1
|
Hwang S, Min KC, Song CS. Assistive technology on upper extremity function for stroke patients: A systematic review with meta-analysis. J Hand Ther 2024:S0894-1130(23)00202-8. [PMID: 38796397 DOI: 10.1016/j.jht.2023.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/22/2023] [Accepted: 12/30/2023] [Indexed: 05/28/2024]
Abstract
BACKGROUND In stroke rehabilitation, the selection of appropriate assistive devices is of paramount importance for patients. Specifically, the choice of device can significantly influence the functional recovery of the upper limb, impacting their overall activities or functional tasks. OBJECTIVES This review aimed to comprehensively analyze and summarize the clinical evidence from randomized controlled trials (RCTs) regarding the therapeutic effects of commonly used assistive devices on upper extremity function in patients with stroke. METHODS To evaluate assistive devices for patients with stroke, we summarized qualitatively throughout synthesis of results, such as therapeutic intervention, intensity, outcome, and summary of results, and examined risk of bias, heterogeneity, mean difference, 95% confidence interval, and I-squared value. To analyze, we used RoB 2 and RevMan 5.4. RESULTS The qualitative synthesis included 31 RCTs. The randomization process and the reporting of results showed minimal bias, but there were issues with bias from intended interventions, and missing outcome data presented some concerns. The quantitative synthesis included 16 RCTs. There was a significant difference in the Fugl-Meyer assessment-upper extremity functioning (FMA-UE) scores between the groups, with a total mean difference (95% confidence interval) of 2.40 (0.21, 4.60), heterogeneity values were Tau2 = 0.32, chi-square = 8.22, degrees of freedom = 8 (p = 0.41), and I2 = 3% for FMA-UE and the test for the overall effect produced Z = 2.14 (p = 0.03) in patients with chronic stroke. However, there was no significant difference in all other outcome measures. CONCLUSIONS Upper-limb robots did not demonstrate significant superiority over conventional treatments in improving function of upper limbs, with the exception of FMA-UE scores for patients with chronic stroke. The mean difference of FMA-UE was also lower than minimally important difference. Nonetheless, the usage of upper-limb robots may contribute to enhanced function for patients with stroke, as those devices support clinicians and enable a greater number of movement repetitions within specific time frames.
Collapse
Affiliation(s)
- Sujin Hwang
- Department of Physical Therapy, Division of Health Science, Baekseok University, Cheonan, Republic of Korea; Graduate School of Health Welfare, Baekseok University, Seoul, Republic of Korea
| | - Kyoung-Chul Min
- Department of Occupational Therpay, Wonkwang University, Republic of Korea
| | - Chiang-Soon Song
- Department of Occupational Therapy, College of Natural Science and Public Health and Safety, Chosun University, Gwangju, Republic of Korea.
| |
Collapse
|
2
|
Androwis GJ, Engler A, AlRabadi S, Rana S, Snider B, Kirshblum S, Yue GH. Motor Control Changes after Utilizing Upper Extremity Myoelectric Powered Wearable Orthotics in Persons with Acute SCI. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083205 DOI: 10.1109/embc40787.2023.10340685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Following spinal cord injury (SCI), upper extremity (UE) weakness may impede one's ability to carry out activities of daily living (ADLs). Such a limitation drastically lowers a person's level of independence. Additionally, therapy and the field of assistive technology continue to place a strong premium on the restoration of UE motor function in patients with SCI. The main objective of this study was to assess the benefits of an UE myoelectric-powered wearable orthosis (MPWO) produced by MyoMo, Inc. (Boston, MA) on improving UE motor function in order to enhance ADLs and quality of life in individuals with subacute SCI. A 43-year-old man with subacute incomplete SCI (iSCI), American Spinal Injury Association (ASIA) Impairment Scale (AIS) C grade received 18 sessions (over a period of six weeks) of UE mobility therapy utilizing the MPWO. The MPWO was used to enhance active range of motion (AROM) of the hand and elbow, and associated muscle activations. After training with the MPWO, hand and elbow AROM and muscle activations were enhanced. These preliminary findings imply that UE-MPWO device-assisted rehabilitation may increase participants' UE activities, leading to improved function.Clinical Relevance- These preliminary findings from a person with iSCI in the subacute phase indicate that training with UE-MPWO assistive devices may enhance UE use during ADLs for people with muscle weakness but still having some residual voluntary muscle activation ability.
