing vs {rest, proprioception} for both controls and individuals with Parkinson's disease. In order to directly compare relevant connections between controls and individuals with Parkinson's disease, we used connections relevant for predicting a task in either controls or individuals with Parkinson's disease in logistic regression with Least Absolute Shrinkage and Selection Operator regularization. During dynamic balancing, we observed decreased connectivity between different motor areas and increased connectivity from the brainstem to several cortical and subcortical areas in controls, while individuals with Parkinson's disease showed increased connectivity associated with motor and parietal areas, and decreased connectivity from brainstem to other subcortical areas. No significant models were found for static balancing in either group. Our results support the notion that dynamic balance control in individuals with Parkinson's disease relies more on cortical motor areas compared to healthy older adults, who show a preference of subcortical control during dynamic balancing.
Collapse
Affiliation(s)
- Elizabeth P Pasman
- School of Kinesiology, University of British Columbia, Vancouver, BC, Canada
| | | | - Saurabh Garg
- Pacific Parkinson's Research Centre, Vancouver, BC, Canada
| | - Taylor W Cleworth
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Bastiaan R Bloem
- Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Center of Expertise for Parkinson & Movement Disorders, Nijmegen, The Netherlands
| | - J Timothy Inglis
- School of Kinesiology, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada; International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada
| | - Mark G Carpenter
- School of Kinesiology, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada; International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
17
|
Oh DS, Choi JD. Effects of Motor Imagery Training on Balance and Gait in Older Adults: A Randomized Controlled Pilot Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:E650. [PMID: 33466699 PMCID: PMC7828767 DOI: 10.3390/ijerph18020650] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 01/21/2023]
Abstract
The aim of this study was to demonstrate the effects of motor imagery training on balance and gait abilities in older adults and to investigate the possible application of the training as an effective intervention against fall prevention. Subjects (n = 34) aged 65 years and over who had experienced falls were randomly allocated to three groups: (1) motor imagery training group (MITG, n = 11), (2) task-oriented training group (TOTG, n = 11), and (3) control group (CG, n = 12). Each group performed an exercise three times a week for 6 weeks. The dependent variables included Path Length of center of pressure (COP)-based static balance, Berg Balance Scale (BBS) score, Timed Up and Go Test (TUG) score, which assesses a person's mobility based on changes in both static and dynamic balance, Falls Efficacy Scale (FES) score, which evaluates changes in fear of falls, and gait parameters (velocity, cadence, step length, stride length, and H-H base support) to evaluate gait. After the intervention, Path Length, BBS, TUG, velocity, cadence, step length, and stride length showed significant increases in MITG and TOTG compared to CG (p < 0.05). Post hoc test results showed a significantly greater increase in BBS, TUG, and FES in MITG compared with TOTG and CG (p < 0.05). Our results suggest that motor imagery training combined with functional training has positive effects on balance, gait, and fall efficacy for fall prevention in the elderly.
Collapse
Affiliation(s)
- Dong Sik Oh
- Department of Physical Therapy, Division of Health Science, Hanseo University, Seosan 31962, Korea
| | - Jong Duk Choi
- Department of Physical Therapy, College of Health and Medical Science, Daejeon University, Daejeon 34520, Korea;
| |
Collapse
|
18
|
Spatial constraints and cognitive fatigue affect motor imagery of walking in people with multiple sclerosis. Sci Rep 2020; 10:21938. [PMID: 33318605 PMCID: PMC7736576 DOI: 10.1038/s41598-020-79095-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 11/30/2020] [Indexed: 12/18/2022] Open
Abstract
Motor imagery (MI) is the mental simulation of an action without any overt motor execution. Interestingly, a temporal coupling between durations of real and imagined movements, i.e., the so-called isochrony principle, has been demonstrated in healthy adults. On the contrary, anisochrony has frequently been reported in elderly subjects or those with neurological disease such as Parkinson disease or multiple sclerosis (MS). Here, we tested whether people with MS (PwMS) may have impaired MI when they imagined themselves walking on paths with different widths. When required to mentally simulate a walking movement along a constrained pathway, PwMS tended to overestimate mental movement duration with respect to actual movement duration. Interestingly, in line with previous evidence, cognitive fatigue was found to play a role in the MI of PwMS. These results suggest that investigating the relationship between cognitive fatigue and MI performances could be key to shedding new light on the motor representation of PwMS and providing critical insights into effective and tailored rehabilitative treatments.
Collapse
|
19
|
Zapparoli L, Seghezzi S, Sacheli LM, Verga C, Banfi G, Paulesu E. Eyes wide shut: How visual cues affect brain patterns of simulated gait. Hum Brain Mapp 2020; 41:4248-4263. [PMID: 32639101 PMCID: PMC7502842 DOI: 10.1002/hbm.25123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/11/2020] [Accepted: 06/22/2020] [Indexed: 11/09/2022] Open
Abstract
In the last 20 years, motor imagery (MI) has been extensively used to train motor abilities in sport and in rehabilitation. However, MI procedures are not all alike as much as their potential beneficiaries. Here we assessed whether the addition of visual cues could make MI performance more comparable with explicit motor performance in gait tasks. With fMRI we also explored the neural correlates of these experimental manipulations. We did this in elderly subjects who are known to rely less on kinesthetic information while favoring visual strategies during motor performance. Contrary to expectations, we found that the temporal coupling between execution and imagery times, an index of the quality of MI, was less precise when participants were allowed to visually explore the environment. While the brain activation patterns of the gait motor circuits were very similar in both an open‐eyed and eye‐shut virtual walking MI task, these differed for a vast temporo‐occipito‐parietal additional activation for open‐eyed MI. Crucially, the higher was the activity in this posterior network, the less accurate was the MI performance with eyes open at a clinical test of gait. We conclude that both visually‐cued and internally‐cued MI are associated with the neurofunctional activation of a gait specific motor system. The less precise behavioral coupling between imagined and executed gait while keeping eyes open may be attributed to the processing load implied in visual monitoring and scanning of the environment. The implications of these observations for rehabilitation of gait with MI are discussed.
Collapse
Affiliation(s)
- Laura Zapparoli
- Psychology Department & Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy.,fMRI Unit, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Silvia Seghezzi
- Psychology Department & Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy.,PhD Program in Neuroscience of School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Lucia Maria Sacheli
- Psychology Department & Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy.,fMRI Unit, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Chiara Verga
- Psychology Department & Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | - Giuseppe Banfi
- fMRI Unit, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy.,School of Medicine, San Raffaele Vita e Salute University, Milan, Italy
| | - Eraldo Paulesu
- Psychology Department & Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy.,fMRI Unit, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| |
Collapse
|
20
|
Burianová H, Marstaller L, Rich AN, Williams MA, Savage G, Ryan M, Sowman PF. Motor neuroplasticity: A MEG-fMRI study of motor imagery and execution in healthy ageing. Neuropsychologia 2020; 146:107539. [PMID: 32629033 DOI: 10.1016/j.neuropsychologia.2020.107539] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/08/2020] [Accepted: 06/19/2020] [Indexed: 10/23/2022]
Abstract
Age-related decline in motor function is associated with over-activation of the sensorimotor circuitry. Using a multimodal MEG-fMRI paradigm, we investigated whether this neural over-recruitment in old age would be related to changes in movement-related beta desynchronization (MRBD), a correlate of the inhibitory neurotransmitter γ-aminobutyric acid (GABA), and whether it would characterize compensatory recruitment or a reduction in neural specialization (dedifferentiation). We used MEG to assess age-related changes in beta band oscillations in primary motor cortices, fMRI to localize age-related changes in brain activity, and the Finger Configuration Task to measure task performance during overt and covert motor processing: motor execution (ME) and motor imagery (MI). The results are threefold: first, showing age-related neuroplasticity during ME of older adults, compared to young adults, as evidenced by increased MRBD in motor cortices and over-recruitment of sensorimotor areas; second, showing similar age-related neuroplastic changes during MI; and finally, showing signs of dedifferentiation during ME in older adults whose performance negatively correlated with connectivity to bilateral primary motor cortex. Together, these findings demonstrate that elevated MRBD levels, reflecting greater GABAergic inhibitory activity, and over-activation of the sensorimotor network during ME may not be compensatory, but rather might reflect an age-related decline of the quality of the underlying neural signal.
