1
|
Trébosc J, Lafon O, Amoureux JP. High-resolution indirect detection of spin-3/2 quadrupolar nuclei in solids using multiple-quantum-filtered through-space D-HMQC experiments. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2024; 134:101971. [PMID: 39357421 DOI: 10.1016/j.ssnmr.2024.101971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 10/04/2024]
Abstract
Through-space heteronuclear correlation experiments under magic-angle spinning (MAS) conditions can provide unique insights into inter-atomic proximities. In particular, it has been shown that experiments based on two consecutive coherence transfers, 1H → I → 1H, like D-HMQC (dipolar-mediated heteronuclear multiple-quantum correlation), are usually more sensitive for the indirect detection via protons of spin-3/2 quadrupolar nuclei with low gyromagnetic ratio. Nevertheless, the resolution is often decreased by the second-order quadrupolar broadening along the indirect dimension. To circumvent this issue, we incorporate an MQMAS (multiple-quantum MAS) quadrupolar filter into the t1 evolution period of the D-HMQC sequence, which results in a novel pulse sequence called D-HMQC-MQ. The triple-quantum coherences evolving during this filter are excited and reconverted using cosine-modulated long-pulses synchronized with the sample rotation to avoid spinning sidebands in the indirect dimension. The desired coherence transfer pathways during this sequence are selected using two nested cogwheel phase cycles with 56 steps. This high-resolution heteronuclear correlation technique is demonstrated experimentally for the indirect detection via 1H of spin-3/2 isotopes, such as 11B, 23Na and 35Cl, in zinc borate hydrate, NaH2PO4 and l-histidine hydrochloride, respectively. We show that this experiment can be applied at high magnetic fields up to 28.2 T for protons subject to chemical shift anisotropies larger than 20 ppm, provided the MAS frequency is sufficiently stable since the D-HMQC-MQ experiment, like the parent D-HMQC, is sensitive to MAS fluctuations, which can produce t1-noise.
Collapse
Affiliation(s)
- Julien Trébosc
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, FR 2638, Federation Chevreul, F-59000, Lille, France.
| | - Olivier Lafon
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS- Unité de Catalyse et de Chimie Du Solide, F-59000, Lille, France
| | - Jean-Paul Amoureux
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS- Unité de Catalyse et de Chimie Du Solide, F-59000, Lille, France.
| |
Collapse
|
2
|
Mudgil M, Kurur ND. Excitation of long-lived nuclear spin order using spin-locking: a geometrical formalism. Phys Chem Chem Phys 2024; 26:19908-19920. [PMID: 38990198 DOI: 10.1039/d4cp01995d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Over the last two decades, numerous pulse sequences have been introduced for the excitation of long-lived spin order (LLS) in high fields. The long continuous wave (CW) or adiabatic pulses used in the SLIC and APSOC sequences should remind one of the spin-locking pulses that are used to induce cross-polarization (CP). Dynamics during these spin-lockings in CP experiments are explained through a geometrical formalism. However, the SLIC and APSOC sequences are described in terms of the energy-level picture or in the language of level anti-crossings. Motivated by this analogy, this work presents here a geometrical formalism for the LLS excitation by spin-locking pulses in weakly coupled systems. The formalism is similar to the one used for CP dynamics and reveals new pulse sequences involving CW or adiabatic locking. A similar formalism for the sustaining period of LLS is also provided, which reveals new features of the dynamics and suggests the usage of modulated spin-lockings for proper LLS sustaining. For strong and intermediate regimes, although a simple geometrical formalism seems infeasible, a new pulse sequence that employs a ramp-down adiabatic pulse for both LLS excitation and reconversion to observables in both these regimes is presented here. Given the similarities between LLS excitation and well-developed CP, it may be anticipated that this work would initiate the search for new LLS excitation methods and applications.
Collapse
Affiliation(s)
- Manjeet Mudgil
- Chemistry Department, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - Narayanan D Kurur
- Chemistry Department, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
3
|
Georges T, Chèvre R, Cousin SF, Gervais C, Thureau P, Mollica G, Azaïs T. 43Ca MAS-DNP NMR of Frozen Solutions for the Investigation of Calcium Ion Complexation. ACS OMEGA 2024; 9:4881-4891. [PMID: 38313477 PMCID: PMC10831850 DOI: 10.1021/acsomega.3c08292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/11/2023] [Accepted: 12/26/2023] [Indexed: 02/06/2024]
Abstract
Calcium ion complexation in aqueous solutions is of paramount importance in biology as it is related to cell signaling, muscle contraction, or biomineralization. However, Ca2+-complexes are dynamic soluble entities challenging to describe at the molecular level. Nuclear magnetic resonance appears as a method of choice to probe Ca2+-complexes. However, 43Ca NMR exhibits severe limitations arising from the low natural abundance coupled to the low gyromagnetic ratio and the quadrupolar nature of 43Ca, which overall make it a very unreceptive nucleus. Here, we show that 43Ca dynamic nuclear polarization (DNP) NMR of 43Ca-labeled frozen solutions is an efficient approach to enhance the NMR receptivity of 43Ca and to obtain structural insights about calcium ions complexed with representative ligands including water molecules, ethylenediaminetetraacetic acid (EDTA), and l-aspartic acid (l-Asp). In these conditions and in combination with numerical simulations and calculations, we show that 43Ca nuclei belonging to Ca2+ complexed to the investigated ligands exhibit rather low quadrupolar couplings (with CQ typically ranging from 0.6 to 1 MHz) due to high symmetrical environments and potential residual dynamics in vitrified solutions at a temperature of 100 K. As a consequence, when 1H→43Ca cross-polarization (CP) is used to observe 43Ca central transition, "high-power" νRF(43Ca) conditions, typically used to detect spin 1/2 nuclei, provide ∼120 times larger sensitivity than "low-power" conditions usually employed for detection of quadrupolar nuclei. These "high-power" CPMAS conditions allow two-dimensional (2D) 1H-43Ca HetCor spectra to be readily recorded, highlighting various Ca2+-ligand interactions in solution. This significant increase in 43Ca NMR sensitivity results from the combination of distinct advantages: (i) an efficient 1H-mediated polarization transfer from DNP, resembling the case of low-natural-abundance spin 1/2 nuclei, (ii) a reduced dynamics, allowing the use of CP as a sensitivity enhancement technique, and (iii) the presence of a relatively highly symmetrical Ca environment, which, combined to residual dynamics, leads to the averaging of the quadrupolar interaction and hence to efficient high-power CP conditions. Interestingly, these results indicate that the use of high-power CP conditions is an effective way of selecting symmetrical and/or dynamic 43Ca environments of calcium-containing frozen solution, capable of filtering out more rigid and/or anisotropic 43Ca sites characterized by larger quadrupolar constants. This approach could open the way to the atomic-level investigation of calcium environments in more complex, heterogeneous frozen solutions, such as those encountered at the early stages of calcium phosphate or calcium carbonate biomineralization events.
Collapse
Affiliation(s)
- Tristan Georges
- Sorbonne
Université, CNRS, Laboratoire de Chimie de la Matière
Condensée de Paris (LCMCP), 4 Place Jussieu, 75005 Paris, France
| | - Romain Chèvre
- Aix
Marseille Univ, CNRS, ICR, 13397 Marseille, France
| | | | - Christel Gervais
- Sorbonne
Université, CNRS, Laboratoire de Chimie de la Matière
Condensée de Paris (LCMCP), 4 Place Jussieu, 75005 Paris, France
| | | | | | - Thierry Azaïs
- Sorbonne
Université, CNRS, Laboratoire de Chimie de la Matière
Condensée de Paris (LCMCP), 4 Place Jussieu, 75005 Paris, France
| |
Collapse
|
4
|
Nehra E, Pandey MK. Unravelling the mechanism of polarization transfer from spin-1/2 to spin-1 system in solids. Phys Chem Chem Phys 2024; 26:2995-3007. [PMID: 38179672 DOI: 10.1039/d3cp05921a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
An analytic theory based on the concept of "effective-fields" is proposed to explain the mechanism of polarization transfer from spin I = 1/2 to spin S = 1 in non-rotating (static) solids. Employing an isolated two-spin model system, the matching conditions responsible for polarization transfer in cross-polarization (CP) experiments are identified and described in terms of the single-transition operators. In contrast to other existing treatments, the polarization transfer among spins is quantified through analytic expressions highlighting the individual contributions emerging from all plausible CP matching conditions. The interplay between the CP matching conditions observed in experiments is outlined in both isotropic and anisotropic systems and verified through comparison between simulations based on analytic and exact numerical methods. The predictions emerging from the analytic theory are verified over a wide range of experimentally relevant parameters and could be beneficial in the optimization of the CP experiments.
Collapse
Affiliation(s)
- Ekta Nehra
- Department of Chemistry, Indian Institute of Technology (IIT) Ropar, Rupnagar, Punjab, 140001, India.
| | - Manoj Kumar Pandey
- Department of Chemistry, Indian Institute of Technology (IIT) Ropar, Rupnagar, Punjab, 140001, India.
| |
Collapse
|
5
|
Kimball JJ, Altenhof AR, Jaroszewicz MJ, Schurko RW. Broadband Cross-Polarization to Half-Integer Quadrupolar Nuclei: Wideline Static NMR Spectroscopy. J Phys Chem A 2023; 127:9621-9634. [PMID: 37922436 DOI: 10.1021/acs.jpca.3c05447] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
Cross-polarization (CP) is a technique commonly used for the signal enhancement of NMR spectra; however, applications to quadrupolar nuclei have heretofore been limited due to a number of problems, including poor spin-locking efficiency, inconvenient relaxation times, and reduced CP efficiencies over broad spectral bandwidths─this is unfortunate, since they constitute 73% of NMR-active nuclei in the periodic table. The Broadband Adiabatic Inversion CP (BRAIN-CP) pulse sequence has proven useful for the signal enhancement of wideline and ultra-wideline (i.e., 250 kHz to several MHz in breadth) powder patterns arising from stationary samples; however, a comprehensive investigation of its application to half-integer quadrupolar nuclei (HIQN) is currently lacking. Herein, we present theoretical and experimental considerations for applying BRAIN-CP to acquire central-transition (CT, +1/2 ↔ -1/2) powder patterns of HIQN. Consideration is given to parameters crucial to the success of the experiment, such as the Hartmann-Hahn (HH) matching conditions and the phase modulation of the contact pulse. Modifications to the BRAIN-CP sequence such as flip-back (FB) pulses and ramped contact pulses applied to the 1H spins are used for the reduction of experimental times and increased CP bandwidth capabilities, respectively. Spectra for a series of quadrupolar nuclei with broad CT powder patterns, including 35Cl (S = 3/2), 55Mn (S = 5/2), 59Co (S = 7/2), and 93Nb (S = 9/2), are acquired via direct excitation (CPMG and WCPMG) and indirect excitation (CP/CPMG and BRAIN-CP) methods. We demonstrate that proper implementation of the sequence can enable 1H-S broadband CP over a bandwidth of 1 MHz, which to the best of our knowledge is the largest CP bandwidth reported to date. Finally, we establish the basic principles necessary for simplified optimization and execution of the BRAIN-CP pulse sequence for a wide range of HIQNs.