Collapse
|
3
|
Development of portable robotic orthosis and biomechanical validation in people with limited upper limb function after stroke. ROBOTICA 2022. [DOI: 10.1017/s0263574722000881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Abstract
Stroke has a considerable incidence in the world population and would cause sequelae in the upper limbs. One way to increase the efficiency in the rehabilitation process of patients with these sequelae is through robot-assisted therapy. The present study developed a portable robotic orthosis called Pinotti Portable Robotic Exoskeleton (PPRE) and validated its functioning in clinical tests. The static and dynamic parts of the device modules are described. Design issues, such as heavyweight and engine positioning, have been optimized. The implementation of control was through a smartphone application that communicates with a microcontroller to perform desired movements. Four individuals with motor impairment of the upper limbs due to stroke performed clinical tests to validate the device. Participants did not mention pain, discomfort, tingling, and paresthesia. The robotic device showed the ability to perform the flexion and extension movements of the fingers and elbow. The PPRE was confirmed to be adequate and functional at different levels of motor impairment assessed. The orthosis presented advantages over the currently existing devices, concerning its biomechanical functioning, portability, comfort, and versatility. Thus, the apparatus has the great innovative potential to become a device for home use, serving as an aid to the therapist and facilitating the rehabilitation of patients after an injury. In a larger sample, future studies are needed to assess the effect of a robotic orthosis on the level of rehabilitation in individuals with upper limb impairment.
Collapse
|
4
|
Pundik S, McCabe J, Skelly M, Salameh A, Naft J, Chen Z, Tatsuoka C, Fatone S. Myoelectric Arm Orthosis in Motor Learning-Based Therapy for Chronic Deficits After Stroke and Traumatic Brain Injury. Front Neurol 2022; 13:791144. [PMID: 35211080 PMCID: PMC8863049 DOI: 10.3389/fneur.2022.791144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/04/2022] [Indexed: 11/15/2022] Open
Abstract
Background Technologies that enhance motor learning-based therapy and are clinically deployable may improve outcome for those with neurological deficits. The MyoPro™ is a customized myoelectric upper extremity orthosis that utilizes volitionally generated weak electromyographic signals from paretic muscles to assist movement of an impaired arm. Our purpose was to evaluate MyoPro as a tool for motor learning-based therapy for individuals with chronic upper limb weakness. Methods This was a pilot study of thirteen individuals with chronic moderate/severe arm weakness due to either stroke (n = 7) or TBI (n = 6) who participated in a single group interventional study consisting of 2 phases. The in-clinic phase included 18 sessions (2x per week, 27hrs of face-to-face therapy) plus a home exercise program. The home phase included practice of the home exercise program. The study did not include a control group. Outcomes were collected at baseline and at weeks 3, 5, 7, 9, 12, 15, and 18. Statistics included mixed model regression analysis. Results Statistically significant and clinically meaningful improvements were observed on Fugl-Meyer (+7.5 points). Gains were seen at week 3, increased further through the in-clinic phase and were maintained during the home phase. Statistically significant changes in Modified Ashworth Scale, Range of Motion, and Chedoke Arm and Hand Activity Inventory were seen early during the in-clinic phase. Orthotic and Prosthetic User's Survey demonstrated satisfaction with the device throughout study participation. Both stroke and TBI participants responded to the intervention. Conclusions Use of MyoPro in motor learning-based therapy resulted in clinically significant gains with a relatively short duration of in-person treatment. Further studies are warranted. Clinical Trial Registration www.ClinicalTrials.gov, identifier: NCT03215771.