Collapse
Affiliation(s)
- Hana Burianová
- Department of Psychology, Swansea University, Swansea, United Kingdom; Centre for Advanced Imaging, University of Queensland, Brisbane, Australia; ARC Centre of Excellence in Cognition and its Disorders, Macquarie University, Sydney, Australia.
| | - Lars Marstaller
- Department of Psychology, Swansea University, Swansea, United Kingdom; Centre for Advanced Imaging, University of Queensland, Brisbane, Australia; ARC Science of Learning Research Centre, University of Queensland, Brisbane, Australia
| | - Anina N Rich
- ARC Centre of Excellence in Cognition and its Disorders, Macquarie University, Sydney, Australia; Department of Cognitive Science, Macquarie University, Sydney, Australia; Perception in Action Research Centre, Faculty of Human Sciences, Macquarie University, Sydney, Australia
| | - Mark A Williams
- ARC Centre of Excellence in Cognition and its Disorders, Macquarie University, Sydney, Australia; Department of Cognitive Science, Macquarie University, Sydney, Australia; Perception in Action Research Centre, Faculty of Human Sciences, Macquarie University, Sydney, Australia
| | - Greg Savage
- ARC Centre of Excellence in Cognition and its Disorders, Macquarie University, Sydney, Australia; Department of Psychology, Macquarie University, Sydney, Australia
| | - Margaret Ryan
- ARC Centre of Excellence in Cognition and its Disorders, Macquarie University, Sydney, Australia
| | - Paul F Sowman
- ARC Centre of Excellence in Cognition and its Disorders, Macquarie University, Sydney, Australia; Department of Cognitive Science, Macquarie University, Sydney, Australia; Perception in Action Research Centre, Faculty of Human Sciences, Macquarie University, Sydney, Australia
| |
Collapse
|
21
|
Bidet-Ildei C, Beauprez SA, Boucard G. The link between language and action in aging. Arch Gerontol Geriatr 2020; 90:104099. [PMID: 32570109 DOI: 10.1016/j.archger.2020.104099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 04/26/2020] [Accepted: 05/05/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Many studies have demonstrated the existence of a link between action verb processing and action. However, little is known about the changes in this relationship with aging. METHOD To assess this point, we compare the performances of younger and older people during a priming task consisting of judging whether an image contains a human after listening to an action verb. RESULTS In accordance with previous literature, the results showed that younger people were faster to detect the presence of a human in the image in congruent conditions, namely, when the action verb and the image refer to the same action. However, this effect was not present in older adults' participants. CONCLUSION These findings suggest that the link between action and language decreases with age. We discuss these findings in the context of the embodied view of cognition.
Collapse
Affiliation(s)
- Christel Bidet-Ildei
- Département des Sciences du sport, Université de Poitiers, Université de Tours, Centre National de la Recherche Scientifique, Centre de Recherches sur la Cognition et l'Apprentissage (UMR 7295), Poitiers, France.
| | - Sophie-Anne Beauprez
- Université Lumière Lyon 2, Centre National de la Recherche Scientifique, Laboratoire Dynamique du Langage (UMR 5596), Lyon, France
| | - Geoffroy Boucard
- Département des Sciences du sport, Université de Poitiers, Université de Tours, Centre National de la Recherche Scientifique, Centre de Recherches sur la Cognition et l'Apprentissage (UMR 7295), Poitiers, France
| |
Collapse
|
22
|
Nakano H, Murata S, Shiraiwa K, Nonaka K. Increased Time Difference between Imagined and Physical Walking in Older Adults at a High Risk of Falling. Brain Sci 2020; 10:brainsci10060332. [PMID: 32486010 PMCID: PMC7349598 DOI: 10.3390/brainsci10060332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/21/2020] [Accepted: 05/29/2020] [Indexed: 02/04/2023] Open
Abstract
Walking motor imagery ability is thought to be associated with a fear of falling; however, no studies have compared fall risk and motor imagery ability. This study aimed to ascertain the time difference between imagined and physical walking in older adults at low and high risks of falling. Motor imagery ability was assessed using mental chronometry, which measures the imagined time required for movement. Participants included 31 older adults classified as having a high (n = 15) or low (n = 16) risk of falling based on single leg stance time. The time required for imagined and physical walking was measured using 5 m long walkways with three different widths (15, 25, and 50 cm), and the temporal errors (absolute and constant error) were compared. Physical walking time was significantly longer in the high-risk group than in the low-risk group for the 15 and 25 cm wide walkways. The absolute error between the imagined and physical walking times was significantly larger in the high-risk group than in the low-risk group for the 15 and 25 cm wide walkways. There was also a significant difference in the constant error between the high- and low-risk groups between the imagined and physical walking times for all three walkways. Older adults who may be at a higher risk of falling showed longer walking times during action execution but overestimated their performance (i.e., they believe they would be faster) during motor imagery. Therefore, the time difference between imagined and physical walking could, in part, be useful as a tool for assessing fall risk based on motor imagery.
Collapse
Affiliation(s)
- Hideki Nakano
- Department of Physical Therapy, Faculty of Health Sciences, Kyoto Tachibana University, 34 Yamada-cho, Oyake, Yamashina-ku, Kyoto-city, Kyoto 607-8175, Japan; (S.M.); (K.S.)
- Correspondence: ; Tel.: +81-75-571-1111; Fax: +81-75-574-4122
| | - Shin Murata
- Department of Physical Therapy, Faculty of Health Sciences, Kyoto Tachibana University, 34 Yamada-cho, Oyake, Yamashina-ku, Kyoto-city, Kyoto 607-8175, Japan; (S.M.); (K.S.)
| | - Kayoko Shiraiwa
- Department of Physical Therapy, Faculty of Health Sciences, Kyoto Tachibana University, 34 Yamada-cho, Oyake, Yamashina-ku, Kyoto-city, Kyoto 607-8175, Japan; (S.M.); (K.S.)
| | - Koji Nonaka
- Department of Rehabilitation, Faculty of Health Sciences, Naragakuen University, 3-15-1 Nakatomigaoka, Nara-city, Nara 631-8524, Japan;
| |
Collapse
|
23
|
Sacheli LM, Zapparoli L, Bonandrini R, Preti M, Pelosi C, Sconfienza LM, Banfi G, Paulesu E. How aging affects the premotor control of lower limb movements in simulated gait. Hum Brain Mapp 2020; 41:1889-1903. [PMID: 31922648 PMCID: PMC7267909 DOI: 10.1002/hbm.24919] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/19/2019] [Accepted: 12/23/2019] [Indexed: 12/19/2022] Open
Abstract
Gait control becomes more demanding in healthy older adults, yet what cognitive or motor process leads to this age-related change is unknown. The present study aimed to investigate whether it might depend on specific decay in the quality of gait motor representation and/or a more general reduction in the efficiency of lower limb motor control. Younger and older healthy participants performed in fMRI a virtual walking paradigm that combines motor imagery (MI) of walking and standing on the spot with the presence (Dynamic Motor Imagery condition, DMI) or absence (pure MI condition) of overtly executed ankle dorsiflexion. Gait imagery was aided by the concomitant observation of moving videos simulating a stroll in the park from a first-person perspective. Behaviorally, older participants showed no sign of evident depletion in the quality of gait motor representations, and absence of between-group differences in the neural correlates of MI. However, while younger participants showed increased frontoparietal activity during DMI, older participants displayed stronger activation of premotor areas when controlling the pure execution of ankle dorsiflexion, regardless of the imagery task. These data suggest that reduced automaticity of lower limb motor control in healthy older subjects leads to the recruitment of additional premotor resources even in the absence of basic gait functional disabilities.