Collapse
Affiliation(s)
- James J Kimball
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| | - Adam R Altenhof
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| | - Michael J Jaroszewicz
- Department of Chemical & Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Robert W Schurko
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| |
Collapse
|
6
|
Nimerovsky E, Becker S, Andreas LB. Windowed cross polarization at 55 kHz magic-angle spinning. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 349:107404. [PMID: 36848688 DOI: 10.1016/j.jmr.2023.107404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/01/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Cross polarization (CP) transfers via Hartmann-Hahn matching conditions are one of the cornerstones of solid-state magic-angle spinning NMR experiments. Here we investigate a windowed sequence for cross polarization (wCP) at 55 kHz magic-angle spinning, placing one window (and one pulse) per rotor period on one or both rf channels. The wCP sequence is known to have additional matching conditions. We observe a striking similarity between wCP and CP transfer conditions when considering the flip angle of the pulse rather than the rf-field strength applied during the pulse. Using fictitious spin-1/2 formalism and average Hamiltonian theory, we derive an analytical approximation that matches these observed transfer conditions. We recorded data at spectrometers with different external magnetic fields up to 1200 MHz, for strong and weak heteronuclear dipolar couplings. These transfers, and even the selectivity of CP were again found to relate to flip angle (average nutation).
Collapse
Affiliation(s)
- Evgeny Nimerovsky
- Department of NMR based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen, Germany.
| | - Stefan Becker
- Department of NMR based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen, Germany
| | - Loren B Andreas
- Department of NMR based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen, Germany.
| |
Collapse
|
7
|
Wang X, Li M, Wu Z. In situ spectroscopic insights into the redox and acid-base properties of ceria catalysts. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(21)63806-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Nagashima H, Trébosc J, Kon Y, Lafon O, Amoureux JP. Efficient transfer of DNP-enhanced 1 H magnetization to half-integer quadrupolar nuclei in solids at moderate spinning rate. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2021; 59:920-939. [PMID: 33300128 DOI: 10.1002/mrc.5121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/02/2020] [Accepted: 12/05/2020] [Indexed: 06/12/2023]
Abstract
We show herein how the proton magnetization enhanced by dynamic nuclear polarization (DNP) can be efficiently transferred at moderate magic-angle spinning (MAS) frequencies to half-integer quadrupolar nuclei, S ≥ 3/2, using the Dipolar-mediated Refocused Insensitive Nuclei Enhanced by Polarization Transfer (D-RINEPT) technique, in which a symmetry-based SR 4 1 2 recoupling scheme built from adiabatic inversion 1 H pulses reintroduces the 1 H-S dipolar couplings, while suppressing the 1 H-1 H ones. The use of adiabatic pulses also improves the robustness to offsets and radiofrequency (rf)-field inhomogeneity. Furthermore, the efficiency of the polarization transfer is further improved by using 1 H composite pulses and continuous-wave irradiations between the recoupling blocks, as well as by manipulating the S satellite transitions during the first recoupling block. Furthermore, in the case of large 1 H-S dipolar couplings, the D-RINEPT variant with two pulses on the quadrupolar channel results in an improved transfer efficiency. We compare here the performances of this new adiabatic scheme with those of its parent version with single π pulses, as well as with those of PRESTO and CPMAS transfers. This comparison is performed using simulations as well as DNP-enhanced 27 Al, 95 Mo, and 17 O NMR experiments on isotopically unmodified γ-alumina, hydrated titania-supported MoO3 , Mg(OH)2 , and l-histidine·HCl·H2 O. The introduced RINEPT method outperforms the existing methods, both in terms of efficiency and robustness to rf-field inhomogeneity and offset.
Collapse
Affiliation(s)
- Hiroki Nagashima
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Julien Trébosc
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et de Chimie du Solide, Lille, France
- Univ. Lille, CNRS, INRAE, Centrale Lille, Univ. Artois, FR 2638 - IMEC - Institut Michel-Eugène Chevreul, Lille, France
| | - Yoshihiro Kon
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Olivier Lafon
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et de Chimie du Solide, Lille, France
- Institut Universitaire de France, France
| | - Jean-Paul Amoureux
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et de Chimie du Solide, Lille, France
- Bruker BioSpin, Wissembourg, France
- NMR Science and Development Division, Riken, Yokohama, Japan
| |
Collapse
|
9
|
Zheng M, Xin S, Wang Q, Trébosc J, Xu J, Qi G, Feng N, Lafon O, Deng F. Through-space 11 B- 27 Al correlation: Influence of the recoupling channel. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2021; 59:1062-1076. [PMID: 33847409 DOI: 10.1002/mrc.5163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/27/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
Through-space heteronuclear correlation (D-HETCOR) experiments based on heteronuclear multiple-quantum correlation (D-HMQC) and refocused insensitive nuclei enhanced by polarization transfer (D-RINEPT) sequences have been proven to be useful approaches for the detection of the spatial proximity between half-integer quadrupolar nuclei in solids under magic-angle spinning (MAS) conditions. The corresponding pulse sequences employ coherence transfers mediated by heteronuclear dipolar interactions, which are reintroduced under MAS by radiofrequency irradiation of only one of the two correlated nuclei. We investigate herein using numerical simulations of spin dynamics and solid-state NMR experiments on magnesium aluminoborate glass how the choice of the channel to which the heteronuclear dipolar recoupling is applied affects the transfer efficiency of D-HMQC and D-RINEPT sequences between 11 B and 27 Al nuclei. Experimental results show that maximum transfer efficiency is achieved when the recoupling scheme is applied to the channel, for which the spin magnetization is parallel to the B0 axis in average.
Collapse
Affiliation(s)
- Mingji Zheng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shaohui Xin
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
- Wanhua Chemical Group Co., Ltd, Yantai, China
| | - Qiang Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Julien Trébosc
- Unité de Catalyse et de Chimie du Solide (UCCS), Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181, Lille, F-59000, France
- Institut Michel-Eugène Chevreul (IMEC),Univ. Lille, CNRS, INRA, Centrale Lille, Univ. Artois, FR 2638 - IMEC, Lille, F-59000, France
| | - Jun Xu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Guodong Qi
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Ningdong Feng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Olivier Lafon
- Unité de Catalyse et de Chimie du Solide (UCCS), Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181, Lille, F-59000, France
- Institut Universitaire de France, Paris, 75231, France
| | - Feng Deng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| |
Collapse
|
10
|
Gómez J, Rankin A, Trébosc J, Pourpoint F, Tsutsumi Y, Nagashima H, Lafon O, Amoureux JP. Improved NMR transfer of magnetization from protons to half-integer spin quadrupolar nuclei at moderate and high magic-angle spinning frequencies. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2021; 2:447-464. [PMID: 37904781 PMCID: PMC10539806 DOI: 10.5194/mr-2-447-2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/01/2021] [Indexed: 11/01/2023]
Abstract
Half-integer spin quadrupolar nuclei are the only magnetic isotopes for the majority of the chemical elements. Therefore, the transfer of polarization from protons to these isotopes under magic-angle spinning (MAS) can provide precious insights into the interatomic proximities in hydrogen-containing solids, including organic, hybrid, nanostructured and biological solids. This transfer has recently been combined with dynamic nuclear polarization (DNP) in order to enhance the NMR signal of half-integer quadrupolar isotopes. However, the cross-polarization transfer lacks robustness in the case of quadrupolar nuclei, and we have recently introduced as an alternative technique a D -RINEPT (through-space refocused insensitive nuclei enhancement by polarization transfer) scheme combining a heteronuclear dipolar recoupling built from adiabatic pulses and a continuous-wave decoupling. This technique has been demonstrated at 9.4 T with moderate MAS frequencies, ν R ≈ 10 -15 kHz, in order to transfer the DNP-enhanced 1 H polarization to quadrupolar nuclei. Nevertheless, polarization transfers from protons to quadrupolar nuclei are also required at higher MAS frequencies in order to improve the 1 H resolution. We investigate here how this transfer can be achieved at ν R ≈ 20 and 60 kHz. We demonstrate that the D -RINEPT sequence using adiabatic pulses still produces efficient and robust transfers but requires large radio-frequency (rf) fields, which may not be compatible with the specifications of most MAS probes. As an alternative, we introduce robust and efficient variants of the D -RINEPT and PRESTO (phase-shifted recoupling effects a smooth transfer of order) sequences using symmetry-based recoupling schemes built from single and composite π pulses. Their performances are compared using the average Hamiltonian theory and experiments at B 0 = 18.8 T on γ -alumina and isopropylamine-templated microporous aluminophosphate (AlPO4 -14), featuring low and significant 1 H-1 H dipolar interactions, respectively. These experiments demonstrate that the 1 H magnetization can be efficiently transferred to 27 Al nuclei using D -RINEPT with SR 4 1 2 (2700 90180 ) recoupling and using PRESTO with R 22 2 7 (1800 ) or R 16 7 6 (2700 90180 ) schemes at ν R = 20 or 62.5 kHz, respectively. The D -RINEPT and PRESTO recoupling schemes complement each other since the latter is affected by dipolar truncation, whereas the former is not. We also analyze the losses during these recoupling schemes, and we show how these magnetization transfers can be used at ν R = 62.5 kHz to acquire in 72 min 2D HETCOR (heteronuclear correlation) spectra between 1 H and quadrupolar nuclei, with a non-uniform sampling (NUS).