Collapse
Affiliation(s)
- Svetlana Pundik
- Brain Plasticity and NeuroRecovery Laboratory, Cleveland Functional Electrical Stimulation Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, United States.,Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Jessica McCabe
- Brain Plasticity and NeuroRecovery Laboratory, Cleveland Functional Electrical Stimulation Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, United States
| | - Margaret Skelly
- Brain Plasticity and NeuroRecovery Laboratory, Cleveland Functional Electrical Stimulation Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, United States
| | - Ahlam Salameh
- Brain Plasticity and NeuroRecovery Laboratory, Cleveland Functional Electrical Stimulation Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, United States.,Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Jonathan Naft
- Geauga Rehabilitation Engineering, Cleveland, OH, United States
| | - Zhengyi Chen
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Curtis Tatsuoka
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Stefania Fatone
- Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
5
|
Androwis GJ, Engler A, Rana S, Kirshblum S, Yue GH. The Rehabilitation Effects of Myoelectric Powered Wearable Orthotics on Improving Upper Extremity Function in Persons with SCI. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:4944-4948. [PMID: 34892317 DOI: 10.1109/embc46164.2021.9630972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Upper extremity (UE) weakness and/or paralysis following spinal cord injury (SCI) can lead to a limited capacity to perform activities of daily living (ADL). Such disability significantly reduces an individual's level of independence. Further, restoration of UE motor function in people with SCI remains a high priority in rehabilitation and the field of assistive technology. The overall goal of this study was to evaluate the effects of a myoelectric-powered wearable orthosis (MPWO) manufactured by MyoMo, Inc. (Boston, MA) for UE movement assistance on ameliorating UE motor function in order to improve ADL and quality of life in people with SCI. Two male participants with chronic incomplete SCI (iSCI), a 75- and a 31-year-old with AIS D and B, respectively, underwent 18 sessions (over 6 weeks) of UE movement rehabilitation using the MPWO. Handgrip strength, active range of motion (AROM) of the hand, response time to initiate a movement, and muscles activations were examined before and after the rehabilitation training using the MPWO. The response time to initiate UE movements decreased, and handgrip strength and AROM improved after training with the MPWO. These preliminary data suggest that rehabilitation with the use of the UE-MPWO device could enhance the participants' UE activities that led to improved function.Clinical Relevance- These preliminary results from two individuals with iSCI suggest that training with UE-MPWO assistive devices may improve UE utilization during ADL for individuals with muscle weakness or paralysis but still possessing residual voluntary muscle activation capabilities.
Collapse
|
6
|
Androwis GJ, Engler A, Rana S, Kirshblum S, Yue G. Upper Extremity Functional Improvements in Persons with SCI Resulted from Daily Utilization of Myoelectric Powered Wearable Orthotics. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:4949-4952. [PMID: 34892318 DOI: 10.1109/embc46164.2021.9629938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Spinal cord injury (SCI) is a medically complex and life-disrupting condition. It is estimated that 17,700 new traumatic SCI cases are reported each year in the United States. Approximately half of those cases, involves paralysis, sensory loss, and impaired motor control in the upper extremity (UE) and lower extremities. Such impairments could affect the person's independence as well as their family members and caregiver. The limitation at the UE can significantly limit the general activities of daily living (ADL). The purpose of this paper is to determine the daily utilization effects on changing the handgrip AROM and handgrip forces before and after providing upper extremity in-clinic rehabilitation along with at-home utilization using an UE myoelectric powered wearable orthosis (UE-MPWO) in a person with incomplete spinal cord injury (iSCI). This device helps restore function to the weakened or paralyzed UE muscles. We demonstrate that the handgrip AROM and handgrip force improved after 6-weeks of training with the UE-MPWO. The overall goal of this study was to evaluate the effects of UE-MPWO (MyoPro) when utilized for in-clinic rehabilitation combined with at-home daily use in improving UE movement and function of people with iSCI.Clinical Relevance- The results of in-clinic rehabilitation combined with at-home daily utilization suggest that this UE-MPWO may improve UE function. The examined UE-MPWO could represent a relatively good example as a rehabilitation and assistive tool for persons with iSCI.
Collapse
|
7
|
Ekechukwu END, Olowoyo P, Nwankwo KO, Olaleye OA, Ogbodo VE, Hamzat TK, Owolabi MO. Pragmatic Solutions for Stroke Recovery and Improved Quality of Life in Low- and Middle-Income Countries-A Systematic Review. Front Neurol 2020; 11:337. [PMID: 32695058 PMCID: PMC7336355 DOI: 10.3389/fneur.2020.00337] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/07/2020] [Indexed: 12/22/2022] Open
Abstract
Background: Given the limited healthcare resources in low and middle income countries (LMICs), effective rehabilitation strategies that can be realistically adopted in such settings are required. Objective: A systematic review of literature was conducted to identify pragmatic solutions and outcomes capable of enhancing stroke recovery and quality of life of stroke survivors for low- and middle- income countries. Methods: PubMed, HINARI, and Directory of Open Access Journals databases were searched for published Randomized Controlled Trials (RCTs) till November 2018. Only completed trials published in English with non-pharmacological interventions on adult stroke survivors were included in the review while published protocols, pilot studies and feasibility analysis of trials were excluded. Obtained data were synthesized thematically and descriptively analyzed. Results: One thousand nine hundred and ninety six studies were identified while 347 (65.22% high quality) RCTs were found to be eligible for the review. The most commonly assessed variables (and outcome measure utility) were activities of daily living [75.79% of the studies, with Barthel Index (37.02%)], motor function [66.57%; with Fugl Meyer scale (71.88%)], and gait [31.12%; with 6 min walk test (38.67%)]. Majority of the innovatively high technology interventions such as robot therapy (95.24%), virtual reality (94.44%), transcranial direct current stimulation (78.95%), transcranial magnetic stimulation (88.0%) and functional electrical stimulation (85.00%) were conducted in high income countries. Several traditional and low-cost interventions such as constraint-induced movement therapy (CIMT), resistant and aerobic exercises (R&AE), task oriented therapy (TOT), body weight supported treadmill training (BWSTT) were reported to significantly contribute to the recovery of motor function, activity, participation, and improvement of quality of life after stroke. Conclusion: Several pragmatic, in terms of affordability, accessibility and utility, stroke rehabilitation solutions, and outcome measures that can be used in resource-limited settings were found to be effective in facilitating and enhancing post-stroke recovery and quality of life.