Collapse
Affiliation(s)
- Lucia Maria Sacheli
- Psychology Department & Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy.,IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Laura Zapparoli
- Psychology Department & Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy.,IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Rolando Bonandrini
- Psychology Department & Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | - Matteo Preti
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Catia Pelosi
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Luca Maria Sconfienza
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy.,Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Giuseppe Banfi
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy.,University Vita e Salute San Raffaele, Milan, Italy
| | - Eraldo Paulesu
- Psychology Department & Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy.,IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| |
Collapse
|
24
|
Baumard J, Lesourd M, Remigereau C, Lucas C, Jarry C, Osiurak F, Le Gall D. Imitation of meaningless gestures in normal aging. AGING NEUROPSYCHOLOGY AND COGNITION 2019; 27:729-747. [PMID: 31595839 DOI: 10.1080/13825585.2019.1674773] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
While imitation of meaningless gestures is a gold standard in the assessment of apraxia in patients with either stroke or neurodegenerative diseases, little is known about potential age-related effects on this measure. A significant body of literature has indicated that different mechanisms (i.e., executive functioning, visuospatial skills, sensory integration, body knowledge, categorical apprehension) may underlie the performance depending on imitation conditions (i.e., finger/hand, uni-/bimanual, symmetric/asymmetric, crossed/uncrossed configurations). However, neither the effects of these conditions on performance, nor the contribution of the abovementioned mechanisms to imitation have been explored in normal aging. The aim of the present study was to fill this gap. To do so, healthy adults (n = 103) aged 50 to 89 were asked to imitate 45 meaningless gestures. The authors controlled for general cognitive function, motor function, visual-spatial skills, executive function, sensory integration, body knowledge, and mechanical problem-solving skills. The results showed that asymmetry, body-midline crossing and, to a lesser extent, bimanual activity added an additional layer of difficulty to imitation tasks. After controlling for motor speed and cognitive function, age had an effect on imitation skills after 70 years old. This may reflect a decline in body knowledge, sensory integration, and executive functions. In contrast, the visuospatial and mechanical problem-solving hypotheses were ruled out. An additional motor simulation hypothesis is proposed. These findings may prove useful for clinicians working in memory clinics by providing insights on how to interpret imitation deficits. Lower performance after 70 years old should not be considered abnormal in a systematic manner.
Collapse
Affiliation(s)
| | - Mathieu Lesourd
- CNRS, LNC, Laboratoire de Neurosciences Cognitives, Aix Marseille University , Marseille, France.,CNRS, Fédération 3C, Aix Marseille University , Marseille, France
| | | | - Charlène Lucas
- Laboratoire de Psychologie des Pays de la Loire (EA 4638), Université d'Angers , France
| | - Christophe Jarry
- Laboratoire de Psychologie des Pays de la Loire (EA 4638), Université d'Angers , France
| | - François Osiurak
- Laboratoire d'Etude des Mécanismes Cognitifs (EA 3082), Université de Lyon , France.,Institut Universitaire de France , Paris, France
| | - Didier Le Gall
- Laboratoire de Psychologie des Pays de la Loire (EA 4638), Université d'Angers , France.,Unité de Neuropsychologie, Département de Neurologie, Centre Hospitalier Universitaire d'Angers , France
| |
Collapse
|
25
|
Imagery Ability and Imagery Perspective Preference: A Study of Their Relationship and Age- and Gender-Related Changes. Behav Neurol 2019; 2019:7536957. [PMID: 31467614 PMCID: PMC6701277 DOI: 10.1155/2019/7536957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/26/2019] [Accepted: 07/08/2019] [Indexed: 11/21/2022] Open
Abstract
This study examined if imagery ability (i.e., vividness and temporal congruence between imagined and executed knee extensions) and imagery perspective preference were affected by ageing and gender. Ninety-four participants, 31 young, 43 intermediate, and 20 older adults completed the Vividness of Movement Imagery Questionnaire-2 and a knee extension temporal congruence test to reflect on their imagery ability and an imagery perspective preference test. Male participants had a better imagery ability than the female participants (F (4, 85) = 2.84, p = .029, η2 = .118). However, significant age-related changes in imagery ability were not found in the three age groups. Change in imagery perspective preference with a trend towards an external imagery perspective was observed with ageing (F (3, 89) = 3.16, p = .028, η2 = .096) but not between male and female. The results suggest that imagery ability may be preserved with ageing. As individuals age, their preference for using an imagery perspective shifts from a more internal to a more external perspective. This understanding is important when designing future imagery research and real-life application or clinical intervention.
Collapse
|
26
|
Scarpina F, Magnani FG, Tagini S, Priano L, Mauro A, Sedda A. Mental representation of the body in action in Parkinson's disease. Exp Brain Res 2019; 237:2505-2521. [PMID: 31327026 DOI: 10.1007/s00221-019-05608-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 07/17/2019] [Indexed: 12/13/2022]
Abstract
Mixed findings characterize studies in Parkinson's disease (PD): some studies indicate a relationship between physical impairments and the ability to mentally represent the body, while others suggest spared abilities for this cognitive function. To clarify the matter, in the present study we explored the mental representations of the body in action in the same PD patients, taking also into account lateralization of symptoms and visual imagery skills. 10 PD patients with left- (lPD), 10 with right (rPD) lateralized symptoms (lPD), and 20 matched healthy controls have been recruited for the study. All patients were screened for neuropsychological impairments. To explore a more implicit component we used the hand laterality task (HLT), while the mental motor chronometry (MMC) was used to explore a more explicit one. Two control tasks, with objects instead of body parts, were administered to control for visual imagery skills. In the HLT, we detected the effects of biomechanical constraints effects in both controls and PD patients. In the latter group, importantly, this was true independently from lateralization of symptoms. In the MMC, we found the expected positive correlation between executed and imagined movements for both hands in controls only, while all PD patients, again independently form lateralization, only showed this effect for the left hand. In terms of visual imagery, only rPD patients differed from controls when asked to implicitly rotate letters, and in terms of accuracy only. However, this difference is explained by executive functions measured through the neuropsychological assessment rather than by a "pure" visual imagery impairment. In summary, our findings suggest that two different aspects of the mental representations of the body in action, one more implicit and the other more explicit, can be differently affected by PD. These impairments are unlikely explained by a basic visual imagery deficit. When present, impairments concern a higher dimension, related to motor functions and awareness, and not driven by sensory impairments, as shown by the independence of effects from physical laterality of symptoms.
Collapse
Affiliation(s)
- Federica Scarpina
- Division of Neurology and Neuro-Rehabilitation, Istituto Auxologico Italiano, IRCCS, Ospedale San Giuseppe, Via Cadorna 90, 28824, Piancavallo, VCO, Italy.
| | - Francesca Giulia Magnani
- Cognitive Neuropsychology Center, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy.,NeuroMi-Milan Center for Neuroscience, University of Milano Bicocca, Milan, Italy
| | - Sofia Tagini
- Division of Neurology and Neuro-Rehabilitation, Istituto Auxologico Italiano, IRCCS, Ospedale San Giuseppe, Via Cadorna 90, 28824, Piancavallo, VCO, Italy.,CIMeC, Center for the Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | - Lorenzo Priano
- Division of Neurology and Neuro-Rehabilitation, Istituto Auxologico Italiano, IRCCS, Ospedale San Giuseppe, Via Cadorna 90, 28824, Piancavallo, VCO, Italy.,"Rita Levi Montalcini" Department of Neuroscience, University of Turin, Turin, Italy
| | - Alessandro Mauro
- Division of Neurology and Neuro-Rehabilitation, Istituto Auxologico Italiano, IRCCS, Ospedale San Giuseppe, Via Cadorna 90, 28824, Piancavallo, VCO, Italy.,"Rita Levi Montalcini" Department of Neuroscience, University of Turin, Turin, Italy
| | - Anna Sedda
- Psychology Department, School of Social Sciences, Heriot Watt University, Edinburgh, UK
| |
Collapse
|
27
|
Fusco A, Iasevoli L, Iosa M, Gallotta MC, Padua L, Tucci L, Antonucci G, Baldari C, Guidetti L. Dynamic motor imagery mentally simulates uncommon real locomotion better than static motor imagery both in young adults and elderly. PLoS One 2019; 14:e0218378. [PMID: 31242209 PMCID: PMC6594612 DOI: 10.1371/journal.pone.0218378] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 05/31/2019] [Indexed: 12/02/2022] Open
Abstract
A new form of Motor Imagery (MI), called dynamic Motor Imagery (dMI) has recently been proposed. The dMI adds to conventional static Motor Imagery (sMI) the presence of simultaneous actual movements partially replicating those mentally represented. In a previous research conducted on young participants, dMI showed to be temporally closer than sMI in replicating the real performance for some specific locomotor conditions. In this study, we evaluated if there is any influence of the ageing on dMI. Thirty healthy participants were enrolled: 15 young adults (27.1±3.8 y.o.) and 15 older adults (65.9±9.6y.o.). The performance time and the number of steps needed to either walk to a target (placed at 10m from participants) or to imagine walking to it, were assessed. Parameters were measured for sMI, dMI and real locomotion (RL) in three different locomotor conditions: forward walking (FW), backward walking (BW), and lateral walking (LW). Temporal performances of sMI and dMI did not differ between RL in the FW, even if significantly different to each other (p = 0.0002). No significant differences were found for dMI with respect to RL for LW (p = 0.140) and BW (p = 0.438), while sMI was significantly lower than RL in LW (p<0.001). The p-value of main effect of age on participants’ temporal performances was p = 0.055. The interaction between age and other factors such as the type of locomotion (p = 0.358) or the motor condition (p = 0.614) or third level interaction (p = 0.349) were not statistically significant. Despite a slight slowdown in the performance of elderly compared to young participants, the temporal and spatial accuracy was better in dMI than sMI in both groups. Motor imagery processes may be strengthened by the feedback generated through dMI, and this effect appears to be unaffected by age.