Collapse
Affiliation(s)
- Jennifer S. Gómez
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, Lille, 59000, France
| | - Andrew G. M. Rankin
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, Lille, 59000, France
- present address: Sorbonne Université, CNRS, Collège de
France, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), 4 place Jussieu, Paris, 75005, France
| | - Julien Trébosc
- Univ. Lille, CNRS, INRAE, Centrale Lille, Univ. Artois, FR 2638 –
IMEC – Fédération Chevreul, Lille, 59000, France
| | - Frédérique Pourpoint
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, Lille, 59000, France
| | - Yu Tsutsumi
- Bruker Japan, 3-9 Moriya, Kanagawa, Yokohama, Kanagawa,
221-0022, Japan
| | - Hiroki Nagashima
- Interdisciplinary Research Center for Catalytic Chemistry, National
Institute of Advanced Industrial Science and Technology (AIST), 1-1-1
Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Olivier Lafon
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, Lille, 59000, France
- Institut Universitaire de France, 1 rue Descartes, Paris, 75231,
France
| | - Jean-Paul Amoureux
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, Lille, 59000, France
- Riken NMR Science and Development Division, Yokohama, Kanagawa, 230-0045, Japan
- Bruker Biospin, 34 rue de l'industrie, Wissembourg, 67166, France
| |
Collapse
|
11
|
Nagashima H, Trébosc J, Kon Y, Sato K, Lafon O, Amoureux JP. Observation of Low-γ Quadrupolar Nuclei by Surface-Enhanced NMR Spectroscopy. J Am Chem Soc 2020; 142:10659-10672. [DOI: 10.1021/jacs.9b13838] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Hiroki Nagashima
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Julien Trébosc
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181, UCCS - Unité de Catalyse et de Chimie du Solide, F-59000 Lille, France
- Univ. Lille, CNRS-2638, Fédération Chevreul, F-59000 Lille, France
| | - Yoshihiro Kon
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Kazuhiko Sato
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Olivier Lafon
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181, UCCS - Unité de Catalyse et de Chimie du Solide, F-59000 Lille, France
- Institut Universitaire de France, 1 rue Descartes, F-75231 Paris, France
| | - Jean-Paul Amoureux
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181, UCCS - Unité de Catalyse et de Chimie du Solide, F-59000 Lille, France
- Bruker Biospin, 34 rue de l’industrie, F-67166 Wissembourg, France
- Riken NMR Science and Development Division, Yokohama, 230-0045 Kanagawa, Japan
| |
Collapse
|
12
|
Perras FA, Goh TW, Wang LL, Huang W, Pruski M. Enhanced 1H-X D-HMQC performance through improved 1H homonuclear decoupling. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2019; 98:12-18. [PMID: 30669006 DOI: 10.1016/j.ssnmr.2019.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/05/2019] [Accepted: 01/06/2019] [Indexed: 06/09/2023]
Abstract
The sensitivity of solid-state NMR experiments that utilize 1H zero-quantum heteronuclear dipolar recoupling, such as D-HMQC, is compromised by poor homonuclear decoupling. This leads to a rapid decay of recoupled magnetization and an inefficient recoupling of long-range dipolar interactions, especially for nuclides with low gyromagnetic ratios. We investigated the use, in symmetry-based 1H heteronuclear recoupling sequences, of a basic R element that was principally designed for efficient homonuclear decoupling. By shortening the time required to suppress the effects of homonuclear dipolar interactions to the duration of a single inversion pulse, spin diffusion was effectively quenched and long-lived recoupled coherence lifetimes could be obtained. We show, both theoretically and experimentally, that these modified sequences can yield considerable sensitivity improvements over the current state-of-the-art methods and applied them to the indirect detection of 89Y in a metal-organic framework.
Collapse
Affiliation(s)
| | - Tian Wei Goh
- US Department of Energy, Ames Laboratory, Ames, IA, 50011, USA; Department of Chemistry, Iowa State University, Ames, IA, 50011, USA
| | - Lin-Lin Wang
- US Department of Energy, Ames Laboratory, Ames, IA, 50011, USA
| | - Wenyu Huang
- US Department of Energy, Ames Laboratory, Ames, IA, 50011, USA; Department of Chemistry, Iowa State University, Ames, IA, 50011, USA
| | - Marek Pruski
- US Department of Energy, Ames Laboratory, Ames, IA, 50011, USA; Department of Chemistry, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
13
|
Giovine R, Trébosc J, Pourpoint F, Lafon O, Amoureux JP. Magnetization transfer from protons to quadrupolar nuclei in solid-state NMR using PRESTO or dipolar-mediated refocused INEPT methods. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 299:109-123. [PMID: 30594000 DOI: 10.1016/j.jmr.2018.12.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 12/11/2018] [Accepted: 12/17/2018] [Indexed: 06/09/2023]
Abstract
In solid-state NMR spectroscopy, the through-space transfer of magnetization from protons to quadrupolar nuclei is employed to probe proximities between those isotopes. Furthermore, such transfer, in conjunction with Dynamic Nuclear Polarization (DNP), can enhance the NMR sensitivity of quadrupolar nuclei, as it allows the transfer of DNP-enhanced 1H polarization to surrounding nuclei. We compare here the performances of two approaches to achieve such transfer: PRESTO (Phase-shifted Recoupling Effects a Smooth Transfer of Order), which is currently the method of choice to achieve the magnetization transfer from protons to quadrupolar nuclei and which has been shown to supersede Cross-Polarization under Magic-Angle Spinning (MAS) for quadrupolar nuclei and D-RINEPT (Dipolar-mediated Refocused Insensitive Nuclei Enhanced by Polarization Transfer) using symmetry-based SR412 recoupling, which has already been employed to transfer the magnetization in the reverse way from half-integer quadrupolar spin to protons. We also test the PRESTO sequence with R1676 recoupling using 270090180 composite π-pulses as inversion elements. This recoupling scheme, which has previously been proposed to reintroduce 1H Chemical Shift Anisotropy (CSA) at high MAS frequencies with high robustness to rf-field inhomogeneity, has not so far been employed to reintroduce dipolar couplings with protons. These various techniques to transfer magnetization from protons to quadrupolar nuclei are analyzed using (i) an average Hamiltonian theory, (ii) numerical simulations of spin dynamics, and (iii) experimental 1H → 27Al and 1H → 17O transfers in as-synthesized AlPO4-14 and 17O-labelled fumed silica, respectively. The experiments and simulations are done at two magnetic fields (9.4 and 18.8 T) and several spinning speeds (15, 18-24 and 60 kHz). This analysis indicates that owing to its γ-encoded character, PRESTO yields the highest transfer efficiency at low magnetic fields and MAS frequencies, whereas owing to its higher robustness to rf-field inhomogeneity and chemical shifts, D-RINEPT is more sensitive at high fields and MAS frequencies, notably for protons exhibiting large offset or CSA, such as those involved in hydrogen bonds.
Collapse
Affiliation(s)
- Raynald Giovine
- Univ. Lille, CNRS-8181, UCCS: Unit of Catalysis and Chemistry of Solids, F-59000 Lille, France
| | - Julien Trébosc
- Univ. Lille, CNRS-8181, UCCS: Unit of Catalysis and Chemistry of Solids, F-59000 Lille, France
| | - Frédérique Pourpoint
- Univ. Lille, CNRS-8181, UCCS: Unit of Catalysis and Chemistry of Solids, F-59000 Lille, France
| | - Olivier Lafon
- Univ. Lille, CNRS-8181, UCCS: Unit of Catalysis and Chemistry of Solids, F-59000 Lille, France; IUF, Institut Universitaire de France, 1 rue Descartes, 75231 Paris, France.
| | - Jean-Paul Amoureux
- Univ. Lille, CNRS-8181, UCCS: Unit of Catalysis and Chemistry of Solids, F-59000 Lille, France; Bruker France, 34 rue de l'Industrie, F-67166 Wissembourg, France.
| |
Collapse
|
14
|
Carnahan SL, Lampkin BJ, Naik P, Hanrahan MP, Slowing II, VanVeller B, Wu G, Rossini AJ. Probing O–H Bonding through Proton Detected 1H–17O Double Resonance Solid-State NMR Spectroscopy. J Am Chem Soc 2018; 141:441-450. [DOI: 10.1021/jacs.8b10878] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Scott L. Carnahan
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
- U.S. DOE Ames Laboratory, Ames, Iowa 50011, United States
| | - Bryan J. Lampkin
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Pranjali Naik
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
- U.S. DOE Ames Laboratory, Ames, Iowa 50011, United States
| | - Michael P. Hanrahan
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
- U.S. DOE Ames Laboratory, Ames, Iowa 50011, United States
| | - Igor I. Slowing
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
- U.S. DOE Ames Laboratory, Ames, Iowa 50011, United States
| | - Brett VanVeller
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Gang Wu
- Department of Chemistry, Queen’s University, Kingston, Ontario, Canada K7L 3N6
| | - Aaron J. Rossini
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
- U.S. DOE Ames Laboratory, Ames, Iowa 50011, United States
| |
Collapse
|
15
|
Potnuru LR, Ramanathan KV. Polarization inversion applied to proton MAS-NMR spectroscopy - Methylene and methine free proton NMR spectra. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 296:181-187. [PMID: 30292003 DOI: 10.1016/j.jmr.2018.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 09/22/2018] [Accepted: 09/22/2018] [Indexed: 06/08/2023]
Abstract
Polarization-inversion (PI) has been applied to proton magic angle spinning (MAS) NMR spectra recorded under fast MAS conditions. The combination of cross-polarization (CP) from carbon to proton and subsequent polarization-inversion produces strong oscillatory behavior in the proton signal intensities at high MAS speeds of 60 kHz. It is observed that by a suitable choice of the polarization-inversion time, a proton spectrum free of methylene and methine protons can be obtained. Such a spectrum, on the one hand, increases the resolution of the crowded proton spectrum and on the other hand provides exclusively chemical shifts of protons such as NH, OH and SH which might otherwise overlap with carbon attached protons. The oscillations observed during PI can also be used to estimate the dipolar coupling between proton and carbon by Fourier transformation of data acquired at equally incremented time periods. The utility of the above ideas has been demonstrated on a set of molecules with both 13C labeled and 13C in natural abundance.