Collapse
Affiliation(s)
- Echezona Nelson Dominic Ekechukwu
- Department of Medical Rehabilitation, Faculty of Health Sciences and Technology, College of Medicine, University of Nigeria, Enugu, Nigeria
- LANCET Physiotherapy and Wellness and Research Centre, Enugu, Nigeria
| | - Paul Olowoyo
- Department of Medicine, Federal Teaching Hospital, Ido Ekiti, Nigeria
- College of Medicine and Health Sciences, Afe Babalola University, Ado Ekiti, Nigeria
| | - Kingsley Obumneme Nwankwo
- Stroke Control Innovations Initiative of Nigeria, Abuja, Nigeria
- Fitness Global Consult Physiotherapy Clinic, Abuja, Nigeria
| | - Olubukola A Olaleye
- Department of Physiotherapy, Faculty of Clinical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | | | - Talhatu Kolapo Hamzat
- Department of Physiotherapy, Faculty of Clinical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Mayowa Ojo Owolabi
- Department of Medicine, Faculty of Clinical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
- University College Hospital, Ibadan, Nigeria
- Blossom Specialist Medical Centre, Ibadan, Nigeria
| |
Collapse
|
8
|
McCabe JP, Henniger D, Perkins J, Skelly M, Tatsuoka C, Pundik S. Feasibility and clinical experience of implementing a myoelectric upper limb orthosis in the rehabilitation of chronic stroke patients: A clinical case series report. PLoS One 2019; 14:e0215311. [PMID: 30978249 PMCID: PMC6461279 DOI: 10.1371/journal.pone.0215311] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/30/2019] [Indexed: 01/07/2023] Open
Abstract
Individuals with stroke are often left with persistent upper limb dysfunction, even after treatment with traditional rehabilitation methods. The purpose of this retrospective study is to demonstrate feasibility of the implementation of an upper limb myoelectric orthosis for the treatment of persistent moderate upper limb impairment following stroke (>6 months). Methods: Nine patients (>6 months post stroke) participated in treatment at an outpatient Occupational Therapy department utilizing the MyoPro myoelectric orthotic device. Group therapy was provided at a frequency of 1–2 sessions per week (60–90 minutes per session). Patients were instructed to perform training with the device at home on non-therapy days and to continue with use of the device after completion of the group training period. Outcome measures included Fugl-Meyer Upper Limb Assessment (FM) and modified Ashworth Scale (MAS). Results: Patients demonstrated clinically important and statistically significant improvement of 9.0±4.8 points (p = 0.0005) on a measure of motor control impairment (FM) during participation in group training. It was feasible to administer the training in a group setting with the MyoPro, using a 1:4 ratio (therapist to patients). Muscle tone improved for muscles with MAS >1.5 at baseline. Discussion: Myoelectric orthosis use is feasible in a group clinic setting and in home-use structure for chronic stroke survivors. Clinically important motor control gains were observed on FM in 7 of 9 patients who participated in training.