Collapse
Affiliation(s)
- Augusto Fusco
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
- * E-mail:
| | - Luigi Iasevoli
- Department of Movement, Human and Health Sciences, Section of Health Sciences, University of Rome "Foro Italico", Rome, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Marco Iosa
- IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Maria Chiara Gallotta
- Department of Movement, Human and Health Sciences, Section of Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Luca Padua
- Department of Geriatrics, Neurosciences and Orthopaedics, Sacred Heart Catholic University, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Livia Tucci
- Department of Movement, Human and Health Sciences, Section of Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Gabriella Antonucci
- IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | | | - Laura Guidetti
- Department of Movement, Human and Health Sciences, Section of Health Sciences, University of Rome "Foro Italico", Rome, Italy
| |
Collapse
|
28
|
Santoro S, Lo Buono V, Corallo F, Cartella E, Micchia K, Palmeri R, Arcadi FA, Bramanti A, Marino S. Motor imagery in stroke patients: a descriptive review on a multidimensional ability. Int J Neurosci 2019; 129:821-832. [DOI: 10.1080/00207454.2019.1567509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Simona Santoro
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Department of Neurobioimaging, Messina, Italy
| | - Viviana Lo Buono
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Department of Neurobioimaging, Messina, Italy
| | - Francesco Corallo
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Department of Neurobioimaging, Messina, Italy
| | - Emanuele Cartella
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Department of Neurobioimaging, Messina, Italy
| | - Katia Micchia
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Department of Neurobioimaging, Messina, Italy
| | - Rosanna Palmeri
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Department of Neurobioimaging, Messina, Italy
| | | | - Alessia Bramanti
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Department of Neurobioimaging, Messina, Italy
| | - Silvia Marino
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Department of Neurobioimaging, Messina, Italy
- Department of Biomedical and Dental Sciences and Morphological and Functional Imaging, University of Messina, Messina, Italy
| |
Collapse
|
29
|
Subirats L, Allali G, Briansoulet M, Salle J, Perrochon A. Age and gender differences in motor imagery. J Neurol Sci 2018; 391:114-117. [DOI: 10.1016/j.jns.2018.06.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/07/2018] [Accepted: 06/18/2018] [Indexed: 11/24/2022]
|
30
|
Bagarinao E, Yoshida A, Ueno M, Terabe K, Kato S, Isoda H, Nakai T. Improved Volitional Recall of Motor-Imagery-Related Brain Activation Patterns Using Real-Time Functional MRI-Based Neurofeedback. Front Hum Neurosci 2018; 12:158. [PMID: 29740302 PMCID: PMC5928248 DOI: 10.3389/fnhum.2018.00158] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 04/05/2018] [Indexed: 11/13/2022] Open
Abstract
Motor imagery (MI), a covert cognitive process where an action is mentally simulated but not actually performed, could be used as an effective neurorehabilitation tool for motor function improvement or recovery. Recent approaches employing brain–computer/brain–machine interfaces to provide online feedback of the MI during rehabilitation training have promising rehabilitation outcomes. In this study, we examined whether participants could volitionally recall MI-related brain activation patterns when guided using neurofeedback (NF) during training. The participants’ performance was compared to that without NF. We hypothesized that participants would be able to consistently generate the relevant activation pattern associated with the MI task during training with NF compared to that without NF. To assess activation consistency, we used the performance of classifiers trained to discriminate MI-related brain activation patterns. Our results showed significantly higher predictive values of MI-related activation patterns during training with NF. Additionally, this improvement in the classification performance tends to be associated with the activation of middle temporal gyrus/inferior occipital gyrus, a region associated with visual motion processing, suggesting the importance of performance monitoring during MI task training. Taken together, these findings suggest that the efficacy of MI training, in terms of generating consistent brain activation patterns relevant to the task, can be enhanced by using NF as a mechanism to enable participants to volitionally recall task-related brain activation patterns.
Collapse
Affiliation(s)
| | - Akihiro Yoshida
- Department of Radiological Sciences, Nagoya University Graduate School of Medicine, Nagoya University, Nagoya, Japan.,NeuroImaging and Informatics Lab, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Mika Ueno
- NeuroImaging and Informatics Lab, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Kazunori Terabe
- Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, Japan
| | - Shohei Kato
- Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, Japan
| | - Haruo Isoda
- Brain & Mind Research Center, Nagoya University, Nagoya, Japan.,Department of Radiological Sciences, Nagoya University Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Toshiharu Nakai
- Department of Radiological Sciences, Nagoya University Graduate School of Medicine, Nagoya University, Nagoya, Japan.,NeuroImaging and Informatics Lab, National Center for Geriatrics and Gerontology, Obu, Japan
| |
Collapse
|
31
|
Marusic U, Grosprêtre S. Non-physical approaches to counteract age-related functional deterioration: Applications for rehabilitation and neural mechanisms. Eur J Sport Sci 2018; 18:639-649. [PMID: 29557276 DOI: 10.1080/17461391.2018.1447018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Normal and pathological ageing are associated with several motor impairments that reduce quality of life and represent a general challenge for public healthcare systems. Consequently, over the past decades, many scientists and physiotherapists dedicated their research to the development and improvement of safe and costless methods to counteract the progressive decline of motor functions with age. The urgency of finding new and easy to implement methods is even more paramount in case of acute pathologies (e.g. stroke or hip surgery). The frailty of older population makes it difficult or even impossible to use traditional physical therapy at an early stage after the occurrence of a pathology. To that purpose, non-physical approaches such as cognitive training (e.g. memory, attention training) and mental techniques (e.g. motor imagery) have grown in popularity for the elderly. Such methods, involving individual and/or group exercises, have shown particular effects on increasing or maintaining cognitive functions, as well as physical performances. Improving the motor function (especially in older age) requires an improvement of motor execution, i.e. the pathway from the brain motor areas to the muscle but also higher cognitive control. The present work reviews different non-physical interventions that can be used as a complementary approach by asymptomatic or frail older adults, and the effects thereof on functional performance. The use of cognitive training or motor imagery protocols is recommended when physical practice is limited or not possible. Finally, insights into the underlying neurophysiological mechanisms are proposed.
Collapse
Affiliation(s)
- Uros Marusic
- a Institute for Kinesiology Research, Science and Research Centre Koper , Koper , Slovenia (EU).,b Department of Health Sciences , Alma Mater Europaea - ECM , Maribor , Slovenia (EU).,c Department of Kinesiology and Physiotherapy, Faculty of Health Sciences , University of Primorska , Izola , Slovenia (EU)
| | - Sidney Grosprêtre
- d EA4660, C3S Culture Sport Health Society, Université de Franche - Comté , Besançon , France (EU)
| |
Collapse
|
32
|
Kuehn E, Perez-Lopez MB, Diersch N, Döhler J, Wolbers T, Riemer M. Embodiment in the aging mind. Neurosci Biobehav Rev 2018; 86:207-225. [DOI: 10.1016/j.neubiorev.2017.11.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 11/10/2017] [Accepted: 11/21/2017] [Indexed: 12/24/2022]
|
33
|
Saiote C, Tacchino A, Brichetto G, Roccatagliata L, Bommarito G, Cordano C, Battaglia M, Mancardi GL, Inglese M. Resting-state functional connectivity and motor imagery brain activation. Hum Brain Mapp 2018; 37:3847-3857. [PMID: 27273577 DOI: 10.1002/hbm.23280] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 05/01/2016] [Accepted: 05/24/2016] [Indexed: 12/21/2022] Open
Abstract
Motor imagery (MI) relies on the mental simulation of an action without any overt motor execution (ME), and can facilitate motor learning and enhance the effect of rehabilitation in patients with neurological conditions. While functional magnetic resonance imaging (fMRI) during MI and ME reveals shared cortical representations, the role and functional relevance of the resting-state functional connectivity (RSFC) of brain regions involved in MI is yet unknown. Here, we performed resting-state fMRI followed by fMRI during ME and MI with the dominant hand. We used a behavioral chronometry test to measure ME and MI movement duration and compute an index of performance (IP). Then, we analyzed the voxel-matched correlation between the individual MI parameter estimates and seed-based RSFC maps in the MI network to measure the correspondence between RSFC and MI fMRI activation. We found that inter-individual differences in intrinsic connectivity in the MI network predicted several clusters of activation. Taken together, present findings provide first evidence that RSFC within the MI network is predictive of the activation of MI brain regions, including those associated with behavioral performance, thus suggesting a role for RSFC in obtaining a deeper understanding of neural substrates of MI and of MI ability. Hum Brain Mapp 37:3847-3857, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Catarina Saiote
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York
| | - Andrea Tacchino
- Scientific Research Area, Italian MS Foundation (FISM), Genoa, Italy
| | | | - Luca Roccatagliata
- Department of Health Sciences (DISSAL), and Neuroradiology Department, IRCCS San Martino University Hospital and IST, Genoa, Italy
| | - Giulia Bommarito
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Christian Cordano
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Mario Battaglia
- Scientific Research Area, Italian MS Foundation (FISM), Genoa, Italy.,Department of Physiopathology, Experimental Medicine and Public Health, University of Siena, Siena, Italy
| | - Giovanni Luigi Mancardi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Matilde Inglese
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York. .,Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy. .,Department of Radiology, Icahn School of Medicine at Mount Sinai, New York. .,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York.