Collapse
Affiliation(s)
- Lokeswara Rao Potnuru
- NMR Research Centre, Indian Institute of Science, Bangalore 560012, India; Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | - K V Ramanathan
- NMR Research Centre, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
16
|
Nagashima H, Lilly Thankamony AS, Trébosc J, Montagne L, Kerven G, Amoureux JP, Lafon O. Observation of proximities between spin-1/2 and quadrupolar nuclei in solids: Improved robustness to chemical shielding using adiabatic symmetry-based recoupling. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2018; 94:7-19. [PMID: 30103084 DOI: 10.1016/j.ssnmr.2018.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 07/17/2018] [Accepted: 07/17/2018] [Indexed: 06/08/2023]
Abstract
We introduce a novel heteronuclear dipolar recoupling based on the R21-1 symmetry, which uses the tanh/tan (tt) shaped pulse as a basic inversion element and is denoted R21-1(tt). Using first-order average Hamiltonian theory, we show that this sequence is non-γ-encoded and that it reintroduces the |m| = 1 spatial component of the Chemical Shift Anisotropy (CSA) of the irradiated isotope and its heteronuclear dipolar interactions. Using numerical simulations and one-dimensional (1D) 27Al-{31P} through-space D-HMQC (Dipolar Heteronuclear Multiple-Quantum Correlation) experiments on VPI-5, we compare the performances of this recoupling to those of other non-γ-encoded |m| = 1 heteronuclear recoupling schemes: REDOR (Rotational-Echo DOuble Resonance), SFAM (Simultaneous Frequency and Amplitude Modulation) and R42-1(tt). Such comparison indicates that the R21-1(tt) scheme is more robust to CSA, offset and radiofrequency field inhomogeneities than the other schemes. We take advantage of the high robustness of R21-1(tt) to CSA and offset to demonstrate the possibility to correlate the signals of 207Pb isotope with those of neighboring half-integer spin quadrupolar nuclei. Such approach is demonstrated experimentally by acquiring 11B-{207Pb} D-HMQC 2D spectra of Pb4O(BO3)2 crystalline powder.
Collapse
Affiliation(s)
- Hiroki Nagashima
- Univ. Lille, CNRS-8181, UCCS-Unit of Catalysis and Chemistry of Solids, F-59000, Lille, France; Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | | | - Julien Trébosc
- Univ. Lille, CNRS-8181, UCCS-Unit of Catalysis and Chemistry of Solids, F-59000, Lille, France
| | - Lionel Montagne
- Univ. Lille, CNRS-8181, UCCS-Unit of Catalysis and Chemistry of Solids, F-59000, Lille, France
| | - Gwendal Kerven
- Univ. Lorraine, CNRS-7036, CRM2, F-54506, Vandœuvre-lès-Nancy, France
| | - Jean-Paul Amoureux
- Univ. Lille, CNRS-8181, UCCS-Unit of Catalysis and Chemistry of Solids, F-59000, Lille, France; Bruker Biospin, 34 rue de l'industrie, F-67166, Wissembourg, France.
| | - Olivier Lafon
- Univ. Lille, CNRS-8181, UCCS-Unit of Catalysis and Chemistry of Solids, F-59000, Lille, France; Institut Universitaire de France, 1 rue Descartes, F-75231, Paris, France.
| |
Collapse
|
17
|
Ashbrook SE, Hodgkinson P. Perspective: Current advances in solid-state NMR spectroscopy. J Chem Phys 2018; 149:040901. [PMID: 30068173 DOI: 10.1063/1.5038547] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In contrast to the rapid and revolutionary impact of solution-state Nuclear Magnetic Resonance (NMR) on modern chemistry, the field of solid-state NMR has matured more slowly. This reflects the major technical challenges of much reduced spectral resolution and sensitivity in solid-state as compared to solution-state spectra, as well as the relative complexity of the solid state. In this perspective, we outline the technique developments that have pushed resolution to intrinsic limits and the approaches, including ongoing major developments in the field of Dynamic Nuclear Polarisation, that have enhanced spectral sensitivity. The information on local structure and dynamics that can be obtained using these gains in sensitivity and resolution is illustrated with a diverse range of examples from large biomolecules to energy materials and pharmaceuticals and from both ordered and highly disordered materials. We discuss how parallel developments in quantum chemical calculation, particularly density functional theory, have enabled experimental data to be translated directly into information on local structure and dynamics, giving rise to the developing field of "NMR crystallography."
Collapse
Affiliation(s)
- Sharon E Ashbrook
- School of Chemistry, EaStCHEM and Centre of Magnetic Resonance, University of St Andrews, St Andrews KY16 9ST, United Kingdom
| | - Paul Hodgkinson
- Department of Chemistry, Durham University, Durham DH1 4RD, United Kingdom
| |
Collapse
|
18
|
Shen M, Wegner S, Trébosc J, Hu B, Lafon O, Amoureux JP. Minimizing the t 1-noise when using an indirect 1H high-resolution detection of unlabeled samples. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2017; 87:111-116. [PMID: 28688541 DOI: 10.1016/j.ssnmr.2017.06.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 06/25/2017] [Accepted: 06/26/2017] [Indexed: 06/07/2023]
Abstract
The most utilized through-space correlation 1H-{X} methods with proton indirect detection use two consecutive transfers, 1H → X and then X → 1H, with the evolution time t1 in the middle. When the X isotope is not 100% naturally abundant (NA), only the signal of the protons close to these isotopes is modulated by the 1H-X dipolar interactions. This signal is theoretically disentangled with phase-cycling from the un-modulated one. However, this separation is never perfect and it may lead to t1-noise in case of isotopes with very small NA, such as 13C or even worse 15N. One way to reduce this t1-noise is to minimize, 'purge', during t1 the un-modulated 1H magnetization before trying to suppress it with phase-cycling. We analyze experimentally several sequences following the HORROR condition, which allow purging the 1H transverse magnetization. The comparison is made at three spinning speeds, including very fast ones for 1H resolution: 27.75, 55.5 and 111 kHz. We show (i) that the efficiency of this purging process increases with the spinning speed, and (ii) that the best recoupling sequences are the two simplest ones: XY and S1 = SR212. We then compare the S/N that can be achieved with the two most used 1H-{X} 2D methods, called D-HMQC and CP-CP. The only difference in between these two methods is that the transfers are done with either two π/2-pulses on X channel (D-HMQC), or two Cross-Polarization (CP) transfers (CP-CP). The first method, D-HMQC, is very robust and should be preferred when indirectly detecting nuclei with high NA. The second method, CP-CP, (i) requires experimental precautions to limit the t1-noise, and (ii) is difficult to use with quadrupolar nuclei because the two CP transfers are then not efficient nor robust. However, CP-CP is presently the best method to indirectly detect isotopes with small NA, such as 13C and 15N.
Collapse
Affiliation(s)
- M Shen
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, Shanghai 200062, PR China
| | - S Wegner
- Bruker BioSpin GmbH, 4 Silberstreifen, 76287 Rheinstetten, Germany
| | - J Trébosc
- Univ. Lille, UMR 8181, UCCS: Unit of Catalysis and Chemistry of Solids, 59000 Lille, France
| | - B Hu
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, Shanghai 200062, PR China
| | - O Lafon
- Univ. Lille, UMR 8181, UCCS: Unit of Catalysis and Chemistry of Solids, 59000 Lille, France; Institut Universitaire de France, 1 Rue Descartes, 75231 Paris, France
| | - J P Amoureux
- Univ. Lille, UMR 8181, UCCS: Unit of Catalysis and Chemistry of Solids, 59000 Lille, France; Bruker France, 34 Rue de l'Industrie, 67166 Wissembourg, France.
| |
Collapse
|
19
|
Nagashima H, Lilly Thankamony AS, Trébosc J, Pourpoint F, Lafon O, Amoureux JP. γ-Independent through-space hetero-nuclear correlation between spin-1/2 and quadrupolar nuclei in solids. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2017; 84:216-226. [PMID: 28666574 DOI: 10.1016/j.ssnmr.2017.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 06/08/2017] [Accepted: 06/10/2017] [Indexed: 06/07/2023]
Abstract
We introduce novel sequences using indirect detection to correlate quadrupolar nuclei and spin-1/2 isotopes, other than 1H and 19F. These sequences use γ-encoded symmetry-based RNnν schemes that reintroduce the space component |m| = 1 of the heteronuclear dipolar coupling. These schemes can be applied to the indirectly detected spin in Dipolar-mediated Heteronuclear Multiple-Quantum Correlation (D-HMQC) sequence or to the detected isotope in a novel sequence, named Dipolar-mediated Heteronuclear Universal-Quantum Correlation (D-HUQC). We show that the signal of these sequences using γ-encoded recoupling does not depend on the γ Euler angle relating the inter-nuclear vector between the coupled spins to the MAS rotor-fixed frame. Therefore, the transfer efficiency of these sequences is in principle higher than that of D-HMQC methods using non-γ-encoded recoupling. Furthermore, numerical simulations show that the heteronuclear correlation experiments employing γ-encoded recoupling are more robust to Chemical Shift Anisotropy (CSA) of the irradiated spin and MAS frequency fluctuations. These results are confirmed by 13C-{15N} heteronuclear correlation on glycine and 31P-27Al ones on VPI-5 and Na7(AlP2O7)4PO4. These experiments indicate that R1635 recoupling produces the highest signal-to-noise ratio in heteronuclear correlation 2D experiments when the detected spin-1/2 nuclei are subject to large CSA.
Collapse
Affiliation(s)
- Hiroki Nagashima
- Univ. Lille and Artois, ENSCL, Centrale Lille, UCCS, CNRS UMR 8181, 59000, Lille, France
| | | | - Julien Trébosc
- Univ. Lille and Artois, ENSCL, Centrale Lille, UCCS, CNRS UMR 8181, 59000, Lille, France
| | - Frédérique Pourpoint
- Univ. Lille and Artois, ENSCL, Centrale Lille, UCCS, CNRS UMR 8181, 59000, Lille, France
| | - Olivier Lafon
- Univ. Lille and Artois, ENSCL, Centrale Lille, UCCS, CNRS UMR 8181, 59000, Lille, France; IUF, Institut Universitaire de France, 75231, Paris, France
| | - Jean Paul Amoureux
- Univ. Lille and Artois, ENSCL, Centrale Lille, UCCS, CNRS UMR 8181, 59000, Lille, France; Bruker France, 34 rue de l'Industrie, 67166, Wissembourg, France.
| |
Collapse
|
20
|
Paluch P, Potrzebowska N, Ruppert AM, Potrzebowski MJ. Application of 1H and 27Al magic angle spinning solid state NMR at 60kHz for studies of Au and Au-Ni catalysts supported on boehmite/alumina. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2017; 84:111-117. [PMID: 28159455 DOI: 10.1016/j.ssnmr.2017.01.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 01/04/2017] [Accepted: 01/13/2017] [Indexed: 06/06/2023]
Abstract
In this work for the first time we show the power of solid state NMR spectroscopy in structural analysis of alumina and catalysts supported on the alumina surface employing very fast (60kHz) magic angle spinning (MAS) technique. In the methodological part we demonstrate that under such MAS condition, cross-polarization (CP) from proton to aluminum is an efficient process when a very weak 27Al RF field is applied. The mechanism of CP transfer and the Hartmann-Hahn (H-H) matching conditions were tested for 27Al RF fields equal to 3.3 and 8.3kHz. It has been found that double quantum (DQ) CP/MAS is the best choice for H-H set with RF =3.3kHz. It has been also proved that the quality of 1H-27Al CP/MAS spectra strongly depends on 27Al carrier offset. Applied to γ-alumina, this method revealed that 1H-27Al CP/MAS at 60kHz is extremely useful for mapping the distribution of hydroxyl groups on the surface. Indeed, the AlV sites, which are not easily detected with Single Pulse Experiment (SPE), are clearly seen when 1H-27Al CP/MAS is applied. Utilizing 2D 1H-27Al CP/MAS HETCOR experiment it was possible to assign the proton positions and to correlate them with aluminum centers. Studies of mono- (Au) and bi- (Au-Ni) metallic catalysts supported on boehmite/alumina carrier employing 1D and 2D HETCOR experiments clearly show that distributions of hydroxyl groups for both systems are dramatically different.