Collapse
Affiliation(s)
- Jessica P. McCabe
- Brain Plasticity and NeuroRecovery Laboratory, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, United States of America
| | - Dennyse Henniger
- Department of Physical Medicine and Rehabilitation, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, United States of America
| | - Jessica Perkins
- Department of Physical Medicine and Rehabilitation, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, United States of America
| | - Margaret Skelly
- Brain Plasticity and NeuroRecovery Laboratory, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, United States of America
| | - Curtis Tatsuoka
- Department of Biostatistics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Svetlana Pundik
- Brain Plasticity and NeuroRecovery Laboratory, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, United States of America
- Neurology Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, United States of America
- Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
9
|
Mehrholz J, Pohl M, Platz T, Kugler J, Elsner B. Electromechanical and robot-assisted arm training for improving activities of daily living, arm function, and arm muscle strength after stroke. Cochrane Database Syst Rev 2018; 9:CD006876. [PMID: 30175845 PMCID: PMC6513114 DOI: 10.1002/14651858.cd006876.pub5] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND Electromechanical and robot-assisted arm training devices are used in rehabilitation, and may help to improve arm function after stroke. OBJECTIVES To assess the effectiveness of electromechanical and robot-assisted arm training for improving activities of daily living, arm function, and arm muscle strength in people after stroke. We also assessed the acceptability and safety of the therapy. SEARCH METHODS We searched the Cochrane Stroke Group's Trials Register (last searched January 2018), the Cochrane Central Register of Controlled Trials (CENTRAL) (the Cochrane Library 2018, Issue 1), MEDLINE (1950 to January 2018), Embase (1980 to January 2018), CINAHL (1982 to January 2018), AMED (1985 to January 2018), SPORTDiscus (1949 to January 2018), PEDro (searched February 2018), Compendex (1972 to January 2018), and Inspec (1969 to January 2018). We also handsearched relevant conference proceedings, searched trials and research registers, checked reference lists, and contacted trialists, experts, and researchers in our field, as well as manufacturers of commercial devices. SELECTION CRITERIA Randomised controlled trials comparing electromechanical and robot-assisted arm training for recovery of arm function with other rehabilitation or placebo interventions, or no treatment, for people after stroke. DATA COLLECTION AND ANALYSIS Two review authors independently selected trials for inclusion, assessed trial quality and risk of bias, used the GRADE approach to assess the quality of the body of evidence, and extracted data. We contacted trialists for additional information. We analysed the results as standardised mean differences (SMDs) for continuous variables and risk differences (RDs) for dichotomous variables. MAIN RESULTS We included 45 trials (involving 1619 participants) in this update of our review. Electromechanical and robot-assisted arm training improved activities of daily living scores (SMD 0.31, 95% confidence interval (CI) 0.09 to 0.52, P = 0.0005; I² = 59%; 24 studies, 957 participants, high-quality evidence), arm function (SMD 0.32, 95% CI 0.18 to 0.46, P < 0.0001, I² = 36%, 41 studies, 1452 participants, high-quality evidence), and arm muscle strength (SMD 0.46, 95% CI 0.16 to 0.77, P = 0.003, I² = 76%, 23 studies, 826 participants, high-quality evidence). Electromechanical and robot-assisted arm training did not increase the risk of participant dropout (RD 0.00, 95% CI -0.02 to 0.02, P = 0.93, I² = 0%, 45 studies, 1619 participants, high-quality evidence), and adverse events were rare. AUTHORS' CONCLUSIONS People who receive electromechanical and robot-assisted arm training after stroke might improve their activities of daily living, arm function, and arm muscle strength. However, the results must be interpreted with caution although the quality of the evidence was high, because there were variations between the trials in: the intensity, duration, and amount of training; type of treatment; participant characteristics; and measurements used.
Collapse
Affiliation(s)
- Jan Mehrholz
- Technical University DresdenDepartment of Public Health, Dresden Medical SchoolFetscherstr. 74DresdenGermany01307
| | - Marcus Pohl
- Helios Klinik Schloss PulsnitzNeurological RehabilitationWittgensteiner Str. 1PulsnitzSaxonyGermany01896
| | - Thomas Platz
- Ernst‐Moritz‐Arndt‐Universität GreifswaldNeurorehabilitation Centre and Spinal Cord Injury Unit, BDH‐Klinik GreifswaldKarl‐Liebknecht‐Ring 26aGreifswaldGermany17491
- Ernst‐Moritz‐Arndt‐UniversitätNeurowissenschaftenGreifswaldGermany
| | - Joachim Kugler
- Technical University DresdenDepartment of Public Health, Dresden Medical SchoolFetscherstr. 74DresdenGermany01307
| | - Bernhard Elsner
- Dresden Medical School, Technical University DresdenDepartment of Public HealthFetscherstr. 74DresdenSachsenGermany01307
| | | |
Collapse
|