| |
Collapse
|
34
|
Allum JHJ, Langewitz W, Sleptsova M, Welge-Luessen A, Honegger F, Schatz TH, Biner CL, Maguire C, Schmid DA. Mental body transformation deficits in patients with chronic balance disorders. J Vestib Res 2017; 27:113-125. [PMID: 29064827 DOI: 10.3233/ves-170613] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Movements may be generated consistent with imagining one's own body transformed or "disembodied" to a new position. Based on this concept we hypothesized that patients with objective balance deficits (obj-BD) would have altered neural transformation processes executing own body transformation (OBT) with functional consequences on balance control. Also we examined whether feeling unstable due to dizziness only (DO), without an obj-BD, also lead to an impaired OBT. METHODS 32 patients with chronic dizziness were tested: 16 patients with obj-BD as determined by balance control during a sequence of stance and gait tasks, 16 patients with dizziness only (DO). Patients and 9 healthy controls (HCs) were asked to replicate roll trunk movements of an instructor in a life size video: first, with spontaneously copied (SPO) or "embodied" egocentric movements (lean when the instructor leans); second, with "disembodied" or "transformed" movements (OBT) with exact replication - lean left when the instructor leans left. Onset latency of trunk roll, rise time to peak roll angle (interval), roll velocity, and amplitude were measured. RESULTS SPO movements were always mirror-imaged. OBT task latencies were significantly longer and intervals shorter than for SPO tasks (p < 0.03) for all groups. Obj-BD but not DO patients had more errors for the OBT task and, compared to HCs, had longer onset latencies (p < 0.05) and smaller velocities (p < 0.003) and amplitudes (p < 0.001) in both the SPO and OBT tasks. Measures of DO patients were not significantly different from those of HCs. CONCLUSIONS Mental transformation (OBT) and SPO copying abilities are impaired in subjects with obj-BD and dizziness, but not with dizziness only. We conclude that processing the neuropsychological representation of the human body (body schema) slows when balance control is deficient.
Collapse
Affiliation(s)
- J H J Allum
- Department of Psychosomatic Medicine and University of Basel Hospital, Basel, Switzerland.,Department of ORL, University of Basel Hospital, Basel, Switzerland
| | - W Langewitz
- Department of Psychosomatic Medicine and University of Basel Hospital, Basel, Switzerland
| | - M Sleptsova
- Department of Psychosomatic Medicine and University of Basel Hospital, Basel, Switzerland
| | - A Welge-Luessen
- Department of ORL, University of Basel Hospital, Basel, Switzerland
| | - F Honegger
- Department of ORL, University of Basel Hospital, Basel, Switzerland
| | - T H Schatz
- Health Sciences Teaching Centre Basel, Switzerland
| | - C L Biner
- Health Sciences Teaching Centre Basel, Switzerland
| | - C Maguire
- Health Sciences Teaching Centre Basel, Switzerland
| | - D A Schmid
- Department of Psychosomatic Medicine and University of Basel Hospital, Basel, Switzerland.,Department of ORL, University of Basel Hospital, Basel, Switzerland
| |
Collapse
|
35
|
Costello MC, Bloesch EK. Are Older Adults Less Embodied? A Review of Age Effects through the Lens of Embodied Cognition. Front Psychol 2017; 8:267. [PMID: 28289397 PMCID: PMC5326803 DOI: 10.3389/fpsyg.2017.00267] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 02/10/2017] [Indexed: 11/13/2022] Open
Abstract
Embodied cognition is a theoretical framework which posits that cognitive function is intimately intertwined with the body and physical actions. Although the field of psychology is increasingly accepting embodied cognition as a viable theory, it has rarely been employed in the gerontological literature. However, embodied cognition would appear to have explanatory power for aging research given that older adults typically manifest concurrent physical and mental changes, and that research has indicated a correlative relationship between such changes. The current paper reviews age-related changes in sensory processing, mental representation, and the action-perception relationship, exploring how each can be understood through the lens of embodied cognition. Compared to younger adults, older adults exhibit across all three domains an increased tendency to favor visual processing over bodily factors, leading to the conclusion that older adults are less embodied than young adults. We explore the significance of this finding in light of existing theoretical models of aging and argue that embodied cognition can benefit gerontological research by identifying further factors that can explain the cause of age-related declines.
Collapse
Affiliation(s)
| | - Emily K Bloesch
- Department of Psychology, Central Michigan University, Mount Pleasant MI, USA
| |
Collapse
|
36
|
Sakurada T, Nakajima T, Morita M, Hirai M, Watanabe E. Improved motor performance in patients with acute stroke using the optimal individual attentional strategy. Sci Rep 2017; 7:40592. [PMID: 28094320 PMCID: PMC5240116 DOI: 10.1038/srep40592] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 12/07/2016] [Indexed: 01/14/2023] Open
Abstract
It is believed that motor performance improves when individuals direct attention to movement outcome (external focus, EF) rather than to body movement itself (internal focus, IF). However, our previous study found that an optimal individual attentional strategy depended on motor imagery ability. We explored whether the individual motor imagery ability in stroke patients also affected the optimal attentional strategy for motor control. Individual motor imagery ability was determined as either kinesthetic- or visual-dominant by a questionnaire in 28 patients and 28 healthy-controls. Participants then performed a visuomotor task that required tracing a trajectory under three attentional conditions: no instruction (NI), attention to hand movement (IF), or attention to cursor movement (EF). Movement error in the stroke group strongly depended on individual modality dominance of motor imagery. Patients with kinesthetic dominance showed higher motor accuracy under the IF condition but with concomitantly lower velocity. Alternatively, patients with visual dominance showed improvements in both speed and accuracy under the EF condition. These results suggest that the optimal attentional strategy for improving motor accuracy in stroke rehabilitation differs according to the individual dominance of motor imagery. Our findings may contribute to the development of tailor-made pre-assessment and rehabilitation programs optimized for individual cognitive abilities.
Collapse
Affiliation(s)
- Takeshi Sakurada
- Functional Brain Science Laboratory, Center for Development of Advanced Medical Technology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan.,Department of Neurosurgery, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Takeshi Nakajima
- Department of Neurosurgery, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan.,Rehabilitation Center, Jichi Medical University Hospital, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Mitsuya Morita
- Rehabilitation Center, Jichi Medical University Hospital, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan.,Department of Neurology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Masahiro Hirai
- Functional Brain Science Laboratory, Center for Development of Advanced Medical Technology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Eiju Watanabe
- Functional Brain Science Laboratory, Center for Development of Advanced Medical Technology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan.,Department of Neurosurgery, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| |
Collapse
|
37
|
Liepert J, Büsching I, Sehle A, Schoenfeld MA. Mental chronometry and mental rotation abilities in stroke patients with different degrees of sensory deficit. Restor Neurol Neurosci 2016; 34:907-914. [PMID: 27689548 DOI: 10.3233/rnn-160640] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Motor imagery is used for treatment of motor deficits after stroke. Clinical observations suggested that motor imagery abilities might be reduced in patients with severe sensory deficits. This study investigated the influence of somatosensory deficits on temporal (mental chronometry, MC) and spatial aspects of motor imagery abilities. METHODS Stroke patients (n = 70; <6 months after stroke) were subdivided into 3 groups according to their somatosensory functions. Group 1 (n = 31) had no sensory deficits, group 2 (n = 27) had a mild to moderate sensory impairment and group 3 (n = 12) had severe sensory deficits. Patients and a healthy age-matched control group (n = 23) participated in a mental chronometry task (Box and Block Test, BBT) and a mental rotation task (Hand Identification Test, HIT). MC abilities were expressed as a ratio (motor execution time-motor imagery time/motor execution time). RESULTS MC for the affected hand was significantly impaired in group 3 in comparison to stroke patients of group 1 (p = 0.006), group 2 (p = 0.005) and healthy controls (p < 0.001). For the non-affected hand MC was similar across all groups. Stroke patients had a slower BBT motor execution than healthy controls (p < 0.001), and group 1 executed the task faster than group 3 (p = 0.002). The percentage of correct responses in the HIT was similar for all groups. CONCLUSION Severe sensory deficits impair mental chronometry abilities but have no impact on mental rotation abilities. Future studies should explore whether the presence of severe sensory deficits in stroke patients reduces the benefit from motor imagery therapy.