Collapse
Affiliation(s)
- Piotr Paluch
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, PL-90 363 Lodz, Poland
| | - Natalia Potrzebowska
- Institute of General and Ecological Chemistry Faculty of Chemistry Lodz, University of Technology, Zeromskiego 116, PL-90-924 Lodz, Poland
| | - Agnieszka M Ruppert
- Institute of General and Ecological Chemistry Faculty of Chemistry Lodz, University of Technology, Zeromskiego 116, PL-90-924 Lodz, Poland
| | - Marek J Potrzebowski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, PL-90 363 Lodz, Poland
| |
Collapse
|
21
|
Wi S, Kim C, Schurko R, Frydman L. Adiabatic sweep cross-polarization magic-angle-spinning NMR of half-integer quadrupolar spins. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2017; 277:131-142. [PMID: 28285143 DOI: 10.1016/j.jmr.2017.02.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/26/2017] [Accepted: 02/28/2017] [Indexed: 06/06/2023]
Abstract
The use of frequency-swept radiofrequency (rf) pulses for enhancing signals in the magic-angle spinning (MAS) spectra of half-integer quadrupolar nuclides was explored. The broadband adiabatic inversion cross-polarization magic-angle spinning (BRAIN-CPMAS) method, involving an adiabatic inversion pulse on the S-channel and a simultaneous rectangular spin-lock pulse on the I-channel (1H), was applied to I(1/2)→S(3/2) systems. Optimal BRAIN-CPMAS matching conditions were found to involve low rf pulse strengths for both the I- and S-spin channels. At these low and easily attainable rf field strengths, level-crossing events among the energy levels |3/2〉,|1/2〉,|-1/2〉,|-3/2〉 that are known to complicate the CPMAS of quadrupolar nuclei, are mostly avoided. Zero- and double-quantum polarization transfer modes, akin to those we have observed for I(1/2)→S(1/2) polarization transfers, were evidenced by these analyses even in the presence of the quadrupolar interaction. 1H-23Na and 1H-11B BRAIN-CPMAS conditions were experimentally explored on model compounds by optimizing the width of the adiabatic sweep, as well as the rf pulse powers of the 1H and 23Na/11B channels, for different MAS rates. The experimental data obtained on model compounds containing spin-3/2 nuclides, matched well predictions from numerical simulations and from an average Hamiltonian theory model. Extensions to half-integer spin nuclides with higher spins and potential applications of this BRAIN-CPMAS approach are discussed.
Collapse
Affiliation(s)
- Sungsool Wi
- National High Magnetic Field Laboratory, Tallahassee, Florida 32304, USA.
| | - Chul Kim
- Department of Chemistry, Hannam University, Taejeon, 305811, South Korea
| | - Robert Schurko
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor N9B 3P4, Ontario, Canada
| | - Lucio Frydman
- National High Magnetic Field Laboratory, Tallahassee, Florida 32304, USA; Department of Chemical Physics, Weizmann Institute of Sciences, Rehovot 76100, Israel
| |
Collapse
|
22
|
Wi S, Schurko R, Frydman L. 1H–2H cross-polarization NMR in fast spinning solids by adiabatic sweeps. J Chem Phys 2017; 146:104201. [DOI: 10.1063/1.4976980] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Sungsool Wi
- National High Magnetic Field Laboratory, Tallahassee, Florida 32304, USA
| | - Robert Schurko
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor N9B 3P4, Ontario, Canada
| | - Lucio Frydman
- National High Magnetic Field Laboratory, Tallahassee, Florida 32304, USA
- Department of Chemical Physics, Weizmann Institute of Sciences, Rehovot 76100, Israel
| |
Collapse
|
23
|
Hope MA, Halat DM, Magusin PCMM, Paul S, Peng L, Grey CP. Surface-selective direct 17O DNP NMR of CeO2 nanoparticles. Chem Commun (Camb) 2017; 53:2142-2145. [DOI: 10.1039/c6cc10145c] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We demonstrate surface-selective direct 17O DNP, showing the first three layers of CeO2 nanoparticles can be distinguished with high selectivity.
Collapse
Affiliation(s)
| | - David M. Halat
- Department of Chemistry
- University of Cambridge
- Cambridge
- UK
| | | | - Subhradip Paul
- DNP MAS NMR Facility
- Sir Peter Mansfield Magnetic Resonance Centre
- University of Nottingham
- Nottingham
- UK
| | - Luming Peng
- Key Laboratory of Mesoscopic Chemistry of MOE
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
- China
| | - Clare P. Grey
- Department of Chemistry
- University of Cambridge
- Cambridge
- UK
| |
Collapse
|
24
|
Pandey MK, Yarava JR, Zhang R, Ramamoorthy A, Nishiyama Y. Proton-detected 3D (15)N/(1)H/(1)H isotropic/anisotropic/isotropic chemical shift correlation solid-state NMR at 70kHz MAS. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2016; 76-77:1-6. [PMID: 27017575 PMCID: PMC4903906 DOI: 10.1016/j.ssnmr.2016.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 02/18/2016] [Accepted: 03/01/2016] [Indexed: 05/15/2023]
Abstract
Chemical shift anisotropy (CSA) tensors offer a wealth of information for structural and dynamics studies of a variety of chemical and biological systems. In particular, CSA of amide protons can provide piercing insights into hydrogen-bonding interactions that vary with the backbone conformation of a protein and dynamics. However, the narrow span of amide proton resonances makes it very difficult to measure (1)H CSAs of proteins even by using the recently proposed 2D (1)H/(1)H anisotropic/isotropic chemical shift (CSA/CS) correlation technique. Such difficulties due to overlapping proton resonances can in general be overcome by utilizing the broad span of isotropic chemical shifts of low-gamma nuclei like (15)N. In this context, we demonstrate a proton-detected 3D (15)N/(1)H/(1)H CS/CSA/CS correlation experiment at fast MAS frequency (70kHz) to measure (1)H CSA values of unresolved amide protons of N-acetyl-(15)N-l-valyl-(15)N-l-leucine (NAVL).
Collapse
Affiliation(s)
- Manoj Kumar Pandey
- RIKEN CLST-JEOL Collaboration Center, Yokohama, Kanagawa 230-0045, Japan
| | | | - Rongchun Zhang
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Yusuke Nishiyama
- RIKEN CLST-JEOL Collaboration Center, Yokohama, Kanagawa 230-0045, Japan; JEOL RESONANCE Inc., Musashino, Akishima, Tokyo 196-8558, Japan.
| |
Collapse
|
25
|
Zhang R, Mroue KH, Ramamoorthy A. Hybridizing cross-polarization with NOE or refocused-INEPT enhances the sensitivity of MAS NMR spectroscopy. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2016; 266:59-66. [PMID: 27040936 PMCID: PMC4851575 DOI: 10.1016/j.jmr.2016.03.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 03/13/2016] [Accepted: 03/24/2016] [Indexed: 05/05/2023]
Abstract
Heteronuclear cross polarization (CP) has been commonly used to enhance the sensitivity of dilute low-γ nuclei in almost all solid-state NMR experiments. However, CP relies on heteronuclear dipolar couplings, and therefore the magnetization transfer efficiency becomes inefficient when the dipolar couplings are weak, as is often the case for mobile components in solids. Here, we demonstrate methods that combine CP with heteronuclear Overhauser effect (referred to as CP-NOE) or with refocused-INEPT (referred to as CP-RINEPT) to overcome the efficiency limitation of CP and enhance the signal-to-noise ratio (S/N) for mobile components. Our experimental results reveal that, compared to the conventional CP, significant S/N ratio enhancement can be achieved for resonances originating from mobile components, whereas the resonance signals associated with rigid groups are not significantly affected due to their long spin-lattice relaxation times. In fact, the S/N enhancement factor is also dependent on the temperature, CP contact time as well as on the system under investigation. Furthermore, we also demonstrate that CP-RINEPT experiment can be successfully employed to independently detect mobile and rigid signals in a single experiment without affecting the data collection time. However, the resolution of CP spectrum obtained from the CP-RINEPT experiment could be slightly compromised by the mandatory use of continuous wave (CW) decoupling during the acquisition of signals from rigid components. In addition, CP-RINEPT experiment can be used for spectral editing utilizing the difference in dynamics of different regions of a molecule and/or different components present in the sample, and could also be useful for the assignment of resonances from mobile components in poorly resolved spectra. Therefore, we believe that the proposed approaches are beneficial for the structural characterization of multiphase and heterogeneous systems, and could be used as a building block in multidimensional solid-state NMR experiments.