Collapse
Affiliation(s)
- Joachim Liepert
- Department of Neurorehabilitation, Kliniken Schmieder, Allensbach, Germany
| | - Imke Büsching
- Department of Neurorehabilitation, Kliniken Schmieder, Allensbach, Germany
| | - Aida Sehle
- Department of Neurorehabilitation, Kliniken Schmieder, Allensbach, Germany
| | - Mircea Ariel Schoenfeld
- Department of Behavioural Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
38
|
A Program to Improve Reach Estimation and Reduce Fall Risk in the Elderly. Geriatrics (Basel) 2016; 1:geriatrics1020014. [PMID: 31022808 PMCID: PMC6371089 DOI: 10.3390/geriatrics1020014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 05/12/2016] [Accepted: 06/02/2016] [Indexed: 12/04/2022] Open
Abstract
Contemporary research findings indicate that in older persons (typically 64 > years) there are functional decrements in the ability to mentally represent and effectively plan motor actions. Actions, if poorly planned, can result in falling, a major health concern for the elderly. Whereas a number of factors may contribute to falls, over- or underestimation of reach abilities may lead to loss of postural control (balance) and pose a higher risk of falling. Our intent with this paper was to provide: (1) a brief background of the problem, (2) suggest strategies for mental (motor) imagery practice in the context of reach planning, and (3) describe general guidelines and a sample practice format of a training program for clinical use. Mental (motor) imagery practice of reach planning has potential for improving motor performance in reach-related everyday activities and reducing the risk of falls in older persons.
Collapse
|
39
|
Fusco A, Gallotta MC, Iosa M, Morone G, Iasevoli L, Trifoglio D, Saraceni VM, Paolucci S, Baldari C, Guidetti L. The dynamic motor imagery of locomotion is task-dependent in patients with stroke. Restor Neurol Neurosci 2016; 34:247-56. [PMID: 26889966 DOI: 10.3233/rnn-150573] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
PURPOSE Recently, Motor Imagery (MI) has been associated with the execution of movements miming in part the mentally represented action (dynamic MI, dMI). Preliminary studies have reported as dMI may improve trainings in sport, with imagery timing close to the physical execution one. This study was aimed to investigate time and spatial parameters of dMI with actual locomotion in people with stroke. METHODS Twelve patients (stroke group, SG) were compared with twelve healthy elderly (elderly group, EG) and twenty young adults (young group, YG). Subjects performed mental representations of different walking (forward, FW; lateral, LW, backward, BW), accompanied or not by movements imitating walking (dMI and static MI, sMI). Then, they performed actual locomotion (AL). Outcome measures were related to the time and the number of steps spent for completing the tasks for all the given locomotor conditions. RESULTS Significant differences were found in patients with respect to healthy subjects, with time in sMI significantly shorter than in dMI (p < 0.004) and AL (p < 0.002), but not between dMI and AL in FW (p = 0.806). In patients, times obtained in sMI and dMI was significantly shorter with respect to those of AL in LW and BW. Patients performed imagery tasks with similar times in all locomotion. Healthy groups did not reveal differences among tasks in BW, while significant differences were found in LW. Analogous results were found in terms of number of performed steps. CONCLUSIONS In patients with stroke, a spatiotemporal functional equivalence with AL was found only for dMI, and not for sMI, in forward walking. This could be due to familiarity with this task. These results might have implications for the rehabilitative techniques based on MI.
Collapse
Affiliation(s)
- Augusto Fusco
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy.,Clinical Laboratory of Experimental Neurorehabilitation, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Maria Chiara Gallotta
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy
| | - Marco Iosa
- Clinical Laboratory of Experimental Neurorehabilitation, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Giovanni Morone
- Clinical Laboratory of Experimental Neurorehabilitation, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Luigi Iasevoli
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy
| | - Domenica Trifoglio
- Physical Medicine and Rehabilitation, Sapienza University of Rome, Italy
| | | | - Stefano Paolucci
- Clinical Laboratory of Experimental Neurorehabilitation, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Carlo Baldari
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy
| | - Laura Guidetti
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy
| |
Collapse
|
40
|
Kalicinski M, Kempe M, Bock O. Motor imagery: effects of age, task complexity, and task setting. Exp Aging Res 2015; 41:25-38. [PMID: 25494669 DOI: 10.1080/0361073x.2015.978202] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
UNLABELLED BACKGROUND/STUDY CONTEXT: Mental training may potentially enhance motor performance and self-efficacy in older adults. However, several studies revealed an age-related decay of motor imagery (MI), which suggests that mental training might be too challenging for older adults. Recognizing that laboratory results are often not transferable to real-life situations, the purpose of the present study was to evaluate imagery performance in the elderly with a more real-life-like approach. METHODS MI performance of 21 older (70.28 ± 4.65 years) and 19 younger adults (24.89 ± 3.16 years) was estimated by mental chronometry from the first-person perspective. Subjects were asked to walk in a supermarket scenario straight ahead (A), or with two changes of direction (B), or with two changes of direction while retrieving products (C). The three tasks were completed first in the subjects' imagination and then in reality, with time required as the dependent measure. MI ability was also assessed by the Controllability of Motor Imagery (CMI) test, in which subjects are required to mentally assume a sequence of body postures. RESULTS Age-related alterations of MI were observed for walking only in Tasks B and C, and only in terms of intersubject variability, not in terms of across-subject means. This is in contrast to earlier studies that used a less realistic walking scenario and found an age-related decay even for MI means. Age-related alterations of CMI were observed as well, but they correlated little with those of walking. CONCLUSION These findings suggest that MI is not a global phenomenon, as it decays in old age independently in the temporal and in the spatial domain, decays less with simple than with complex tasks, and less in an everyday-like than in a typical laboratory setting. These characteristics of MI should be taken into account when assessing its decay in old age, and when designing mental training for the elderly.
Collapse
Affiliation(s)
- Michael Kalicinski
- a Institute of Psychology, German Sport University Cologne , Cologne , Germany
| | | | | |
Collapse
|
41
|
Rulleau T, Mauvieux B, Toussaint L. Influence of Circadian Rhythms on the Temporal Features of Motor Imagery for Older Adult Inpatients. Arch Phys Med Rehabil 2015; 96:1229-34. [DOI: 10.1016/j.apmr.2015.02.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 02/12/2015] [Accepted: 02/17/2015] [Indexed: 11/25/2022]
|
42
|
Maillet A, Thobois S, Fraix V, Redouté J, Le Bars D, Lavenne F, Derost P, Durif F, Bloem BR, Krack P, Pollak P, Debû B. Neural substrates of levodopa-responsive gait disorders and freezing in advanced Parkinson's disease: a kinesthetic imagery approach. Hum Brain Mapp 2015; 36:959-80. [PMID: 25411130 PMCID: PMC6869751 DOI: 10.1002/hbm.22679] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 07/18/2014] [Accepted: 10/21/2014] [Indexed: 11/06/2022] Open
Abstract
Gait disturbances, including freezing of gait, are frequent and disabling symptoms of Parkinson's disease. They often respond poorly to dopaminergic treatments. Although recent studies have shed some light on their neural correlates, their modulation by dopaminergic treatment remains quite unknown. Specifically, the influence of levodopa on the networks involved in motor imagery (MI) of parkinsonian gait has not been directly studied, comparing the off and on medication states in the same patients. We therefore conducted an [H2 (15) 0] Positron emission tomography study in eight advanced parkinsonian patients (mean disease duration: 12.3 ± 3.8 years) presenting with levodopa-responsive gait disorders and FoG, and eight age-matched healthy subjects. All participants performed three tasks (MI of gait, visual imagery and a control task). Patients were tested off, after an overnight withdrawal of all antiparkinsonian treatment, and on medication, during consecutive mornings. The order of conditions was counterbalanced between subjects and sessions. Results showed that imagined gait elicited activations within motor and frontal associative areas, thalamus, basal ganglia and cerebellum in controls. Off medication, patients mainly activated premotor-parietal and pontomesencephalic regions. Levodopa increased activation in motor regions, putamen, thalamus, and cerebellum, and reduced premotor-parietal and brainstem involvement. Areas activated when patients are off medication may represent compensatory mechanisms. The recruitment of these accessory circuits has also been reported for upper-limb movements in Parkinson's disease, suggesting a partly overlapping pathophysiology between imagined levodopa-responsive gait disorders and appendicular signs. Our results also highlight a possible cerebellar contribution in the pathophysiology of parkinsonian gait disorders through kinesthetic imagery.
Collapse
Affiliation(s)
- Audrey Maillet
- Université Joseph FourierGrenoble UniversitésGrenobleFrance
- INSERM‐UJF‐CEA‐CHU U836 Grenoble Institut des NeurosciencesGrenobleFrance
- Centre de Neuroscience CognitiveUMR 5229 CNRSLyonFrance
| | - Stéphane Thobois
- Centre de Neuroscience CognitiveUMR 5229 CNRSLyonFrance
- Hospices Civils de LyonHôpital Neurologique Pierre WertheimerLyonFrance
- Faculté de médecine Lyon Sud Charles MérieuxUniversité Lyon ILyonFrance
| | - Valérie Fraix
- Université Joseph FourierGrenoble UniversitésGrenobleFrance
- INSERM‐UJF‐CEA‐CHU U836 Grenoble Institut des NeurosciencesGrenobleFrance
- Centre Hospitalier UniversitairePavillon de NeurologieGrenobleFrance
| | | | - Didier Le Bars
- Hospices Civils de LyonHôpital Neurologique Pierre WertheimerLyonFrance
- CERMEPImagerie du VivantBronFrance
- Institut de Chimie et Biochimie Moléculaires et SupramoléculairesUniversité Claude BernardLyon ILyonFrance
| | | | - Philippe Derost
- Hôpital Gabriel MontpiedService de NeurologieClermont‐FerrandFrance
| | - Franck Durif
- Hôpital Gabriel MontpiedService de NeurologieClermont‐FerrandFrance
| | - Bastiaan R. Bloem
- Radboud University Medical CenterDonders Institute for BrainCognition and BehaviorDepartment of NeurologyNijmegenNetherlands
| | - Paul Krack
- Université Joseph FourierGrenoble UniversitésGrenobleFrance
- INSERM‐UJF‐CEA‐CHU U836 Grenoble Institut des NeurosciencesGrenobleFrance
- Centre Hospitalier UniversitairePavillon de NeurologieGrenobleFrance
| | - Pierre Pollak
- Université Joseph FourierGrenoble UniversitésGrenobleFrance
- INSERM‐UJF‐CEA‐CHU U836 Grenoble Institut des NeurosciencesGrenobleFrance
- Centre Hospitalier UniversitairePavillon de NeurologieGrenobleFrance
- Hôpitaux Universitaires de GenèveGenevaSwitzerland
| | - Bettina Debû
- Université Joseph FourierGrenoble UniversitésGrenobleFrance
- INSERM‐UJF‐CEA‐CHU U836 Grenoble Institut des NeurosciencesGrenobleFrance
| |
Collapse
|
43
|
Assessing motor imagery ability in younger and older adults by combining measures of vividness, controllability and timing of motor imagery. Brain Res 2014; 1597:196-209. [PMID: 25481412 DOI: 10.1016/j.brainres.2014.11.050] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 11/18/2014] [Accepted: 11/24/2014] [Indexed: 11/24/2022]
Abstract
With the population aging, a large number of patients undergoing rehabilitation are older than 60 years. Also, since the use of motor imagery (MI) training in rehabilitation is becoming more popular, it is important to gain a better knowledge about the age-related changes in MI ability. The main goal of this study was to compare MI ability in younger and older adults as well as to propose a new procedure for testing this ability. Thirty healthy young subjects (mean age: 22.9±2.7 years) and 28 healthy elderly subjects (mean age: 72.4±5.5 years) participated in the experiment. They were administered three tests aimed at assessing three dimensions of MI: (1) the kinesthetic and visual imagery questionnaire (KVIQ) to assess MI vividness; (2) a finger-thumb opposition task to assess MI controllability; and (3) a chronometric task to assess the timing of MI. On average, the younger and older groups showed similar results on the KVIQ and the chronometric task, but the younger group was more accurate at the finger-thumb opposition task. Interestingly, there was a large variability in the performance within both groups, emphasizing the importance of considering each person individually regarding MI ability, whatever his age. Finally, we propose two indexes of MI ability to identify the potential of persons to engage in MI training programs. Future studies are needed to confirm the predictive value of these MI indexes and define inclusion/exclusion thresholds for their use as a screening tool in both younger and older adults.
Collapse
|
44
|
VanSwearingen JM, Studenski SA. Aging, motor skill, and the energy cost of walking: implications for the prevention and treatment of mobility decline in older persons. J Gerontol A Biol Sci Med Sci 2014; 69:1429-36. [PMID: 25182600 PMCID: PMC4271095 DOI: 10.1093/gerona/glu153] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 07/29/2014] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Age-associated neural changes profoundly affect the biomechanics and energetics of walking, increase energy cost, and require novel approaches to exercise that focus on motor learning theory. METHODS We present a conceptual framework for motor skill in walking, its effect on the energy cost of walking, and the influence of the aging brain. RESULTS Motor learning theory and practice can be incorporated into interventions to promote skilled, energy efficient walking in older people. CONCLUSIONS An extensive literature on motor skill and motor learning, derived from neuroscience, sports medicine, and neurorehabilitation, can be applied to problems of walking in late life.
Collapse
|
45
|
Habas C, Manto M. Activation of cerebellar lobules VI-VII during motor imagery but not during motor activation in unilateral cerebellar hypoplasia. CEREBELLUM & ATAXIAS 2014; 1:6. [PMID: 26331030 PMCID: PMC4549134 DOI: 10.1186/2053-8871-1-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 06/17/2014] [Indexed: 11/10/2022]
Abstract
We report the case of a 25 year-old patient who underwent morphological and functional brain magnetic resonance imaging (fMRI) to investigate a left neocerebellar hypoplasia discovered incidentally. We compared brain activation during overt and covert finger movements, and haptic discrimination. The contralateral cerebellar hemisphere compensated for mental imagery of hand movements and haptic discrimination, but not for motor execution. Moreover, the resting-state functional connectivity did not show compensatory functional coherence between the right cerebellum and cerebral areas connected with the hypoplastic cerebellum. Our case illustrates for the first time that cerebellar compensatory recruitment is an active, specific process related to task complexity and under the control of executive networks.
Collapse
Affiliation(s)
- Christophe Habas
- Service de NeuroImagerie, Centre Hospitalier National d'Ophtalmologie des XV-XX, 28, rue de Charenton, Paris, 75012 France
| | - Mario Manto
- Unité d'Etude du Mouvement, FNRS Neurologie, ULB Erasme, Brussels, Belgium
| |
Collapse
|
46
|
Task requirements and their effects on imagined walking in elderly. Aging Clin Exp Res 2014; 26:387-93. [PMID: 24362888 DOI: 10.1007/s40520-013-0184-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 11/27/2013] [Indexed: 10/25/2022]
Abstract
BACKGROUND AND AIMS Mental training has the potential to enhance motor performance and behavior in older adults. Yet several studies have revealed age-related alteration of motor imagery (MI) ability, suggesting that mental training is not applicable for older adults. The purpose of the present study was to estimate MI performance in older adults, taking into account task requirements. METHODS MI performance of 20 older (mean age 70.75 ± 3.68 years) and 22 younger (mean age 24.31 ± 1.25 years) adults was estimated with the mental chronometry paradigm from the first-person perspective. Participants completed four walking tasks with different requirements, walking (A) in a straight line; (B) with two changes of direction; (C) on uneven ground; and (D) while additionally flipping switches. Path length and width were constant across tasks. MI ability was also measured with the Controllability of Motor Imagery Test, in which body parts have to be controlled and manipulated mentally. In addition, participants reported self-rated clarity of their MI in both tests after each trial. RESULTS Our data suggest no generalized alteration in MI of walking with different task requirements among older adults. A significant Age × Condition × Task interaction emerged, but this result could not be attributed to a specific task requirement in post-hoc tests. For controllability of MI, older adults showed alterations in imagining body postures. These results showed dissociation with the self-rated clarity in both tests. CONCLUSION The present findings suggest that older adults show no age-related alterations in MI for familiar movements. Mental Training of familiar movements could therefore be feasible for older adults and enables promising intervention strategies.