Collapse
Affiliation(s)
- Rongchun Zhang
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Kamal H Mroue
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA.
| |
Collapse
|
26
|
Eedugurala N, Wang Z, Chaudhary U, Nelson N, Kandel K, Kobayashi T, Slowing II, Pruski M, Sadow AD. Mesoporous Silica-Supported Amidozirconium-Catalyzed Carbonyl Hydroboration. ACS Catal 2015. [DOI: 10.1021/acscatal.5b01671] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Naresh Eedugurala
- U.S. Department of Energy
Ames Laboratory and Department of Chemistry, Iowa State University, 1605 Gilman Hall, Ames, Iowa 50011, United States
| | - Zhuoran Wang
- U.S. Department of Energy
Ames Laboratory and Department of Chemistry, Iowa State University, 1605 Gilman Hall, Ames, Iowa 50011, United States
| | - Umesh Chaudhary
- U.S. Department of Energy
Ames Laboratory and Department of Chemistry, Iowa State University, 1605 Gilman Hall, Ames, Iowa 50011, United States
| | - Nicholas Nelson
- U.S. Department of Energy
Ames Laboratory and Department of Chemistry, Iowa State University, 1605 Gilman Hall, Ames, Iowa 50011, United States
| | - Kapil Kandel
- U.S. Department of Energy
Ames Laboratory and Department of Chemistry, Iowa State University, 1605 Gilman Hall, Ames, Iowa 50011, United States
| | - Takeshi Kobayashi
- U.S. Department of Energy
Ames Laboratory and Department of Chemistry, Iowa State University, 1605 Gilman Hall, Ames, Iowa 50011, United States
| | - Igor I. Slowing
- U.S. Department of Energy
Ames Laboratory and Department of Chemistry, Iowa State University, 1605 Gilman Hall, Ames, Iowa 50011, United States
| | - Marek Pruski
- U.S. Department of Energy
Ames Laboratory and Department of Chemistry, Iowa State University, 1605 Gilman Hall, Ames, Iowa 50011, United States
| | - Aaron D. Sadow
- U.S. Department of Energy
Ames Laboratory and Department of Chemistry, Iowa State University, 1605 Gilman Hall, Ames, Iowa 50011, United States
| |
Collapse
|
27
|
Gupta R, Hou G, Polenova T, Vega AJ. RF inhomogeneity and how it controls CPMAS. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2015; 72:17-26. [PMID: 26422256 PMCID: PMC4674349 DOI: 10.1016/j.ssnmr.2015.09.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 09/04/2015] [Accepted: 09/04/2015] [Indexed: 05/09/2023]
Abstract
In this report we discuss the effect of radiofrequency field (RF) inhomogeneity on cross-polarization (CP) under magic-angle spinning (MAS) by reviewing the dependence of the CP-detected signal intensity as a function of the position in the sample space. We introduce a power-function model to quantify the position-dependent RF-amplitude profile. The applicability of this model is experimentally verified by nutation spectra obtained by direct signal detection, as well as by CPMAS signal detection, in two commercial MAS probes with different degrees of RF inhomogeneity. A conclusion is that substantial sections of a totally filled rotor, even in a probe with rather good homogeneity, do not contribute at all to the detected spectra. The consequence is that in CPMAS-based recoupling experiments, such as the CP-with-variable-contact-time (CPVC), spatial selectivity of the Hartmann-Hahn matching condition overcomes complications that could be caused by RF inhomogeneity permitting determination of accurate spectral parameters even in cases with high inhomogeneity.
Collapse
Affiliation(s)
- Rupal Gupta
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Guangjin Hou
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Alexander J Vega
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
28
|
Zhang R, Damron J, Vosegaard T, Ramamoorthy A. A cross-polarization based rotating-frame separated-local-field NMR experiment under ultrafast MAS conditions. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 250:37-44. [PMID: 25486635 PMCID: PMC4286468 DOI: 10.1016/j.jmr.2014.10.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 10/16/2014] [Accepted: 10/26/2014] [Indexed: 05/04/2023]
Abstract
Rotating-frame separated-local-field solid-state NMR experiments measure highly resolved heteronuclear dipolar couplings which, in turn, provide valuable interatomic distances for structural and dynamic studies of molecules in the solid-state. Though many different rotating-frame SLF sequences have been put forth, recent advances in ultrafast MAS technology have considerably simplified pulse sequence requirements due to the suppression of proton-proton dipolar interactions. In this study we revisit a simple two-dimensional (1)H-(13)C dipolar coupling/chemical shift correlation experiment using (13)C detected cross-polarization with a variable contact time (CPVC) and systematically study the conditions for its optimal performance at 60 kHz MAS. In addition, we demonstrate the feasibility of a proton-detected version of the CPVC experiment. The theoretical analysis of the CPVC pulse sequence under different Hartmann-Hahn matching conditions confirms that it performs optimally under the ZQ (w1H-w1C=±wr) condition for polarization transfer. The limits of the cross polarization process are explored and precisely defined as a function of offset and Hartmann-Hahn mismatch via spin dynamics simulation and experiments on a powder sample of uniformly (13)C-labeled L-isoleucine. Our results show that the performance of the CPVC sequence and subsequent determination of (1)H-(13)C dipolar couplings are insensitive to (1)H/(13)C frequency offset frequency when high RF fields are used on both RF channels. Conversely, the CPVC sequence is quite sensitive to the Hartmann-Hahn mismatch, particularly for systems with weak heteronuclear dipolar couplings. We demonstrate the use of the CPVC based SLF experiment as a tool to identify different carbon groups, and hope to motivate the exploration of more sophisticated (1)H detected avenues for ultrafast MAS.
Collapse
Affiliation(s)
- Rongchun Zhang
- Biophysics and Department of Chemistry, The University of Michigan, Ann Arbor, MI 48109-1055, United States
| | - Joshua Damron
- Biophysics and Department of Chemistry, The University of Michigan, Ann Arbor, MI 48109-1055, United States
| | - Thomas Vosegaard
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, The University of Michigan, Ann Arbor, MI 48109-1055, United States.
| |
Collapse
|
29
|
Perras FA, Kobayashi T, Pruski M. PRESTO polarization transfer to quadrupolar nuclei: implications for dynamic nuclear polarization. Phys Chem Chem Phys 2015; 17:22616-22. [DOI: 10.1039/c5cp04145g] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We show both experimentally and numerically that in experiments involving transfer of magnetization from 1H to the quadrupolar nuclei under MAS, the PRESTO technique consistently outperforms the traditionally used CP method, affording more quantitative intensities, improved lineshapes, better sensitivity, and easier optimization.
Collapse
Affiliation(s)
| | | | - Marek Pruski
- U.S. DOE Ames Laboratory
- Ames
- USA
- Department of Chemistry
- Iowa State University
| |
Collapse
|
30
|
Ashbrook SE, Sneddon S. New methods and applications in solid-state NMR spectroscopy of quadrupolar nuclei. J Am Chem Soc 2014; 136:15440-56. [PMID: 25296129 DOI: 10.1021/ja504734p] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Solid-state nuclear magnetic resonance (NMR) spectroscopy has long been established as offering unique atomic-scale and element-specific insight into the structure, disorder, and dynamics of materials. NMR spectra of quadrupolar nuclei (I > (1)/2) are often perceived as being challenging to acquire and to interpret because of the presence of anisotropic broadening arising from the interaction of the electric field gradient and the nuclear electric quadrupole moment, which broadens the spectral lines, often over several megahertz. Despite the vast amount of information contained in the spectral line shapes, the problems with sensitivity and resolution have, until very recently, limited the application of NMR spectroscopy of quadrupolar nuclei in the solid state. In this Perspective, we provide a brief overview of the quadrupolar interaction, describe some of the basic experimental approaches used for acquiring high-resolution NMR spectra, and discuss the information that these spectra can provide. We then describe some interesting recent examples to showcase some of the more exciting and challenging new applications of NMR spectra of quadrupolar nuclei in the fields of energy materials, microporous materials, Earth sciences, and biomaterials. Finally, we consider the possible directions that this highly informative technique may take in the future.
Collapse
Affiliation(s)
- Sharon E Ashbrook
- School of Chemistry, EaStCHEM, and Centre of Magnetic Resonance, University of St Andrews , St Andrews KY16 9ST, United Kingdom
| | | |
Collapse
|
31
|
Shen M, Trébosc J, Lafon O, Pourpoint F, Hu B, Chen Q, Amoureux JP. Improving the resolution in proton-detected through-space heteronuclear multiple quantum correlation NMR spectroscopy. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2014; 245:38-49. [PMID: 24929867 DOI: 10.1016/j.jmr.2014.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 05/02/2014] [Accepted: 05/05/2014] [Indexed: 06/03/2023]
Abstract
Connectivities and proximities between protons and low-gamma nuclei can be probed in solid-state NMR spectroscopy using two-dimensional (2D) proton-detected heteronuclear correlation, through Heteronuclear Multiple Quantum Correlation (HMQC) pulse sequence. The indirect detection via protons dramatically enhances the sensitivity. However, the spectra are often broadened along the indirect F1 dimension by the decay of heteronuclear multiple-quantum coherences under the strong (1)H-(1)H dipolar couplings. This work presents a systematic comparison of the performances of various decoupling schemes during the indirect t1 evolution period of dipolar-mediated HMQC (D-HMQC) experiment. We demonstrate that (1)H-(1)H dipolar decoupling sequences during t1, such as symmetry-based schemes, phase-modulated Lee-Goldburg (PMLG) and Decoupling Using Mind-Boggling Optimization (DUMBO), provide better resolution than continuous wave (1)H irradiation. We also report that high resolution requires the preservation of (1)H isotropic chemical shifts during the decoupling sequences. When observing indirectly broad spectra presenting numerous spinning sidebands, the D-HMQC sequence must be fully rotor-synchronized owing to the rotor-synchronized indirect sampling and dipolar recoupling sequence employed. In this case, we propose a solution to reduce artefact sidebands caused by the modulation of window delays before and after the decoupling application during the t1 period. Moreover, we show that (1)H-(1)H dipolar decoupling sequence using Smooth Amplitude Modulation (SAM) minimizes the t1-noise. The performances of the various decoupling schemes are assessed via numerical simulations and compared to 2D (1)H-{(13)C} D-HMQC experiments on [U-(13)C]-L-histidine⋅HCl⋅H2O at various magnetic fields and Magic Angle spinning (MAS) frequencies. Great resolution and sensitivity enhancements resulting from decoupling during t1 period enable the detection of heteronuclear correlation between aliphatic protons and ammonium (14)N sites in L-histidine⋅HCl⋅H2O.
Collapse
Affiliation(s)
- Ming Shen
- Physics Department & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062, China; UCCS, University Lille North of France, Villeneuve d'Ascq 59652, France
| | - J Trébosc
- UCCS, University Lille North of France, Villeneuve d'Ascq 59652, France
| | - O Lafon
- UCCS, University Lille North of France, Villeneuve d'Ascq 59652, France
| | - F Pourpoint
- UCCS, University Lille North of France, Villeneuve d'Ascq 59652, France
| | - Bingwen Hu
- Physics Department & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062, China
| | - Qun Chen
- Physics Department & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062, China
| | - J-P Amoureux
- Physics Department & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062, China; UCCS, University Lille North of France, Villeneuve d'Ascq 59652, France.
| |
Collapse
|
32
|
Paluch P, Pawlak T, Amoureux JP, Potrzebowski MJ. Simple and accurate determination of X-H distances under ultra-fast MAS NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2013; 233:56-63. [PMID: 23727588 DOI: 10.1016/j.jmr.2013.05.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 04/30/2013] [Accepted: 05/06/2013] [Indexed: 05/14/2023]
Abstract
We demonstrate that a very simple experiment, Cross-Polarization with Variable Contact-time (CP-VC), is very efficient at ultra-fast MAS (νR ≥ 60 kHz) to measure accurately the C-H and N-H distances, and to analyze the dynamics of bio-molecules. This experiment can be performed with samples that are either (13)C or (15)N labeled or without any labeling. The method is very robust experimentally with respect to imperfect Hartman-Hahn setting, and presents a large scaling factor allowing a better dipolar determination, especially for long C-H or N-H distances, or for CH3 or NH3 moieties with three-site hopping. At ultra-fast MAS, it can be used quantitatively in a 2D way, because its scaling factor is then little dependent on the offsets. This robustness with respect to offset is related to the ultra-fast spinning speed, and hence to the related small rotor diameter. Indeed, these two specifications lead to efficient n = ±1 zero-quantum Hartman-Hahn CP-transfers with large RF-fields on proton and carbon or nitrogen channels, and large dipolar scaling factor.
Collapse
Affiliation(s)
- Piotr Paluch
- Polish Academy of Sciences, Centre of Molecular and Macromolecular Studies, Sienkiewicza 112, PL-90-363 Lodz, Poland
| | | | | | | |
Collapse
|
33
|
Perras FA, Viger-Gravel J, Burgess KMN, Bryce DL. Signal enhancement in solid-state NMR of quadrupolar nuclei. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2013; 51-52:1-15. [PMID: 23336997 DOI: 10.1016/j.ssnmr.2012.11.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Revised: 11/13/2012] [Accepted: 11/18/2012] [Indexed: 06/01/2023]
Abstract
Recent progress in the development and application of signal enhancement methods for NMR of quadrupolar nuclei in solids is presented. First, various pulse schemes for manipulating the populations of the satellite transitions in order to increase the signal of the central transition (CT) in stationary and rotating solids are evaluated (e.g., double-frequency sweeps, hyperbolic secant pulses). Second, the utility of the quadrupolar Carr-Purcell-Meiboom-Gill (QCPMG) and WURST-QCPMG pulse sequences for the rapid and efficient acquisition of particularly broad CT powder patterns is discussed. Third, less frequently used experiments involving polarization transfer from abundant nuclear spins (cross-polarization) or from unpaired electrons (dynamic nuclear polarization) are assessed in the context of recent examples. Advantages and disadvantages of particular enhancement schemes are highlighted and an outlook on possible future directions for the signal enhancement of quadrupolar nuclei in solids is offered.
Collapse
Affiliation(s)
- Frédéric A Perras
- Department of Chemistry, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | |
Collapse
|
34
|
Lu X, Tankamony ASL, Trébosc J, Lafon O, Amoureux JP. Probing proximities between different quadrupolar isotopes using multi-pulse cross-polarization. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2013; 228:148-158. [PMID: 23313781 DOI: 10.1016/j.jmr.2012.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 12/03/2012] [Accepted: 12/12/2012] [Indexed: 06/01/2023]
Abstract
We present a novel cross-polarization MAS NMR pulse sequence to probe proximities between half-integer quadrupolar isotopes. This sequence employs a multi-pulse cross-polarization (MP-CP) transfer, instead of the previous continuous-wave CP (CW-CP) transfer. With respect to CW-CP transfers, our sequence is more robust with respect to offsets and Rotary Resonance Recoupling detrimental effects, especially when taking into account rf-inhomogeneity. Moreover, by using a frequency splitter and a single channel MAS probe, this MP-CP sequence may allow analyzing the through-space connectivities between two isotopes with half-integer spin values and close Larmor frequencies.
Collapse
Affiliation(s)
- Xingyu Lu
- UCCS, CNRS, UMR-8181, University Lille North of France, Villeneuve d'Ascq 59652, France
| | | | | | | | | |
Collapse
|
35
|
Lee D, Takahashi H, Thankamony ASL, Dacquin JP, Bardet M, Lafon O, De Paëpe G. Enhanced Solid-State NMR Correlation Spectroscopy of Quadrupolar Nuclei Using Dynamic Nuclear Polarization. J Am Chem Soc 2012; 134:18491-4. [DOI: 10.1021/ja307755t] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Daniel Lee
- Laboratoire de Chimie Inorganique
et Biologique (SCIB), UMR-E 3 CEA/UJF-Grenoble 1, Institut Nanosciences
et Cryogénie (INAC), F-38054 Grenoble, France
| | - Hiroki Takahashi
- Laboratoire de Chimie Inorganique
et Biologique (SCIB), UMR-E 3 CEA/UJF-Grenoble 1, Institut Nanosciences
et Cryogénie (INAC), F-38054 Grenoble, France
| | - Aany S. L. Thankamony
- Université Lille Nord
de France, 59000 Lille, CNRS UMR 8181, Unité de Catalyse et
de Chimie du Solide (UCCS), Université de Lille 1, Bât.
C7, F-59652, Villeneuve d’Ascq, France
| | - Jean-Philippe Dacquin
- Université Lille Nord
de France, 59000 Lille, CNRS UMR 8181, Unité de Catalyse et
de Chimie du Solide (UCCS), Université de Lille 1, Bât.
C7, F-59652, Villeneuve d’Ascq, France
| | - Michel Bardet
- Laboratoire de Chimie Inorganique
et Biologique (SCIB), UMR-E 3 CEA/UJF-Grenoble 1, Institut Nanosciences
et Cryogénie (INAC), F-38054 Grenoble, France
| | - Olivier Lafon
- Université Lille Nord
de France, 59000 Lille, CNRS UMR 8181, Unité de Catalyse et
de Chimie du Solide (UCCS), Université de Lille 1, Bât.
C7, F-59652, Villeneuve d’Ascq, France
| | - Gaël De Paëpe
- Laboratoire de Chimie Inorganique
et Biologique (SCIB), UMR-E 3 CEA/UJF-Grenoble 1, Institut Nanosciences
et Cryogénie (INAC), F-38054 Grenoble, France
| |
Collapse
|
36
|
Lu X, Lafon O, Trébosc J, Tricot G, Delevoye L, Méar F, Montagne L, Amoureux JP. Observation of proximities between spin-1/2 and quadrupolar nuclei: Which heteronuclear dipolar recoupling method is preferable? J Chem Phys 2012; 137:144201. [DOI: 10.1063/1.4753987] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
37
|
Kobayashi T, Hlova IZ, Singh NK, Pecharsky VK, Pruski M. Solid-State NMR Study of Li-Assisted Dehydrogenation of Ammonia Borane. Inorg Chem 2012; 51:4108-15. [DOI: 10.1021/ic202368a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Takeshi Kobayashi
- U.S.
DOE Ames Laboratory, ‡Department of Materials Science and Engineering, and §Department of Chemistry, Iowa State University, Ames, Iowa 50011,
United States
| | - Ihor Z. Hlova
- U.S.
DOE Ames Laboratory, ‡Department of Materials Science and Engineering, and §Department of Chemistry, Iowa State University, Ames, Iowa 50011,
United States
| | - Niraj K. Singh
- U.S.
DOE Ames Laboratory, ‡Department of Materials Science and Engineering, and §Department of Chemistry, Iowa State University, Ames, Iowa 50011,
United States
| | - Vitalij. K. Pecharsky
- U.S.
DOE Ames Laboratory, ‡Department of Materials Science and Engineering, and §Department of Chemistry, Iowa State University, Ames, Iowa 50011,
United States
| | - Marek Pruski
- U.S.
DOE Ames Laboratory, ‡Department of Materials Science and Engineering, and §Department of Chemistry, Iowa State University, Ames, Iowa 50011,
United States
| |
Collapse
|
38
|
Martineau C, Bouchevreau B, Taulelle F, Trébosc J, Lafon O, Paul Amoureux J. High-resolution through-space correlations between spin-1/2 and half-integer quadrupolar nuclei using the MQ-D-R-INEPT NMR experiment. Phys Chem Chem Phys 2012; 14:7112-9. [DOI: 10.1039/c2cp40344g] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Fernandez C, Pruski M. Probing quadrupolar nuclei by solid-state NMR spectroscopy: recent advances. Top Curr Chem (Cham) 2011; 306:119-88. [PMID: 21656101 DOI: 10.1007/128_2011_141] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Solid-state nuclear magnetic resonance (NMR) of quadrupolar nuclei has recently undergone remarkable development of capabilities for obtaining structural and dynamic information at the molecular level. This review summarizes the key achievements attained during the last couple of decades in solid-state NMR of both integer spin and half-integer spin quadrupolar nuclei. We provide a concise description of the first- and second-order quadrupolar interactions, and their effect on the static and magic angle spinning (MAS) spectra. Methods are explained for efficient excitation of single- and multiple-quantum coherences, and acquisition of spectra under low- and high-resolution conditions. Most of all, we present a coherent, comparative description of the high-resolution methods for half-integer quadrupolar nuclei, including double rotation (DOR), dynamic angle spinning (DAS), multiple-quantum magic angle spinning (MQMAS), and satellite transition magic angle spinning (STMAS). Also highlighted are methods for processing and analysis of the spectra. Finally, we review methods for probing the heteronuclear and homonuclear correlations between the quadrupolar nuclei and their quadrupolar or spin-1/2 neighbors.