Collapse
|
47
|
McCormick SA, Causer J, Holmes PS. The influence of early aging on eye movements during motor simulation. AGE (DORDRECHT, NETHERLANDS) 2014; 36:9671. [PMID: 25005270 PMCID: PMC4150898 DOI: 10.1007/s11357-014-9671-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 06/18/2014] [Indexed: 06/03/2023]
Abstract
Movement based interventions such as imagery and action observation are used increasingly to support physical rehabilitation of adults during early aging. The efficacy of these more covert approaches is based on an intuitively appealing assumption that movement execution, imagery and observation share neural substrate; alteration of one influences directly the function of the other two. Using eye movement metrics this paper reports findings that question the congruency of the three conditions. The data reveal that simulating movement through imagery and action observation may offer older adults movement practice conditions that are not constrained by the age-related decline observed in physical conditions. In addition, the findings provide support for action observation as a more effective technique for movement reproduction in comparison to imagery. This concern for imagery was also seen in the less congruent temporal relationship in movement time between imagery and movement execution suggesting imagery inaccuracy in early aging.
Collapse
Affiliation(s)
- Sheree A. McCormick
- Cognitive Motor Function Group, Institute for Performance Research, Manchester Metropolitan University Cheshire Faculty, Crewe Green Road, Crewe Cheshire, CW1 5DU UK
| | - Joe Causer
- Brain and Behaviour Laboratory, Liverpool John Moores University, Liverpool, UK
| | - Paul S. Holmes
- Cognitive Motor Function Group, Institute for Performance Research, Manchester Metropolitan University Cheshire Faculty, Crewe Green Road, Crewe Cheshire, CW1 5DU UK
| |
Collapse
|
48
|
Altermann CDC, Martins AS, Carpes FP, Mello-Carpes PB. Influence of mental practice and movement observation on motor memory, cognitive function and motor performance in the elderly. Braz J Phys Ther 2014; 18:201-9. [PMID: 24839046 PMCID: PMC4183250 DOI: 10.1590/s1413-35552012005000150] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 10/15/2013] [Indexed: 11/22/2022] Open
Abstract
Background With aging, it is important to maintain cognitive and motor functions to
ensure autonomy and quality of life. During the acquisition of motor skills,
it is necessary for the elderly to understand the purpose of the proposed
activities. Physical and mental practice, as well as demonstrations, are
strategies used to learn movements. Objectives To investigate the influence of mental practice and the observation of
movement on motor memory and to understand the relationship between
cognitive function and motor performance in the execution of a sequence of
digital movements in the elderly. Method This was a cross-sectional study conducted with 45 young and 45 aged
subjects. The instruments used were Mini-Mental State Examination (MMSE),
Manual Preference Inventory and a Digital Motor Task (composed of a training
of a sequence of movements, an interval and a test phase). The subjects were
divided into three subgroups: control, mental practice and observation of
movement. Results The elderly depend more strongly on mental practice for the acquisition of a
motor memory. In comparing the performances of people in different age
groups, we found that in the elderly, there was a negative correlation
between the MMSE score and the execution time as well as the number of
errors in the motor task. Conclusions For the elderly, mental practice can advantage motor performance. Also,
there is a significant relationship between cognitive function, learning and
the execution of new motor skills.
Collapse
Affiliation(s)
- Caroline D C Altermann
- Stress, Memory and Behavior Laboratory, Universidade Federal do Pampa, Uruguaiana, RS, Brazil
| | - Alexandre S Martins
- Stress, Memory and Behavior Laboratory, Universidade Federal do Pampa, Uruguaiana, RS, Brazil
| | - Felipe P Carpes
- Laboratory of Applied neuromechanical, Universidade Federal do Pampa, Uruguaiana, RS, Brazil
| | - Pâmela B Mello-Carpes
- Stress, Memory and Behavior Laboratory, Universidade Federal do Pampa, Uruguaiana, RS, Brazil
| |
Collapse
|
49
|
Gabbard C. Mental representation for action in the elderly: implications for movement efficiency and injury risk. J Appl Gerontol 2014; 34:NP202-12. [PMID: 24652898 DOI: 10.1177/0733464813497255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Recent research findings indicate that with older adulthood, there are functional decrements in spatial cognition and more specially, in the ability to mentally represent and effectively plan motor actions. A typical finding is a significant over- or underestimation of one's actual physical abilities with movement planning-planning that has implications for movement efficiency and physical safety. A practical, daily life example is estimation of reachability--a situation that for the elderly may be linked with fall incidence. A strategy used to mentally represent action is the use of motor imagery--an ability that also declines with advancing older age. This brief review highlights research findings on mental representation and motor imagery in the elderly and addresses the implications for improving movement efficiency and lowering the risk of movement-related injury.
Collapse
|
50
|
Paizis C, Skoura X, Personnier P, Papaxanthis C. Motor Asymmetry Attenuation in Older Adults during Imagined Arm Movements. Front Aging Neurosci 2014; 6:49. [PMID: 24688468 PMCID: PMC3960501 DOI: 10.3389/fnagi.2014.00049] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 03/03/2014] [Indexed: 11/18/2022] Open
Abstract
Laterality is an important feature of motor behavior. Several studies have shown that lateralization in right-handed young adults (i.e., right versus left arm superiority) emerges also during imagined actions, that is when an action is internally simulated without any motor output. Such information, however, is lacking for elderly people and it could be valuable to further comprehend the evolution of mental states of action in normal aging. Here, we evaluated the influence of age on motor laterality during mental actions. Twenty-four young (mean age: 24.7 ± 4.4 years) and 24 elderly (mean age: 72.4 ± 3.6 years) participants mentally simulated and actually executed pointing movements with either their dominant-right or non-dominant-left arm in the horizontal plane. We recorded and analyzed the time of actual and mental movements and looked for differences between groups and arms. In addition, electromyographic activity from arm muscle was recorded to quantify any enhancement in muscle activation during mental actions. Our findings indicated that both groups mentally simulated arm movements without activating the muscles of the right or the left arm above the baseline level. This finding suggests that young and, notably, elderly adults are able to generate covert actions without any motor output. We found that manual asymmetries (i.e., faster movements with the right arm) were preserved in young adults for both actual and mental movements. In elderly adults, manual asymmetries were observed for actual but not for mental movements (i.e., equal movement times for both arms). These findings clearly indicate an age-related reduction of motor laterality during mental actions.
Collapse
Affiliation(s)
- Christos Paizis
- Unité de Formation et de Recherche en Sciences et Techniques des Activités Physiques et Sportives, Université de Bourgogne , Dijon , France ; Unité 1093, Cognition, Action et Plasticité Sensorimotrice, Institut National de la Santé et de la Recherche Médicale , Dijon , France ; Sport Science Faculty, Center for Performance Expertise G. Cometti, University of Burgundy , Dijon , France
| | - Xanthi Skoura
- Unité de Formation et de Recherche en Sciences et Techniques des Activités Physiques et Sportives, Université de Bourgogne , Dijon , France ; Unité 1093, Cognition, Action et Plasticité Sensorimotrice, Institut National de la Santé et de la Recherche Médicale , Dijon , France
| | - Pascaline Personnier
- Unité de Formation et de Recherche en Sciences et Techniques des Activités Physiques et Sportives, Université de Bourgogne , Dijon , France ; Unité 1093, Cognition, Action et Plasticité Sensorimotrice, Institut National de la Santé et de la Recherche Médicale , Dijon , France
| | - Charalambos Papaxanthis
- Unité de Formation et de Recherche en Sciences et Techniques des Activités Physiques et Sportives, Université de Bourgogne , Dijon , France ; Unité 1093, Cognition, Action et Plasticité Sensorimotrice, Institut National de la Santé et de la Recherche Médicale , Dijon , France
| |
Collapse
|