Collapse
|
40
|
Tricot G, Lafon O, Trébosc J, Delevoye L, Méar F, Montagne L, Amoureux JP. Structural characterisation of phosphate materials: new insights into the spatial proximities between phosphorus and quadrupolar nuclei using the D-HMQC MAS NMR technique. Phys Chem Chem Phys 2011; 13:16786-94. [DOI: 10.1039/c1cp20993k] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Mao K, Kobayashi T, Wiench JW, Chen HT, Tsai CH, Lin VSY, Pruski M. Conformations of Silica-Bound (Pentafluorophenyl)propyl Groups Determined by Solid-State NMR Spectroscopy and Theoretical Calculations. J Am Chem Soc 2010; 132:12452-7. [DOI: 10.1021/ja105007b] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kanmi Mao
- U.S. DOE Ames Laboratory, and Department of Chemistry, Iowa State University, Ames, Iowa 50011
| | - Takeshi Kobayashi
- U.S. DOE Ames Laboratory, and Department of Chemistry, Iowa State University, Ames, Iowa 50011
| | - Jerzy W. Wiench
- U.S. DOE Ames Laboratory, and Department of Chemistry, Iowa State University, Ames, Iowa 50011
| | - Hung-Ting Chen
- U.S. DOE Ames Laboratory, and Department of Chemistry, Iowa State University, Ames, Iowa 50011
| | - Chih-Hsiang Tsai
- U.S. DOE Ames Laboratory, and Department of Chemistry, Iowa State University, Ames, Iowa 50011
| | - Victor S.-Y. Lin
- U.S. DOE Ames Laboratory, and Department of Chemistry, Iowa State University, Ames, Iowa 50011
| | - Marek Pruski
- U.S. DOE Ames Laboratory, and Department of Chemistry, Iowa State University, Ames, Iowa 50011
| |
Collapse
|
42
|
Trébosc J, Lafon O, Hu B, Amoureux JP. Indirect high-resolution detection for quadrupolar spin-3/2 nuclei in dipolar HMQC solid-state NMR experiments. Chem Phys Lett 2010. [DOI: 10.1016/j.cplett.2010.07.037] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
43
|
Lafon O, Wang Q, Hu B, Vasconcelos F, Trébosc J, Cristol S, Deng F, Amoureux JP. Indirect detection via spin-1/2 nuclei in solid state NMR spectroscopy: application to the observation of proximities between protons and quadrupolar nuclei. J Phys Chem A 2010; 113:12864-78. [PMID: 19905016 DOI: 10.1021/jp906099k] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present a comprehensive comparison of through-space heteronuclear correlation techniques for solid state NMR, combining indirect detection and single-channel recoupling method. These techniques, named D-HMQC and D-HSQC, do not suffer from dipolar truncation and can be employed to correlate quadrupolar nuclei with spin-1/2 nuclei. The heteronuclear dipolar couplings are restored under magic-angle spinning by applying supercycled symmetry-based pulse sequences (SR412) or simultaneous frequency and amplitude modulation (SFAM). The average Hamiltonian theory (AHT) of these recoupling methods is developed. These results are applied to analyze the performances of D-HMQC and D-HSQC sequences. It is shown that, whatever the magnitude of spin interations, D-HMQC experiment offers larger efficiency and higher robustness than D-HSQC. Furthermore, the spectral resolution in both dimensions of proton detected two-dimensional D-HMQC and D-HSQC spectra can be enhanced by applying recently introduced symmetry-based homonuclear dipolar decoupling schemes that cause a z-rotation of the spins. This is demonstrated by 1H-13C and 1H-23Na correlation experiments on l-histidine and NaH2PO4, respectively. The two-dimensional heteronuclear 1H-23Na correlation spectrum yields the assignment of 23Na resonances of NaH2PO4. This assignment is corroborated by first-principles calculations.
Collapse
Affiliation(s)
- Olivier Lafon
- Unité de Catalyse et de Chimie du Solide (UCCS), UMR CNRS 8181, Ecole Nationale Supérieure de Chimie de Lille, Université de Lille 1, Batiment C7, B.P. 90108, 59652 Villeneuve d'Ascq Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Lezcano-González I, Vidal-Moya A, Boronat M, Blasco T, Corma A. Modelling active sites for the Beckmann rearrangement reaction in boron-containing zeolites and their interaction with probe molecules. Phys Chem Chem Phys 2010; 12:6396-403. [DOI: 10.1039/c002427a] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
45
|
Wiench JW, Michon C, Ellern A, Hazendonk P, Iuga A, Angelici RJ, Pruski M. Solid-State NMR Investigations of the Immobilization of a BF4− Salt of a Palladium(II) Complex on Silica. J Am Chem Soc 2009; 131:11801-10. [DOI: 10.1021/ja902982u] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jerzy W. Wiench
- U.S. DOE Ames Laboratory, Iowa State University, Ames, Iowa 50011, Department of Chemistry, Iowa State University, Ames, Iowa 50011, and Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Christophe Michon
- U.S. DOE Ames Laboratory, Iowa State University, Ames, Iowa 50011, Department of Chemistry, Iowa State University, Ames, Iowa 50011, and Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Arkady Ellern
- U.S. DOE Ames Laboratory, Iowa State University, Ames, Iowa 50011, Department of Chemistry, Iowa State University, Ames, Iowa 50011, and Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Paul Hazendonk
- U.S. DOE Ames Laboratory, Iowa State University, Ames, Iowa 50011, Department of Chemistry, Iowa State University, Ames, Iowa 50011, and Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Adriana Iuga
- U.S. DOE Ames Laboratory, Iowa State University, Ames, Iowa 50011, Department of Chemistry, Iowa State University, Ames, Iowa 50011, and Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Robert J. Angelici
- U.S. DOE Ames Laboratory, Iowa State University, Ames, Iowa 50011, Department of Chemistry, Iowa State University, Ames, Iowa 50011, and Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Marek Pruski
- U.S. DOE Ames Laboratory, Iowa State University, Ames, Iowa 50011, Department of Chemistry, Iowa State University, Ames, Iowa 50011, and Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| |
Collapse
|
46
|
Wu Z, Ding S. Prevention of spinning induced sample deterioration during long time solid state NMR experiments of quadrupolar spin systems. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2009; 35:214-216. [PMID: 19372033 DOI: 10.1016/j.ssnmr.2009.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2009] [Revised: 02/23/2009] [Accepted: 03/03/2009] [Indexed: 05/27/2023]
Abstract
A simple solution is proposed to prevent a solid state polycrystalline sample from deterioration during long time high speed spinning experiments in solid state NMR. It is found that if a certain percentage ( approximately 40% volume) of polyethylene glycol (PEG, (HO-CH(2)-(CH(2)-O-CH(2)-)(n)-CH(2)-OH)(n)) is mixed with the sample that are subject to deterioration, the quality of the sample can be maintained for a long time under high speed spinning for a few days or longer, sufficient for multi-dimensional and/or low-sensitivity experiments. Both 1D and 2D experimental results are shown to support this idea.
Collapse
Affiliation(s)
- Zhen Wu
- Department of Chemistry and Center for Nanoscience and Nanotechnology, National Sun Yat-sen University, Kaohsiung, Taiwan, Republic of China
| | | |
Collapse
|
47
|
Amoureux JP, Trébosc J, Delevoye L, Lafon O, Hu B, Wang Q. Correlation NMR spectroscopy involving quadrupolar nuclei. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2009; 35:12-18. [PMID: 19131216 DOI: 10.1016/j.ssnmr.2008.11.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Accepted: 11/07/2008] [Indexed: 05/27/2023]
Abstract
We review the recent developments proposed for integer or half-integer quadrupolar nuclei, focussing on the methods to observe them under high-resolution and to analyze their through-space and through-bond connectivities.
Collapse
Affiliation(s)
- J P Amoureux
- UCCS, CNRS-8181, Lille-University, Villeneuve d'Ascq, Fr-59652, France.
| | | | | | | | | | | |
Collapse
|
48
|
Martínez-Ortiz MDJ, Lima E, Lara V, Vivar JM. Structural and textural evolution during folding of layers of layered double hydroxides. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:8904-8911. [PMID: 18627185 DOI: 10.1021/la801442n] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Layers of a layered double hydroxide, containing aluminum 4-fold coordinated, were partially folded in order to obtain a fibrous hydrotalcite-like compound. The hydrotalcite layers, in the presence of an anionic surfactant (sodium dodecyl sulfate) after hydrothermal treatment for 2 weeks, acquire a mesoporous-like arrangement. The transformation was monitored by techniques sensitive to structural and textural properties. Results suggest that brucite-like layers can be joined throughout unsaturated coordinated aluminum, that is, tetrahedral aluminum which links through hydrogen bonds to form aluminum octahedrally coordinated. The fractal dimension parameter was very sensitive to evolution from layered to fibrous hydrotalcites.
Collapse
|
49
|
Wiench JW, Lin VSY, Pruski M. 29Si NMR in solid state with CPMG acquisition under MAS. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2008; 193:233-42. [PMID: 18538601 DOI: 10.1016/j.jmr.2008.05.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Revised: 05/08/2008] [Accepted: 05/11/2008] [Indexed: 05/18/2023]
Abstract
A remarkable enhancement of sensitivity can be often achieved in 29Si solid-state NMR by applying the well-known Carr-Purcell-Meiboom-Gill (CPMG) train of rotor-synchronized pi pulses during the detection of silicon magnetization. Here, several one- and two-dimensional (1D and 2D) techniques are used to demonstrate the capabilities of this approach. Examples include 1D 29Si{X} CPMAS spectra and 2D 29Si{X} HETCOR spectra of mesoporous silicas, zeolites and minerals, where X=1H or 27Al. Data processing methods, experimental strategies and sensitivity limits are discussed and illustrated by experiments. The mechanisms of transverse dephasing of 29Si nuclei in solids are analyzed. Fast magic angle spinning, at rates between 25 and 40 kHz, is instrumental in achieving the highest sensitivity gain in some of these experiments. In the case of 29Si-29Si double-quantum techniques, CPMG detection can be exploited to measure homonuclear J-couplings.
Collapse
Affiliation(s)
- J W Wiench
- U.S. DOE Ames Laboratory, Iowa State University, Ames, IA 50011, USA
| | | | | |
Collapse
|
50
|
Kennedy GJ, Wiench JW, Pruski M. Determination of 27Al-29Si connectivities in zeolites with 2D 27Al-->29Si RAPT-CPMG-HETCOR NMR. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2008; 33:76-81. [PMID: 18515049 DOI: 10.1016/j.ssnmr.2008.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Indexed: 05/26/2023]
Abstract
The recently introduced concept of the combined use of rotor assisted population transfer (RAPT) and Carr-Purcell-Meiboom-Gill (CPMG) techniques to boost the sensitivity of cross polarization (CP) based NMR experiments is applied to a synthetic zeolite (ZSM-4). The sensitivity was increased by a factor of approximately 4, which enabled acquisition of a high quality two-dimensional 27Al-29Si HETCOR (heteronuclear correlation) spectrum. By separating the resonances in two dimensions, through-space connectivities between spins were revealed and the effective resolution was improved in both dimensions, which allowed determination of the existing ambiguities in spectral assignments in this material. The spectra provided clear indication of random distribution of aluminum and silicon within the ZSM-4 network. Additionally, unexpected correlations were observed between different components of inhomogeneously broadened 29Si and 27Al lines, which are most likely due to differences in the second coordination sphere environments.
Collapse
Affiliation(s)
- Gordon J Kennedy
- ExxonMobil Research and Engineering Co., Corporate Strategic Research, 1545 Route 22E, Annandale, NJ 08801-3059, USA.
| | | | | |
Collapse
|